
z. commodore

COMPUTER

SIMONS' BASIC

USER GUIDE

C64108

Commodore Italians SPA

Via Fratelli Gracchi 48,

Cinisello Balsamo, Milano, Italy.

Commodore Computer BV

Marksingel, 2e4811 NV Breda, Postbus 720,

4803aS Breda, Netherlands.

Commodore Business Machines Ltd.,

3370, Pharmacy Avenue, Agincourt,

Ontario, M1W 2K4, Canada.

Commodore A.G. Schwelz,

Aeschenvorstadt 57, 4010,

Basel, Switzerland.

Commodore Business Machines Inc.,

1200, Wilson Drive, West Chester,

PA 19380, USA.

Commodore Buromaschinen GmbH,

Lyoner Str. 38, Postfach 710126,

6000 Frankfurt, West Germany.

Commodore Business Machines Pty. Ltd.,

5, Orion Road, Lane Cove,

New South Wales 2066, Australia.

Commodore Business Machines (UK) Ltd.,

675 Ajax Avenue, Slough Trading Estate,

Slough, Berks. SL1 4BG England.

SIMONS' BASIC USER GUIDE

ABOUT THE AUTHOR

When David Simons was thirteen, his father gave him a

COMMODORE computer for his birthday. Since that time

he has developed an understanding of computers far in

advance of his years. The SIMONS' BASIC program is the

product of that experience. David was motivated by the

desire to have his new COMMODORE 64 include as many

commands as possible. He surveyed the variations to

BASIC offered by other micros and even some minis. From

this list he put together 114 commands that now comprise

SIMONS' BASIC. It is with pride that COMMODORE

markets the work of this sixteen-year-old student.

This manual was prepared on a COMMMODORE 8000

series computer system using a word processor. The files

were then electronically transmitted into a phototypesetter

and typeset by

THE ELECTRONIC VILLAGE LTD., London W4

without compositor intervention.

Special thanks to Gail Wellington, Steve Beats and Keith

Morris who helped in the preparation of this manual.

SIMONS' BASIC USER GUIDE

COMMENTS AND ERRATA REQUEST

TO THE READER

To the best of our knowledge, this manual is technically
and typographically correct at the time of going to print.

However, no matter how fine we make the sieve for

catching errors, sometimes a few slip through.

If you notice any mistakes, we would be grateful if you

would notify us of them. Comments, criticisms and

suggestions are also earnestly solicited.

Yours sincerely,

Michael G. Smith.

Technical Author

COMMODORE BUSINESS MACHINES (UK), LTD.
675 Ajax Avenue

Trading Estate

Slough, Berkshire SL1 4BG

ENGLAND

SIMONS' BASIC USER GUIDE

COPYRIGHT-SOFTWARE PRODUCT

This software product is copyrighted and all rights are reserved by

D. S. Software

19 Reddings

Welwyn Garden City

Herts AL8 7LA

U.K.

The distribution and sale of this product are intended for the original purchaser

only. Lawful users of these programs are hereby licensed only to read these

programs from the medium into the memory of a computer solely for the purpose

of executing the programs. Security copies of the programs may be made only for

their own use. Duplicating for any other purpose, copying, selling or otherwise

distributing this product is a violation of the law.

COPYRIGHT—MANUAL

This manual is copyrighted and all rights are reserved. This document may not,

in whole or in part be copied, photocopied, reprinted, translated, reduced to any

electronic medium or machine readable form or reproduced in any manner without

prior consent in writing from COMMODORE BUSINESS MACHINES, LTD., Software

Products Manager.

DISCLAIMER

Although programs are tested by COMMODORE before release, no claim is made

regarding the accuracy of this software. COMMODORE and its distributors cannot

assume liability or responsibility for any loss or damage arising from the use of

these programs. Programs are sold only on the basis of this understanding.

Individual applications should be thoroughly tested before implementation. Should

you require installation, maintenance or training, please consult your COMMODORE

dealer.

TABLE OF CONTENTS

TABLE OF CONTENTS

SECTION ONE—INTRODUCTION TO SIMONS' BASIC

1.1 INTRODUCTION 1-1

1.2 THE SIMONS' BASIC MANUAL 1-2

1.3 STARTING SIMONS' BASIC 1-4

1.4 SIMONS' BASIC COMMANDS 1-4

1.5 ENTERING COMMANDS 1-6

1.6 CONVENTIONS 1-6

SECTION TWO—PROGRAMMING AIDS

2.1 INTRODUCTION 2-1

2.2 ASSIGNING COMMANDS TO THE FUNCTION KEYS 2-2

2.2.1 KEY 2-2

2.2.2 ADDING CARRIAGE RETURNS 2-2

2.2.3 DISPLAY 2-3

2.3 AUTO 2-3

2.4 RENUMBER 2-4

2.5 PAUSE 2-5

2.6 CGOTO 2-6

2.7 RESET 2-6

2.8 MERGE 2-7

2.9 PROGRAM LISTING AIDS 2-8

2.9.1 PAGE 2-8

2.9.2 OPTION 2-9

2.9.3 DELAY 2-10

2.10 FIND 2-11

2.11 PROGRAM DEBUGGING AIDS 2-12

2.11.1 TRACE 2-12

2.11.2 RETRACE 2-13

2.12 DUMP 2-14

2.13 COLD 2-15

2.14 PROGRAM SECURITY AIDS 2-15

2.14.1 INTRODUCTION 2-15

2.14.2 DISAPA 2-16

2.14.3 SECURE 2-17

2.15 OLD 2-17

SIMONS' BASIC USER GUIDE

SECTION THREE-INPUT VALIDATION AND TEXT MANIPULATION

3.1 INTRODUCTION 3-1

3.2 CHARACTER STRING HANDLING 3-2

3.2.1 INSERT 3-2

3.2.2 INST 3-3
3.2.3 PLACE 3-4

3.2.4 DUP 3-5
3.2.5 CENTRE 3-5

3.2.6 AT 3-6
3.2.7 USE 3-7
3.3 INPUT VALIDATION COMMANDS 3-8

3.3.1 FETCH 3-8

3.3.2 INKEY 3-9
3.3.3 ON KEY 3-10

3.3.4 DISABLE 3-11

3.3.5 RESUME 3-11

SECTION FOUR-EXTRA NUMERIC AIDS

4.1 INTRODUCTION 4-1

4.2 ADDITIONAL ARITHMETIC OPERATORS 4-1

4.2.1 MOD 4-1

4.2.2 DIV 4-2

4.2.3 FRAC 4-2
4.3 NUMERIC CONVERSION 4-3

4.3.1 BINARY TO DECIMAL CONVERSION 4-3

4.3.2 HEXADECIMAL TO DECIMAL CONVERSION 4-3

4.3.3 COMBINING THE CONVERSION COMMANDS 4-4

4.4 EXOR .4,4

SECTION FIVE-DISKETTE COMMANDS

5.1 INTRODUCTION 5-1

5.2 DISK 5-1

5.3 DIR 5-2

TABLE OF CONTENTS

SECTION SIX—GRAPHICS WITH SIMONS' BASIC

6.1 INTRODUCTION 6-1

6.2 SCREEN CONFIGURATION 6-2

6.3 COMMODORE 64 COLOURS 6-2

6.4 PLOT TYPES 6-3
6.5 GRAPHICS PLOTTING COMMANDS 6-3

6.5.1 COLOUR 6-3

6.5.2 HIRES 6-4

6.5.3 REC 6-5

6.5.4 MULTI 6-5

6.5.5 NRM 6-6

6.5.6 LOW COL 6-6

6.5.7 HI COL 6-7

6.5.8 PLOT 6-8
6.5.9 TEST 6-9

6.5.10 LINE 6-10

6.5.11 CIRCLE 6-10

6.5.12 ARC 6-11

6.5.13 ANGL 6-12

6.5.14 PAINT 6-13

6.5.15 BLOCK 6-14

6.5.16 DRAW 6-14

6.5.17 ROT 6-15

6.5.18 CSET 6-17
6.6 PRINTING TEXT ON A GRAPHICS SCREEN 6-18

6.6.1 CHAR 6-18

6.6.2 TEXT 6-19

SECTION SEVEN—SCREEN MANIPULATION

7.1 INTRODUCTION 7-1

7.2 BCKGNDS 7-2

7.3 FLASH 7-3
7.4 OFF 7-4

7.5 BFLASH 7-4

7.6 FCHR 7-5
7.7 FCOL i 7-6
7.8 FILL 7-6

7.9 MOVE 7-7
7.10 INV 7-8
7.11 SCROLLING 7-9
7.12 STORING AND RECALLING SCREEN DATA 7-10

7.12.1 SCRSV 7-10
7.12.2 SCRLD 7-11
7.13 PRINTING SCREEN DATA 7-11

7.13.1 INTRODUCTION 7-1X

7.13.2 COPY 7-11
7.13.3 HRDCPY 7-12

vii

SIMONS' BASIC USER GUIDE

SECTION EIGHT—SPRITE AND USER-DEFINED GRAPHICS

8.1 INTRODUCTION 8-1

8.2 SPRITES 8-1

8.2.1 INTRODUCTION 8-1

8.2.2 DESIGN 8-2

8.2.3 @ 8-3

8.2.4 CMOB 8-5

8.2.5 MOB SET 8-6

8.2.6 MMOB 8-7

8.2.7 RLOCMOB 8-8

8.2.8 DETECT 8-8

8.2.9 CHECK 8-9

8.2.10 MOB OFF 8-9

8.3 CREATING USER-DEFINED CHARACTERS 8-10

8.3.1 INTRODUCTION 8-10

8.3.2 MEM 8-10

8.3.3 DESIGN 8-12

8.3.4 @ 8.13

SECTION NINE-STRUCTURED PROGRAMMING

9.1 INTRODUCTION 9-1

9.2 CONDITION TESTING AND PROGRAM LOOPS 9-1

9.2.1 IF...THEN...ELSE 9-1

9.2.2 REPEAT UNTIL 9-2

9.2.3 RCOMP 9-3

9.2.4 LOOP...EXIT IF...END LOOP 9-4

9.3 PROGRAM PROCEDURES 9-5

9.3.1 INTRODUCTION 9-5

9.3.2 PROC 9-5

9.3.3 END PROC 9-6

9.3.4 CALL 9-6

9 3 5 EXEC 9-7

9*4' PROGRAMVARIABLES '. .9-8
9.4.1 INTRODUCTION 9-8

9.4.2 LOCAL 9-8

9.4.3 GLOBAL 9-9

TABLE OF CONTENTS

SECTION TEN—ERROR TRAPPING

10.1 INTRODUCTION 10-1

10.2 ON ERROR 10-1

10.3 OUT 10-3

10.4 NO ERROR 10:4

SECTION ELEVEN—MAKING MUSIC WITH SIMONS' BASIC

11.1 INTRODUCTION 11-1

11.1.1 SOUND SHAPING 11-1

11.1.2 SOUND WAVES 11-2

11.1.3 PROGRAMMING SOUND 11-4

11.2 MUSIC COMMANDS .11-5

11.2.1 VOL 11-5

11.2.2 WAVE 11-5

11.2.3 ENVELOPE 11-8X

11.2.4 MUSIC 11-9

11.2.5 PLAY 11-11

SECTION TWELVE—READ FUNCTIONS

12.1 INTRODUCTION 12-1

12.2 PENX 12-1

12.3 PENY 12-2

12.4 POT 12-3

12.5 JOY 12-5

SECTION THIRTEEN-EXAMPLES OF SIMONS' BASIC PROGRAMS

13.1 INTRODUCTION 13-1

13.2 PROGRAM 1 - DRAWING A POLYHEDRON 13-1

13.3 PROGRAM 2 - WORD SEARCH .13-2

13.4 PROGRAM 3 - LETTER SLIDER 13-5

13.5 PROGRAM 4 - A VINTAGE CAR 13-8

APPENDIX-ERROR MESSAGES

GLOSSARY

INDEX

SIMONS' BASIC USER GUIDE TABLE OF CONTENTS

TABLE OF FIGURES

Figure

3-1 A SINGLE 'AT COMMAND 3-6

3-2 A COMPOUNDED 'AT COMMAND 3-7

8-1 MEMORY CONFIGURATION BEFORE MEM 8-11

8-2 MEMORY CONFIGURATION AFTER MEM 8-11

11-1 A SOUND ENVELOPE 11-2

11-2 A TRIANGULAR SOUND WAVE 11-2

11-3 A SAWTOOTH SOUND WAVE 11-3

11-4 A PULSE/SQUARE WAVE 11-3

11-5 A NOISE WAVE 11-4

12-1 JOYSTICK VALUES 12-5

INTRODUCTION

SECTION ONE

INTRODUCTION TO SIMONS' BASIC

1.1 INTRODUCTION

The SIMONS' BASIC cartridge has been designed to enable you to realize the full
potential of your COMMODORE 64 computer. It does so by providing an additional

114 commands to complement the COMMODORE 64's standard BASIC. These extra

commands fall into twelve broad areas as outlined below:

PROGRAMMING AIDS, such as KEY and TRACE, to facilitate speedier, more

efficient BASIC programming.

CHARACTER STRING HANDLING commands, like INSERT and PLACE, to give you

full control over string manipulation.

TEXT commands, such as CENTRE and PRINT AT, to facilitate screen formatting.

IMPROVED INPUT commands, like FETCH and INKEY, to give you full control over

what is typed from the keyboard.

EXTRA ARITHMETIC OPERATORS, such as MOD and DIV, to provide a simpler

method of integer division.

NUMERIC CONVERSION commands to enable you to change binary or hexadecimal

numbers into the decimal equivalents.

STRUCTURED PROGRAMMING commands, such as PROC and IF..THEN..ELSE,

to enable you to write more legible code.

SCREEN MANIPULATION aids, like SCRSV and COPY, to allow you to store/load

screen data and/or produce a print-out of a high/low resolution screen.

GRAPHICS PLOTTING commands, such as CIRCLE and PAINT, to enable you to

draw shapes on the screen.

SPRITE and USER-DEFINED GRAPHICS commands, like DESIGN, MOB SET,

DETECT and CHECK to allow you to create and animate your own 'moveable object

blocks' or design your own graphics characters.

MUSIC commands, such as WAVE and ENVELOPE, to enable you to create sound

effects and compose and play music.

DISKETTE OPERATING commands, such as DIR, to simplify file handling.

1-1

SIMONS' BASIC USER GUIDE

The range of commands provided by the SIMONS' BASIC cartridge make it an

essential tool for anyone interested in getting the most from his COMMODORE 64.

This manual has not been designed to teach BASIC programming on the

COMMODORE 64. If you have no knowledge of BASIC programming, please refer

to one of the following:

COMMODORE 64 User's Guide (supplied with your computer)

An Introduction to BASIC Parts 1 and 2, by Andrew Colin.

1.2 THE SIMONS' BASIC MANUAL

This manual is divided into thirteen sections as outlined below:

SECTION ONE—INTRODUCTION TO SIMONS' BASIC

This section outlines SIMONS' BASIC in broad terms. It also explains how to load

the cartridge and how to enter a SIMONS' BASIC command. Included are the

conventions used in this manual to describe each command. The compatability

of SIMONS' BASIC with standard COMMODORE 64 BASIC is also discussed.

Instructions on how to store, load and run SIMONS' BASIC programs are also given.

SECTION TWO—PROGRAMMING AIDS

Contained here are commands such as AUTO and TRACE to facilitate speedier,

more efficient BASIC programming. Also included in this section is the KEY

command which enables the COMMODORE 64's function keys to be programmed.

SECTION THREE—INPUT VALIDATION AND TEXT MANIPULATION

This section contains commands like INSERT and PLACE to improve character

string handling. Also included are the commands FETCH and INKEY, both of which

provide improved control over user input. In addition, screen text formatting

commands, such as CENTRE and PRINT AT are also explained.

SECTION FOUR-EXTRA NUMERIC AIDS

Here three extra arithmetic operators, MOD, DIV and FRAC are described. The first

two commands deal with integer division, whilst the third enables the fractional

part of a number to be extracted. This section also contains a description of the

commands % and $ which are used respectively for converting binary or

hexadecimal numbers into decimal form and the EXOR command which performs

an additional Boolean operation.

SECTION FIVE—DISKETTE COMMANDS

Two commands, DISK and DIR, are discussed here. DISK enables various disk

operating commands such as formatting and file scratching to be done with one

command, i.e. the disk channel is closed automatically when the task has been

completed. DIR enables all, or a selected part, of a diskette directory to be displayed

on the screen.

1-2

INTRODUCTION

SECTION SIX—GRAPHICS WITH SIMONS' BASIC

In this section the wide range of SIMONS' BASIC graphics plotting commands are

described. These commands allow you to draw shapes on the screen and paint

them with any of the sixteen colours supplied by the COMMODORE 64.

SECTION SEVEN—SCREEN MANIPULATION

This section describes how to scroll an area of the screen in any direction. Also

included are commands for moving an area of the screen to another location,

changing the colour of screen characters and for storing and recalling screen data.

Commands enabling high/low resolution screens to be printed are also described.

SECTION EIGHT—SPRITE AND USER-DEFINED GRAPHICS

Section Eight describes the SIMONS' BASIC commands concerned with the design

and animation of COMMODORE 64 Sprite graphics. Also included are instructions

to enable you to create your own graphics characters.

SECTION NINE—STRUCTURED PROGRAMMING

Here the various SIMONS' BASIC structured programming commands are explained.

SECTION TEN—ERROR TRAPPING

Section Ten contains commands which enable certain BASIC program errors to

be trapped to prevent your programs from crashing.

SECTION ELEVEN—MAKING MUSIC WITH SIMONS' BASIC

Here the SIMONS' BASIC commands which allow you to play music on the

COMMODORE 64 are described.

SECTION TWELVE—READ FUNCTIONS

This section describes those functions, such as PENX and POT, which allow you

to incorporate control by a games device, such as a joystick, into a program.

SECTION THIRTEEN—EXAMPLES OF SIMONS' BASIC PROGRAMS

Section Thirteen contains listings of programs written using SIMONS' BASIC to

demonstrate what may be achieved with the cartridge.

APPENDIX A—ERROR MESSAGES

A list of the error messages that you may encounter when using SIMONS' BASIC

commands and their probable causes are given in this Appendix.

GLOSSARY

A list of terms that are used in this manual and their definitions are given in this
section.

1-3

SIMONS' BASIC USER GUIDE

1.3 STARTING SIMONS' BASIC

The SIMONS' BASIC cartridge must always be inserted or removed from the

COMMODORE 64 with the power OFF. The cartridge is inserted, label uppermost,

into the cartridge slot at the rear of the computer. (See your COMMODORE 64 User's

Guide.)

To begin using SIMONS' BASIC, simply turn the computer on with the cartridge

in place. The following message is then displayed:

*** EXPANDED CBM V2 BASIC ***

30719 BYTES FREE

All the SIMONS' BASIC commands are now included in the operating system of

your COMMODORE 64 and may be used at any time like any other BASIC command.

Note that SIMONS' BASIC uses approximately 8K of the memory of the

COMMODORE 64.

1.4 SIMONS' BASIC COMMANDS

The following is a list of commands which are added to your COMMODORE 64

operating system by the SIMONS' BASIC cartridge:

Commands for entering, debugging, listing and securing programs:

KEY, DISPLAY, AUTO, RENUMBER, PAUSE, MERGE, PAGE,

OPTION, DELAY, FIND, TRACE, RETRACE, DUMP, COLD, OLD,

RESET, CGOTO, DISAPA, SECURE.

Commands for text manipulation, screen formatting and input validation:

INSERT, INST, PLACE, DUP, USE, CENTRE, AT, LIN, FETCH,

INKEY, ON KEY, DISABLE, RESUME.

Commands for integer division, numeric conversion and an additional Boolean

operation.

MOD, DIV, FRAC, %, $, EXOR.

1-4

INTRODUCTION

Commands for diskette handling:

DISK, DIR.

Commands for graphics plotting:

COLOUR, HIRES, MULTI, NRM, HICOL, LOW COL, PLOT, LINE,

REC, CIRCLE, ARC, ANGL, BLOCK, PAINT, NRM, DRAW, ROT,

CHAR, TEXT, TEST, CSET.

Commands for storing, printing and manipulating screen data:

LEFT/RIGHT/UP/DOWN scrolling, BCKGNDS, FLASH, OFF, BFLASH,

FCHR, FCOL, FILL, MOVE, INV, SCRSV, SCRLD, COPY, HRDCPY.

Commands for generating/animating Sprites and creating your own characters:

DESIGN, @, CMOB, MOB SET, MMOB, RLOCMOB, DETECT,

CHECK, MOB OFF, MEM.

Structured programming commands:

IF..THEN..ELSE, REPEAT..UNTIL, LOOP..EXIT IF..END LOOP, PROC,

CALL, EXEC, END PROC, RCOMP, LOCAL, GLOBAL, NO ERROR, ON

ERROR, OUT.

Commands for music synthesis:

WAVE, ENVELOPE, MUSIC, VOL, PLAY, SOUND.

Functions to use games devices with your programs:

PENX, PENY, POT, JOY.

1-6

SIMONS' BASIC USER GUIDE

1.5 ENTERING COMMANDS

All SIMONS' BASIC commands are entered In the same way as those in standard

Commodore BASIC. Most SIMONS' BASIC commands can be used In direct mode

or as part of a program. Any exceptions to this rule are indicated in the introduction

to each section of the manual.

1.6 CONVENTIONS

The format of each SIMONS' BASIC command in this manual is presented using

the following method of notation:

1. Brackets and items written in capital letters must be typed exactly as

shown.

2. Items printed in lower case indicate a user-supplied or variable entry, e.g.

coordinates or a plotting colour.

3. Other symbols, such as quotation marks and commas, must be typed

exactly as shown.

4. Pressing the RETURN key is indicated by < RETURN >.

5. Keys other than alphabetic and numeric characters are indicated in the

listing by the name on the key surface enclosed in <>,

e.g. <CLR/HOME>. These appear on the screen as reversed characters. If

two keys are enclosed, e.g. <CTRL RVS ON>, you must hold down the

first key before pressing the second key.

6. With the exception of the FIND command (see Section 2.10), all SIMONS'

BASIC keywords must be separated from the first parameter of the

command with a space.

1-6

PROGRAMMING AIDS

SECTION TWO

PROGRAMMING AIDS

2.1 INTRODUCTION

SIMONS' BASIC provides several commands which are useful when entering,

debugging and listing your BASIC programs whether they include SIMONS' BASIC

commands or not.

The KEY command enables the COMMODORE 64's function keys to be programmed.

DISPLAY lists the values that have been assigned to these keys. The AUTO and

RENUMBER commands create automatic program line numbering. MERGE

combines a stored BASIC program with the program currently in the COMMODORE

64's memory.

The PAGE command permits you to specify how many screen lines you wish to

use when listing programs on the screen. OPTION highlights all SIMONS' BASIC

commands in a program listing. The DELAY command allows you to control the

rate of scroll of program listings on the screen.

The TRACE and RETRACE commands display the numbers of program lines as they

are executed. The DUMP command lists the values of all non-array variables. FIND

locates all occurrences of a particular string of characters.

The PAUSE command is used to set a time delay in your program. CGOTO branches

to a calculated line number. RESET instructs the COMMODORE 64 to read data

from a defined program line. The SECURE and DISAPA commands 'blank' specified

program lines to prevent unauthorised persons from examining your code. COLD

returns the COMMODORE 64 to the SIMONS' BASIC start-up screen. The OLD

command allows you to recover a program that has been NEWed.

Note that all the commands in this section can be used in direct mode or as part

of a program.

2-1

SIMONS' BASIC USER GUIDE

2.2 ASSIGNING COMMANDS TO THE FUNCTION KEYS

2.2.1 KEY

FORMAT: KEY number,"code"

PURPOSE: To assign a command to a function key.

KEY enables you to assign your own commands to the

COMMODORE 64 function keys and then change these commands

if you wish. The number in the command format indicates the

function key you wish to use from 1 to 16. The second parameter

is the code you wish to assign to this key. A maximum of fifteen

characters may be assigned to each key. Pressing the keys

normally, you obtain functions F1, F3, F5 and F7. Holding down

the SHIFT key and pressing these same keys, you get functions

F2, F4, F6 and F8. By holding down the Commodore logo key and

pressing the keys, you obtain functions F9, F10, F11 and F12. If

you hold down the SHIFT key and the Commodore logo key, you

get functions F13, F14, F15 and F16. Note that the code you assign

to each key must be enclosed in quotation marks.

EXAMPLE: To assign the command MOB SET to function key F8:

COMMAND: KEY 8,"MOB SET" <RETURN >

RESULT: The SIMONS' BASIC code MOB SET is now assigned to the F8

function key and will be displayed every time this key is pressed.

2.2.2 ADDING CARRIAGE RETURNS

To eliminate the need to press RETURN following a function key command, you

may add a carriage return to the key assignment as follows

a) Assign your command to the key (see Section 2.2.1). Type the end quote

marks but do not press RETURN.

b) Type + CHR$(13) and press RETURN.

Now when you press the function key, you will automatically generate a RETURN

following the assigned command.

EXAMPLE: To assign the BASIC command LIST and an automatic carriage

return to the F7 function key:

COMMAND: KEY 7,"LIST" + CHR$(13) <RETURN >

RESULT: You may now list a program simply by pressing the F7 key.

2-2

PROGRAMMING AIDS

2.2.3 DISPLAY

FORMAT: DISPLAY

PURPOSE: To list the commands assigned to the function keys.

DISPLAY enables you to review the current function key

assignments.

EXAMPLE: To list the function key assignments after the assignment examples

in the previous two sections:

COMMAND: DISPLAY <RETURN>

DISPLAY: KEY 1

KEY 2

KEY 3

KEY 4

KEY 5

KEY 6

KEY 7

KEY 8

KEY 9

KEY 10

KEY 11

KEY 12

KEY 13

KEY 14

KEY 15

KEY 16

LIST" + CHR$(13)

MOB SET"

2.3 AUTO

FORMAT:

PURPOSE:

AUTO start line number, increment

To automatically generate program line numbers at a specified

increment.

