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Introduction

If your Apple doesn’t understand you, maybe it’s because you don’t 
speak its language. Now we’re going to break that language barrier.

This book will teach you how to write programs in assembly 
language—the fastest-running and most memory-efficient of all pro 
gramming languages. It will give you a working knowledge of machine 
language, your computer’s native tongue. It will enable you to create 
programs that would be impossible to write in BASIC or other less 
advanced languages. It also will prove to you that programming in 
assembly language is not nearly as difficult as you may think.

Many books have been written about assembly language, but this is 
the first assembly-language book to deal specifically with the Apple lie 
and the Apple He, the two newest computers in the Apple II line. It is 
also the first book that explains how to write assembly-language pro 
grams using ProDOS, the Apple IIc/Apple lie disk operating system 
that has now replaced its predecessor, DOS 3.3. The book also covers the 
advanced features of the 65C02 microprocessor, the new chip built into 
the Apple lie that can also be installed in the Apple He.

In addition, this is the first assembly-language book that explains 
how to use three of the most popular assemblers for the Apple lie and 
the Apple He: the ProDOS Assembler Tools package from Apple, the 
Merlin Pro assembler-editor system from Roger Wagner Publishing, 
Inc., and the ORCA/M assembler from The Byte Works of Albu 
querque, New Mexico.

ix
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The Apple lie and the Apple lie offer a number of brand-new fea 
tures that are of great importance to Apple programmers and potential 
Apple programmers. These features include an 80-column text display, 
double high-resolution graphics, and 64K of extra memory (all built into 
the Apple lie and optional on the Apple lie). Both the lie  and the He 
have expanded keyboards, including new function keys (OPEN APPLE 
and CLOSED APPLE keys) and new special-character keys. In addition, 
the Apple lie  has a built-in set of special characters designed for use 
with a mouse, and the same special characters are available on any 
Apple He equipped with plug-in mouse cards.

Both the Apple lie and He are now being shipped with ProDOS, the 
new Apple II disk operating system that succeeds DOS 3.3. ProDOS is 
not just another revision of DOS 3.3; it is a completely new disk operat 
ing system that was designed specifically for the Apple lie, the Apple 
lie, and future computers in the Apple II line. ProDOS handles disk 
files and disk drives very differently from the way they were handled 
under DOS 3.3.

A point-by-point comparison between DOS 3.3 and ProDOS is 
beyond the scope of this introduction. However, please note that there 
are so many differences between ProDOS and the systems it replaces that 
most assembly-language programs written under earlier disk operating 
systems will not work in a ProDOS environment. This is the first book 
about writing assembly-language programs for the new ProDOS- 
equipped Apple lie and Apple lie computers.

Both the Apple lie and the newest versions of the Apple He are now 
equipped with an advanced 8-bit microprocessor called the 65C02. The 
65C02, a new member of the 6502 series of microprocessors, is designed 
to be programmed in standard 6502 assembly language. However, the 
65C02 contains a number of new features. Along with the 56 instruc 
tions used in conventional 6502 assembly language, the 65C02 is 
equipped with several additional instructions. It also recognizes a 
number of addressing modes that were not available in earlier 6502- 
series microprocessors.

If you know BASIC—even a little BASIC—you can learn to pro 
gram in assembly language. Once you know assembly language, you’ll 
be able to

• Write programs that will run 10 to 1000 times faster than pro 
grams written in BASIC.

• Use up to 16 colors simultaneously in any Apple lie or Apple He 
graphics mode — including double high-resolution graphics.
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• Custom design your own screen displays, mixing text and graph 
ics in any way you like.

• Create your own customized character sets.

Knowing assembly language can also enable you to create music and 
sound effects for Apple IIc/Apple He programs, write programs that 
will boot from a disk and run automatically when you turn your com 
puter on, and intermix BASIC and assembly language in the same pro 
gram, combining the simplicity of BASIC with the speed and versatility 
of assembly language.