When the AUTO command is entered, the start program line number

you have defined is displayed with the cursor following it waiting

entry of a line of code. Thereafter, each time you type in a line of

code and press RETURN, the increment you have specified will be

added to the number of the previous line. The resulting figure will

be displayed as the next program line number. To terminate this

function, simply press RETURN when the line number is displayed.

2-3

SIMONS' BASIC USER GUIDE

EXAMPLE: To generate program line numbers automatically in intervals of 5

beginning at line 10:

COMMAND: AUTO 10,5 <RETURN >

DISPLAY: 10

TYPE: GET A$ < RETURN > '

DISPLAY: 10 GET A$

15

TYPE: IF A$ = "" THEN 10 <RETURN >

DISPLAY: 10 GET A$

15 IF A$ = "" THEN 10

20

RESULT: Each time you enter a line of code and press RETURN, a line number

5 larger than the previous number is displayed.

EXAMPLE: To terminate automatic program line numbering in the program

listed above:

TYPE: < RETURN >

COMMAND: LIST <RETURN >

DISPLAY: 10 GET A$

15 IF A$ = "" THEN 10

READY

RESULT: Automatic numbering is terminated.

2.4 RENUMBER

FORMAT: RENUMBER start line numberjncrement

PURPOSE: To automatically renumber all program lines.

RENUMBER automatically changes the numbers of all program

lines. The program now begins at the start line number you have

specified and all subsequent line numbers are displayed at the

selected increment. This command is particularly useful if you need

space in a program to insert more code.

NOTE

The RENUMBER command does not renumber

GOTOs or GOSUBs. However, SIMONS' BASIC

obviates the need for these instructions by

replacing them with structured programming

commands. See Section 9.

2-4

PROGRAMMING AIDS

EXAMPLE: To renumber all the program lines of the following program:

ENTRY: 1 PRINT"<SHIFT CLR/HOME>"

2 FOR X = 1 TO 20

3 Z = RND(1) * 255

4 POKE 53280.Z

5 FOR Y = 1 TO 250: NEXTY,X

COMMAND: RENUMBER 100,10 <RETURN>

TYPE: LIST < RETURN >

DISPLAY: 100 PRINT"<SHIFT CLR/HOME>"

110 FORX = 1 TO 20

120 Z = RND(1) * 255

130 POKE 53280,Z

140 FOR Y = 1 TO 250: NEXTY,X

2.5 PAUSE

FORMAT:

or:

PURPOSE:

EXAMPLE:

ENTRY:

RESULT:

PAUSE "message",number of seconds

PAUSE number of seconds

To stop program execution for a specific interval.

PAUSE causes a program to wait before continuing to execute. The

interval is a pre-specified length of time measured in seconds. Note

that fractions of a second CANNOT be used. The PAUSE command

can be used in two ways, either with or without a message.

If a message, enclosed in quotation marks, is included in the PAUSE

command, the message is displayed for the specified period of time.

Pressing the RETURN key interrupts the pause and continues the

program execution.

If no message is included after the PAUSE, the program simply waits

until the specified delay has elapsed.

To cause a program delay of 10 seconds:

100 PAUSE 10

When line 100 of the program is reached, a delay of 10 seconds

occurs.

2-5

SIMONS' BASIC USER GUIDE

EXAMPLE: To display a message and wait for 1 minute:

ENTRY: 100 PAUSE "PRESS RETURN TO CONTINUE",60

RESULT: When this line is executed, PRESS RETURN TO CONTINUE is

. displayed and the program does not go on for one minute or until

the RETURN key is pressed.

2.6 CGOTO

FORMAT: CGOTO expression

or: CGOTO operand operator variable

PURPOSE: To compute the line number to which the program should branch.

The CGOTO command allows you to branch to a variable line

number determined by the result of a computation.

EXAMPLE:

ENTRY:

To

10

20

30

40

50

60

70

80

90

branch t

REM"*1

FOR 1 =

CGOTO

END

PRINT"

PRINT"

PRINT"

PRINT"

PRINT"

o five different line numbers spc

** EXAMPLE OF CGOTO ***

= 1 TO 5

I • 10 + 40

= 1":NEXT

= 2":NEXT

= 3":NEXT

= 4":NEXT

= 5":NEXT

RESULT: For each value of I, the line number is calculated and that line

executed.

2.7 RESET

FORMAT: RESET line number

PURPOSE: To move data pointers to a specific line of data.

In standard BASIC, data is always read sequentially, i.e. the first

item of data is used by the first READ statement, the second item

by the next etc. RESET enables you to indicate the program line

within a block of data from which reading is to begin i.e. you need

not begin at the first item of data in the program or you may skip

over some items to a specific point.

2-6

PROGRAMMING AIDS

EXAMPLE: To select specific data depending on user input:

ENTRY: 10 REM"*** EXAMPLE OF RESET ***

20 PRINT"<SHIFT CLR/HOME>"

30 PRINT "WHICH CATEGORY?":PRINT:PRINT

40 PRINT"1) DOGS'7'2) CATS'\"3) BIRDS","4) FISH"

50 INPUT A: IF A < 0 OR A > 5 THEN PRINT"<SHIFT CURSOR

UP>": GOTO 50
60 IF A = 1 THEN RESET 100

70 IF A = 2 THEN RESET 110

80 IF A = 3 THEN RESET 120

90 IF A = 4 THEN RESET 130

95 FOR I = 1 TO 5

97 READ A$:PRINT A$:NEXT I

99 PAUSE 10:GOTO 20

100 DATA ALSATIAN,CORGI,TERRIER,LABRADOR,SPANIEL

110 DATA PERSIAN,TABBY,ALLEY,SIAMESE,BURMESE

120 DATA SPARROW,STARLING,BUDGIE,CANARY,PIGEON

130 DATA TROUT,SALMON,CHUBB,BASS,ROACH

TYPE: RUN < RETURN >

ENTER: 3 < RETURN >

DISPLAY: SPARROW

STARLING

BUDGIE

CANARY

PIGEON

RESULT: The program reads five items of data beginning at the line number

relating to the user input value.

ACTION: Hold down the RUN/STOP key and press the RESTORE key.

RESULT: The program stops.

2.8 MERGE

FORMAT: MERGE "program name",device number

PURPOSE: To load a previously saved program and incorporate it into the

program currently in the COMMODORE 64's memory.

The device number refers to the number of the peripheral on which

the program to be MERGEd is stored. This number is 1 for a cassette

unit and 8 for a disk unit. If no device number is specified, 1, i.e.

cassette is assumed. The program name is specified in the same

way as with the BASIC command LOAD.

2-7

SIMONS' BASIC USER GUIDE

CAUTION

THE MERGED PROGRAM WILL FOLLOW THE

PROGRAM CURRENTLY IN MEMORY, i.e. THE

MERGED PROGRAM LINES WILL BE

APPENDED RATHER THAN INTERSPERSED.

USE THE RENUMBER COMMAND (see Section

2.4) TO RENUMBER THE MERGED PROGRAM
BEFORE EXECUTION.

EXAMPLE: To MERGE the cassette program named "SIMONS' BASIC1" with

the program currently In memory:

ACTION: Write a small program and save it on cassette under the name

"SIMONS' BASIC1".

COMMAND: Type NEW <RETURN>

ACTION: Write another small program.

COMMAND: MERGE "SIMONS' BASIC1",1 <RETURN>

DISPLAY: PRESS PLAY ON TAPE

ACTION: Press the PLAY button on the cassette unit.

DISPLAY: LOADING SIMONS' BASIC1

READY

RESULT: The two programs are now merged.

2.9 PROGRAM LISTING AIDS

2.9.1 PAGE

FORMAT:

PURPOSE:

PAGE n

To divide a program listing into 'pages' of n lines.

PAGE permits you to specify the number of screen lines you wish

to use when listing a program. When the command is executed,

a LIST will display the first line number of the program. Each section

of the listing can then be displayed by pressing the RETURN key.

A parameter of zero will terminate the paging enabling the program

to be listed normally. Note that the parameter in this command

refers to the number of screen lines and not to program lines which

may occupy more than one screen line. If a program line overflows

the screen limits you have defined, that entire line will appear on

the next screen.

2-8

PROGRAMMING AIDS

EXAMPLE: To list a program using only 5 screen lines:

ACTION: Load or create a program containing more than ten lines of code.

COMMAND: PAGE 5 <RETURN>

TYPE: LIST < RETURN >

RESULT: The first program line number is displayed.

COMMAND: Press the RETURN key.

RESULT: The first 5 lines of your program are displayed.

COMMAND: Press the RETURN key.

RESULT: The second 5 lines of your program are displayed.

COMMAND: PAGE 0 <RETURN >

TYPE: LIST < RETURN >

RESULT: Your program lists normally.

2.9.2 OPTION

FORMAT: OPTION n

PURPOSE: To highlight all SIMONS' BASIC commands when a program is

listed.

The OPTION command with a parameter of 10 causes all SIMONS'

BASIC commands to be highlighted in reverse-field when the

program is listed either on the screen or on the printer. A parameter

other than 10 (between 0 and 255) turns off the highlighting.

CAUTION

LISTINGS PRINTED AFTER THE OPTION

COMMAND HAS BEEN USED WILL CAUSE

YOUR PRINTER RIBBON TO WEAR OUT VERY

QUICKLY. IT IS THEREFORE RECOMMENDED

THAT LISTINGS OF THIS SORT ARE NOT

PRINTED FREQUENTLY.

Note that some of the commands used in the example program

below have not yet been covered. They are included merely to

illustrate the use of the OPTION command.

2-9

SIMONS' BASIC USER GUIDE

EXAMPLE: To highlight all SIMONS' BASIC commands in the following

program:

10 HIRES 0,1

20 CIRCLE 160,120,0,28,100

30 REC 160,120,160,120,0

40 PAUSE 10

50 CSET 0 : END

COMMAND: OPTION 10 <RETURN >

TYPE: LIST < RETURN >

RESULT: The SIMONS' BASIC commands are highlighted in reverse field in

the screen listing.

COMMAND: OPTION 0 <RETURN >

TYPE: LIST < RETURN >

RESULT: The program lists normally.

NOTE

When listing to the printer enter all the

commands on one line, e.g.:

OPEN 4,4:CMD4:LIST:PRINT#4:CLOSE4<RETURN>

Before listing any subsequent program, switch

the printer off and then back on.

2.9.3 DELAY

FORMAT: DELAY n

PURPOSE: To vary the rate of scrolling of a program listing.

When the SHIFT key is held down during a program listing, the rate

of screen scroll slows down. The DELAY command varies the speed

of this slowed listing. The parameter following the command

determines the duration of the delay. This number must be in the

range 1 to 255. A larger value in the command causes a

proportionately slower program listing scroll rate.

EXAMPLE: To list a program at the slowest speed available:

COMMAND: DELAY 255 <RETURN >

2-10

PROGRAMMING AIDS

TYPE: LIST < RETURN >

ACTION: Hold down the SHIFT key.

RESULT: The program listing is displayed character by character.

COMMAND: Release the SHIFT key.

RESULT: The program lists normally.

NOTE

When listing any BASIC program on the

COMMODORE 64, the CTRL key slows down the

rate of screen scroll until the key is released.

2.10 FIND

FORMAT: FINDcode

or: FINDcharacter string

PURPOSE: To search a BASIC program for a given code or character string

and display the numbers of the program lines where it appears.

FIND is used to locate specific code or character string occurrences

in a BASIC program. The command displays all line numbers that

contain the string or code. Note that any spaces between FIND and

the specified characters or between the final character and RETURN

are considered part of the character string for which the search is

being made. Therefore program keywords must be entered

WITHOUT a preceding space.

EXAMPLE: To find the character string ABCD in the following program:

10 REM FIND ABCD

20 REM PRINT "ABCD" VERTICALLY

30 PRINT "ABCD VERTICALLY"

40 A$ = "ABCD"

50 FOR C = 1 TO LEN (A$)

60 PRINT MID$(A$,C,1):NEXT

70 REM ABCD DONE

COMMAND: FIND"ABCD" <RETURN>

DISPLAY: 20 40

RESULT: Every program line number containing the character string ABCD

enclosed within quotation marks is displayed. Note that line

numbers 10 and 70 are not displayed because ABCD is not within

quotation marks in those lines.

2-11

SIMONS' BASIC USER GUIDE

2.11 PROGRAM DEBUGGING AIDS

2.11.1 TRACE

FORMAT:

PURPOSE:

EXAMPLE:

COMMAND:

TYPE:

RESULT:

TYPE:

RESULT:

TRACE n

To display the number of the program line being executed.

The TRACE command is entered before a program is run. If a value

of 10 is used as the command parameter, when you execute the

program, a "window" appears in the top right corner of the screen.

As the program lines are executed, the numbers are displayed in

the window. A maximum of six numbers are shown at any one time.

The format is: # (line number). The lines in the window scroll

automatically so that the last but one program line number executed

appears at the bottom of the window. The Commodore logo key,

if held down, enables you to step through the program line by line.

A parameter of 0 will turn TRACE off. Note that the TRACE

command CANNOT be used on a high-resolution screen or if the

MEM command (see Section 8.3.2) has been used.

CAUTION

THE TRACE WINDOW OVERWRITES ANYTHING

DISPLAYED IN ITS POSITION ON THE SCREEN.

THEREFORE, TAKE CARE THAT ANY TEXT YOU

WISH TO OBSERVE IS PRINTED OUTSIDE THIS

AREA.

To display the program line numbers one at a time when the

following program is RUN:

10 PRINT "<SHIFT CLR/HOME>"

20 FOR X = 65 TO 96

30 PRINT "<CLR/HOME>";CHR$(X)

40 FOR Z= 1 TO 250: NEXT Z

50 NEXT X

60 GOTO 20

TRACE 10 <RETURN>

RUN < RETURN >

Each line of the program, as it is executed, appears in the window.

TRACE 0 RUN < RETURN >

The window disappears and the program executes normally.

2-12

PROGRAMMING AIDS

2.11.2 RETRACE

FORMAT: RETRACE

PURPOSE: To resume TRACING after editing a program.

When using the TRACE command, if you stop program execution

and clear the screen, the TRACE window disappears. The RETRACE

command turns TRACE back on and displays the last set of line

numbers that were executed before the program was stopped. When

the program is re-run, the normal TRACE display appears. Execution

does not continue from where the program was stopped but from

its start. Note that RETRACE cannot be used if the TRACE

command has been turned off.

EXAMPLE: Using the program from the previous section, to stop the program

execution, clear the screen and re-run with TRACE:

COMMAND: TRACE 10 <RETURN >

TYPE: RUN < RETURN >

RESULT: Each line of the program as it is executed appears in the TRACE

window.

ACTION: Press the RUN/STOP key.

TYPE: LIST < RETURN >

ENTER: 30 PRINT "<CLR/HOME>";CHR$(X),X <RETURN>

ACTION: Hold down the SHIFT key and press the CLR/HOME key.

RESULT: The screen clears.

COMMAND: RETRACE <RETURN >

RESULT: The window at the top right of the screen re-appears and displays

the line numbers that were showing when the program was stopped.

ACTION: Move the cursor below the window.

TYPE: RUN <RETURN >

RESULT: The line numbers are again displayed in the TRACE window as the

program runs.

2-13

SIMONS' BASIC USER GUIDE

2.12 DUMP

FORMAT: DUMP

PURPOSE: To display the values of all non-array variables.

The DUMP command display the values of all variables except those

contained in arrays. The values shown are those contained in the

variables when the program was stopped either by pressing the

RUN/STOP key or by reaching a program terminator. The variables

are listed in the order in which they were defined in the program

and are displayed in the format:

variable name = value

NOTE

If your program contains more than 25 variables,

to prevent the list from scrolling off the screen,

hold down the CTRL key. To view the remainder

of the list release the key.

EXAMPLE: To display the variables from the following program:

10 A$ = "RANDOM COLOURS"

20 PRINT "<SHIFT CLR/HOME>",A$

30 X = INT(RND(8) • 15)

60 POKE 53281 ,X

70 FOR C = 1 TO 100:NEXT C

80 GOTO 30

TYPE: RUN < RETURN >

ACTION: After the screen has changed colour a few times, hold down the

RUN/STOP key and press the RESTORE key.

COMMAND: DUMP <RETURN>

DISPLAY: A$ = "RANDOM COLOURS"

X = 9

C = 80

(Note that, because the values of X and C are generated randomly,

the numbers displayed for these two variables will depend on when

the program is stopped.)

2-14

PROGRAMMING AIDS

2.13 COLD

FORMAT: COLD

PURPOSE: To reset the COMMODORE 64 to the start of SIMONS' BASIC:

COLD will clear any program held in the memory of the
COMMODORE 64 and display the screen that appeared when you

switched on the computer with the SIMONS' BASIC cartridge in

place.

WARNING

ANY PROGRAM THAT IS IN THE COMPUTER'S

MEMORY WHEN THE COLD COMMAND IS

USED IS CLEARED. IF YOU WISH, YOU MAY

RECALL IT BY USING THE OLD COMMAND (See

Section 2.15). IF ANY PART OF A NEW

PROGRAM HAS BEEN ENTERED THERE IS NO

WAY TO RESTORE THE PREVIOUS PROGRAM.

EXAMPLE: To reset the COMMODORE 64 to the start of SIMONS' BASIC.

COMMAND: COLD <RETURN>

RESULT: The initial SIMONS' BASIC screen is displayed.

2.14 PROGRAM SECURITY AIDS

2.14.1 INTRODUCTION

SIMONS' BASIC provides two commands which can be used to hide specified lines

of program code in order to prevent unauthorised persons from examining them.

The DISAPA command indicates which lines of code you wish to hide. The SECURE

command blanks the code in these lines. These commands are useful for hiding

passwords, serial numbers, etc.

WARNING

THERE IS NO WAY TO REVERSE THESE

COMMANDS OTHER THAN RETYPING THE

HIDDEN LINES. THEREFORE, BEFORE THEY

ARE USED, IT IS WISE TO STORE AN UN

SECURED COPY OF THE PROGRAM FOR YOUR

OWN USE.

2-15

SIMONS' BASIC USER GUIDE

2.14.2 DISAPA

FORMAT: DISAPA:

PURPOSE: To indicate that the code in a program line is to be hidden.

The DISAPA command is used as the first command on a program

line and specifies that the code in this line is to be hidden. The

SECURE command (see the following section) is then used to hide

the code. The DISAPA command automatically places three colons

(:) before the code in each line in which it appears.

Note that it is necessary to allow space on the line for these

characters, i.e. the maximum length of a line to be hidden (excluding

DISAPA and colons) is 3® characters.

EXAMPLE: To indicate that the code in lines 10 to 40 of the following program

is to be hidden:

10 PRINT "HELLO"

20 PRINT SA

30SA = SA + 1

40 GOTO 10

ENTER: 10 DISAPA: PRINT "HELLO"

40 DISAPA: GOTO 10

COMMAND: LIST <RETURN >

DISPLAY: 10 DISAPA ::::: PRINT "HELLO"

20 PRINT SA

30 SA = SA + 1

40 DISAPA :::::GOTO 10

RESULT: When you use the SECURE command, (see the following section)

the program lines containing DISAPA will be hidden.

2-16

PROGRAMMING AIDS

2.14.3 SECURE

FORMAT: SECURE 0

PURPOSE: To hide all program lines beginning with the DISAPA command.

The SECURE command prevents listing of the code in all program

lines containing DISAPA (see the previous section) as the first

command on that line. The code will execute as normal.

EXAMPLE: To hide lines 10 and 40 in the example program from the previous

section:

COMMAND: SECURE 0 <RETURN >

TYPE: LIST <RETURN >

DISPLAY: 10

20 PRINT SA

30SA = SA + 1

40

RESULT: When the program is listed, lines 10 and 40 appear to contain no

code though the line numbers are displayed and the program runs

normally.

2.15 OLD

FORMAT: OLD

PURPOSE: To reverse the NEW command.

OLD enables a program that has apparently been cleared from

memory with the NEW command to be recalled and executed again.

The command requires no parameters. (In more technical terms the

OLD command resets the zero-page pointers to the start and end

of BASIC.)

EXAMPLE: To NEW the following program and then recall it:

10 REM OLD COMMAND

20 A$ = "COMMODORE 64"

30 FOR C = 1 TO LEN(A$)

40 PRINT"<CLR/HOME>

50 FOR X = 1 TO 100 :NEXT X,C

",LEFT$(A$,C)

2-17

SIMONS' BASIC USER GUIDE

COMMAND: NEW <RETURN >

TYPE: LIST < RETURN >

DISPLAY: READY

COMMAND: OLD <RETURN >

TYPE: LIST < RETURN >

DISPLAY: 10 REM OLD COMMAND
20 A$ = "COMMODORE 64"

30 FOR C = 1 TO LEN(A$)

40 PRINT"<CLR/HOME>

50 FOR X = 1 TO 100 :NEXT X,C

",LEFT$(A$,C)

2-18

INPUT VALIDATION AND TEXT MANIPULATION

SECTION THREE

INPUT VALIDATION AND TEXT MANIPULATION

3.1 INTRODUCTION

Section Three contains those SIMONS' BASIC commands concerned with character

string handling, screen formatting and input validation.

The INSERT command enables you to create a larger character string by inserting

one string into another. INST enables one character string to be overwritten, from

a specified position within it, by another string. The PLACE command allows you

to determine the position of a group of characters within a string. DUP permits you

to produce a larger character string by duplicating a smaller one a defined number

of times.

The LIN command returns the number of the row on which the cursor is positioned.

CENTRE allows you to centre text on a screen line. The PRINT AT command permits

you to specify where text is to be printed on the screen. USE permits you to align

columns of numeric data.

The FETCH command enables you to set parameters for user input. INKEY allows

you to check which function key has been pressed. The ON KEY command causes

a program to branch to a specific point depending on what has been typed. DISABLE

terminates this command while RESUME causes it to be re-enabled.

Used in conjunction with the standard COMMODORE 64 BASIC character string

commands, these features provide you with full manipulative control over text

strings.

Note that the commands in this section may be used in direct mode or as part of

a program.

3-1

SIMONS' BASIC USER GUIDE

3.2 CHARACTER STRING HANDLING

3.2.1 INSERT

FORMAT: INSERT ("sub string","main string",p)

PURPOSE: To insert one character string into another.

INSERT allows a group of characters to be placed in the midst of

a character string thereby creating a longer string. The parameter

p indicates the position in the main string AFTER which the sub

string is inserted. The sub-string and main-string can be any

expressions enclosed within quotation marks or string variables,

i.e. "aaaaa" or a$. The maximum length of the new string is 255

characters.

The INSERT command may also be used to compare two character

strings using 'true/false1 logic, i.e. compared in a statement of logic

where a value of-1 is returned if the statement is true and 0 if it

is false.

Two possible errors can be generated if this command is used

incorrectly. They are:

? INSERT PARAMETER TOO LARGE

This occurs when the position specified as the insert point within

the main string is a value larger than the string length.

? CREATED STRING TOO LONG

This error message is displayed if the string you have created with

the INSERT command is greater than 255 characters, i.e. greater
than BASIC can support.

EXAMPLE: To insert the word "BYE" into the character string "GOOD HE
SAID":

ENTER: 100 PRINT INSERT ("BYE ","GOOD HE SAID",5)

TYPE: RUN < RETURN >

DISPLAY: GOOD BYE HE SAID

RESULT: The sub string "BYE" has been inserted within the main string

"GOOD HE SAID" beginning at the sixth character position.

3-2

INPUT VALIDATION AND TEXT MANIPULATION

EXAMPLE: To create a longer string variable:

ENTER: 100 B$= "BYE "

105 A$= INSERT (B$,"GOOD HE SAID",5)

110 PRINT A$

TYPE: RUN <RETURN >

DISPLAY: GOOD BYE HE SAID

TYPE: DUMP <RETURN >

DISPLAY: B$ = "BYE "

A$="GOOD BYE HE SAID"

EXAMPLE: To compare two character strings:

ENTER* 100 A = (INSERT("BYE "/'GOOD HE SAID",5) = " GOOD BYE

HE SAID")

110 PRINT A

TYPE: RUN < RETURN >

DISPLAY: -1

RESULT: Because the two strings are the same, i.e. the condition is true, a

value of -1 is returned. If the condition had been false, a value of

zero would have been returned.

3.2.2 INST

FORMAT: INST ("sub string","main string",p)

PURPOSE: To overwrite a string beginning at a specified position.

INST replaces a string of characters with another string overwriting

the main string starting from the position specified. The sub string

or main string can be any expression provided they are character

string variables i.e. "aaaaa" or XX$. The value of p indicates the

position AFTER which the sub string overwrites the main string.

There is one possible error message that could occur with this

command:

? CREATED STRING TOO LONG

This happens if the new string you have created is longer than 255

characters.

3-3

SIMONS1 BASIC USER GUIDE

EXAMPLE: To replace the word "GOOD" with "BETTER" in the sentence "HE

WAS GOOD":

ENTER: 5 A$ = "HE WAS GOOD"
10 A$ = INST("BETTER",A$,7)

20 PRINT A$

TYPE: RUN < RETURN >

DISPLAY: HE WAS BETTER

COMMAND: DUMP <RETURN >

DISPLAY: A$ = "HE WAS BETTER"

3.2.3 PLACE

FORMAT: PRINT PLACE ("sub string","main string")

PURPOSE: To determine the position of a sub string within a main string.

PLACE searches for a specified group of characters (sub string)

within a character string. If the group is found, the position of the

first character of the group is returned. If a match is not found a

value of zero is returned. The length of the sub string must always

be shorter than that of the main string being searched. This

command may also be used to compare two numeric variables.

EXAMPLE: To determine the position of the sub string "BETTER" within the

main string "HE WAS BETTER":

ENTER: 10 A$ = INST("BETTER","HE WAS G00D",7)

20 PRINT PLACE ("BETTER",A$)

TYPE: RUN < RETURN >

DISPLAY: 8

EXAMPLE: A simple English Language test:

ENTER: 10 PRINT"ENTER THE POSITION OF THE FIRST CHARACTER

OF THE ADVERB";

15 PRINT"IN THE FOLLOWING SENTENCE:":PRINT

20 PAUSE 1

30 A$ = "HE CALLED OUT FOR HER LOUDLY"

40 B = PLACE("LOUDLY",A$):B$ = "LOUDLY":PRINT A$

50 INPUT A

60 IF A = B THEN 80

70 PRINT"INCORRECT":PRINT"THE CORRECT ANSWER IS" B

75 PRINT'THE ADVERB IS ";B$:END

80 PRINT "WELL DONE":END

3-4

TYPE:

DISPLAY:

TYPE:

DISPLAY:

3.2.4 DUP

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

TYPE:

DISPLAY:

INPUT VALIDATION AND TEXT MANIPULATION

RUN < RETURN >

ENTER THE POSITION OF THE FIRST CHARACTER OF THE

ADVERB IN THE FOLLOWING SENTENCE:

HE CALLED OUT FOR HER LOUDLY

8 < RETURN >

INCORRECT

THE CORRECT ANSWER IS 23

THE ADVERB IS LOUDLY

DUP ("string",n)

To duplicate a character string n times.

DUP enables a new character string to be produced from multiples

of a string. The n indicates the number of times the old string is

reproduced.

Note that, if the new string you have created is longer than 255

characters, the following error message is displayed:

? CREATED STRING TOO LONG

To duplicate a character string three times and then add another

string:

10 A$ = DUP ("HELLO-",3)

20 B$ = "WHAT'S GOING ON HERE?"

30 C$ = A$ + B$:PRINTC$

RUN < RETURN >

HELLO-HELLO-HELLO-WHAT'S GOING ON HERE?

3.2.5 CENTRE

FORMAT: CENTRE "character string"

PURPOSE: To centre a character string on a screen line.

CENTRE enables text to be displayed in the middle of a screen line.

You need not know the length of the text to use this command.

3-5

SIMONS' BASIC USER GUIDE

EXAMPLE:

COMMAND:

DISPLAY:

3.2.6 AT

FORMAT:

or:

PURPOSE:

EXAMPLE:

COMMAND:

DISPLAY:

To centre the character string "COMMODORE 64":

CENTRE "COMMODORE 64" <RETURN >

COMMODORE 64

PRINT AT (c,r) "character string"

PRINT "1st.string"AT(c,r)"2nd.string"

To print a character string at a specified screen location.

The AT command enables you to specify the screen location where

the printing of a character string will begin. This replaces the use

of cursor control characters to position the text. The parameters

c and r define the column and row coordinates of the location on

the screen where you wish the character string following the

parameter to begin. More than one AT command may be combined

in a single statement.

To position the character string "COMMODORE 64" at column 13,

row 8:

PRINT AT(13,8)"COMMODORE 64" < RETURN >

As shown in Figure 3-1.

COWtOOORE 64

FIGURE 3-1 A SINGLE 'AT' COMMAND

3-6

INPUT VALIDATION AND TEXT MANIPULATION

EXAMPLE: To print the character string "CBM 64" starting at column 13, row

8 and the string "SIMONS' BASIC" three lines below and two

characters to the right:

COMMAND: PRINT AT(13,8)"CBM 64"AT(15,11)"SIMONS' BASIC" <RETURN >

DISPLAY: As shown in Figure 3-2.

3.2.7 USE

FORMAT:

or:

PURPOSE:

FIGURE 3-2 A COMPOUNDED 'AT' COMMAND

USE "## #.#### #",vs:PRINT

USE "# #text.# # #text",vs:PRINT

To format numeric data.

The USE command allows you to format lists of numbers, i.e. to

align the decimal points. The amount of hash signs (#) either side

of the decimal point instructs the COMMODORE 64 to display the

corresponding number of figures from the string relative to this

position. If you wish, you may also insert text between the hash

signs. The parameter vs is the string representation of the number

you wish to USE. Note that PRINT must follow the string as the

USE command does not force a carriage return.

3-7

SIMONS' BASIC USER GUIDE

EXAMPLE: To print a tabulated list of randomly generated prices:

ENTRY: 10 REM"*** EXAMPLE OF USE ***

20 A$ = STR$(RND(1) • 199)

30 USE "$# # #.# #C",A$:PRINT

40 GET A$:IF A$ = "" THEN 40

50 GOTO 20

TYPE:

ACTION:

DISPLAY:

ACTION:

DISPLAY:

RESULT:

RUN <RETURN>

Press any key

$126.45C

Press any key

$ 35.36C

Each time vou DreiEach time you press a key, a value is displayed. The decimal points
of all figures in the list appear in the same position on each screen
line. Note that, as the values are generated randomly, the figures

that are shown above are examples only.

3.3 INPUT VALIDATION COMMANDS

3.3.1 FETCH

FORMAT: FETCH "control character",l,designated string.

PURPOSE: To limit the type and number of characters for user input.

FETCH enables you to control what is accepted as input from the

keyboard. The control character within quotation marks determines

the types of characters allowed. The types of valid characters and
the associated control character are shown below:

CONTROL CHARACTER

CLR/HOME

CURSOR DOWN

CURSOR RIGHT

VALID CHARACTERS

Un-shifted alphabetic

characters only.

Numeric characters only.

Alphanumeric and shifted

characters.

The parameter I in the FETCH command is a number which specifies

the maximum amount of characters that the user may enter. The

third parameter in the command specifies the string variable into
which the input will be placed.

3-8

INPUT VALIDATION AND TEXT MANIPULATION

EXAMPLE: To restrict user input to a maximum of eight unshifted alphabetical
characters and place this input into the string variable A$:

ENTER: 10 PRINT:PRINT"WHAT'S YOUR NAME?"

20 FETCH " <CLR HOME> ",8,A$

30 PRINT'HELLO "A$

TYPE: RUN < RETURN >

DISPLAY: WHAT'S YOUR NAME?

(cursor)

ACTION: Hold down the SHIFT key and press any letter.

RESULT: Nothing happens.

ACTION: Press a numeric key.

RESULT: Again, nothing happens.

TYPE: MIKE < RETURN >

DISPLAY: HELLO MIKE

COMMAND: DUMP <RETURN>

DISPLAY: A$ = "MIKE"

RESULT: Only a string of eight or fewer unshifted alphabetic characters is

accepted as input into A$.

3.3.2 INKEY

FORMAT: INKEY

PURPOSE: To test for a function key input.

INKEY enables you to determine which function key has been

pressed. INKEY represents the number of the function key which

is pressed (1 through 8). This command is especially useful in menu

driven programs where the functions keys can be used to select

specific options or operations.

EXAMPLE: To test for function keys F1 and F2:

ENTRY: 10 A = INKEY

20 ON A GOSUB 1000,2000

30 GOTO10

1000 PRINT "YOU PRESSED F1":RETURN

2000 PRINT "YOU PRESSED F2":RETURN

3-9

SIMONS' BASIC USER GUIDE

TYPE: RUN < RETURN >

ACTION: Press the F1 function key.

DISPLAY: YOU PRESSED F1

ACTION: Hold down the SHIFT key and press the F1 function key.

DISPLAY: YOU PRESSED F2

3.3.3 ON KEY

FORMAT: ON KEY "character(s)",:GOTO line number

PURPOSE: To branch to a specific point in a program.

The ON KEY command causes the COMMODORE 64 to scan the

keyboard for input of one of the characters defined in the command.

Any key not specified is ignored. On receipt of a valid character,
program execution continues from the line specified by GOTO. The

reserved variable ST holds the CHR$ value of the key that has been

pressed. (A full list of CHR$ codes can be found in your

COMMODORE 64 User Guide.) This command is especially useful
in menu-driven programs.

NOTE

When an ON key command is executed the

COMMODORE 64 will still scan the keyboard

even after a character within the specified range

has been entered. You must therefore use the

DISABLE command (see the following section)
to turn ON KEY off.

EXAMPLE: To define a range of valid input characters:

ENTRY: 10 PRINT"<SHIFT CLR/HOME>PRESS A KEY (E TO END)"

20 B$ = "DGHNVMLPOE"

30 ON KEY B$,: GOTO 50

40 GOTO 20

RESULT: When this section of the program is run, the program halts until

one of the characters in the range defined is entered.

3-10

INPUT VALIDATION AND TEXT MANIPULATION

3.3.4 DISABLE

FORMAT: DISABLE

PURPOSE: To terminate the ON KEY command.

DISABLE causes the keyboard scan generated by the ON KEY

command (see the previous section) to be turned off. This command

must ALWAYS be used if the ON KEY command has been used.

Failure to do so will result in 'recursive jumps', i.e. the program will

always return to the line specified by ON KEY each time one of the

specified characters is typed.

EXAMPLE: To disable the ON KEY command:

ENTRY: 10 PRINT"<SHIFT CLR/HOME>PRESS A KEY (E TO END)"

20 B$ = "DGHNVMLPOE"

30 ON KEY B$,: GOTO 50

40 GOTO 20

50 DISABLE

RESULT: When this section of the program is executed, the ON KEY

command is turned off after a valid character is typed.

3.3.5 RESUME

FORMAT: RESUME

PURPOSE: To reinstate the previous ON KEY command.

The RESUME command causes the last ON KEY command that was

defined to be turned back on. This causes the program to halt again

until one of the characters in the range specified by ON KEY is

typed.

3-11

SIMONS' BASIC USER GUIDE

EXAMPLE: Expanding the program from the previous section, to turn the ON

KEY command back on:

ENTRY: 10 PRINT "<SHIFT CLR/HOME>PRESS A KEY (E TO END)"

20 B$ = "DGHNVMLPOE"

30 ON KEY B$,: GOTO 50

40 GOTO 30

50 DISABLE

60 A$ = CHR$(ST): X = PLACE(A$,B$)

70 ON X GOTO 80,90,100,110,120,130,140,150,160,170

80 PRINT "IT WAS D": RESUME

90 PRINT "IT WAS G": RESUME

100 PRINT "IT WAS H": RESUME

110 PRINT "IT WAS N": RESUME

120 PRINT "IT WAS V": RESUME

130 PRINT "IT WAS M": RESUME

140 PRINT "IT WAS L": RESUME

150 PRINT "IT WAS P": RESUME

160 PRINT "IT WAS O": RESUME

170 PRINT "IT WAS E": END

TYPE:

TYPE:

DISPLAY:

TYPE:

RESULT:

TYP_E:

DISPLAY:

RUN <RETURN>

V <RETURN>

IT WAS V

X <RETURN>

Nothing is displayed.

E < RETURN >

IT WAS E

READY

RESULT: A character within the range defined in the ON KEY command

causes that character message to be displayed. Any other character

is ignored.

3-12

EXTRA NUMERIC AIDS

SECTION FOUR

EXTRA NUMERIC AIDS

4.1 INTRODUCTION

This section contains various commands to assist you when handling numeric data.

The commands MOD and DIV enable integer division to be performed on positive

numbers. All results are returned rounded. FRAC allows you to extract the fractional

part of a number. Also included in this section are commands to convert

hexadecimal or binary numbers into decimal. An addition Boolean operator,

exclusive or (EXOR), completes the commands in this section.

Note that the commands in this section may be used in direct mode or as part of

a program.

4.2 ADDITIONAL ARITHMETIC OPERATORS

4.2.1 MOD

FORMAT: MOD(x,y)

PURPOSE: To return the remainder when one integer is divided by another.

The MOD command displays the remainder when one integer, i.e.

whole number, is divided by another integer. The MOD command

can be used directly or within a program.

EXAMPLE: To divide 15 by 4 and produce the remainder:

TYPE: PRINT MOD(15,4) < RETURN >

DISPLAY: 3

4-1

SIMONS' BASIC USER GUIDE

4.2.2 DIV

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

DISPLAY:

4.2.3 FRAC

FORMAT:

PURPOSE:

EXAMPLE:

COMMAND:

DISPLAY:

EXAMPLE:

ENTRY:

TYPE:

DISPLAY:

DIV(x,y)

To return the largest integer which, when multiplied by y is equal

to or less than x.

The DIV command enables you to divide one floating-point number

by another and produce the result in integer format, i.e. the

fractional part of the result is ignored.

To divide 1(3 by 3 and produce the result in integer form:

10 A = DIV(10,3)

20 PRINT A

RUN < RETURN >

3

FRAC(n)

To return the fractional part of a number.

FRAC allows you to extract that part of a floating-point, i.e. non-

integer, number that follows the decimal point up to a maximum

of nine decimal places.

To divide 22 by 6 and produce the fractional part of the result:

PRINT FRAC(22/6) <RETURN >

.666666667

To return the fractional part of w.

10 PRINT ir

20 PRINT FRAC(tt)

RUN <RETURN>

3.14159265

.141592653

4-2

EXTRA NUMERIC AIDS

4.3 NUMERIC CONVERSION

4.3.1 % • BINARY TO DECIMAL CONVERSION

FORMAT: PRINT %binary number

PURPOSE: To convert from binary into decimal.

The % command converts a binary number into its decimal

equivalent.

If a non-binary number is used as the argument in the command,

the message:

? NOT BINARY CHARACTER

is displayed.

EXAMPLE: To convert the binary number 10110101 into decimal form:

COMMAND: PRINT %10110101 <RETURN>

DISPLAY: 181

4.3.2 $ - HEXADECIMAL TO DECIMAL CONVERSION

FORMAT: PRINT $hexadecimal number

PURPOSE: To convert from hexadecimal into decimal

The $ command converts a hexadecimal number into its decimal

equivalent.

If a non-hexadecimal number is used as the argument in the

command, the message:

? NOT HEX CHARACTER

is displayed.

EXAMPLE: To convert the hexadecimal number EB38 into decimal form:

COMMAND: PRINT $EB38 <RETURN>

DISPLAY: 60216

4-3

SIMONS' BASIC USER GUIDE

4.3.3 COMBINING THE CONVERSION COMMANDS

The two commands above can be used together.

EXAMPLE: To add together a binary and hexadecimal number and return the

result in decimal form:

COMMAND: PRINT %10110101 + $EB38 <RETURN>

DISPLAY: 60397

4.4 EXOR

FORMAT:

PURPOSE:

EXAMPLE:

COMMAND:

DISPLAY:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

EXOR(n,n1)

To perform an exclusive or between two numbers

The EXOR command allows you to perform an exclusive or between

two number. The command first converts both numbers into binary

form. It then compares these binary numbers bit by bit. If both bits

are the same, the corresponding result bit is cleared, i.e. a 0. If the

bits are different, the corresponding result bit is set, i.e. a 1.

To exclusive or 87 and 45:

PRINT EXOR(87,45)

122

The routine used to arrive at this answer is shown below:

First Number

Second Number

Result

= 87 = 01010111

= 45 = 00101101

= 01111010 = 122

To print characters on the screen in reverse field:

5 PRINT"<SHIFT CLR/HOME>"

7 FOR C = 1 TO 10

8 PRINT "SIMONS' BASIC":PRINT:NEXT

10 FORX = 0 TO 999

20 A = PEEK (1024 + X)

30 IF A = 32 THEN 60

40 K = EXOR (A.128)

50 POKE 1024 + X,K

60 NEXT :GOTO 10

RUN <RETURN>

Every character on the screen is changed into reverse field and then

back to normal.

4-4

DISKETTE COMMANDS

SECTION FIVE

DISKETTE COMMANDS

5.1 INTRODUCTION

SIMONS' BASIC contains two simplified disk-handling commands. DISK eliminates

the need to specify a logical file number, device number and secondary address

when opening a channel to a disk drive unit. The command also automatically closes

the channel when the operation specified has been completed. The DIR command

replaces the BASIC code LOAD "$",8 allowing you to list some or all of a diskette

directory with a single command.

5.2 DISK

FORMAT:

PURPOSE:

EXAMPLE:

ACTION:

COMMAND:

RESULT:

DISK,"operation".

To open a diskette channel and then close it when the operation

is executed.

DISK replaces the following BASIC code:

OPEN logical file,devicenumber,secondaryaddress:PRINT# logical
file

The command opens a channel to the diskette unit and then

automatically closes this channel when the specified operation has

been completed.

To format a new diskette heading it "TEST":

Place a new diskette in the diskette unit.

DISK "N0:TEST, 01" < RETURN >

After a few minutes, the new diskette is formatted with the header

"TEST" and the drive light goes off to indicate that the diskette

channel has been closed.

5-1

SIMONS' BASIC USER GUIDE

EXAMPLE: To scratch a program from a diskette:

ACTION: Type in the following short program and then save it under the name

of "ORANGE" on diskette:

10 REM"*** EXAMPLE OF DISK ***

20 REM"*** DELETING A PROGRAM ***

COMMAND: DISK "S0:ORANGE" <RETURN >

RESULT: The program "ORANGE" is deleted from the diskette and the

diskette channel is closed.

5.3 DIR

FORMAT:

or:

or:

or:

PURPOSE:

EXAMPLE:

COMMAND:

RESULT:

EXAMPLE:

COMMAND:

RESULT:

DIR "$

DIR"$:character string*

DIR"$:?character string

DIR"$:?character string*

To list some or all of a diskette directory.

The DIR command replaces the BASIC code: LOAD "$",8. The

command enables you to display some or all of a diskette directory.

You may display only those files whose names begin with a

particular character or string of characters by entering this character

or character string followed by an asterisk. If you wish, you may

display only those files where a specific character or character

string is in a particular position within the filename by replacing

the leading characters with question marks (?).

To list a complete directory:

DIR"$ <RETURN>

The directory of the diskette in device number 8 is displayed.

To list only those files where the third character of the filename

is "S":

DIR"$:??S* <RETURN >

The display shows the directory listing of the names of files in which

the third character is S.

5-2

GRAPHICS WITH SIMONS1 BASIC

SECTION SIX

GRAPHICS WITH SIMONS' BASIC

6.1 INTRODUCTION

This section describes the comprehensive SIMONS' BASIC graphics plotting

commands. These commands enable you to plot points, draw shapes, enter text

and paint on the screen in any one of sixteen colours without having to access

any memory locations.

The COLOUR command sets up the colour of the screen and the border surrounding

it. The HIRES command puts the COMMODORE 64 into high-resolution graphics

plotting mode. In this mode, all points are plotted pixel by pixel. MULTI initializes

the multi-colour mode. Here, each point plotted is two pixels wide. Both the HIRES

and MULTI commands allow you to specify in which colour you wish to plot your

graphics shapes. The LOW COL command changes these colours while HI COL

reverts back to those plotting colours that were originally selected.

The PLOT command enables single dots to be plotted on the screen. TEST allows

you to check the status of a defined screen location, i.e. whether a dot has been

plotted in that position and in which colour the dot has been plotted. The REC

command allows you to draw rectangles and CIRCLE enables circular shapes to

be drawn. The ARC command plots a specified section of the circumference of

a circular shape while the ANGL command draws its radius. Line draws a solid line.

The PAINT command fills a graphics shape with a specified colour. BLOCK displays

fully shaded blocks of colour. The DRAW and ROT commands permit you to design

a freehand shape and then display it at a specific size and angle of rotation.

The CSET command selects either the Upper/Lower case or Upper Case/Graphics

COMMODORE 64 character set. This command also allows you to recall and display

the last graphics screen that was shown. The CHAR and TEXT commands print

single characters and character strings respectively on a graphics screen. NRM

returns to a normal screen from a graphics screen.

The first half of Section Six discusses the configuration of the screen and the

differences between high-resolution and multi-colour graphics. The sixteen

COMMODORE 64 colours are listed and you are shown how to select a colour when

plotting. The second half of this section describes the format and use of each

graphics plotting command. The commands are listed in the order in which they

might be used to write programs such as those contained in Section Thirteen of

this manual.

Note that, with the exception of the COLOUR command, the commands in Section

Six can only be used as part of a program.

6-1

SIMONS' BASIC USER GUIDE

6.2 SCREEN CONFIGURATION

For the purposes of graphics plotting, the COMMODORE 64 screen is divided into

a matrix or grid. Each point on the grid is specified by its x and y coordinates much

as you would indicate a point on a graph. For example, location 0,0 refers to the

top left corner of the screen. The size of the grid varies according to whether you

are using the high-resolution or multi-colour graphics mode. In high-resolution mode,

the screen is divided into a 320 by 200 dot matrix. In multi-colour mode, this matrix

is 160 by 200 dots. This means that each dot plotted in high-resolution mode is

one pixel wide, i.e. the smallest addressable point on the screen. In multi-colour

mode, each point plotted is two pixels wide.

6.3 COMMODORE 64 COLOURS

Whether in high-resolution or multi-colour mode, only THREE colours can be used

in any one 8 by 8 pixel area of the screen. The COMMODORE 64 provides sixteen

different plotting colours. These colours and their associated values are listed below:

0 Black

1 White

2 Red

3 Cyan

4 Purple

5 Green

6 Blue

7 Yellow

8 Orange

9 Brown

10 Light Red

11 Gray 1

12 Gray 2

13 Light Green

14 Light Blue

15 Gray 3

When plotting graphics, the colour you wish to use for the shape is specified in

terms of its associated colour number.

6-2

GRAPHICS WITH SIMONS' BASIC

6.4 PLOT TYPES

All SIMONS' BASIC graphics-plotting commands have one common feature. They

each require you to specify a 'plot type'. This simply tells the COMMODORE 64

how to plot each point. The plot types for both high-resolution and multi-colour

modes are listed below:

HIGH-RESOLUTION MODE

PLOT

TYPE FUNCTION PERFORMED

0 Clears a dot.

1 Plots a dot on the screen.

2 Inverses a dot, i.e. turns a dot OFF if it is ON, or ON if it is

OFF.

MULTI-COLOUR MODE

PLOT

TYPE FUNCTION PERFORMED

0 Clears a dot.

1 Plots a dot in colour 1 of the MULTI/LOW COL command.

2 Plots a dot in colour 2 of the MULTI/LOW COL command.

3 Plots a dot in colour 3 of the MULTI/LOW COL command.

4 Inverses the dot colour, i.e.:

A dot plotted in colour 0 changes to colour 3

A dot plotted in colour 1 changes to colour 2

A dot plotted in colour 2 changes to colour 1

A dot plotted in colour 3 changes to colour 0

6.5 GRAPHICS PLOTTING COMMANDS

6.5.1 COLOUR

FORMAT: COLOUR bo,sc

PURPOSE: To set up the screen background and border colours.

The COLOUR command allows you to specify the colour of the

screen background for a low-resolution screen and the the colour

of the border surrounding both low and high-resolution screens.

The parameter sc refers to the screen background colour and the

parameter bo to the border colour. Colours are selected by

specifying their associated colour numbers (see Section 6.3).

6-3

SIMONS' BASIC USER GUIDE

EXAMPLE:

Note that the screen background for a low-resolution screen will

remain at the colour selected until the COLOUR command is

executed again using a different colour value. The background

colour of a screen containing high-resolution or multi-colour

graphics is selected using the HIRES command (see the following

section).

To specify a screen background colour of cyan and a border colour

of blue:

COMMAND: COLOUR 3,6 <RETURN>

RESULT: A cyan screen is displayed surrounded by a blue border.

6.5.2 HIRES

FORMAT: HIRES pc,sb

PURPOSE: To initialize the high-resolution graphics mode and select a plotting

colour and screen background colour.

The HIRES command sets the screen into high-resolution graphics

mode, i.e all points are plotted pixel by pixel. The first parameter,

pc, is the colour number of the plotting colour you wish to use (see

Section 6.3). The second parameter, sb, specifies the background

colour of each 8 by 8 pixel square through which plotting takes

place. Note that there must be a space between the HIRES

command and its first parameter.

EXAMPLE:

ENTER:

TYPE:

RESULT:

ACTION:

RESULT:

To select a plot colour of black or

10 HIRES 0,1

20 GOTO 20

RUN <RETURN>

A blank white screen is displayed.

Press the RUN/STOP key.

The normal screen appears.

6-4

GRAPHICS WITH SIMONS' BASIC

6.5.3 REC

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

TYPE:

RESULT:

ACTION:

RESULT:

6.5.4 MULTI

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

RECx,y,A,B,plot type

To draw a rectangle.

The REC command draws a rectangular shape on a graphics screen.

The first parameters of the command (x,y) specify the coordinates

of the top left corner of the rectangle. The x indicates the distance

from the left edge and y from the top of the screen. The parameter

A indicates the distance from the top left to the top right corner

of the rectangle and Bfrom the top left to the bottom left corner.

Plot type is as described in Section 6.4.

To draw a rectangle in high-resolution graphics at the top left corner

of the screen:

10 HIRES 0,1

20 REC 0,0,40,20,1

30 GOTO 30

RUN < RETURN >

A black rectangle is displayed.

Press the RUN/STOP key.

The normal screen is displayed.

HIRES pc.sb: MULTI d,c2,c3

To initialize the multi-colour graphics mode and select three plotting

colours.

MULTI, when used following the HIRES command, will cause all

plotting to take place in multi-colour graphics mode, i.e. each point

plotted will be two pixels wide. The three parameters following

MULTI define the plot colours you wish to use. Each plot colour

is selected by referring to its position within the MULTI command

as the 'plot type' in a plotting commafid (see Section 6.4).

To enter the multi-colour graphics mode specifying black, red and

blue as the plotting clours and then draw three rectangles:

10 HIRES 0,1: MULTI 0,2,6

30 REC 0,0,40,20,1

40 REC 20,20,40,20,2

50 REC 40,40,40,20,3

60 GOTO 60

6-5

SIMONS' BASIC USER GUIDE

TYPE: RUN <RETURN >

RESULT: One black, one red and one blue rectangle are drawn.

ACTION: Press the RUN/STOP key.

RESULT: The normal screen is displayed.

6.5.5 NRM

FORMAT: NRM

PURPOSE: To return to a low-resolution screen from a graphics screen.

The NRM command allows you to clear a high-resolution or multi

colour graphics display and return to a low-resolution screen.

EXAMPLE: Using the program from the previous section, to return to the normal

screen after the graphics screen has been displayed for five

seconds:

ENTER: 10 HIRES 0,1: MULTI 0,2,6

30 REC 0,0,40,20,1

40 REC 20,20,40,20,2

50 REC 40,40,40,20,3

60 PAUSE 5

70 NRM

RUN <RETURN>

Three rectangles are displayed for five seconds. The normal screen

then appears displaying READY and a flashing cursor.

TYPE:

RESULT:

6.5.6 LOW

FORMAT:

PURPOSE:

COL

LOWCOLc1,c2,c3

To change plotting colours.