In other words, once you learn how to program in assembly lan 
guage, you will be able to start writing programs using the same tech 
niques that professional programmers use. Many of those techniques 
are impossible without a knowledge of assembly language.

Finally, as you learn assembly language, you will be learning what 
makes computers tick. That will make you a better programmer in any 
language.

While teaching you assembly language, Apple Roots will provide you 
with a comprehensive collection of assembly-language routines that can 
be typed and assembled and then used in user-written assembly- 
language programs. It also contains a library of interactive tutorial 
programs that are especially designed to take the drudgery out of learn 
ing assembly language.

Chapter 1 is an easy-to-understand introduction to assembly lan 
guage. The main feature of Chapter 2 is a clear explanation of binary 
numbers. In addition, Chapter 2 contains a series of four type-and-run 
BASIC programs that can convert numbers from one base to another.

In Chapter 3 you will learn about the 6502B/65C02 chip used in the 
Apple lie  and the Apple lie. In Chapter 4, you’ll start actually writing 
assembly-language programs. The rest of the book presents a number of 
advanced programming lessons and type-and-run assembly-language 
programs.

The first thing you need in order to use this book is an Apple lie or 
Apple He computer equipped with a TV set or a computer monitor 
(preferably a color model) and at least one disk drive. A line printer is 
highly recommended but not essential. A game controller, a mouse, or 
both will also come in handy. So will a second disk drive.

The assembly-language programs in this book were written using 
three assemblers: the Apple ProDOS assembler, the Merlin Pro, and 
the ORCA/M. If you don’t own one of those packages, it would be a good 
idea to buy one before starting this book. All of the programs in the
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book were also written under ProDOS. If your Apple He was purchased 
before ProDOS was introduced, you will need to buy a ProDOS package 
from your Apple dealer and learn to use it.

One prerequisite for using the assembly-language lessons in this 
book is a basic understanding of ProDOS, which you can gain by read 
ing a ProDOS manual. You should also have at least a fundamental 
knowledge of Applesoft BASIC or some other high-level programming 
language.

There are at least two other books that you should have before you 
start studying assembly language. The first of these books is the user’s 
manual that came with your computer. The second is a reference man 
ual for your computer. (Apple publishes separate reference manuals for 
the Apple lie  and the Apple He.) Other useful books include Program 
ming the 6502 by Rodnay Zaks, Assembly Lines: The Book by Roger 
Wagner, and 6502 Assembly Language Programming by Lance A. Lev- 
enthal. These books, and others that may come in handy while you’re 
studying assembly language, are listed in the Bibliography.



1
Breaking the 
Assembly Language 
Barrier

If you want to learn assembly language, you’ve opened the right book. 
With this volume and an Apple lie  or Apple lie  computer, you can start 
programming right now in machine language. Then we’ll see how 
machine language relates to assembly language. Turn on your comput 
er and type HI.TEST.BAS, the BASIC program listed in Program 1-1. 
Then run the program, and you’ll immediately see how it got its name.

Program 1-1 
HI.TEST.BAS
The HI. TEST Program (BASIC Version)
10 REM *** H I . T E S T . B A S  ***
20 DATA 1 6 9 , 2 0 0 , 3 2 , 2 3 7 , 2 5 3 , 1 6 9 , 2 0 1 , 3 2 , 2 3 7 , 2 5 3 , 9 6  
30 FOR L = 32768 TO 32778:  READ X: POKE L , X :  NEXT L 
40 CALL 32768

1
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Machine Language and Assembly Language

As you can see, Program 1-1 is written in BASIC. However, when you 
type the program and execute it, your computer will run a machine- 
language program.

Please note that this is machine language, not assembly language. As 
you’ll see later in this chapter, machine language and assembly lan 
guage are very closely related, but they are not exactly the same. 
Machine language is made up of numbers—nothing but numbers. Since 
“number-crunching” is what computers do best, machine language is 
ideal for a computer. In fact, machine language is the only language 
that a computer actually understands. No matter what language a pro 
gram is originally written in, it must be converted into machine lan 
guage before a computer can process it.

The main reason that assembly language is different from machine 
language is that it was designed for humans, not for machines. From 
the standpoint of both structure and vocabulary, assembly language is 
very similar to machine language. In fact, assembly language is not 
actually a programming language at all, but merely a notation system 
designed to make it easier to write programs in machine language.

Despite its structural similarity to machine language, however, a 
program written in assembly language looks quite different from a 
program written in machine language. Whereas machine language 
consists solely of numbers, assembly language uses three-letter abbrevi 
ations called mnemonics. It’s therefore easier to write programs in 
assembly language than in machine language.

In one respect, though, assembly language is just like any other pro 
gramming language: before an assembly-language program can be 
executed by a computer, it must be converted into machine language. 
For this reason, programs written in assembly language are often 
called source-code programs. And machine-language programs gener 
ated from source-code programs are often referred to as object-code 
programs.

Source-code programs are usually written with the aid of a special 
kind of software package called an assembler-editor, or simply an 
assembler. An assembler-editor package usually includes at least two 
kinds of utility programs: an assembly-language editor, which enables 
the user to write programs in assembly language, and an assembler, 
which can convert (or assemble) assembly-language programs into 
machine language.
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Assembly language and machine language will be discussed in more 
detail later in this chapter.

How the Hl.TEST.BAS Program Works

Now we’re ready to take a closer look at the Hl.TEST.BAS program 
shown in Program 1-1. The Hl.TEST.BAS program begins with a title 
line. The next line in the program, line 20, is a line of data that equates 
to a series of machine-language instructions. Line 30 contains a loop 
that pokes the machine-language data in line 20 into a block of RAM 
(which we will define shortly) that extends from memory address 32768 
to memory address 32778, or $8000 to $800A in hexadecimal notation. 
(A memory address—sometimes referred to as a memory location or 
memory register — is nothing but a number that can be used to pinpoint 
the location of any piece of data, or byte, stored in a computer’s memory. 
There are 65,535 memory addresses in an off-the-rack Apple He, and 
there are 131,070 memory addresses in an Apple lie or an Apple He 
equipped with an expanded 80-column card. More information on 
memory addresses will be provided later in this book, primarily in 
Chapter 11, which will focus specifically on the memory structure of the 
Apple lie and the Apple He.) Finally, in line 40, there’s a CALL instruc 
tion that executes the machine-language program that has just been 
loaded into memory.

To understand what your computer does when it receives the CALL 
instruction in line 40, it will help to have a basic understanding of the 
architecture of microcomputers and how your Apple processes a 
machine-language program.

Inside a Microcomputer

Every microcomputer can be divided into three parts:

• A central processing unit (CPU). A central processing unit, as its 
name implies, is the central component in a computer system, the 
component in which all computing functions take place. All of the 
functions of a central processing unit are contained in a micro 
processor unit (or MPU). Your Apple computer’s MPU—as well as 
its CPU —is a large-scaled, integrated circuit (LSI) (a 6502B chip if 
you own an Apple He, and a 65C02 chip if you own an Apple lie).



• A memory. Memory can be further divided into RAM  (random- 
access memory) and ROM (read-only memory). These two types of 
memory are discussed in the following section.

• Some input/output (I/O) devices. Your computer’s main input 
device is its keyboard. Its main output device is its video monitor. 
Other devices that your Apple can be connected to—or, in comput 
er jargon, can be interfaced w ith—include telephone modems, 
graphics tablets, printers, and disk drives.

Figure 1-1 is a block diagram that illustrates the architecture of the 
Apple lie  and the Apple He. In this chapter we will not concern our 
selves with the I/O. However, keyboard and screen I/O will be covered 
later, beginning with Chapter 8.