LOW COL enables you to specify a different set of graphics plotting

colours from those originally selected with the HIRES or MULTI

commands.

NOTE

Because only two colours are used in high-

resolution graphics plotting (see Section 6.5.2),

the third colour in the LOW COL command has

no effect in hi-res. However, three numbers must

be used in the LOW COL command irrespective

of what graphics mode has been initialized.

6-6

GRAPHICS WITH SIMONS' BASIC

EXAMPLE: To draw a black rectangle in high-resolution graphics mode and

shade the lines yellow:

ENTER: 10 HIRES 0,1

20 LOW COL 0,7,0

30 REC 20,20,60,60,1

40 PAUSE 5

50 NRM

TYPE: RUN < RETURN >

RESULT: A black rectangle is drawn on a white screen. Every 8 by 8 pixel

rectangle over which plotting has occurred is coloured yellow. After

five seconds, the normal screen is displayed.

EXAMPLE: To draw three rectangles in multi-colour graphics mode using each

of the original plot colours, then changing these colours and

drawing three rectangles in each of the new colours:

ENTER: 10 HIRES 0,1: MULTI 2,3,6: Z = 10

20 FOR X = 1 TO 3

30 REC 10,Z,30,30,X

40 Z = Z + 40: NEXT

50 LOW COL 4,5,7: Z = 10

60 FOR X = 1 TO 3

70 REC 50,Z,30,30,X

80 Z = Z + 40: NEXT

90 PAUSE 5

100 NRM

TYPE: RUN < RETURN >

RESULT: Six rectangles are drawn, each a different colour. After five seconds,

the normal screen is displayed.

6.5.7 HI COL

FORMAT: HI COL

PURPOSE: To revert to the originally selected plotting colours.

The HI COL command allows you to restore your original plotting

colours, i.e. those originally set up with the HIRES or MULTI

command, if LOW COL (see the previous section) has been used.

6-7

SIMONS' BASIC USER GUIDE

EXAMPLE: To draw nine rectangles in different colours:

ENTER: 10 HIRES 0,1: MULTI 2,3,6: Z = 10

20 FOR Y = 10 TO 50 STEP 40

30 FOR X = 1 TO 3

40 REC Y,Z,30,30,X

50 Z = Z + 40:NEXT X: Z = 10:LOW COL 4,5,7:NEXT Y

60 HI COL

70 FOR X = 1 TO 3

80 REC Y,Z,30,30,X

90 Z = Z + 40:NEXT

100 PAUSE 5

110 NRM

TYPE:

RESULT:

6.5.8 PLOT

FORMAT:

PURPOSE:

RUN <RETURN>

Three rectangles are displayed in the original plot colours, three

in the colours assigned with the LOW COL command and three

more, again using the original plot colours. After five seconds, the

normal screen is displayed.

PLOT x,y,plot type

To plot one dot.

PLOT plots a single dot on a graphics screen. The parameters x

and y specify the horizontal and vertical screen coordinates

respectively of the point to be plotted. Plot type is as described

in Section 6.4.

EXAMPLE: To plot a black dot in multi-colour graphics mode:

ENTRY: 10 HIRES 0,1:MULTI 0,1,2

20 PLOT 80,100,1

30 PAUSE 5

40 NRM

TYPE: RUN < RETURN >

RESULT: A black dot is plotted at the centre of the screen. After five seconds,

the normal screen is displayed.

6-8

GRAPHICS WITH SIMONS' BASIC

TYPE:

RESULT:

6.5.9 TEST

FORMAT:

PURPOSE:

EXAMPLE: To plot a dotted curve:

ENTRY: 10 HIRES 0,1

20 FOR X = 0 TO 320 STEP .5

30 Y = 100 + SIN(X/30)*90

40 PLOT X,Y,1

50 NEXT

1000 GOTO 1000

RUN < RETURN >

A black sine wave is drawn.

variable = TEST (x,y)

To determine if something has been drawn at a screen location.

TEST allows you to examine the status of a location on a graphics

screen. The parameters x and y are the screen coordinates of the

point being tested. If a dot has been plotted at that point, the plot

type of the dot is returned (see Section 6.4). A value of 0 is returned

if no dot is present. The dot may be any part of a graphics shape.

EXAMPLE: To generate a line that terminates when it touches another line:

ENTRY: 10 REM"*** EXAMPLE OF TEST ***

20 HIRES 0,1

25 FOR X = 0 TO 200

30 PLOT200,X,1:NEXT

40 FOR I = 1 TO 320

50 IF TEST(l,100) = 1 THEN 70

60 PLOT 1,100,1 :NEXT

70 PAUSE 5

80 NRM

TYPE: RUN < RETURN >

RESULT: The horizontal line stops when it touches the vertical line. After five
seconds, the normal screen is displayed.

6-9

SIMONS' BASIC USER GUIDE

6.5.10 LINE

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

LINE x,y,x1,y1,plot type

To plot a line.

LINE draws a line from one point on the screen to another. The

parameters x and y are the screen coordinates of the start of the

line. The parameters x1 and y1 are the coordinates of the end of

the line. Plot type is as described in Section 6.4.

To draw a diagonal line across the screen:

10 HIRES 0,1

20 LINE 0,0,320,200,1

30 PAUSE 5

40 NRM

RUN <RETURN>

A black line is drawn from the top left corner to the bottom right

corner of the screen. After five seconds, the normal screen is

displayed.

6.5.11 CIRCLE

FORMAT: CIRCLE x,y,xr,yr,plot type

PURPOSE: To plot a circular shape.

CIRCLE enables you to draw a circular shape on a graphics screen.

The parameters x and y specify the screen coordinates of the centre

of the shape you wish to draw. The parameters xr and yr indicate

the horizontal and vertical radii of the shape respectively. By varying

these radii, circles and ellipses of different sizes can be drawn. Plot

type is as described in Section 6.4.

NOTE

Because the screen is rectangular rather than

square, x and y radii of the same length will not

enable you to draw a perfect circle on the screen.

In order to do this in high-resolution mode, the

x radius must equal the y radius multiplied by 1.4

In multi-colour mode, the x radius must equal the

y radius multiplied by 1.6. However, if you wish

to dump a Multi-Colour or High-Resolution screen

containing circles on the printer, to obtain printed

round shapes, the values of the x and y radii must

be equal. See Section 7.13.2 for details of

printing.

6-10

GRAPHICS WITH SIMONS' BASIC

EXAMPLE: To draw a circular shape in high-resolution mode:

ENTRY: 10 HIRES 0,1

20 CIRCLE 160,100,52,40,1

30 PAUSE 5

40 NRM

TYPE: RUN < RETURN >

RESULT: A black circle is drawn in the centre of the screen. After five

seconds, the normal screen is displayed.

EXAMPLE: To draw an ellipse in multi-colour graphics mode:

ENTRY: 10 HIRES 0,1:MULTI 2,3,4

20 CIRCLE 80,100,60,30,1

30 PAUSE 5

40 NRM

TYPE: RUN < RETURN >

RESULT: A red ellipse is drawn. After five seconds, the normal screen is

displayed.

6.5.12 ARC

FORMAT: ARC x,y,sa,ea,i,xr,yr,plot type

PURPOSE: To draw an arc of a circular shape.

The ARC command enables you to draw part of the circumference

of a circular shape. The parameters x and y are the screen

coordinates of the centre of the circular shape from which the arc

is drawn. Parameters sa and ea define the start and end angles of

the arc respectively. The parameter i specifies the plotting

increment, i.e. the interval in degrees between each point on the

arc. To obtain a solid arc, this value is 1. A larger value separates

the dots that make up the arc. Parameters xr and yr indicate the

vertical and horizontal radii respectively of the circular shape of

which the arc is part. Plot type is as described in Section 6.4.

EXAMPLE: To draw two arcs of the same circular shape:

ENTRY: 10 HIRES 0,1

20 ARC 160,100,30,150,1,40,40,1

30 ARC 160,100,210,330,1,40,40,1

40 PAUSE 5

50 NRM

TYPE: RUN < RETURN >

RESULT: A pair of black 'brackets' is drawn. After five seconds, the normal

screen is displayed.

6-11

SIMONS' BASIC USER GUIDE

6.5.13 ANGL

FORMAT: ANGL x,y,angle,xr,yr,plot type

PURPOSE: To draw the radius of a circle.

The ANGL command allows you to draw the radius of a circle

without having to display its circumference. The parameters x and

y are the screen coordinates of the centre of the circle, 'angle' is

the angle, in degrees, at which the radius is drawn relative to the

perpendicular, e.g. a radius drawn at an angle of 45 degrees would

be at the 3 o'clock position on a clock-face. Parameters xr and yr

are the horizontal and vertical radii respectively of the circular shape

of which the radius is part. Plot type is as described in Section 6.4.

EXAMPLE: To draw a wheel:

ENTRY: 10 HIRES 0,1

20 CIRCLE 160,100,40 * 1.4,40,1

30 CIRCLE 160,100,45 • 1.4,45,1

40 FOR X = 0 TO 360 STEP 22.5

50 ANGL 160,100,X,40 • 1.4,40,1

60 NEXT

70 PAUSE 10

80 NRM

TYPE: RUN <RETURN>

RESULT: A black 'spoked' wheel is drawn. After ten seconds, the normal

screen is displayed.

EXAMPLE: To draw a fan:

ENTRY: 10 HIRES 0,1

20 FOR X = 0 TO 170 STEP 5

30 ANGL 160,100,X,40,40,1

40 NEXT

50 FOR X = 170 TO 0 STEP-5

60 ANGL 160,100,X,40,40,0

70 NEXT

80 PAUSE 10

90 NRM

TYPE: RUN < RETURN >

RESULT: A fan is opened and then closed. After ten seconds, the normal

screen is displayed.

6-12

GRAPHICS WITH SIMONS' BASIC

6.5.14 PAINT

FORMAT: PAINT x,y,plot type (0,1,2,3 only)

PURPOSE: To fill an enclosed area with colour

PAINT fills in a graphics shape with the colour defined by plot type

(see Section 6.4). The area to be painted MUST be completely

enclosed or painting will take place over the whole screen. The area

to be painted is specified by the x and y coordinates of ANY point

within its boundaries. In high-resolution mode, the same area may

only be painted once. This can be overcome by clearing the screen,

changing the plotting colours with the LOW COL command (see

Section 6.5.6) re-drawing the shape and then painting it again. In

multi-colour mode, the same area may be painted with a different

colour as often as you wish.

EXAMPLE: To draw a black rectangle and paint it in yellow:

ENTRY: 10 HIRES0,1

20 REC 120,60,40,40,1

30 LOW COL 7,1,0

40 PAINT 130,70,1

50 PAUSE 5

60 NRM

TYPE: RUN < RETURN >

RESULT: A black square is drawn in the centre of the screen and filled in

with yellow. After five seconds, the normal screen is displayed.

EXAMPLE: To draw a coloured pie chart:

ENTRY: 10 HIRES 0,1:MULTI 5,4,6

20 CIRCLE 80,100,48,78,1

30 ANGL 80,100,120,48,78,1

40 ANGL 80,100,160,48,78,1

50 ANGL 80,100,220,48,78,1

60 ANGL 80,100,330,48,78,1

70 PAINT 90,35,1

80 PAINT 60,60,3

90 PAINT 90,120,2

105 LOW COL 7,4,6

110 PAINT 80,110,1

120 PAUSE 5

130 NRM

TYPE: RUN < RETURN >

RESULT: A four-segment pie chart is drawn in the centre of the screen and

each segment is painted a different colour. After five seconds, the

normal screen is displayed.

6-13

SIMONS' BASIC USER GUIDE

6.5.15 BLOCK

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

6.5.16 DRAW

FORMAT:

PURPOSE:

BLOCK x,y,x1,y1,plot type

To draw a fully shaded block of colour.

The BLOCK command draws a rectangle and fills it with colour all

at the same time. This single command performs the same function

as drawing a rectangle with the REC command and colouring it with

the PAINT command. The BLOCK command carries out both

operations at once. Note, however, that with BLOCK, the colour of

the sides of the rectangle are the same as that of the inside of the

shape.

The BLOCK command is useful if you wish to create several

adjacent blocks of different colours without separating them with

lines. The parameters x and y specify the top left-hand corner of

the block of colour you wish to display. Parameters x1 and y1 are

the coordinates of the bottom right-hand corner of the block. Plot

type is as described in Section 6.4.

To draw two blocks in different colours:

10 HIRES 0,1: MULTI 2,6,1

20 BLOCK 10,50,50,90,1

30 BLOCK 51,50,90,90,2

40 PAUSE 5

50 NRM

RUN <RETURN>

A red block is displayed adjacent to a blue block. After five seconds,

the normal screen is displayed.

DRAW "nnnnnnn....9",x,y,plot type

To design a shape.

The DRAW command allows you to design a shape and then display

it on the screen. The shape is designed in the same way as drawing

a picture on a piece of paper without removing the pencil. There

is, however, one important difference - you can instruct the

COMMODORE 64 to move the pencil and not make a mark. (See

Section 6.5.17 for an example.)

6-14

GRAPHICS WITH SIMONS' BASIC

The x and y parameters in the DRAW command are the coordinates

of the point on the screen where the drawing of the shape begins,

i.e. its origin. Each n within the quotation marks is an instruction

telling the COMMODORE 64 how to move the pencil when drawing

the shape. A maximum of 74 instructions can be placed within the

quotation marks on any one program line. You may, however, add

strings of instructions together up to a maximum of 255. To continue

the shape thereafter, a new origin must be specified beginning

where the previous string ended. Each instruction and its

corresponding number is shown below:

NUMBER INSTRUCTION

0 Move one pixel to the right.

1 Move one pixel up.

2 Move one pixel down.

3 Move one pixel to the left.

5 Move one pixel to the right and plot a dot.

6 Move one pixel up and plot a dot.

7 Move one pixel down and plot a dot.

8 Move one pixel to the left and plot a dot.

9 Stop drawing.

Note that the instructions above merely design a shape. The shape

cannot be drawn until the DRAW and ROT commands are both

incorporated into the program (see the following section), i.e the

DRAW command specifies the shape and the ROT command

generates it. Plot type is as described in Section 6.4.

EXAMPLE: To design a bell:

ENTRY: 10 A$ = "5757575787878757575757575

7777777777777575757575757578888888888888"

20 A$ = A$ + "8888888888888865656565656565

6666666666666"

30 A$ = A$ + "565656565656868686565656"

RESULT: When this section of the program is run, the design instructions

for a bell are stored in the variable A$.

6.5.17 ROT

FORMAT: ROT r,s

PURPOSE: To display a shape in a specified orientation and size.

The ROT command allows you to display a shape created by the

DRAW command (see the section above) at a specified angle of

rotation in a defined size. The parameter r specifies by how much

the shape is to be rotated relative to the perpendicular about its

origin, i.e. the point on the screen from which the shape was drawn.

This value of r (range 0 thru 7) defines the angle of rotation as shown

in the table below:

6-15

SIMONS' BASIC USER GUIDE

ROTATION NUMBER

0

1

2

3

4

5

DEGREES OF ROTATION

0

45

90

135

180

225

270

315

The second parameter in the ROT command defines the displayed

size of the shape you have designed. A "1" in this position indicates

that the shape is to be displayed at normal size, i.e. each parameter

in the draw command represents one pixel. Any increase in this

figure causes a corresponding increase in size.

NOTE

If you specify too large a size for the shape you

have designed, it will disappear from the screen

when it is displayed. Always ensure therefore

that this figure is kept at a realistic level.

EXAMPLE: To display, in normal and enlarged size, the shape designed in the

previous section:

ENTRY: 10 A$ = "5757575787878757575757575

7777777777777575757575757578888888888888"

20 A$ = A$ + "8888888888888865656565656565

6666666666666"

30 A$ = A$ + "565656565656868686565656"

40 HIRES 0,1

45 FOR Y = 0 TO 7

50 FOR X = 1 TO 3

60 ROT Y,X

70 DRAW A$,160,80,1

80 PAUSE 1

90 DRAW A$,160,80,0

100 NEXT-.NEXT

110 FORX = 3 TO 1 STEP-1

115 FOR Y = 7 TOO STEP-1

120 ROT Y,X

130 DRAW A$,160,80,1

140 PAUSE 1:DRAW A$,160,80,0:NEXT:NEXT

150 GOTO 45

TYPE: RUN < RETURN >

RESULT: A bell is displayed at seven different angles of rotation in three sizes

6-16

GRAPHICS WITH SIMONS' BASIC

6.5.18 CSET

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

EXAMPLE:

ENTRY:

CSETn

To select either of the COMMODORE 64 character sets or recall

and display the last graphics screen.

The CSET command serves one of three functions depending on

the value of the parameter n. CSET 0 allows you to select the

COMMODORE 64 Upper Case/Graphics character set. CSET 1

enables you to select the Upper/Lower Case character set. CSET

2 re-displays the last graphics screen that was shown.

NOTE

When recalling a multi-colour graphics screen,

you must always follow CSET 2 with the

command MULTI (see Section 6.5.3) using the

same parameters that were originally assigned

to this command.

To print a string using alternate character sets:

10 PRINT"<SHIFT CLR/HOME>"

20 PRINT AT (12,14)"SIMONS' BASIC"

30 CSET 1:PAUSE 1:CSET 0:PAUSE 1

40 GOTO 10

RUN < RETURN >

The character string "SIMONS' BASIC" is displayed at the centre

of the screen first in upper case and then lower case letters.

To re-display a previously created high-resolution screen:

10 HIRES 0,1:MULTI 0,4,6

15 FOR I = 1 TO 20

20 A = INT(90 • RND(1)) + 2: B = INT(90 • RND(1)) + 2

25 C = INT(90 • RND(1)) + 2: D = INT(60 • RND(1)) + 2

27 P = INT(3 • RND(1)) + 1

30 REC A,B,C,D,1

35 PAINT A + 1,B + 1,P

37 NEXT I

40 PAUSE 2:CSET 0

50 PRINT"<SHIFT CLR/HOME>PRESS ANY KEY TO RE-DISPLAY"

60 PRINT"(<CURSOR DOWN>)THE LAST SCREEN"

70 GET A$: IF A$ = "" THEN 70

80 CSET 2: MULTI 0,4,6: PAUSE 2:CSET 0

90 GOTO 50

6-17

SIMONS' BASIC USER GUIDE

TYPE: RUN < RETURN >

RESULT: 20 coloured squares are drawn on a multi-colour graphics screen.

After a short delay, the normal screen appears with the message

PRESS ANY KEY TO RE-DISPLAY THE LAST SCREEN.

ACTION: Press any key.

RESULT: The graphics screen is re-displayed.

6.6 PRINTING TEXT ON A GRAPHICS SCREEN

6.6.1 CHAR

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

CHAR x,y,poke code,plot type,size

To print a character on a graphics screen.

The CHAR command allows you to display text character by

character on a high-resolution or multi-colour graphics screen. The

parameters x and y specify the location of the character on the

screen. The next parameter in the command is the 'poke' code of

the character you wish to display. (A full list of poke codes is

contained in your COMMODORE 64 User's Guide.) Plot type is as

described in Section 6.4. The last parameter in this command

specifies the height of the character in the range 1 thru 8. A "1"

in this position indicates that the character is to be displayed at

its normal size, i.e. eight pixels high. Any increase in this figure

causes a corresponding increase in character height, e.g. a value

of 3 would display the character at a height of 24 pixels. The width

of characters CANNOT be varied.

NOTE

User-defined graphics characters CANNOT be

used on a high-resolution or multi-colour

graphics screen.

To display characters at twice their normal size:

10 REM"*** EXAMPLE OF CHAR ***

20 HIRES 0,1

30 FOR J = 1 TO 12

40 FOR I = 0 TO 40

50 CHAR I • 8, A,l + J * 40,1,2

60 NEXT:A = A + 15: NEXT

70 PAUSE 5

80 NRM

6-18

SIMONS' BASIC USER GUIDE

TYPE:

RESULT:

6.6.2 TEXT

FORMAT:

or:

PURPOSE:

RUN < RETURN >

The entire COMMODORE 64 character set is displayed at double

its normal height. After a five second delay, the normal screen is

displayed.

TEXT x,y,"(CTRL a) character string",plot type,s,i

TEXT x,y,"(CTRL b) character string",plot type,s,i

To print a character string on a graphics screen.

TEXT enables you to print character strings on a graphics screen.

The parameters x and y specify the screen coordinates of the first

letter of the string. The next parameter is the string itself. The

control character preceding the string indicates whether the text

is to be displayed in upper or lower case letters. To display text

in upper case:

1. Type the first set of quotation marks.

2. Hold down the CTRL key and press the 'a' key. (A reverse-

field 'A' is displayed.)

3. Enter the character string.

4. Type the last set of quotation marks.

To display text in lower case:

1. Type the first set of quotation marks.

2. Hold down the CTRL key and press the *b' key. (A reverse-

field 'B' is displayed.)

3. Enter the character string.

4. Type the last set of quotation marks.

You may also mix upper and lower case letters in the same string.

To do this, hold down the CTRL key and press the 'a' key before

the characters you wish to display in upper case, and hold down

the CTRL key and press the 'b1 key before the characters you wish

to display in lower case.

6-19

SIMONS' BASIC USER GUIDE

Plot type is as described in Section 6.4. The parameter s specifies

the height of each character in the string in the range 1 thru 8. A

"1" in this position specifies normal-sized characters. Any increase

in this figure causes a corresponding increase in character size,

e.g. if you specified a character size of 8, the text would be displayed

at eight times its normal height. The width of characters CANNOT

be changed. The last parameter i, defines the number of pixels

between each character in the string. For normal spacing, this figure

is 8. Any increase in this figure creates a correspondingly larger

space between characters.

EXAMPLE: To display two character strings on a high-resolution screen:

ENTRY: 10 REM"*** EXAMPLE OF TEXT ***

20 HIRES 0,1

30 FOR I = 1 TO 30

40 X = INT(320 • RND(1)):Y = INT(200 • RND(1))

50 LINE 160,100,X,Y,1:NEXT

60 TEXT 60,20,"<CTRL B>TEXT ON THE HIRES SCREEN",1,2,8

70TEXT 20,180,"<CTRLA>ANYWHERE <CTRLB>YOU LIKE

!'\1,1,16

80 PAUSE 5

90 NRM

RESULT: When the program is run, a series of random lines are drawn. Two

messages are then displayed, the first in lower case using

characters at eight times their normal size, the second in upper and

lower case using double spaces between letters.

6-20

SCREEN MANIPULATION

SECTION SEVEN

SCREEN MANIPULATION

7.1 INTRODUCTION

Several comprehensive low-resolution graphics and screen data-handling features

are included in SIMONS' BASIC.

The BCKGNDS command allows you to define the colour of the background of a

character. The FLASH command switches characters in a defined colour into reverse

field and then back again at a specified interval. BFLASH flashes the border

surrounding the screen in a similar fashion. OFF terminates the FLASH command.

The FCHR command enables a defined area of the screen to be filled with a selected

character. The FCOL command fills a specified section of the screen with a

designated colour. FILL combines these commands by enabling you to fill a defined

area of the screen with a specific character in a particular colour.

The MOVE command duplicates a specified section of the screen at another screen

location. The INV command enables you to inverse the characters in a specified

section of the screen, i.e. change normal characters into reverse-field and vice-versa.

The COPY command allows you to print the contents of a graphics screen using

your Commodore serial printer. HRDCPY carries out the same function for normal

screen data.

The SCRSV command enables you to store a low resolution screen. SCRLD allows

you to recall and display a stored screen.

Section Seven also contains commands for scrolling a defined area of the screen

in a designated direction. This may be done with wrap round, i.e. letters scrolling

off of one side of the defined area and re-appearing at the other, or with blanking,

i.e. letters scrolling off the defined area but not re-appearing.

Note that the commands in this section may be used in direct mode or as part of

a program.

7-1

SIMONS' BASIC USER GUIDE

7.2 BCKGNDS

FORMAT: BCKGNDS sc,b1,b2,b3

PURPOSE: To change the background colour of a character.

When each character on the keyboard is displayed, it occupies an

8 by 8 pixel square on the screen. (A pixel is the smallest

addressable point on the screen.) The colour of the square is

normally that of the rest of the screen (except of course if the

character is displayed in reverse-field). The BCKGNDS command

allows you to change the colour of this square both for the regular

screen and for reverse field. Note that only those characters

inscribed on the top of each key may be used with the BCKGNDS

command. Graphics characters CANNOT be used.

The parameter sc of the BCKGNDS command defines the colour

of the screen. The next three parameters specify the background

colour of a shifted character, a reverse-field unshifted character

and a reverse-field shifted character respectively.

EXAMPLE: To print a message using three different character background

colours: (Note that in the following program the characters in italics

must be typed with the SHIFT key held down.)

ENTRY: 10 PRINT"<SHIFT CLR/HOME>"

20 BCKGNDS 1,3,5,6

30 PRINT'TH/S IS AN EX/\/WPLE":PRINT

40 PRINT"<CTRL RVS ON>OF THE SIMONS' BASIC":PRINT

50 PRINT"<CTRL RVS ON>BCKGNDS COMMA/VD":PR I NT

TYPE: RUN < RETURN >

RESULT: Three lines of text are displayed, the first on a cyan background,
the second on green and the third on blue.

7-2

SCREEN MANIPULATION

7.3 FLASH

FORMAT: FLASH colour,speed

or: FLASH colour

PURPOSE: To flash a screen colour.

The FLASH command enables you to alternate a specific screen

colour between normal and reverse field display either once every

four seconds or at a defined speed. This defined speed can range
from 1 thru 255. Each unit of speed is approximately one sixtieth

of a second and, once initialized, flashing continues until the OFF

command (see the following section) is used. Note that FLASH

cannot be used on a high-resolution or multi-colour graphics screen.

EXAMPLE: To flash, at a defined speed, those areas of the screen coloured red:

ENTRY: 10 PRINT"<SHIFT CLR/HOME>"

20 PRINT AT(12,10)"WHY,<CTRL/3> HELLO <CTRL/1 >THERE"

30 FLASH 2,10

1000 GOTO 1000

TYPE: RUN < RETURN >

RESULT: The word "HELLO" flashes on and off continuously approximately

every sixth of a second.