Your Apple’s Memory

Figure 1-1 shows the two kinds of memory a computer has: random- 
access memory (RAM) and read-only memory (ROM). The important 
difference between them is that RAM can be modified, while ROM can 
not. ROM is permanently etched into a bank of memory chips inside 
your Apple, so it’s always there, whether the power to your computer is 
off or on. Every time you turn off your Apple, everything that you’ve

4 Apple Roots

Figure 1-1. Block diagram  of a microcomputer
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stored in RAM immediately disappears. But everything in ROM 
remains and will spring back into action when you turn your computer 
on again.

The largest block of ROM in your Apple extends from memory 
address 53248 ($D000 in hexadecimal notation) to memory address 
65535 ($FFFF in hexadecimal notation). A number of important pro 
grams are permanently situated in this block of ROM, including your 
computer’s BASIC interpreter and its built-in machine-language 
monitor.

Machine-Language Programs in RAM In introductory books about 
computers, a bank of RAM is often compared to a bank of mailboxes 
built into a wall in a postal station. Each memory address in a RAM 
bank, like each mailbox in a tier of post office boxes, has an identifying 
number. And a computer program (like an ideal employee in a post 
office) can get to any of the memory addresses in a bank of RAM with 
equal ease. In other words, information stored in RAM can be retrieved 
at random. That’s why RAM is called random-access memory.

What happens when your computer processes a machine-language 
program? Every machine-language program is made up of a series of 
numbers. When a machine-language program is loaded into a comput 
er’s memory, the numbers that make up the program are stored in a 
series of addresses in RAM. The starting address of the memory block 
in which the program is stored (known as the program’s origin address) 
is usually stored in a special, predetermined memory location. Thus, 
when it is time to run the program, its starting address can be easily 
located.

Once a machine-language program has been loaded into RAM and 
its origin address has been stored in an accessible memory location, the 
program can be executed in several ways. For example, a machine- 
language program stored in an Apple II computer can be executed 
using a CALL instruction, a USR(X) instruction, a ProDOS dash (—) 
command, or a ProDOS BRUN command. These and other methods for 
running machine-language programs will be explained in Chapter 5.

Processing Executable Code When your computer goes to a memory 
location that has been identified as the starting address of a program, it 
should find the beginning of a block of executable code—that is, the 
beginning of a machine-language program. If it finds a program, it will 
carry out the first instruction in that program and then move on to the 
next consecutive address in its memory.

Your computer will keep repeating this process until it either
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reaches the end of a program or encounters an instruction telling it to 
jump to another address.

Your Apple’s CPU

In a microcomputer, a central processing unit (CPU) usually consists of 
a single microprocessor chip. Apple lie  and Apple He computers use 
either the 6502B chip or the 65C02.

The 6502B chip was designed for the Apple lie and was originally 
built into all Apple lie ’s. The 65C02 was designed for the Apple lie and 
is the only microprocessor that has ever been used in the lie. The 65C02 
is now being built into all new Apple He’s and is available as an 
optional, user-installable upgrade to older lie ’s.

Both the 6502B chip and the 65C02 chip are improved and updated 
versions of an earlier chip, the 6502, developed by MOS Technology, Inc. 
The 6502 and chips based on it are used not only in Apple computers, 
but also in personal computers manufactured by Atari, Commodore, 
and several other companies.

The 6502B chip used in the Apple He is really just a faster-running 
version of the original 6502. But the 65C02 that’s built into the Apple 
lie  and newer Apple He’s has some extra capabilities that the old 6502 
didn’t have. In addition to being faster than the 6502, it uses less power, 
and it recognizes a number of instructions that the 6502 didn’t under 
stand. The 65C02 also has some additional addressing modes, a feature 
that will be explained in a later chapter.