EXAMPLE: To cause those areas of the screen coloured black to flash every

four seconds:

ACTION: Enter the program from the previous section and then list it on the

screen.

COMMAND: FLASH 0 <RETURN>

RESULT: The program listing flashes on and off every four seconds.

7-3

SIMONS' BASIC USER GUIDE

7.4 OFF

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

OFF

To turn the FLASH command off.

OFF terminates the FLASH command. Note that the resulting colour

of the characters that have been flashed depends on when the OFF

command is used.

To turn off the FLASH command in the program above:

10 PRINT"<SHIFT CLR/HOME>"

20 PRINT AT(12,10)"WHY,< CTRL/3 > HELLO <CTRL/1 >THERE"

30 FLASH 2,10

40 PAUSE 10

50 OFF

60 PRINT AT(12,10)"WHY,<CTRL/3> HELLO <CTRL/1 >THERE"

RUN <RETURN>

The word "HELLO" flashes for ten seconds only.

7.5 BFLASH

FORMAT: BFLASH speed,c1,c2

or BFLASH 0

PURPOSE: To flash, or turn off flashing, the screen border.

BFLASH allows you to flash the border surrounding the

COMMODORE 64 screen. The first parameter in the command

specifies the flashing speed in the range 1 thru 255. Each unit is

approximately one sixtieth of a second. The parameters d and c2

are the numbers of the colours with which the border will be flashed.

BFLASH 0 turns flashing off. Note that the resulting colour of the

border depends on when the command is executed.

EXAMPLE: To flash the border in red then blue:

COMMAND: BFLASH 25,2,6 <RETURN >

RESULT: The screen border flashes continuously, first in red, then in blue,
changing about every third of a second.

7-4

SCREEN MANIPULATION

EXAMPLE: To flash the screen border and then turn flashing off:

ENTRY: 10 BFLASH 25,2,6

20 PAUSE 5

30 BFLASH 0

1000 GOTO 1000

TYPE: RUN < RETURN >

RESULT: The border flashes in red then blue for five seconds.

7.6 FCHR

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

FCHR r,c,w,d,code

To fill an area of the screen with a character.

The FCHR command enables you to fill a defined area of the screen

with a specific character. The parameters r and c are the row and

column coordinates of the start of the screen to be filled. Rows are

numbered 0 to 24 and columns from 0 to 39. The parameters w and

d define the width and depth of the screen area respectively. Width

is measured in characters and depth in rows. The last command

parameter is the 'poke' code of the character you wish to display.

(A full list of poke codes is contained in your COMMODORE 64

User's Guide.)

To display a block of *A's:

10 PRINT"<SHIFT CLR/HOME>"

15 FCOL 0,0,10,10,0

20 FCHR 0,0,10,10,1

30 GOTO 20

RUN < RETURN >

A ten by ten block in the top left corner of the screen is filled with

A's.

7-5

SIMONS' BASIC USER GUIDE

7.7 FCOL

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

FCOL r,c,w,l,colour

To change a character colour.

The FCOL command changes the colour of all characters in a

specified screen area to a defined colour. As in the FCHR command

(see the previous section), the first four command parameters define

the area of the screen you wish to use. The last parameter is the

number of the new colour for each character that appears in this

area. (A list of colour numbers appears in Section 6.3 of this manual.)

To change the character colour from black to red:

10 PRINT"<SHIFT CLR/HOME>"

15 FCOL 12,15,10,10,0

20 FCHR 12,15,10,10,1

30 FCOL 12,15,5,5,2

RUN < RETURN >

A block of 100 As is displayed. One quarter are coloured red, the

remainder are black.

7.8 FILL

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

FILL r,c,w,l,code,colour

To fill a defined area on the screen with a specific character in a

particular colour.

FILL allows you to fill a defined area of the screen with characters

of a specific colour and type. As in the FCHR command (see Section

7.6), the first four parameters in the FILL command define the area

of the screen to be used. The next parameter is the poke code of

the character to be displayed. (A list of poke codes appears in your

COMMODORE 64 User's Guide.) The final parameter in the FILL

command is the colour in which you wish to display the character.

To display solid blocks of colour:

10 REM"*** EXAMPLE OF FILL ***

20 PRINT"<SHIFT CLR/HOME>"

30 X = INT(40 • RND(1)):Y = INT(25 • RND(1))

40X1 = INT(20 • RND(1)) + 1:Y1 = INT(15 • RND(1)) + 1

50 IF X + X1 > 40 OR Y + Y1 > 25 THEN 30

60 FILLY,X,X1,Y1,160,INT(16 • RND(1)):GOTO 30

7-6

SCREEN MANIPULATION

TYPE: RUN < RETURN >

RESULT: Blocks of different colour are displayed in random positions on the

screen.

ACTION: Hold down the RUN/STOP key and press the RESTORE key.

RESULT: The normal screen is displayed.

7.9 MOVE

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

ACTION:

RESULT:

MOVE r,c,w,l,dr,dc

To duplicate a section of the screen.

MOVE enables you to re-display a defined block of the screen

elsewhere on the screen. The first four command parameters define

the screen area you wish to reproduce (see Section 7.6). The last

two parameters specify the row and column coordinates of the top

left corner of the area into which the information will be reproduced.

NOTE

The depth of the screen area to be duplicated

added to the row number of the area into which

the information is to be reproduced must not

exceed 25, i.e. the height of the screen. Likewise,

the width of the area to be duplicated plus the

column number of the area into which the data

is to be reproduced must not be greater that 40,

i.e. the width of the screen. If you exceed these

totals, the message "BAD MODE" will be

displayed and you must re-enter the MOVE

command again.

To duplicate a block of text:

10 REM"*** EXAMPLE OF MOVE ***

20 PRINT"<SHIFTCLR/HOMExCTRL/1>PRESS SPACE BAR"

30 PRINT"<CTRL 2>TO MOVE THIS AREA"

40 PRINT"<CTRL 3>TO ANOTHER PART"

50 PRINT"<CTRL 4>OF THE SCREEN."

60 GET A$:IF A$ <> " " THEN 60

70 MOVE 0,0,17,5,15,20

80 GOTO 80

RUN < RETURN >

Press the Space Bar.

The message in the top left corner of the screen is duplicated in

the bottom right.

7-7

SIMONS' BASIC USER GUIDE

7.10 INV

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

ACTION:

RESULT:

ACTION:

RESULT:

INV r,c,w,l

To inverse a specified screen area.

The INV command causes all normal characters within a defined

screen area to be displayed in reverse field. Any character already

displayed in reverse field will be displayed normally. (Note to the

more advanced programmer: the INV command simply sets or clears

bit 7 of the character.)

To inverse a block of text:

10 REM"***EXAMPLE OF INV ***

20 PRINT"<SHIFT CLR/HOME>PRESS THE SPACE BAR

30 PRINT'TO INVERSE THIS"

40 PRINT'AREA OF SCREEN!"

50 GET A$:IF A$ <> " " THEN 50

60 INV 0,0,19,4

70 GOTO 50

RUN <RETURN>

Press the space bar.

The message shown is displayed in reverse field.

Press the space bar again.

The message is displayed normally.

7-8

SCREEN MANIPULATION

7.11 SCROLLING

FORMAT: direction W,sr,sc,ec,r

or: direction B,sr,sc,ec,er

PURPOSE: To scroll an area of the screen.

SIMONS' BASIC provides a command to enable you to scroll
specified areas of screen data in any one of four directions. The

first parameter in a scrolling command specifies the direction of

scrolling - LEFT, RIGHT, UP or DOWN.

The second command parameter is either a W or a B to indicate

scroliing with 'wrap round' or 'blanking' respectively. If a section
of the screen is scrolled with 'wrap round', any characters within

the specified screen area will scroll off the edge of this area and

re-appear at the opposite edge. 'Blanking' differs from 'wrap round'

in that characters that are scrolled off the screen do not re-appear.

The parameters sr and sc in a scrolling command define the row

and column coordinates of the start of the area you wish to scroll.

Parameters ec and er specify the column and row coordinates of

the end of the scroll area. Scrolling commands may be combined

in order to scroll different areas of the screen in varying directions.

The maximum height and width of any scroll area cannot exceed

24 lines down and 23 characters across respectively. Note that

scrolling cannot be used on high-resolution or multi-colour graphics

screens.

EXAMPLE: To scroll two areas of the screen in different directions:

ENTRY: 10 PRINT"<SHIFT CLR/HOME>"

20 FOR X = 0 TO 39

30 Y = INT(10 • SIN(XM) + 12

40 PRINT AT(X,Y)"*"

50 NEXT

60 LEFTW 0,0,20,25: RIGHTW 0,20,20,25

70 GOTO 60

TYPE: RUN < RETURN >

RESULT: A curved line is scrolled across the screen in both directions at the

same time.

7-9

SIMONS' BASIC USER GUIDE

7.12 STORING AND RECALLING SCREEN DATA

7.12.1 SCRSV

FORMAT: SCRSV 2f8,2I"namelSlW"

or: SCRSV 1,1,1,"name"

PURPOSE: To store data from a low-resolution screen.

The SCRSV command allows you to store the data from a low-

resolution screen on cassette or diskette. The first figure following

the command is a logical file number. This tells the COMMODORE

64 to open a channel to the disk drive or cassette unit. The second

figure specifies the storage device you wish to use. This number

is 1 for cassette or 8 for diskette. The third figure is a secondary

address. This is a special instruction telling the computer how to

store the information. For example, a secondary address of 1 for

cassette, instructs the COMMODORE 64 that a file is to be written

and that an end-of-file marker is to be placed at the end of the tape

when the file is closed. The 'name' is the title you wish to give to

the screen data. This name must be unique for each screen you
store. You may then use this name in the SCRLD command (see

the following section) to recall and display the stored data. The

parameter S indicates that the file being accessed is sequential.

W instructs the COMMODORE 64 that this file is to be written to

rather than read from. When stored, each screen occupies

approximately five blocks. Note that the parameters are separated

by commas and quotation marks are placed around name and S,W.

The SCRSV command cannot be used to store high-resolution or
multi-colour graphics.

EXAMPLE: To draw the French Tricolor and save it on diskette:

ENTRY: 10 PRINT"<SHIFT CLR/HOME>"

20 FILL 6,10,20,4,160,2

30 FILL 10,10,20,4,160,1

40 FILL 14,10,20,4,160,6

50 SCRSV 2,8,2,"TRICOLOR,S,W"
80 GOTO 80

TYPE: RUN < RETURN >

RESULT: The flag is drawn and then stored on the diskette.

7-10

SCREEN MANIPULATION

7.12.2 SCRLD

FORMAT:

or:

PURPOSE:

EXAMPLE:

TYPE:

RESULT:

SCRLD 2,8J2,"name"

SCRLD 1,1,0,"name"

To recall stored screen data.

The SCRLD command allows you to recall and display a screen that

has been stored with the SCRSV command (see the previous

section). The first figure following the command is a logical file

number. This tells the COMMODORE 64 to open a data channel to

the disk drive or cassette unit. The second figure after the command

specifies the device on which the data has been stored. This number

is 1 for cassette or 8 for diskette. The third figure is a secondary

address. This is a special instruction telling the computer that the

information is to be loaded into the same area of memory that it

occupied before it was stored. The title you assigned to the screen

data is the final parameter and must be enclosed in quotation

marks.

To recall and display the screen data stored on diskette in the

program in the previous section:

SCRLD 2,8,2,'TRICOLOR" < RETURN >

The Tricolor is recalled from diskette and redrawn on the screen.

7.13 PRINTING SCREEN DATA

7.13.1 INTRODUCTION

SIMONS' BASIC provides two commands which enable you to use a serial printer

to reproduce information from either normal or graphics screens. These commands

are extremely useful in artwork design or for producing graphs and histograms in

statistical representation.

7.13.2 COPY

FORMAT:

PURPOSE:

COPY

To produce a hard copy of a graphics screen.

COPY outputs the contents of a graphics screen on a serial printer.

Note that if you have used the CIRCLE command (see Section 6.5.9)

to draw perfect circles on the screen, the radii you have defined

for these circles must be changed in order to produce the same

display on the printer. To print a perfect circle, the x radius must

equal the y radius. To display the screen again, simply change the

x radius back to its original value.

7-11

SIMONS' BASIC USER GUIDE

EXAMPLE: To display a distorted pie-chart on a high-resolution screen and then

produce a round chart on the printer:

ENTRY: 10 HIRES 0,1:MULTI 5,4,6

20 CIRCLE 80,100,78,78,1

30 ANGL 80,100,120,78,78,1

40 ANGL 80,100,160,78,78,1

50 ANGL 80,100,220,78,78,1

60 ANGL 80,100,330,78,78,1

70 PAINT 90,35,1

80 PAINT 60,60,3

90 PAINT 90,120,2

105 LOW COL 7,4,6

110 PAINT 80,110,1

120 COPY

1000 GOTO 1000

TYPE: RUN < RETURN >

RESULT: A flattened pie-chart is displayed on the screen and then a correct

circle is printed.

7.13.3 HRDCPY

FORMAT: HRDCPY

PURPOSE: To print a hard copy of a low-resolution screen.

HRDCPY enables you to reproduce a low resolution screen on a

serial printer. This command is most useful in printing forms,

invoices etc.

EXAMPLE: To print a message, first on the screen and then on the printer:

ENTRY: 10 PRINT"<SHIFT CLR/HOME>"

20 PRINT AT(5,8)"SIMONSf BASIC":PRINT

30 PRINT'THE ULTIMATE IN BASIC AIDS"

40 HRDCPY

50 END

TYPE: RUN < RETURN >

RESULT: The data is displayed on the screen and then printed on the

Commodore printer.

7-12

SPRITE AND USER-DEFINED GRAPHICS

SECTION EIGHT

SPRITE AND USER-DEFINED GRAPHICS

8.1 INTRODUCTION

Section Eight contains those commands concerned with the generation and

animation of 'sprites' and the creation of user-defined graphics. The section is

divided into two parts, one for each of these topics.

8.2 SPRITES

8.2.1 INTRODUCTION

A sprite is a programmable object that can be made into a variety of shapes. This

object can be moved around the screen by simply telling the computer where the

sprite should be placed. (A more detailed description of sprites can be found in

your COMMODORE 64 User's Guide.)

A sprite in SIMONS' BASIC is called a 'moveable object block' or MOB. Up to eight

independent MOBs can be displayed and animated on the screen at any one time.

MOBs can be displayed on normal and graphics screens. There are two types of

MOB - high-resolution and multi-colour. A high-resolution MOB is 24 dots wide and

21 dots deep. Each dot on this type of MOB is one pixel wide. A multi-colour MOB

is 12 dots wide and 21 dots deep. Here, each point is two pixels wide. A high-

resolution MOB can be painted with any ONE of the 15 COMMODORE 64 colours.

Multi-colour MOBs can be painted with up to THREE different colours.

In standard BASIC, generation and animation of sprites requires many POKE

commands. SIMONS' BASIC replaces POKEs with simple, easy-to-use BASIC-type

commands.

The DESIGN command is used to specify the location in the memory of the

COMMODORE 64 where the data for each MOB is stored. Each MOB is then

designed on a grid within your program listing so that you can see its shape before

it is used. MOBs can be used on a normal screen or in conjunction with high-

resolution and multi-colour graphics. The MOB SET command sets-up a specified

MOB and assigns its primary colour. CMOB is used to assign two extra colours

for use when designing a multi-colour MOB. The MMOB command allows you to

display and/or move a selected MOB to a specified screen location. RLOCMOB

enables you to move a displayed MOB from one screen location to another. The

DETECT and CHECK commands are used to determine whether a MOB has collided

with another MOB or an item of screen data.

8-1

SIMONS' BASIC USER GUIDE

Note that the commands in this section can only be used as part of a program.

The examples used in this section of the manual all build towards a complete

program which displays two MOBS on the screen. Therefore, do not use the NEW

command between examples and do not run the program until told to do so.

8.2.2 DESIGN

FORMAT:

or:

PURPOSE:

DESIGN c,ad

DESIGN c,sa + gc

To allocate memory space for a MOB.

The DESIGN command reserves sufficient space in the

COMMODORE 64's memory for the MOB you are creating. Each

MOB uses 64 bytes of memory. The first parameter in the DESIGN

command specifies whether the mob is in high-resolution or multi

colour mode. A "1" in this position indicates multi-colour and a "0"

high-resolution. The second parameter, ad, defines the start address

of the first byte of MOB data. This number must be a multiple of

64 within the range 2048 to 16319 and can be entered in decimal

or hexadecimal form. A hexadecimal number must be preceded by

a dollar sign ($). If a MOB is to be used on a high-resolution graphics

screen, you must add a graphics-constant value of 49152 decimal

or $C000 hexadecimal to this figure.

Each 64-byte area of available MOB memory is called a Block. If

you divide the MOB data start-address by 64, you will produce a

Block Number. This number is used within the MOB SET command

(see Section 8.2.3) to set up the MOB.

NOTE

The graphics constant figure MUST NOT be

added to the start address when calculating a

block number.

The areas available within the COMMODORE 64's memory for MOB

data and the associated block numbers are listed below:

BLOCK NUMBERS

32-63

128 - 255

MEMORY LOCATIONS

2048 - 4095

8192 - 16383

If you have used the MEM command (see Section 8.3.1), only Blocks
192 thru 255 are available for MOB data.

8-2

SPRITE AND USER-DEFINED GRAPHICS

EXAMPLE:

ENTRY:

RESULT:

EXAMPLE:

ENTRY:

RESULT:

8.2.3 @

FORMAT:

or:

PURPOSE:

NOTE

You may set up as many MOBs as the memory

of the COMMODORE 64 can accommodate.

However, you may only display up to eight MOBs

at a time. If, during the course of a program, you

wish to get rid of one MOB and create another

in its place, simply design the new MOB using

the start address of the MOB you are replacing.

To allocate memory space for a high-resolution MOB on a normal

screen:

90 DESIGN 0,2048

When the multi-colour MOB is created, its data is stored from

memory location 2048 onwards in Block 32, i.e. 2048 divided by 64.

To allocate memory space for a multi-colour MOB on a normal

screen:

320 DESIGN 1,2112

When the high resolution MOB is created, its data is stored from

memory location 2112 in Block 33, i.e. 2112 divided by 64.

To set up the design grid for a MOB.

The @ command allows you to set up a grid for the design of a

MOB. The grid is 24 dots wide for high-resolution MOBs and 12 dots

wide for multi-colour MOBs. In both cases, the grid is 21 lines deep.

NOTE

Ensure that each line number for the grid is the

same length, i.e. two digits or four digits. By

doing this, you will avoid indentation of part of

the grid, thus facilitating the MOB design

process.

As explained in Section 8.1, one colour can be used for high-

resolution MOBs and three colours for multi-colour MOBs. The high-

resolution MOB colour and the primary colour for a multi-colour

MOB are defined in the MOB SET command (see the following

section). The two additional multi-colour MOB colours are assigned

with the CMOB command (see Section 8.2.4). The colours for each

point on the MOB are assigned by using one of the characters on

the table below:

8-3

SIMONS' BASIC USER GUIDE

EXAMPLE:

ENTRY:

HIGH-RESOLUTION MOBS

COLOUR CODE COLOUR USED

B The colour assigned in the MOB SET

command

MULTI-COLOUR MOBS

COLOUR CODE COLOUR USED

B

C

Colour 1 in the CMOB command

The colour assigned in the MOB SET

command

Colour 2 in the CMOB command

You may of course also use the screen background colour in either

type of MOB by simply not entering a character.

To design a high-resolution MOB:

5 PRINT"<SHIFT CLR/HOME"

10 REM"*** EXAMPLE OF MOBS ***"

80 REM11*** DESIGN THE MOBS ***"

90 DESIGN 0,2048

100 @ BBBBB

110 @ BB. . .BB

120 @ BB BB

130 @ BB...BB

140 @ . . . BBBBB

150 @ B

160 @ BBBBBBBBBBBBBBBB

170 @....BBBBBBB.BBBBBBBB....

180 @ BBBBBB. . BBBBBBBB

190 @...BBB..BBB.BBB..BBBB...

200 @...BBB..BBB.BBB..BBBB...

210 @...BBBBBBB...BBBBBBBB...

220 @..BBBBBBBBBBBBBBBBBBBB..

230 @..BBB...B...B..BBB.BBB..

240 @..BBBB.BB.B.B.B.BB.BBB..

250 @.BBBBB.BB.B.B.BB.B.BBBB.

260 @.BBBBB.BB...B.BBB..BBBB.

270 @.BBBBBBBBBBBBBBBBBBBBBB.

280 @ . BBBBBBBBBBBBBBBBBBBBBB.

290 @

300 @

RESULT: When this section of the program is run, the drawing within the grid

is stored as MOB data in memory block 32.

8-4

SPRITE AND USER-DEFINED GRAPHICS

EXAMPLE:

ENTRY:

To design a multi-colour MOB:

320 DESIGN 1,2112

400 @ BB

410 @ BCDB. . .

420 @ BBCCCBBB

430 (?. . .BBCCCB. . .

440 @ BCB

450 @.BB..BCB

460 @BCCB.BCB....

470 @.BCB.BCB....

480 @..BB.BCB

490 (3 ... BBCCCB...

500 @..BDCDCDCB..

510 fl.BDCDCDCDCB.

520 @.BCDCDCDCCB.

530 @..BCDCDCBB..

540 @...BBBBB

550 (3 B. .B

560 @. . .b B. . .

570 @. .B B. .

580 @...B B.

590 @..BBB....BBB

600 @ B B

RESULT:

8.2.4 CMOB

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

RESULT:

When this section of the program is run, the drawing within the grid
is stored as MOB data in memory block 33.

CMOB d,c2

To set up colours for a multi-colour MOB.

The CMOB command allows you to define the two additional
colours for a multi-colour MOB, i.e. the colour of those points on

the MOB drawn with the letters B and D in the MOB grid (see Section

8.2.3).

Continuing with the program above, to assign the colours black and

green to the multi-colour MOB:

610 CMOB 0,5

When the multi-colour MOB is displayed, all points drawn with B

are black and all those drawn with D green.

8-5

SIMONS' BASIC USER GUIDE

8.2.5 MOB SET

FORMAT: MOB SET mb,blk,col,pr,res

PURPOSE: To set up a MOB

The MOB SET command, as its name suggests, initializes a MOB.

The parameter mb specifies the number of the MOB you are setting

up. This number must be unique for each MOB. The lower the MOB

number the greater its priority over other MOBs, i.e. if two or more

MOBs are travelling across the screen, a MOB with a lower number

passes over a MOB with a higher number.

The second parameter of the MOB SET command, blk, defines the

memory block from which the MOB data will be taken (see Section

8.2.2). The next parameter, col, defines the main MOB colour, i.e.

the colour to assign to each point on the MOB drawn with a B in

high-resolution mode or a C in multi-colour mode.

The parameter, pr, specifies the priority of the MOB over screen

data, i.e. whether you wish the MOB to pass OVER or UNDER other

characters on the screen. A "0" in this position gives the MOB

priority over screen data, a "1" gives screen data priority over MOBs.
The last parameter in the MOB SET command, res, indicates

whether the MOB was created in multi-colour or high-resolution

mode. A "1" in this position indicates multi-colour; "0" defines high-

resolution.

EXAMPLE: To set up the high-resolution MOB in the program from the previous

section:

ENTRY: 700 MOB SET 0,32,0,1,0

RESULT: When this section of the program is executed, the high-resolution
MOB number 0 in memory block 32 is initialized. When displayed,
the MOB is coloured black and passes over ail screen data.

EXAMPLE: To set up the multi-colour MOB in the program from the previous
section.

ENTRY: 710 MOB SET 1,33,2,0,1

RESULT: When this part of the program is executed, the multi-colour MOB
numbered 1 in memory block 33 is set up. When displayed, the MOB

has a main colour of red and passes over all screen data.

8-6

SPRITE AND USER-DEFINED GRAPHICS

8.2.6 MMOB

FORMAT: MMOB mn,x1,y1,x2,y2,expansion,speed

PURPOSE: To display and/or move a MOB.

The MMOB command allows you to display a MOB at one point

on the screen and then, if you wish, move it to another location.

The first parameter, mn, specifies the number of the MOB you wish

to display and move. The parameters x1 and x2 are the coordinates

of the point on the screen where the MOB will be displayed before

it is moved. Parameters x2 and y2 indicate the MOB destination

point after movement has taken place. If you do not wish to move

a MOB but merely display it, simply use the same coordinates for

both the start and end screen locations.

Expansion refers to the size of the MOB when it is displayed. The

expansion numbers and resulting display sizes are shown on the

table below:

EXPANSION RESULT

0 The MOB is displayed in normal size

1 The MOB is expanded in the x axis, i.e.

displayed at twice its normal width

2 The MOB is expanded in the y axis, i.e.

displayed at twice its normal height

3 The MOB is expanded in both axes, i.e.

displayed at twice its normal width AND height

Speed specifies the rate at which the MOB will travel. This number

must be in the range 1 thru 255:1 is the fastest speed, 255 is the

slowest.

EXAMPLE: To move the MOBs in the program above:

ENTRY: 800 MMOB 1,0,0,200,200,2,20

810 MMOB 0,0,0,185,70,3,20

RESULT: When this section of the program is run, the high-resolution MOB,

expanded in the y axis, is displayed at the top of the screen. The

multi-colour MOB appears at twice its normal size at the bottom

of the screen.

8-7

SIMONS' BASIC USER GUIDE

8.2.7 RLOCMOB

FORMAT: RLOCMOB mn,x,y,expansion,speed

PURPOSE: To move a MOB between two screen locations.

RLOCMOB enables you to move a displayed MOB to a different

location on the screen. The parameters x and y are the screen

coordinates of the point to which the MOB will be moved. The other

parameters are the same as those used in the MMOB command
(see the previous section).

To relocate both MOBs in the program above:

820 FOR I = 1 TO 20:X = 150 • INT(RND(1)) + 50

830 RLOCMOB 1,X,200,2,10

840 RLOCMOB 0,X-15,70,3,10

850 NEXT
When this part of the program is run, the two MOBs appear to chase

each other across the screen.

EXAMPLE:

ENTRY:

RESULT:

8.2.8 DETECT

FORMAT:

PURPOSE:

DETECT n

To initialize MOB collision detection.

The DETECT command turns on MOB collision detection. A value

of 0 assigned to n causes the COMMODORE 64 to detect collision

between one MOB and another. If 1 is used as the command
parameter, collision detection between MOBs and screen data is

initialized. Note that the DETECT command must always be used
TWICE. The command is first used to clear the area in the

computer's memory which indicates whether collision has taken

place. (This area is called the 'sprite collision register1.) The second

time the command is used, collision detection is initialized.

EXAMPLE: To clear the sprite collision register in the program above:

ENTRY: 825 DETECT 0

8-8

SPRITE AND USER-DEFINED GRAPHICS

8.2.9 CHECK

FORMAT:

or:

PURPOSE:

EXAMPLE:

ENTRY:

RESULT:

IF CHECK (mn1fmn2) = 0 THEN action

IF CHECK (0) = 0 THEN action

To check for MOB collision.

The CHECK command is used to test for collision between MOBs

or between a MOB and screen data. The MOBs on which you wish

to test for collision are indicated within the brackets following the

command.

A parameter of zero within the brackets causes the COMMODORE

64 to check for collision between any sprite and screen data. If

collision has occurred, the defined action is taken.

To scroll the high-resolution MOB down the screen and check for

collision between it and the multi-colour MOB:

858 FOR P = 70 TO 200

859 DETECT 0:IF CHECK(0,1) = 0 THEN 865

860 RLOCMOB 0,X - 15,P,3,10: NEXT

When this section of the program is run, the action specified in line

865 (see the following section) is carried out when one MOB touches

the other MOB.

8.2.10 MOB OFF

FORMAT: MOB OFF mn

PURPOSE: To clear a MOB from the screen.

The MOB OFF command blanks a MOB from the screen. The

parameter mn specifies the number of the MOB you wish to remove.

EXAMPLE: To complete the program above:

ENTRY: 855 PRINT AT(X/8 + 2,20)"OH SH..."

856 PAUSE 1

865 PRINT AT(X/8 + 2,20)"OH SHUCKS!!"

870 PAUSE 1

875 MOB OFF V.RLOCMOB 0,X-15,196,3,10

TYPE: RUN < RETURN >

ACTION: Watch the Birdie!!

RESULT: The road-runner is crushed by the weight. (Apologies to all bird

lovers.)

8-9

SIMONS' BASIC USER GUIDE

8.3 CREATING USER-DEFINED CHARACTERS

8.3.1 INTRODUCTION

SIMONS' BASIC provides a facility to enable you to replace existing keyboard
characters with user-defined characters of your own.

The COMMODORE 64 character set is held in ROM, i.e. Read Only Memory. In order
to re-define these characters, the character set must be moved into RAM, i.e.

Random Access Memory. The MEM command carries out this function. The DESIGN
command allows you to specify the character you wish to re-define in terms of its
poke code. (A full list of poke codes is contained in your COMMODORE 64 User's
Guide.) Each character is designed within a grid. This allows you to view the
character as it is being created. Note that user-defined characters CANNOT be used
on a graphics screen.

8.3.2 MEM

FORMAT: MEM

PURPOSE: To move the character ROM to RAM.

The MEM command moves the character set in ROM into RAM
behind the Kernal. The screen is moved to location $CC(WB and sprite
data may only be inserted from location $F000, i.e. Block 192,

onwards (see Section 8.2.1). To revert back to the original
COMMODORE 64 character set, simply hold down the RUN/STOP
key and press the RESTORE key.

Figures 8.1 and 8.2 show the configuration of the COMMODORE

64's memory before and after the MEM command has been used.

8-10

SPRITE AND USER-DEFINED GRAPHICS

- $8000 - $9FFF = CARTRIDGE SPACE

$E0OO - $EFFF = KERNAL RDM/HIRES SCREEN
$DO0O - $DFEF = VIDBO/SOUND/IO/CQLOUR RAM

$0000 - $CFFF = SPARE RAM BUFFER

$A000 - $BFFF = OPERATING SYSTEM

- $0800 - $7FFF = USER PROGRAM AREA

- $0400 - $0757" = D3W RES SCREEN/SPRITE POINTERS

$0200 - $03FF = VECTORS/TAPE BUFFER ETC.

$0100 - $01FF = STACK

$0000 - $OOFF = ZERO PAGE

FIGURE 8-1 MEMORY CONFIGURATION BEFORE MEM

$E00O - $FFFF = KERNAL/HIRES SCREEN/SPRITE DATA

$D000 - $DFFF = VIDED/SOUND/IO/COLOUR RAM
$C0OO - $CFFF = LOW RES SCREEN/SPARE RAM

$A000 - $BFEF = OPERATING SYSTEM

$8000 - $9FFF = CARTRIDGE SPACE

- $0800 - $7FFF = USER PROGRAM AREA

- $0400 - $07FF = SPRITE POIOTERS

- $0200 - $03FF = VECTORS/TAPE BUFFER ETC.

- $0100 - $01FF = STACK

- $0000 - $O0FF = ZERO PAGE

FIGURE 8-2 MEMORY CONFIGURATION AFTER MEM

8-11

SIMONS' BASIC USER GUIDE

EXAMPLE:

ENTRY:

RESULT:

8.3.3 DESIGN

FORMAT:

PURPOSE:

NOTE

The TRACE command (see Section 2.11.1) cannot

be used if a program contains the MEM

command.

To move the character ROM to RAM:

10 MEM

When this section of the program is run, the COMMODORE 64
character set is moved to RAM in preparation for re-definition of

characters.

DESIGN 2,$EO0Q + ch * 8

To specify the character which a user-defined graphics character

is to replace.

The DESIGN command allows you to define the character which

is to be replaced by a user-defined character of your own. Note that

there is also a DESIGN command associated with sprite graphics

(see Section 8.2.1) using a different format.

User-defined characters can only be used on a low-resolution

screen. The digit 2 following the DESIGN command tells the

COMMODORE 64 that user-defined character data will follow. Each

new character occupies 8 bytes of memory. The hexadecimal figure
$E000 is the start address of the character data. The parameter ch

is the poke code of the existing character that you wish to change.

(A list of poke codes can be found in your COMMODORE 64 User's

Guide.) The new character is designed within an 8 by 8 grid (see

the following section). It is displayed each time you use the key

that is inscribed with the character that has been replaced.

EXAMPLE: To re-define the character "Z":

ENTRY: 20 DESIGN 2,$EQ0Q + 26 * 8

RESULT: When the graphics character has been created, it is displayed each

time the letter "Z" is used.

8*12

SPRITE AND USER-DEFINED GRAPHICS

8.3.4 @

FORMAT:

The @ command allows you to set up a grid for the design of a

user-defined graphics character. The grid is 8 dots wide and 8 lines

deep. The new character is designed by placing a letter 'B' over

the appropriate dot on the grid.

NOTE

Ensure that each line number for the grid is the

same length, i.e. two digits, three digits or four

digits. By doing this, you will avoid indentation

of part of the grid and facilitate the character

design process.

EXAMPLE:

ENTRY:

ACTION:

DISPLAY:

ACTION:

RESULT:

To design a 'top hat' character:

20 DESIGN 2,$E000 + 26 * 8

30 @

40 @

50 (?. .BBBB. .

60 @..BBBB..

70 @..BBBB..

80 (aRBBBBBBB

90 @BBBBBBBB

30 @

Type RUN < RETURN >

READY

Press the Z key a few times.

The 'top hat' character is displayed.

To revert to the original COMMODORE 64 character set, simply hold

down the RUN/STOP key and press the RESTORE key.

8-13

STRUCTURED PROGRAMMING

SECTION NINE

STRUCTURED PROGRAMMING

9.1 INTRODUCTION

One of the main problems when programming In standard BASIC Is the lack of a

structured flow to the more Involved programs. The use of GOTOs and GOSUBs

causes all but the simplest program listings to become incomprehensible - even

to the program's author! This illegibility can be eased partially with the use of

multiple REM statements to explain what each routine does. This is not only time-

consuming but also uses up a great deal of memory space.

SIMONS' BASIC removes these problems with special structured programming

commands. These commands largely obviate the need for GOTOs and GOSUBs

in your BASIC programs. For example, the PROC command is used to label each

program routine you use. (This function equates to Paragraph naming in the

Procedure Division in COBOL.) These routines are executed using either the CALL

or EXEC commands.

The structure of FOR...NEXT loops is also changed. The REPEAT...UNTIL command

allows you to execute a procedure a defined number of times. The LOOP...EXIT

IF...END LOOP provides multiple condition-testing within a loop. The normal

IF..THEN condition test now includes ELSE to enable you to simplify specification

(on the same program line) of the routes to be taken if an expression matches or

does not match a pre-defined condition. The RCOMP command allows you to use

the previous IF..THEN...ELSE condition test without having to re-enter the code.

Note that the commands in this section may only be used as part of a program.

9.2 CONDITION TESTING AND PROGRAM LOOPS

9.2.1 IF..THEN...ELSE

FORMAT: IF condition THEN true:ELSE:false.

PURPOSE: To test for a condition and branch to one instruction if the condition

is true or to another instruction if the condition is false.

The IF..THEN...ELSE command acts in a similar way to the standard

BASIC IF..THEN condition test. The one important difference is

that branches to specific sections of code can be made for both

true and false results to the test (on the same program line). Note

that ELSE must always be separated from the preceding and

following code with a colon (:).

9-1

SIMONS' BASIC USER GUIDE

EXAMPLE: To check the response to a question:

ENTRY: 10 PRINT'DO YOU OWN A COMMODORE COMPUTER?"

20 PRINT "PLEASE ANSWER YES OR NO (Y/N)"

30 FETCH "<CLR HOME>",1,A$

40 IF A$ = "Y" THEN 60

50 IF A$ = "N" THEN 70:ELSE:GOTO 30

60 PRINT "CONGRATULATIONS":END

70 PRINT "COMMISERATIONS":END

TYPE: RUN < RETURN >

ACTION: When prompted, press either the y or (n' keys followed by

< RETURN >.

RESULT: The appropriate message is displayed depending on whether Y or

N is pressed. Any other key results in no action.

9.2.2 REPEAT UNTIL

FORMAT: REPEAT loop UNTIL condition is met.

PURPOSE: To perform a program loop until a specified condition is met.

REPEAT....UNTIL carries out the same function as a FOR...NEXT

loop in standard BASIC except that instead of specifying how many

times the code is to be executed at the start of the loop, the number

of loops is determined by a condition test at the end of the code.

REPEAT starts the loop; UNTIL tests for a condition , e.g. X>10,

which, when true, causes the program to leave the loop. If the

condition is not met, the loop is re-executed.

WARNING

YOU MAY NOT HAVE MORE THAN NINE

NESTED LOOPS. IF YOU EXCEED THIS FIGURE,

THE MESSAGE "? STACK TOO LARGE" IS

DISPLAYED.

EXAMPLE: To print the letters of the alphabet from A to G:

ENTRY: 10 A = 65

20 REPEAT:PRINT CHR$(A):A = A + 1:UNTIL A>70

30 PRINT "DONE!"

9-2

STRUCTURED PROGRAMMING

TYPE:

DISPLAY:

RUN < RETURN >

A

B

C

D

E

F

G

DONE!

9.2.3 RCOMP

FORMAT: RCOMP:true:ELSE:false

PURPOSE: To re-execute the last IF...THEN...ELSE condition test.

RCOMP causes the the most recently defined IF...THEN...ELSE

condition test in a program to be repeated. This removes the

necessity of having to re-enter the same code again.

EXAMPLE: To repeat the same condition test three times:

ENTRY: 10 INPUT A

20 IF A = 10 THEN PRINT "HELLO ";:ELSE: PRINT "BYE ";

30 RCOMP:PRINT "MIKE ";:ELSE:PRINT "STRANGER ";

40 RCOMP:PRINT "WELOCME":ELSE:PRINT "SEE YOU AGAIN I

HOPE"

50 GOTO 10

TYPE: RUN < RETURN >

DISPLAY: ?

TYPE: 10 < RETURN >

DISPLAY: HELLO MIKE WELCOME

TYPE: 5 < RETURN >

DISPLAY: BYE STRANGER SEE YOU AGAIN I HOPE

RESULT: When a figure is typed, this input is tested three times producing

the display appropriate to the value entered.

9-3

SIMONS' BASIC USER GUIDE

9.2.4 LOOP...EXIT IF...END LOOP

FORMAT: LOOP program loop EXIT IF condition true END LOOP

PURPOSE: To perform a continuous loop until a specified condition is met.

LOOP...EXIT IF... END LOOP performs a program loop in a similar

way to the command REPEAT...UNTIL (See Section 9.2.2) with one

important difference. REPEAT...UNTIL only allows condition testing

at the end of the loop. LOOP...EXIT IF ... END LOOP allows any

number of condition tests to be made within the loop. If a condition

is met, the program EXITs to the statement following END LOOP.

If the condition is not met, the program loop is re-executed.

WARNING

YOU MAY NOT HAVE MORE THAN FIVE

NESTED LOOPS. IF YOU EXCEED THIS FIGURE,

THE MESSAGE "? STACK TOO LARGE" IS

DISPLAYED.

EXAMPLE: To get a character between A and F from the keyboard:

ENTRY: 10 PRINT'ENTER A LETTER BETWEEN A AND F"
20 LOOP

30 GET A$:IF A$ = "" THEN 30

40 EXIT IF ASC(A$)<65

50 EXIT IF ASC(A$)>70

60 PRINT A$;

65 END LOOP

70 PRINT CHR$(13)"NOT IN RANGE":END

TYPE:

TYPE:

DISPLAY:

TYPE:

DISPLAY:

TYPE:

DISPLAY:

RESULT:

RUN < RETURN >

C <RETURN>

C

B <RETURN>

CB

S <RETURN>

NOT IN RANGE

The keyboard is sThe keyboard is scanned and all letters in the range defined are

displayed on the screen. A letter outside the range causes the

program to leave the loop.

9-4

STRUCTURED PROGRAMMING

9.3 PROGRAM PROCEDURES

9.3.1 INTRODUCTION

To facilitate the writing of more structured code, SIMONS' BASIC provides four

commands which enable you to label BASIC program routines and then call these

routines by name when they are required. To a great extent, this removes the

necessity of having to use GOTOs and GOSUBs in your programs. These routines

are called 'procedures'. Any procedure that is used frequently in different programs

can be stored in a procedure 'library' and then loaded when required.The PROC

command (see Section 9.3.2) is used to assign names to procedures. These are

then either executed with the CALL command (see Section 9.3.4) or with the EXEC

command (see Section 9.3.5). The CALL command acts in the same way as the

standard BASIC GOTO command, i.e the program jumps to the start of the procedure

and continues execution from that point. The EXEC command acts like a GOSUB,

i.e. the program jumps to the named procedure and then returns to the program

line following the EXEC command when the procedure has been completed. The

completion of the latter must always be indicated by the END PROC command (see

Section 9.3.3), which acts in the same way as RETURN in standard BASIC.

The examples used in this section of the manual all build towards a complete

program. Therefore, do not use the NEW command between examples and do not

RUN the program until told to do so.

WARNING

YOU MAY NOT HAVE MORE THAN FIVE NESTED

PROCEDURES. IF YOU EXCEED THIS FIGURE, THE

MESSAGE "? STACK TOO LARGE" IS DISPLAYED.

9.3.2 PROC

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

RESULT:

PROC name

To label a program routine.

PROC enables you to label program routines and then call these

routines by name when they are required. All characters on the line

following the PROC command are taken as the name of the

procedure. Therefore, PROC and the procedure name must not be

followed by any other code on the same program line.

To assign the label "INPUT NAME" to a program routine:

100 PROC INPUT NAME

When the program is run, the code following this line forms a

procedure called INPUT NAME.

9-5

SIMONS' BASIC USER GUIDE

9.3.3 END PROC

FORMAT: END PROC

PURPOSE: To indicate the end of a procedure.

END PROC indicates the end of a 'closed' procedure, i.e. one to

be called by the EXEC command (see Section 9.3.5). This command

acts in the same way as RETURN in standard BASIC, i.e. when the

procedure ends, the program returns to the line following that on

which the procedure was called.

To set up a procedure for entering the user's name into a variable:

100 PROC INPUT NAME

110 PRINT "WHAT IS YOUR NAME"

120 FETCH "<CLR/HOME>",15,A$

130 END PROC

When the program is run, the INPUT NAME procedure can be called

using the EXEC command (see Section 9.3.5).

EXAMPLE:

ENTRY:

RESULT:

9.3.4 CALL

FORMAT:

PURPOSE:

CALL procedure name

To transfer program execution to a specific line of code.

The CALL command acts in the same way as GOTO in standard

BASIC except that a procedure name is used in place of a line

number. Everything that follows CALL on the same program line

is used as the name of the procedure being called. Therefore, CALL

and the procedure name must not be followed by any other code

on the same program line. The procedure called must be 'open',

i.e. one that does not contain END PROC.

EXAMPLE: The start of a Sort program:

ENTRY: 10 PRINT"<SHIFT CLR/HOME>"

20 PRINT'HOW MANY NAMES DO YOU WISH TO SORT?'

30 PRINT"NO MORE THAN 15 NAMES"

32 PRINT"AND NO LONGER THAN TEN CHARACTERS"

34 PRINP'FOR EACH NAME"

40 FETCH" <CRSR DOWN>",2,X

45 IF X > 10 AND X < 16 THEN DIM A$(X)

50 IF X < 16 THEN CALL ENTER NAMES

55 GOTO 10
60 PROC ENTER NAMES

70 FOR I = 1 TO X
80 FETCH"<CLR/HOME>",10,A$(I):PRINT TAB(20)"OK"

90 NEXT

RESULT: If the number of names entered is less than 16, the pr

continues from the procedure ENTER NAMES in line 60.

9-6

STRUCTURED PROGRAMMING

9.3.5 EXEC

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

ACTION:

RESULT:

EXEC procedure name

To call a program routine and return to the line following the call

when the procedure has been completed.

EXEC performs the same function as GOSUB in standard BASIC,

i.e. the program jumps to a specific section of code, executes the

code and then returns to the line following EXEC when END PROC

(see Section 9.3.3) is reached. Everything that follows EXEC on the

same program line is taken as the name of the procedure being

called. Therefore, EXEC and the procedure name must not be

followed by any other code on the same program line.

To complete the Sort program from the previous section.

100 EXEC SORT

110 PRINT"<SHIFT CLR/HOME CRSR/DOWN>"

120 FOR I = 1 TO X:PRINT TAB(20)A$(l):NEXT

130 END

140:

150:

1000 PROC SORT

1020 M = 1

1030 REPEAT

1040 T = 0:FOR I = 1 TO N ■ M

1050 IF A$(l) < A$(l + 1) THEN 1070

1060 W$ = A$(I):A$(I) = A$(l + 1):A$(I + 1) = W$:T = 1

1070 NEXT I

1080 M = M + 1

1090 UNTIL T = 0

1110 END PROC

RUN < RETURN >

When prompted, enter up to 15 names, pressing RETURN between
each name.

The names are sorted and then displayed.

9-7

SIMONS' BASIC USER GUIDE

9.4 PROGRAM VARIABLES

9.4.1 INTRODUCTION

The use of variables in standard BASIC can become confusing when many variables

are required for different purposes. SIMONS' BASIC resolves this problem by

allowing you to use the same variable in two ways - locally within a specific program

routine or globally throughout the whole program. This reduces the number of

variables you need and, consequently, frees more memory space so that you can

write and run longer programs.

The value of each variable within a BASIC program changes depending on when

and where the variable is used. The LOCAL command allows you to store the values

currently held by the variables, clear them and then use the same variable names

within a specific section of code. The GLOBAL command restores the values

contained by the variables before the LOCAL command was executed.

9.4.2 LOCAL

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

LOCAL variable*!, variable2, variable3

To assign variables to a specific program routine.

The LOCAL command allows you clear the values of previously

defined variables on a temporary basis and then use these variables

locally within a specific program routine. The GLOBAL command

(see the following section) restores the original values to the

variables.

WARNING

THE VARIABLES DEFINED WITH THE LOCAL

COMMAND MUST HAVE PREVIOUSLY BEEN

DECLARED. FAILURE TO ADHERE TO THIS

WARNING WILL RESULT IN THE PROGRAM

'HANGING', i.e. NO FURTHER EXECUTION WILL

OCCUR. YOU MUST THEN PRESS THE

RUN/STOP AND RESTORE KEYS TO BREAK OUT

OF THE PROGRAM.

To assign variables locally:

10 REM"*** EXAMPLE OF LOCAL ***

20 PRINT"<SHIFT CLR/HOME>"

30 A$ = "INITIAL VALUE":A% = 123:A = 456.7

40 LOCAL A$,A%,A

50 A$ = "NEW VALUE ":A% = 789:A = 321.4

60 PRINT A$,A%,A

9-8

STRUCTURED PROGRAMMING

TYPE:

DISPLAY:

RESULT:

RUN < RETURN >

NEW VALUE 789 321.4

The values originally assigned to the variables are stored. New

values are then assigned to the variables and these values printed.

9.4.3 GLOBAL

FORMAT: GLOBAL

PURPOSE: To restore original values to local variables.

The GLOBAL command causes all variables that have been used

locally within a program routine to be cleared. The values they held

before the LOCAL command was used (see the previous section)

are then re-assigned.

EXAMPLE: Using the program from the previous section, to restore GLOBAL

values to locally used variables:

ENTRY: 10 REM"*** EXAMPLE OF LOCAL/GLOBAL ***

20 PRINT"<SHIFT CLR/HOME>"

30 A$ = "INITIAL VALUE":A% = 123:A = 456.7

40 LOCAL A$,A%,A

50 A$ = "NEW VALUE ":A% = 789:A = 321.4

60 PRINT A$,A%,A

70 GLOBAL

80 PRINT A$,A%,A

TYPE: RUN < RETURN >

DISPLAY: NEW VALUE 789 321.4

INITIAL VALUE 123 456.7

RESULT: The values assigned to the variables before the LOCAL command

were used are restored.

9-9

ERROR TRAPPING

SECTION TEN

ERROR TRAPPING

10.1 INTRODUCTION

SIMONS' BASIC provides commands to trap program errors in order to prevent your

BASIC programs from 'crashing'. The ON ERROR command allows you to branch

to a specified point in the program should an error be found. The variable ERRLN

contains the number of the program line on which the error has occurred and the
variable ERRN contains the error number. By testing the value held in ERRN, you

can then take appropriate action, including, if you wish, the generation and display

of your own error message. OUT turns off the most recently used ON ERROR

command. The NO ERROR command returns you to the normal COMMODORE 64

error-handling routines.

10.2 ON ERROR

FORMAT: ON ERROR: GOTO line number

PURPOSE: To trap program errors.

The ON ERROR command allows you to trap BASIC program errors

to prevent your programs from 'crashing'. When an error is found,

the program jumps to the line specified with the GOTO. The error

number is held in the variable ERRN. The line in which the error

ha.s occurred is held in the variable ERRLN. By testing the value

held in ERRN, you can check to see which error has occurred and

then take any necessary action including, if you wish, the display

of an error message of your own.

NOTE

After testing for a specific error and taking the

appropriate action, you must always use the OUT

command (see the following section) before

continuing program execution. This command

must also be used if you have stopped a program

containing the ON ERROR command and wish

to edit some of your code.

The errors that can be trapped by SIMONS' BASIC and the

associated error numbers are shown below:

10-1

SIMONS' BASIC USER GUIDE

ERROR NUMBER

1

2

3

4

5

10

11

12

13

14

15

16

17

18

19

20

21

22

23

ERROR

Too many files

File open

File not open

FMe nQLt.found_

Device not present

Next without for

Syntax

Return without gosub

Out of data

Hfegar quantity

Overflow

Out of memory

Undefined statement

Bad subscript

Re-dimensioned array

Division by zero

Illegal direct

Type mismatch

String too long

In the examples that follow, please type in the information EXACTLY

as shown. The typing mistakes are deliberate and are included to

demonstrate the use of the SIMONS' BASIC error-trapping

commands.

EXAMPLE: To trap a SYNTAX error and display a user-defined error message:

ENTRY: 5 REM"*** EXAMPLE OF ERROR HANDLING ***

10 ON ERROR: GOTO 100

15 PRiN"<SHIFT CLR/HOME>"

20 READ B

25 PRINT B: GOTO 20

30 DATA 1,2,3,4,5

100 IF ERRN = 11 THEN PRINT"SPELLING MISTAKE IN

LINE";ERRLN

TYPE: RUN < RETURN >

DISPLAY: SPELLING MISTAKE IN LINE 15

RESULT: Because the spelling of the BASIC keyword PRINT is wrong, the

program has jumped to the error-handling routine at line 100. The

program is searched for a SYNTAX error, i.e. error number 11.

Because this error has occurred, the user-defined error message

is displayed.

10-2

ERROR TRAPPING

ACTION: Press the RUN/STOP key.

DISPLAY: READY

EXAMPLE: To trap an OUT OF DATA error:

TYPE: OUT < RETURN >

(The OUT command is explained in the following section.)

ACTION: Correct the spelling error in line 15 of the program example from

the previous section and then enter the following line of code:

110 IF ERRN = 13 THEN PRINP'NOT ENOUGH INFORMATION

IN LINE";ERRLN

TYPE: RUN < RETURN >

DISPLAY: 1

2

3

4

5

NOT ENOUGH INFORMATION IN LINE 20

RESULT: Because there are only five items of data, the program jumps to

the error-trapping routine at line 100 when an attempt is made to

read item number six. Line 110 tests for error 13, i.e. OUT OF DATA

and, because this error has occurred, displays the defined error

message.

10.3 OUT

FORMAT: OUT

PURPOSE: To disable the last ON ERROR command.

OUT turns off the most recently used ON ERROR command. This

command must always be used if you wish to return to the

COMMODORE 64 error-handling routine that has been trapped by

the ON ERROR command.

EXAMPLE: Using the program example from the previous section, to turn off

the ON ERROR command:

ACTION: Enter the following revised line of code:

20 READ B: J = J + 1: IF J = 5 THEN OUT

10-3

SIMONS' BASIC USER GUIDE

TYPE: RUN < RETURN >

DISPLAY: 1

2

3

4

5

?OUT OF DATA ERROR

RESULT: As there are only four items of data, the program crashes when an

attempt is made to read item number 5. The COMMODORE 64

message applicable to this type of error is then displayed.

10.4 NO ERROR

FORMAT: NO ERROR

PURPOSE: To re-enable the COMMODORE 64 error-handling routines.

The NO ERROR command turns off ALL the SIMONS' BASIC error-

trapping commands and returns control to the COMMODORE 64

error-handling routines.

EXAMPLE: Using the program from the previous section, to return error-

handling control to the COMMODORE 64:

ACTION: Enter the following revised lines of code:

15 PRIN"<SHIFT CLR/HOME>"

100 NO ERROR:IF ERRN = 11 THEN PRINT'SPELLING MISTAKE

IN LINE";ERRLN

ACTION: Type RUN < RETURN >

DISPLAY: SYNTAX ERROR IN LINE 100

10-4

MAKING MUSIC WITH SIMONS' BASIC

SECTION ELEVEN

MAKING MUSIC WITH SIMONS' BASIC

11.1 INTRODUCTION

Among the attractive features of the COMMODORE 64 is its music-synthesizing

capability. With practice and experience, it is possible to reproduce the sounds

of many different musical instruments. The music and sound attributes of the

COMMODORE 64 are extensive. SIMONS' BASIC has not been designed to utilise

all these features. The sound and music commands supplied by the cartridge are

intended primarily to introduce you to the art of sound programming on the

COMMODORE 64. If you wish to further your music programming skills on

Commodore computers, please ask your local dealer for details of the special

software and books that deal with this subject.

11.1.1 SOUND SHAPING

Different sounds are produced by different frequencies. The higher the frequency,

the higher the note produced. Most personal computers have an audio capability

but unlike most others, the COMMODORE 64 gives you the ability to 'shape' each

frequency. Shaping simply means telling the computer how each part of a frequency

should be played. The volume of a musical note or sound changes from when you

first hear it until it dies out and you cannot hear it anymore. All frequencies are

generated in four cycles: ATTACK, DECAY, SUSTAIN and RELEASE. These cycles

together form a sound 'envelope'. The function of each cycle within the envelope

is described below:

ATTACK

This determines the rate at which a frequency rises from zero to peak volume.

11-1

SIMONS' BASIC USER GUIDE

DECAY

This defines the rate at which the frequency falls from its peak volume to a middle-

ranged volume level.

SUSTAIN

This determines the mid-range volume.

RELEASE

This determines the rate at which the frequency falls from the SUSTAIN level to

zero volume.

For the purposes of clarification, a diagram representing a sound envelope is shown

in Figure 11-1.

SUSTAIN LEVEL

FIGURE 11-1 A SOUND ENVELOPE

11.1.2 SOUNDWAVES

The COMMODORE 64 allows you to select the type of sound wave that you wish

to use to play the music or sound effects you have created. Each type of sound

wave produces a different effect. The waveforms and the effects they produce are

described below. A diagram of each waveform is also shown.

TRIANGLE

This waveform is low in harmonics and has a mellow flute-like quality.

FIGURE 11-2 A TRIANGULAR SOUND WAVE

11-2

MAKING MUSIC WITH SIMONS' BASIC

SAWTOOTH

The Sawtooth waveform is rich in harmonics and has a bright, brassy quality.

FIGURE 11-3 A SAWTOOTH SOUND WAVE

PULSE/SQUARE

The Pulse/Square waveform enables you to produce various tones ranging from
bright, hollow sounds to nasal, reedy pulses.

—PUtSE WIDTH—

FIGURE 11-4 A PULSE/SQUARE WAVE

11-3

SIMONS' BASIC USER GUIDE

NOISE

As its name suggests, this waveform produces various types of noise for special
sound effects.

FIGURE 11-5 A NOISE WAVE

11.1.3 PROGRAMMING SOUND

In standard BASIC, playing music or creating special sound effects on the

COMMODORE 64 requires the use of multiple POKE commands. This can be tedious

and time-consuming but with SIMONS' BASIC, this is no longer a constraint. Special

music and sound commands provided by the cartridge remove the need to access

memory locations yourself with POKEs.

The VOL command allows you to define how loud or soft your music or sound effects

will be played. WAVE enables you to select the type of waveform you wish to use

for your sounds. The ENVELOPE command allows you to define the 'shape' of each

note within a sound envelope. The MUSIC command is used to compose the sounds

you wish to produce, while the PLAY command causes the sounds to be generated.

Note that these commands can only be used as part of a program.

The sections that follow describe the format and purpose of each SIMONS' BASIC

music command. A brief example of the use of each command is also given.

The examples used in this section of the manual all build towards a complete

program which plays a tune. Therefore, do not use the NEW command between

examples and do not RUN the program until told to do so.

11-4

MAKING MUSIC WITH SIMONS' BASIC

11.2 MUSIC COMMANDS

11.2.1 VOL

FORMAT:

PURPOSE:

EXAMPLE:

VOLn

To select music volume.

The VOL command enables you to define the volume level at which

the music or sound that follows the command will be played.

Volume levels range from 0 thru 15. Level 15 is the loudest volume

and 0 turns the sound off. A volume level remains set until a new

VOL command is given.

To set a volume level of 15:

ENTRY: 10 VOL 15

RESULT: Any sound following this code will be played at the highest volume.

11.2.2 WAVE

FORMAT: WAVE voice number,binary number

PURPOSE: To set the music voice type

The WAVE command allows you to select the type of waveform you

wish to use to play your music or sound effects. (See Section 11.1.2.)

The first parameter in the WAVE command specifies the 'voice'

through which the sound will be played. The COMMODORE 64 has

three voices numbered 1 thru 3. Each voice contains the same nine

octaves. This means that you can play a sound through one voice

and then mix in a sound from another voice.

The second parameter in the WAVE command is a binary number.

(Note that with the WAVE command, this number is not preceded

by a dollar sign.) This number tells the COMMODORE 64 how to

play each sound. Each of the eight bits within the number perform

a specific function. To select a function, the associated bit is set,

i.e. a 1 is placed in that position. The bits are numbered from 0 thru

7, bit 7 being the leftmost bit of the number. The function each bit

performs is shown on the following table:

11-5

SIMONS' BASIC USER GUIDE

BIT NUMBER FUNCTION PERFORMED

0 Sets the gate bit (not required)

1 Sets synchronisation

2 Sets ring modulation

3 Sets the test bit (should never be set)

4 Sets Triangular waveform

5 Sets Sawtooth waveform

6 Sets Pulse/Square waveform

7 Noise

These functions are described in greater detail below:

BIT 0 - THE GATE BIT

On a COMMODORE 64 without SIMONS' BASIC, this bit, when set,

'triggers' the Envelope Generator, i.e. it causes the four cycles of

a frequency to begin. However, because SIMONS' BASIC sets this

bit automatically when the PLAY command is executed (see Section

11.2.5), you must always leave the value of this bit at 0.

BIT 1 - SYNCHRONIZATION

The Synchronization bit enables a note (frequency) from one voice

to be synchronized with a note from another. By playing one steady

note (static frequency) from a voice and playing multiple notes

(variable frequency) from another, a wide range of complex

harmonies can be produced. For the best effect, the static frequency

should always be lower than the lowest value of the variable

frequency. The voice chosen to output the variable frequency

determines the voice you can select for the static frequency. This

is outlined on the following table:

VARIABLE FREQUENCY VOICE STATIC FREQUENCY VOICE

1 3

2 1

3 2

The voice number is specified as the first parameter in the WAVE

command (see above).

11-6

MAKING MUSIC WITH SIMONS' BASIC

BIT 2 - RING MODULATION

Bit 2, when set, initializes Ring Modulation. This effect is similar

to Synchronization (see the previous section) except that both

frequency and amplitude (volume) can be varied at the same time

to create a 'wow-wow' effect. By varying the frequency of one voice

against a static frequency from another, a wide range of non-

harmonic structures can be produced for creating bell or gong

sounds and special effects.

For Ring Modulation to be audible, a triangular waveform must be

selected for the variable frequency voice. This waveform is then

replaced with a modulated combination of the output from this and

another defined voice. As in Synchronization, the voice chosen to

output the variable frequency determines the voice you can select

for the static frequency. This is outlined on the following table:

VARIABLE FREQUENCY VOICE STATIC FREQUENCY VOICE

1 3

2 1

3 2

BIT 3 - THE TEST BIT

This bit is not used in SIMONS' BASIC. Therefore, it must never

be set i.e. it must always be 0.

BIT 4 - TRIANGULAR WAVEFORM

A value of 1 in bit 4 sets up a Triangular waveform.

BIT 5 - SAWTOOTH WAVEFORM

A value of 1 in this bit sets up a Sawtooth waveform.

BIT 6 - PULSE/SQUARE WAVEFORM

A value of 1 in bit 6 sets up a Pulse/Square waveform.

BIT 7 - NOISE

A value of 1 in this bit sets up a Noise waveform.

NOTE

In bits 4 thru 7, if one bit is set to 1, the remaining

bits must be left at 0.

11-7

SIMONS' BASIC USER GUIDE

EXAMPLE: To set up a Triangular waveform for voice 1.

ENTRY: 20 WAVE 1,00010000

RESULT:

11.2.3 ENVELOPE

When this section of the program is executed, the music following

the command is played using a Triangular waveform.

FORMAT: ENVELOPE vn,a,d,s,r

PURPOSE: To define the 'shape' of a sound.

As explained in Section 11.1.1, the COMMODORE 64 allows you

to define an envelope which determines the shape of the sound

you wish to play. The ENVELOPE command allows you to design

this shape. The parameter vn is the number of the voice through

which you wish to play the sound. The parameters a, d, and r specify,

respectively, the duration of the ATTACK, DECAY and RELEASE

cycles of the frequency to be produced. The duration of the ATTACK,

DECAY and RELEASE cycles are measured in units of one

thousandth of a second. This is represented by a number in the

range 0 thru 15. These numbers and the corresponding time cycles

are listed on the table below:

VALUE

(TIME/CYCLE)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ATTACK RATE

2

8

16

24

38

56

68

80

100

250

500

800

1000

3000

5000

8000

DECAY RELEASE

(TIME CYCLE)

6

24

48

72

114

168

204

240

300

750

1500

2400

3000

9000

15000

24000

11-8

MAKING MUSIC WITH SIMONS' BASIC

EXAMPLE:

ENTRY:

RESULT:

11.2.4 MUSIC

FORMAT:

or:

PURPOSE:

At the end of each music string, hold down the SHIFT key, press

the CLR/HOME key and enter the letter G. This causes the Release

cycle (see Section 11."M) of the last note to be triggered.

The SUSTAIN parameter, s, is in the range Q thru 15. This defines

an intermediate volume level at which the sound will be held and

is equivalent to changing the volume level set up by VOL (see

Section 11.2.1) while the selected note is being played. Note,

however, that this affects only the note selected. The volume of

sounds played through other voices remains unaltered.

To create a sound envelope for the music played through voice 1:

30 ENVELOPE 1,8,8,8,0

All music notes following this command are played through voice

1 with equal rates for the Attack, Decay and Release cycles and

an intermediate volume level set at 8.

MUSIC n,"music string"

MUSIC n,variable + variable + variable....

To write music or create sound effects.

The MUSIC command allows you to compose and play music or

create sound effects. The first command parameter refers to the

duration of one music beat. This number must be in the range 1

thru 255 -1 is the longest duration, 255 is the shortest. Following

this parameter, you then define the string of musical notes you wish

to play. Strings of notes may be added up to a maximum of 255

characters. The voice through which you wish to play the notes is

specified at the beginning of the string. To do this, hold down the

SHIFT key, press the CLR/HOME key (a reverse-field 'heart' is

displayed) and enter the relevant voice number. Note that only ONE

voice can be used in a string of notes.

Music notes are in the range A thru G. C is the first note in each

octave, i.e the sequence of notes is C,D,E,F,G,A,B. A music sharp

is defined by holding down the SHIFT key and pressing the letter

of the relevant note. If you wish to play a note flat, you must sharpen

the previous note, e.g. E flat would be D sharp and B flat would

be entered as A sharp. Music rests are indicated by the letter Z.

The octave in which the note will be played is defined by a number

from 0 thru 8. This number is entered AFTER the note. (Rests of

course are entered without an octave number.) The duration of each

note is specified by a control character following the octave number.

This character is entered by pressing one of the four function keys.

The function keys and associated note durations are shown in the

table below:

11-9

SIMONS' BASIC USER GUIDE

FUNCTION KEY

F1 KEY

F3 KEY

F5KEY

F7 KEY

F2 KEY

F4 KEY

F6 KEY

F8 KEY

NOTE DURATION

One sixteenth of a beat

One eighth of a beat

One quarter of a beat

Half a beat

One beat

Two beats

Four beats

Eight beats

After you have specified the duration of the last note in the string,

hold down the SHIFT key, press the CLR/HOME key and enter the

letter G. This causes the Release cycle (see Section 11.1.1) of each

note to be triggered.

EXAMPLE: To compose a tune:

ENTRY: 40 A$ = M<SHIFT CLR/HOME>1Z<F1>C5<F1>E5<F1>F5<F1> "

50 A2$ = "G5<F7>C5<F1>E5<F1>F5<F1>G5<F7>C5<F1>E5

<F1>F5<F1>G5<F3>E5<F3>C5<F3>E5<F3>D5<F5>E5<F1>

E5 <F1>D5 <F1>C5 <F7>C5 <F1>"

60 A2$ = A2§ + "E5<F3>G5<F3>G5<F1>F5<F5>F5<F3>E5

<F1>F5<F1>G5<F3>E5<F3>C5<F3>D5<F3>C5<F3>C5<F1>

70 A3$ = "C5<F7>C5<F1><SHIFT CLR/H0ME>G

80 MUSIC 8,A$ + A2$ + A2$ + A3$

RESULT: When this section of the program is executed, the notes are stored

in the variables A$, A2$ and A3$ and 'compounded' into a tune.

11-10

MAKING MUSIC WITH SIMONS' BASIC

11.2.5 PLAY

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

ACTION:

RESULT:

EXAMPLE:

ENTRY:

ACTION:

RESULT:

PLAY n

To play composed music.

The PLAY command, as its name suggests, allows you to play the

music you have composed. The parameter following the command

indicates how the music will be played in relation the rest of the

program. A "0" in this position turns music off. A "1" plays the

music and waits for it to end before proceeding with the program.

A "2" plays the music and continues executing the program.

To play the music you have composed and continue program

execution:

90 PLAY 2

100 GOTO 100

Type RUN < RETURN >

'When The Saints Go Marching In' is played.

To create a sound effect.

10 VOL 15

20 WAVE 1,10000000

30 ENVELOPE 1,0,10,0,0

40 MUSIC 5,"<SHIFT CLR/HOME>1C5<F2>"

45 REPEAT

50 PLAY 1

55 A = A + 1: UNTIL A = 5

Type RUN < RETURN >

Five shots are fired.

Note that PLAY 2 CANNOT be used in conjunction with high-

resolution or multi-colour graphics.

11-11

READ FUNCTIONS

SECTION TWELVE

READ FUNCTIONS

12.1 INTRODUCTION

Section Twelve illustrates the four read functions supplied by the SIMONS' BASIC

cartridge. If you have incorporated the use of a Iightpen, joystick or paddle in your

programs, these functions will enable you to determine the position of these devices.

NOTE

The light pen must be inserted ONLY into games port 1,

i.e the port furthest away from the ON/OFF switch. A

joystick can be inserted into either games port. (See your

COMMODORE 64 User's Guide.)

The PENX and PENY commands allow you to determine the position on the screen

at which a Iightpen is pointing. The POT command reads the screen position of

a paddle, while the JOY command allows you to determine in which direction a

joystick is pointing.

12.2 PENX

FORMAT: variable = PENX

PURPOSE: To return the x coordinate of the light pen.

The PENX function returns the position of the light pen across the

screen, i.e. from the left edge. The number returned is in the range

0 to 320. The example for this function is contained in the following

section. Note that the PENX value must always be read before that

of PENY.

12-1

SIMONS' BASIC USER GUIDE

12.3 PENY

FORMAT: variable = PENY

PURPOSE: To return the y coordinate of the light pen.

The PENX function returns the position of the light pen down the

screen, i.e. from the top. The number returned is in the range 0 to

200.

EXAMPLE: To sketch on the screen with the lightpen and then print out the

drawing:

ACTION: Enter the following program and then RUN it. Instructions for the

program will be displayed on the screen.

10 REM-#*#LIGHT PEN PROGRRM***

20 HIRES0,1

30 TEXTitf,i0,I:flFTER YOU HflVE TYPED IN 'RUN'M,1,8

48 TEXT10,25,s;YOU HflVE 15 SECONDS TO INSERTM,1,8

50 TEXri0,40,"THE LIGriTPEN IN 'CONTROL PORT I'M, 1,8

60 TEXT10,55,"tfHEN YOUR DRflWINO IS COMPLETEM, 1,8

70 TEXT 10,70, "REMOVE LIGHTPEN FROM USER PORT11,1,1,8

80 TEXT10,85,':RND PRESS SPRCE-BfiR FOR PRINT-OUT", 1,1,8

30 PRUSE 15

100 HIRES0,1

110 LINE10,10,300,10,1:LINE300,10,300,180,1

120 LINE300,180,10,180,1'LINE10,180,10,10,1

130 GETfi*:iFR$«>n'THEN130

140 IFfl$«" "THEN160

150 PLOT <PENX+51)RND255,<PENY~50)RND255,1:GQTO 150

160 COPY:END

12-2

READ FUNCTrONS

12.4 POT

FORMAT: variable = POT(O)

or: variable = POT(1)

PURPOSE: To return the resistance of a paddle.

The POT function enables you to determine how far a paddle control

has been rotated. The number returned is in the range 0 thru 255.

The number following the command defines the paddle whose value

is to be read.

EXAMPLE: To move a sprite using the paddles:

ENTRY: 10 REM:#*##PflUDLt PRUGRflM****

20 REM:******BY K MORRIS*****'

3@ HIREStf,i

40 TEXT 10.. 10.* :BV MOVING THE PRDl!Li£3 YOU CRN" , i , i, 8

50 TEXTj.0.. 2o.> "GET THE SPRITES TO MEET* " .. i , 1, 8

68 TEXTi0, 4Q, ''WHV DON'T YOU TRY ?".. i,l,8

6o TEXT 10.. 35.. "<SET PflDDLE X~0 RND PRDih-E Y=253> " .. i .• i .• 8

7£ DESIGN 65,64*32+49152

oS 1! B
90 @ B

i00 e b

j. 10 S »" . » - .. 3BBBBBBBBBBBB

i 20 © . . B. . B

130 S --..-B B

140 @ B. . ■ B

158 a B BBBBB

i 60 (§ « - h n . B 3 B

170 @ B B- - -B

180 @.BBBBBBBBBBBBBBBB3BBBBBB

190 @ B. . . B. . -B

£00 © B. B» . . B

210 @ B BBBBB

220 6 B B

230 @ B 3

240 0%. B. . ■ B

250 @ BBBBBBBBBBBBB

260 XS B

270 @ 3

280 @ B

290 DESIGN 0,64*33+49152

300 @B

310 <3B

12-3

SIMONS' BASIC USER GUIDE

320 @B

33@ QBBBBBBBBBBBBB

340 (SB B

350 "SB B

360 SB B

37B' 8BBBBB B. ..

380 GB...B B

390 (SB-..B B

400 OBBBBBBBBBBBBBBBBBBBBBBB-

410 SB. . .B B

428 %BnHmB B

430 SBBBBB . . B

440 SBE.. ,

450 SB- . . B. . .

460 SB B. ,. . . .

470 SBBBBBBBBBBBBB

480 SB...

490 SB

oS0 <SB

510 MOB SET 0,32,2,0,0

320 NOB SET 1,33,2,0,0

330 Z=1@:W«245

333 MMCB©, Z, 170, Z, i 70, 3, 50

336 iiMOB 1, i*l, i 70, w, i 70, 3, 50

348 X«1NT<POT<0>>

350 FORL=ZTOX

333 :lFL=100THEN615

360 RLOCMOB©.. L, i 70, 3, 30

589 NEXTL

390 Z=X:GCTO540

615 V«INT<POT<i>)

628 FORB«WTOV

623 IFB«i45THEN700

630 RLOCMOB1,B,170,3, 50

640 NEXT B

630 W=V:G0T0615

700 TEXT 105.. i 78, " FI RE 'M , 3 •• 3 : PflUSE a

703 MOB OFF 0 "• MOB OFF 1

703 TEXT105,170,"F1RE",0,3,8

710 TEKT75, 143, "BOOM Hii!,i,3,20

716 BFLRSHi0,0,7

720 VOL15

730 WflVE 1,10000000

740 ENVELOPE 1,3,0,15,0

750 fl*«nniZBQ5r'

7S^d MUSIC 8,fl*

770 PLRV 1

820 VOL0 : BFLRSH0 : H1RES0, 1 '• PR I NT " H

12-4

READ FUNCTIONS

12.5 JOY

FORMAT: variable = JOY

PURPOSE: To return the value associated with the position of a joystick.

The JOY function allows to you to test the direction in which a

joystick is pointing or if the fire button is being held down. The

values returned and the associated joystick positions are shown

in Figure 12-1.

FIRE BUTTON

COMMODORE

FIGURE 12-1 JOYSTICK VALUES

12-5

SIMONS' BASIC USER GUIDE

EXAMPLE: To draw a shape with the joystick and then paint it:

ACTION: Enter the following program and then RUN it. Instructions for the

program will be displayed on the screen.

10 REM:###*####JOV STICK PROGRflM####W

11 HIRES©*!
12 LlNEi0,20,3i0,20,l:LINE3i0,28,3i0,i60,i

13 LINE318,160,10,160,1:L1NE18,160,18,20,1

i 5 TEXT88, 30, I! THE MOZOSKETCH ",1,2,10

16 TEXT98, 43, " " , 1, 2, 8

17 TEKT1S,60, "DRflW fl SHflPE MflKINO SURE THflTi:, 1,2, 10

18 TEXT2G, 88, "THERE f\RE NO GflPS,flNB KEEP" , 1, 2, 18

i 9 TEXT60,100,"WITH1N THE BOUNDRRIE3. " , 1 ,2,18

28 7fc>;T183,140, :!BV l< J MORRIS:!, 1, 2, 8 : PRUSE 3

30 HIRES©,!

35 7EXT93,5, " THE MOZOSKETCH",1,1,8

48 TEKT4,18, "DRRW ft SrtfiPE RND PRESS THE FIRE BUTTON", 1, 1,8

45 TE:«;T73,3i, !T0 SEE WHflT HRPPENS", 1, 1,8

50 LINE18,50,318,58,1:LINE318,58,310,158,i

55 LINE318, i5e, 10, 158, 1 :LINE18.. 158, 18,58, 1

88 ;«;=i68:Y«i08

90 f-:lot;k, v, i

188 IF JOV-1 THEN V=V-i=G0T0288

110 IF J0V«2 THEN Y=V-1:X=X+i:G0T0288

120 if JGY=3 THEN X«X+i:00T0288

130 IF jOY=4 THEN ;«;«;«;+! :Y~Y+i :GOTG200

148 IF J0Y=5 THEN Y*Y+i:G0T0288

158 IF J0Y=6 THEN Y«Y+i : X=;«;-i : 0070288

i.60 IF JOY-7 THEN X=;K-i • G0T0288

170 iF J0V=8 "THEN X«X-1 : Y=Y-1 : G0T0288

188 IF JOY* 128 THEN TEXT27, 170', "WELL PONE PICRS30" •• 1, 3, 16

198 PRUSE2:GOTO340

280 IFX<20THENX«20:GOTO 188

3&0 I F;O3807HEN;K~388 '• GOTO 188

310 IFV<60THENY~60:0070180

328 IFY>148THENY=i48•GOTO188

330 PLOT*, V.. i : GOTO 188

348 LOW COL 2, 1, 1

358 PR INTX+1,Y+1,1:pflUSES

368 HIRES8,1

378 TEXT58,58,"PRESS SPflCE BRR FOR RNOTHER GO",1,2,8

388 GET fl*: IFR#as;!IITHEN380

398 1FR$=': "THEN 38

488 G0T0388

12-6

EXAMPLES OF SIMONS' BASIC PROGRAMS

SECTION THIRTEEN

EXAMPLES OF SIMONS' BASIC PROGRAMS

13.1 INTRODUCTION

Section Thirteen contains four programs to illustrate what may be achieved using

the SIMONS' BASIC cartridge. Simply type each program in and then RUN it.

13.2 PROGRAM 1-DRAWING A POLYHEDRON

The following program draws a multi-sided figure at an ever decreasing size.

i@ PR I NT "IT

20 CENTRE "SIMONS BflSIC POLYHEDRfl" : PRINT : PRINT

38 CENTRE "BV S BERTS" : PRINT'• PRINT

40 PRINT "NUMBER OF SIDES ! .;'• FETCH !\eP:i,2,N

30 EXEC SPIRRL

60 TEXT 10, 10. "PRESS fl KEV" , 1, i .. 8

70 GETRt-IFfl*=""THEN70

30 CSET0:QOTO10

996 :

997 :

998 =

9.99 '•

1000 PROC SPIRRL

1010 MP«100: HIRES 0.' I

1028 FORJ « 0 TO 2.5#ir STEPir/20

1030 FORK = 0+J TO 2#tr+J+. lSTEP2#tr/N

i040 x=INT <MP*i.3#SIN < K> +160>

i 030 V=INT <MP#COS<K > + i 0© >

1060 IFK>0+J THEN LINE XI /r i .. ><, V.■ 1

i 070 Xi «X:V1=V:NEXT

1080 iviP=i1P-2 M---IEXT

1090 END PROC

13-1

SIMONS' BASIC USER GUIDE

13.3 PROGRAM 2—WORDSEARCH

The program below allows you to enter up to 20 words of your own choice. It then
mixes up all the words within a grid. Your task is to pinpoint the coordinates on
the grid where each word begins. You are also given the option of printing out the
grid so that you can play the game away from the computer.

10 REM ***************************

20

30

40

30

60

70

80

REM

REM

REM

REM

REM

REM

*

*

*

*

*

WORBSERRCH *

■*

EV STEVE BERTS *

*

100 EXEC SETUP

118 EXEC GETWORBS

120 EXEC SCREEN

138 EXEC SORTLENGTHS

140 EXEC PLRCEWQRBS

150 EXbC PR I frTTGR IB

168 EXEC GflME

178 CflLL FINISH

180 :

181 :

3000 PROC GflME

3082 PRINT RT<28,1> -'PRINTOVNV

3004 GETQ*: I F&*O " V!" HNBQ*O'" Nl: THEN3004

3003 TI$=:000000:t :TU=0

3006 PRINT flT-r.28.. i> "

3008 IFQ#=:!N"THEN 3010

3003 HRIJCPV

3©i0 WF«0:REPEflT

30 x i Pn I NT flT ', 28.. 1 > - BROW ""; : FETCH "W > 3 * R0*

30i2 IF TI$:>t!00i000"THEN TU=i:END PROC

3020 PRINT flT<28,i> "COLUMN *"; : FETCH l#.Ui" , 3.. CO*

3030 PRINT RT<28,1> "

3043 RO«VflL< RO* >•CO=VRL CCO* > ■

3050 IF RO>0flNBRO<2iflNDCO>0flNUCO<21THEN3070

3060 PRINT RT<28.- i> 'ERROR" : PflUSE 5000: PRINT RT<28/1> " n:GOTO30il

3070 F=0 : FOR I = 1TONW : I FRO^PV < I > RNDC0«=PX CI > THENF= i : X1 = I

3080 NEXT:IFF=1THEN3100

3090 PRINT flT < 28, i > " WRONG " : PRUSE5000 : PR I NT RT >: 28. 1 > r " = GOTO3011

3100 FORI=0TOLEN<W*CX1)>-1

3110 PRINT flT<3+PX<Xi>+I*DXCTW<Xi>)^2+PV<Xl>+I#DY<TW<Xi>)> "SiS";
3115 PRINTMID*KW*<Xi>,I+l,i>

3120 NEXT:PRINT RT<25,2+X1> W#<X1>:WF«WF+i

3130 UNTIL WF=NW

13-2

EXAMPLES OF SIMONS' BASIC PROGRAMS

3i40 EHB PROC

3150 :

3168 :.

4000 PROC PRINTGRID

4010 PR I NT ":(": FORV»iTO20:FORX=lTO20

4020 IFR#<X,V) = 1I"THENR*<X,V>=MI

4040 PRINT RT<3+X,2+V> fi*<X,V>

4050 NEXT:NEXT*

4060 EHB PROC:

4070 :

4030 •

5000 PROC PLflCEWQRDS

58 i 0 PW=9:REPERT:PW«PW+1

3020

5030

5040 DR=INT <8#RND< i > +1>:TW<PW > =DR

5041 CX«PX<PW>+LEN<N*<?W>>#DX<DR):CV«PV<

5050 IFCX<i 0RCX>280RCV<1ORCV>20THEN5020

5051 REM IT FITS THE GRID SO CHECK LETTERS

5060 F«8 = F0RCK«8T0LEN<W*<PW>>-i

5070 Z1 $»M ID* < W* < PW > .. CK+1, 1 > : Z2$=R$ •:PX < Pi^4 > +CK#DX < DR > , FV < PW> +CK#DV < BR > >

5680

5090

5091 REN IT FITS SO SLOT IT IN

5100 FQRCK«0TQLEN<W*<Pw >>-1

5il0 Zi*=MID*<W*<FW>,CK+i.i>:R*

3120 PRINT R7<23,2+PuO W#<PW>:NEXT

313© UNTIl. P'vi-Kwi

5i40 END PROC

5156 :

5i60 •

6000 FROC S0RTLENGTK3

6010 PRINT RT<25, 1? "^SORTING1'

6020 F=0:FORI=lTONw-l

6030 IFLEN<W*<I)XLEN<W*

6040 NEXT:iFF=iTHEN6026

6050 PRINT RT<23,1> "fk

END PROC

6030 ■

7000 PROC SCREEN

7010 PRINT":3iIWW»WM; = COLOUR 5,0

7020 PRINT" /'; :FORI = 1TO20:PRINT"-";:NEXT

7030 PRINT'SWI"; :FORI«lTO20:PRINT|!l»iir; :NEXT

7040 PR I NT "''ill1; :FORI = 1TO20:PRINT"-«HII:; :NEXT

7050 PRINT" Hin:j; :FORI«lTO20:PRINT"linn; =NEXT

7060 FORI=iTO20:NU$=STR*a> ••NU$=MID$<NU$,2> • IFLEN<NU$)alTHENNU*=" "+NU*

7Z79S PRINT RT<l,I+2> NU*:PRINT RT<I+3,0> LEFT*<NU*>i>

7080 PRINT RT<I+3,i> RIGHT*<NU**1>-NEXT

7090 END PROC

7100 :

13-3

SIMONS' BASIC USER GUIDE

8080 PROC GETWORDS

8@ 12 COLOUR13,3= FRI NT'TaaMHOW MfiNV WORDS <MRX 23>K'f

8020 FETCH rK",3,NW*

8030 PR I NT • NW«VRL <. Nw* > : IFNW< i 0RNW>23THENS3 i 0

8040 PRINT":; NOW TVPE IN THE H0RD3W"

8050 PRINT" THEV MUST BE BETWEEN 5 RNIi i5 LETTERS«?T

80S© FOR1=1TON*

S070 PR I NT rift ",

8088 FETCH " S"1, i 3, W$ <. I >

8090 IFLEN < W* < : > > <5THENPR INTCHR* < i 3 > " ."T"/" * 30T0S^73

8x00 PRINT": NEXT

8ii0 ENU PROC

S998 :

S99S- :

9000 PSCC SETUP

9010 COLOUR 3, S- PR I NT '^aJSETT ING UP.. PLERSE WRIT

9020 DIMR*<23,2S::;,W^<29>,PX<23>,PV<£0::^DX<:3>,riV<8>,TW<20>

9030 FORI = iTO£# : F0RJ=iT02@ • R^< I, J>~"': ■ NEXT ■ NEXT

9040 RESTORE : FO?:: I = i TOS ' RERI-IJH < I > • DV < i' > "- NEXT

9038 rjc!TR e,-i,:.-:,i,3,5,i,3,i,-i,i,-i,8,-i,-i

9660 F0RI=iT028:W*<I>«"":PX<I)«0:PV<I>=3'NEXT

9070 END PROC

9998 :

9939 ■

i@@00 PROC FINISH

i00i0 IFTU=iTHEr-: 1.^x06

10029 PRINT RT<28.-1> rRORIN<V/N>1"

10030 GET R$: I FR*O " V ' RN3R*<> " N " THEN i 3033

10640 IF R*s"VTHENCLR:RUN

10050 PRINT'^^ENI:

10100 FORXi=iTONW

10110 FORI«0TOLEN<W*<Xl>>-i

i 0120 PR I NT RT < 3+PX < X1 > +1 #BX < TW < X1 > > .• 2+FV < X1 > 4--ifcDV < TW', X .1 > :• >
10130 PRINTMIIif<W$<Xi>, 1 + 1,1 >

10140 NEXT"PRINT RT<25,2+Xi> W$<X1>:NEXT

10150 GOTOi3028

13-4

EXAMPLES OF SIMONS' BASIC PROGRAMS

13.4 PROGRAM 3-LETTER SLIDER

This program mixes the letters A thru O within a 4 by 4 square. There is one vacant

space in the square. You must rearrange the letters into alphabetical order by sliding

letters around the square.

1 REM ***** LETTER SLIDER OflME *****

2 REM ***** *****

3 REM ***** BV STEVE BERTS *****

4 :

5 EXEC INSTRUCTIONS

i0 DIMR$«;4,4>,B4K4,4>:MN=i

28 S$=':S-fi [QiiBi t

3@ C*

40 L$

50 PT

60 Ii

l'fl£CDEFGHIJKLMNO "

i:FORY«i T04:FORX-1T04

:PT=PT+1

iT04

>:PT»PT+i

70

100 NEXT-NEXT

110 fl$<4,4> = :1

120 PT=1:FGRV=1TO4•F0RX

130 B*<X,V>«MID*<L*,PT,

i 40 NEXT:NEXT:FX=4:FV=4

i 50 PR I NT M 3'1 : COLOURS» @

160 PRINT RTa2,5> "Mr t l! J

i 70 FOR I = 1 TO 12 : PR I NT " 'mi I " ; : NEXT : PR I NTI? MRH ill"

iSS F0RI = iT0i2:pRINT"-iSiil!; : NEXT: PRINT" ^BH'';

190 FOR I = i TO i 2 : PR I NT " I ni" J '• NEXT

200 EXEC LETTERS

205 EXEC SHUFFLE

206 REPEflT

210 GETR$: IFR*<IIfl1|0RR*>ll0l"THEN2i@

215 PRINT flT(12.3) "

228 EXEC CHECKIT

238 PRINT flT<12,3> MS*

240 EXEC FINISHED

250 UNTIL WI*i

260 RUN 10

998 =

999 ■

1000 PROC LETTERS

1010 F0RV«iT04:FGRX«iT04

i020 PRINT RT<3*X+10.- 3*V+3> fl*<X.. V>

1030 NEXT:NEXT

1040 END PROC

1050 :

1060 :

2000 PROC SHUFFLE

2© 10 RESTORE = FOR 1 = 1 T04 : RERDXD < I .">, VD < I) : NEXT

2015 PRINT RT<12,3> "^SHUFFLING l!

2020 DRTfl -1,0,0,1,1,0,0,-1

2025 1=0:REPEflT:1=1+1

2030 D=I

13-5

SIMONS' BASIC USER GUIDE

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

3000

3003

3010

3020

3030

3040

3050

3860

3070

30S0

309©

3100

3110

3120

4000

4010

4028

403©

4040

4050

4060

4070

5000

5005

5010

5820

5030

5040

5050

5060

5070

5080

5090

5100

5110

5120,

5130

5140

5150

5160

1FPX+XB (. B >< 1GRPX+XB < B > >40RPV+VB < I) > < 1 ORPV+VU < D > >4THEN2030

•Yi«PV+VB:IFX2=X1RNBV2«Y1THEN2030

X2=FX:V2*PV:PX«X1:PY=Y1

EXEC LETTERS

UNTIL I>100

PRINT RT<12,3:> "

END PROC

PROC CHECKIT

PR I NT flT •:: 1,1) M aMOVE NUMBER " MN

FL-0:FORI-1TO4

IFPX+XB<. I ><iORPX+XB< I >>40RFV+VB< I)< 1 ORPV+V3< I >>4THEN3040

IFB*<PX+XB< I > .- PV+VB< I > >=R#THENFL=i : TE=I

NEXT:iFFL«0THENMS$«"ILLEGflL MOVE i!!":GOTO31@0

X1 sPX+XB < TE > • V1 =PV-rVD <.. TE >

vi y

T#«B*<Xi,Vi >

EXEC LETTERS

nS*='" MOVE OK

END PROC

vi>=

Vi > PV>:

: PX=X 1 : PV=V1 : MN=MN+1

PROC FINISHED

F1*«"":FORV«1T04:FORX*1T04

FI$=FI$+£$ <X,V> ■NEXT•NEXT

IFFI*«L*THEN4050

ENB PROC

PRINT RTa2,3;' "R WINNER i ! ! >: :PflUSE10: WI«1 • GOTO4040

PROC INSTRUCTIONS

COLOUR10,0

PRINTnfcTkIi0 YOU REQUIRE INSTRUCTIONS <Y/W?lf

GETfl*: I Ffi#<> " V " flNBfl*O'" N " THEN5020

IF fl$«="Ni:THEN ENB PROC

PRINT"^Ki THE OBJECT OF THE OflME IS TO GET

PRINT11® flLL OF THE LETTERS IN THE CORRECT"

PRINT"» ORDER "

PRINT'TfW fl B C H l!

PRINT"» E F G H lf

PRINT"W I J K L "

PRINTM» M N 0 » l!
PRINT"MWK TO MOVE R LETTER INTO THE VFJCRNT"
PRINT"W SPRCE, JUST TYPE THRT LETTER ON"

PRINT"M THE KEVBOflRB-"
PRINT"S3sa| TRY IT NOW"

GET R$:IFfl*=""THEN5150

END PRQ.D.

13-6

EXAMPLES OF SIMONS' BASIC PROGRAMS

13.4 PROGRAM 4-A VINTAGE CAR

This program draws a vintage car on a multi colour graphics screen.

i COLOURi6.5

i© HIRES 0', i^MULTl 9,2, i

20 CIRCLE 30,150,10,11,1

30 CIRCLE 30,i50,i3,15,1

31 PRINT 28,150,2

32 PflINT 19,150,1

35 flRC 30,150,278,38,10,17,21,3

36 LINE 15,150,17,130,3

37 LINE 43,150,45,150,3

38 PflINT 16,148,3

40 BLOCK 3,105,13,150,1

41 LINE 3,105,6,105,0

42 LINE 3,i05,3,i07,0:LINE i0, i05, i3,105,0 = LINEiS,105,13,107,0

43 LINE 3,150,6,150,0

44 LINE 3,148,3,150,0

45 LINE 3,115,0,12o,i

46 LINE 3,140,0,125,1

50 LINE 16,139,16,105,1

60 LINE 16,105,30,105,1

70 LINE 30,105,30,129,1

71 PflINT 18,107,1

80 LINE 30,105,76,105,2

90 LINE 70,105,70,145,2

91 LINE 70,145,47,145,2

92 PflINT 33,107,2

93 LINE 43,152,56,152,1

94 BLOCK 56,152,74,154,i

95 LINE 74,152,80,152,1

96 LINE 80,152,80,144,1

SB BLOCK 72,105,94,145,2-PLOT 7i,105,1

99 PflINT 75,151,1

100 BLOCK 82,146,i©8,i53,1

101 BLOCK 110,144,120,152,1

102 BLOCK 95,105,108,146,1

103 BLOCK 108,105,1i4,i4i,i

i©5 BLOCK 31,70,36,104,1

106 LINE 31,70,95,70,1

13-7

SIMONS' BASIC USER GUIDE

107 BLOCK 70.70.72.104.2

108 BLOCK 31.67.95.63.2

109 LINE 69.71.69.104.1

110 LINE 72.71.72.104.1

112 LINE 95.70.95.104.1

114 BLOCK 35.102.69.104.1

115 BLOCK 73.102.95.104.1

116 LINE 88.102.91.96.1

120 LINE31.66.76.66.i

121 LINE3i.65,46.65.1

122 LINES!..64.36.64. i

132 LINE97..70..99.73.1

133 LINE97.67.99.73.1

134 LiNE97.68.99.73,1

135 LI'NE97,69,99,73,i

226 CIRCLE 140.150.10.11.i
230 CIRCLE i4©.. 150.. i3,15,1

231 PRINT 138.150,2

232 PRINT 129.150,1

235 RRC 140,150,270,3©,i@,17,£i,3

236 LINE 125,150,127,150,3

237 LINE 153,150,155,150,3

238 PRINT 126,148,3

380 LINE 128, 152, 114, .152, i

310 LINE 114,144,1^4,144,i

320 PRINT 127,151,1

330 LINE 125,i4i,116,141, i

34@ LINE i16,141,il6,115,1

14i LINE 116,115,136,115,1

342 LINE i36,U5, 136, 130, 1

343 PRINT 133,127,i

35© BLOCK 116,105,136,112.1

36® LINE 137.. 105.141.105.2

370 LINE 141,105,141,129,2

380 LINE 137,105,i37,115,2

390 PRINT 139,107,2

391 PLOT 141,i 05,1:FORT=128T0120STEP-2

392 LINE T,118.T.127.3:NEXT

400 LOW COL 0,2,6+8 :FORT=0TO159:IFTEST < T, 98)=©THENPLOT T,98.3

410 NEXT

420 FORT=0TO62STEP8•LINE 0.T.160.T,3:NEXT:BLOCK @,8.168,62,3

430 PRINT 2,64.3

500 FORT=0TO159STEP5:IFTEST<T,96>«0THENPaiNTT,96,3

510 NEXT

600 LINE 78,107.76.107.1:PLOT 76,188,i

610 LOW COL 7,2,6+8

620 RRC 0,0,90,180,10,20,20,1

630 PRINT 0,0.1

700 FORT=90TO180STEP10:RNGL 0,0.T.33.33.1:NEXT

999 PRUSE 4: NRM: MEM: COLOUR 0. 0 • PR I NT " Ilstttt&lWWBSSilSEE. ■ ! ! "

13-8

ERROR MESSAGES

APPENDIX A

ERROR MESSAGES

In the course of using SIMONS' BASIC, an error message may appear. These

messages are unique to the SIMONS' BASIC cartridge. Each error message, its

meaning and probable cause is given in this appendix.

? BAD MODE

This occurs when any parameter in a command is outside the range allowed.

? NOT HEX CHARACTER

An attempt has been made to convert a non-hexadecimal number into its decimal

equivalent.

? NOT BINARY CHARACTER

An attempt has been made to convert a non-binary number into its decimal

equivalent.

? UNTIL WITHOUT REPEAT

The UNTIL command has been used without any previously declared REPEAT.

? END LOOP WITHOUT LOOP

The END LOOP command has been used without any previously declared LOOP.

? END PROC WITHOUT EXEC

The END PROC command has been used without any procedure having been

executed.

? PllOC NOT FOUND

An attempt has been made to select a procedure that does not exist.

? NOT ENOUGH LINES

Not enough lines have been set up for a MOB design grid.

? BAD CHAR FOR A MOB IN LINE n

A parameter within the MOB design stage is outside the range defined. The line

number of the error is always that where the DESIGN command was executed

although this does hot necessarily mean that the fault is in that line.

? STACK TOO LARGE

This occurs if you have nested more than nine procedures or program loops.

A-1

GLOSSARY

GLOSSARY

A list of terms used in this manual.

BIT

Abbreviation for 'Binary Digit'. The smallest unit of computer memory.

BRANCH

The transfer of program execution from one line to another.

COORDINATE

The distance of a point on a grid from the x or y axes.

DATA

Information held in the memory of the computer or on a storage device.

DEBUGGING

Correcting programming mistakes.

FLOATING POINT

A system that holds numbers in exponential form.

INTEGER

A whole number.

KERNAL

The operating system of the COMMODORE 64.

LIBRARY

A stock of programs and/or program sub-routines.

MOB

Moveable object block. A term used to describe a sprite.

OCTAVE

A group of eight musical notes.

ORIGIN

The point on the screen from which a shape is drawn.

PERIPHERAL

An external device which is connected to the computer.

PIXEL

The smallest addressable location on the screen.

PROGRAM CRASH

An unwanted halt in program execution.

G-1

SIMONS' BASIC USER GUIDE

REGISTER

A reserved area within the computer's memory.

SECONDARY ADDRESS

A program/file storage instruction.

SCROLLING

Moving across the screen in a vertical or horizontal direction.

SPRITE

A programmable object.

START ADDRESS

The point from which a block of data is stored within the computer's memory.

TIME CYCLE

The duration of a frequency component measured in thousandths of a second.

G-2

INDEX

INDEX

Page

ANGL 6-1,6-12

ARC .6-1,6-11

Assigning commands to the function keys 2-2

AT 3-1,3-6

AUTO 2-1,2-3
Automatic program line numbering 2-1,2-3

BCKGNDS 7-1,7-2

BFLASH 7-1,7-4

BLOCK 6-1,6-14

Block, Data - 8-2

CALL 9-1,9-5,9-6

Centering text 3-1,3-5

CENTRE 3-1,3-5

CGOTO 2-1,2-6
Changing a character colour ' 7-1,7-6

Changing plotting colours 6-1,6-6

CHAR 6-1,6-18

CHECK 8-1,8-9

CIRCLE 6-1,6-10

Clearing a MOB 8-9

CMOB 8-1,8-5

COLD 2-1,2-15

Collision detection, MOB 8-1,8-8,8-9

COLOUR 6-1,6-3

Colour, Plotting 6-1,6-3

Condition testing 9-1

Conventions 1-2,1-6
Converting from hexadecimal into decimal 4-1,4-3

Converting from binary into decimal 4-1,4-3

Coordinates 6-2

COPY 7-1,7-11
CSET 6-1,6-17

1-1

SIMONS' BASIC USER GUIDE

Data block 8-2

Debugging programs 2-12

Defining the 'shape' of a sound 11-1

DELAY 2-1,2-10

DESIGN 8-1,8-2,8-10,8-12

Designing a shape 6-1,6-14

DETECT 8-1,8-8

Dl R 5-2

DISABLE 3-1,3-11

DISAPA 2-1,2-16

DISK 5-1

Diskette directory

all 5-1,5-2

selected 5-1,5-2

DISPLAY 2-1,2-3

Displaying non-array variables 2-1,2-14

DIV 4-1,4-2

DRAW 6-1,6-14

Drawing a fully shaded block of colour 6-1,6-14

Drawing a Polyhedron 13-1

Drawing rectangles 6-1,6-5

Duplicating a section of the screen 7-1,7-7

DUMP 2-1,2-14

DUP 3-1,3-5

Duplicating character strings 3-1,3-5

END PROC 9-6

ENVELOPE 11-1,11-4,11-8

Envelope Generator 11-6

Error trapping 10-1

EXEC 9-1,9-5,9-7

FCHR 7-1,7-5

FCOL 7-1,7-6

FILL 7-1,7-6

Filling an enclosed area with colour 6-1,6-13

FLASH 7-1,7-3

Flashing the screen border colour 7-1,7-4

Flashing a screen colour 7-1,7-3

FRAC 4-1,4-2

Formatting a diskette 5-1

GLOBAL 9-8

Global variables 9-8

Hj COL 6-1,6-7

Hiding program code 2-15,2-16

High-resolution graphics 6-1,6-4

HIRES 6-1,6-4

HRDCPY 7-1,7-12

INDEX

IF...THEN...ELSE 9-1

Initializing a MOB 8-6

INKEY 3-1,3-9

INSERT 3-1,3-2

Inserting the SIMONS' BASIC cartridge 1-4

INST 3-1,3-3

Integer division 4-1

INV 7-1,7-8

Inversing screen data 7-1,7-8

JOY 12-1,12-5

Joystick 12-1,12-5

KEY 2-1,2-2

Labelling program routines 9-1

Letter Slider program .. 13-5

Lightpen 12-1

LINE 6-10

Listing function key commands 2-1,2-3

LOCAL .9-8

Local variables 9-8

Loading SIMONS' BASIC from diskette 1-4

LOOP...EXIT IF...END LOOP 9-1,9-4

LOW COL 6-1,6-6

MEM 8-10

MERGE 2-1,2-7

MMOB 8-1,8-7

MOB collision detection 8-1,8-8,8-9

MOB OFF 8-9

MOB priority 8-6

MOB SET 8-1,8-6

MOD 4-1,4-2

MOVE 7-1,7-7

Moving a MOB 8-1,8-7,8-8

MULTI 6-1,6-5

Multi-colour graphics 6-1,6-5

MUSIC 11-4,11-9

Music

flats 11-9

rests 11-9

sharps 11-9

NO ERROR 10-1,10-4

NRM 6-6

Numeric data, Formatting 3-1,3-7

I-3

SIMONS' BASIC USER GUIDE

OFF .7-1,7-4

OLD 2-1,2-18

ON ERROR 10-1

ON KEY 3-1,3-10

OPTION 2-1,2-9

OUT 10-1,10r3

Paddles 12-1,12-3

PAGE 2-1,2-8

PAINT 6-1,6-12

PAUSE 2-1,2-5

PENX 12-1

PENY 12-1,12-2

PLACE 3-1,3-4

PLAY 11-4,11-11

Playing composed music .11-11

PLOT 6-1,6-8

Plot colours 6-1,6-2

Plot types 6-3

Plotting

an arc 6-1,6-11

circular shapes 6-1,6-10

the radius of a circle 6-1,6-12

single dots 6-1,6-8

POT 12-1,12-3

Printing

characters on a graphics screen 6-1,6-18

character strings on a graphics screen 6-1,6-19

screen data 7-1,7-11

PROC 9-1,9-5

Procedures 9-5

Program loops 9-1

Programming the function keys 2-2

Programming sound ...". 11-4
Pulse/Square waveform 11-3

RCOMP 9-1,9-3

Read functions 12-1

REC 6-1,6-5

Recalling

stored screen data 7-1,7-10,7-11

a NEWed program 2-1,2-18

Redisplaying the last graphics screen 6-1,6-17

RENUMBER 2-1,2-4

REPEAT UNTIL 9-1,9-2

RESET 2-1,2-6

RESUME 3-1,3-11

RETRACE 2-1,2-13

Ring Modulation 11-7

RLOCMOB 8-1,8-8

ROT 6-1,6-4

I-4

INDEX

Sawtooth waveform 11-3
SCRLD , 7-1,7-10,7-11
Scratching a file 5-2
Scrolling an area of the screen 7-1,7-9
SCRSV 7-1,7-10
SECURE 2-1,2-15,2-17
Selecting a character set 6-1,6-17

Selecting music volume 11-4,11-5

Setting up a MOB design grid 8-2
Setting up a character design grid 8-12

Static frequency 11-6
Storing screen data 7-1,7-10
Synchronization 11-6

TEST 6-1,6-9
Test bit 11-7
Testing for a function key : 3-9
TEXT 6-1,6-19
TRACE 2-1,2-12
Triangular waveform 11-2,11-7

USE 3-1,3-7
User-defined characters 8-1,8-10

Variable frequency 11-6

Vintage car program 13-8

VOL 11-4,11-5

WAVE 11-4,11-5

Waveform

Noise 11-4X-XX
Pulse/Square 11-3

Sawtooth 11-3

Triangle 11-2

Wordsearch program 13-2

I-5

s commodore

COMPUTER

	2009_09_28_19_44_01.pdf
	2009_09_28_20_01_22.pdf
	2009_09_28_20_04_52.pdf