For most purposes, however, the similarities among the 6502B, the 
65C02, and the other chips in the 6502 family are more important than 
their differences. Although the model numbers of 6502-series chips may 
sometimes get confusing, all of the chips in the 6502 family are 
designed to be programmed using the same assembly-language dialect 
generically known as 6502 assembly language. Once you learn how to 
write programs in 6502/65C02 assembly language, you’ll be able to pro 
gram many different kinds of personal computers in addition to your 
Apple, including many manufactured by Atari and Commodore.

Even more important, the principles used in Apple assembly- 
language programming are universal: they’re the same principles that 
all assembly-language programmers use. no matter what kinds of com 
puters they’re writing programs for. Once you learn 6502/65C02 assem 
bly language, therefore, you can easily learn to program other kinds of 
chips, such as the Z80 chip used in Radio Shack and CP/M-based com 
puters, and even the powerful newer chips used in 16-bit and 32-bit 
microcomputers such as the Apple Macintosh and the IBM PC.
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Compilers, Interpreters, and Assemblers

Now that you have a basic understanding of what your Apple is made of 
and how it works, we’re ready to take a closer look at the relationship 
among the three categories of computer languages: machine language, 
assembly language, and high-level languages.

High-level languages did not get their name because they’re particu 
larly esoteric or profound. They’re called high-level languages merely 
because they’re several levels removed from machine language, your 
computer’s native tongue.

There are hundreds, perhaps thousands, of high-level languages, but 
most of them have at least one feature in common: they all bear at least 
a passing resemblance to English. BASIC, for example, is made up 
almost completely of instructions—such as PRINT, LIST, LOAD, SAVE, 
GOTO, and RETURN—that are derived from English words. Most 
other high-level languages also have instruction sets based largely upon 
plain-language words and phrases.

But computers can’t understand a word of English; the only lan 
guage they can understand is machine language, which is composed 
only of numbers. For this reason, a program written in any other lan 
guage has to be translated into machine language before a computer 
can understand it. As mentioned previously, people who write programs 
in assembly language usually use special software products called 
assemblers to convert assembly language programs to machine lan 
guage. Similarly, people who program in high-level languages use spe 
cial kinds of software packages called interpreters and compilers to help 
them translate the programs they have written into machine language.

Interpreters and Compilers

The most important difference between interpreters and compilers is 
that an interpreter is designed to convert a program into machine lan 
guage every time the program is run, while a compiler is designed to 
convert a program into machine language only once. When you write a 
program using an interpreter, you can store the program on a disk in 
its original form; your interpreter will automatically convert it into 
machine code every time you run it. But when a program is written 
using a compiler, it has to be converted into machine language and then 
stored on a disk as a machine-language program. Then it can be run 
like any other machine-language program, without any further need for 
a compiler.
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Interpreters are easier to use than compilers because they’re 
designed to be “transparent” to the user; that is, they are so unobtrusive 
that you’re not even aware they’re there. The BASIC utility that’s built 
into your Apple lie  or Apple He is an interpreter, and using it will show 
you how transparent a BASIC interpreter can be. When you write a 
program in Applesoft BASIC, your computer’s built-in interpreter 
translates every line of code that you write, as you write it, into a special 
kind of language called a tokenized language. Then, each time the pro 
gram is run, it is translated into machine language.

This is a very roundabout way to run a program, and it’s one factor 
that makes BASIC a rather slow-running language. But the process 
does work quite smoothly; if you’ve ever run an Applesoft BASIC pro 
gram, you probably never even noticed the process of BASIC-to- 
machine-language translation.

One advantage of interpreters over compilers is that they can check 
each line of a program for obvious errors as soon as the line is written. 
If they don’t check each line, they usually do spot errors as soon as the 
program is run. The errors can then be fixed on the spot. Compilers are 
less interactive. Most compilers can’t check a program for errors until 
the program has been compiled. After an error is found and fixed, the 
program must be compiled again.

Compilers do have one significant advantage over interpreters: they 
produce faster-running programs. When a program is written using an 
interpreter, it has to be processed through the interpreter every time 
it’s run. But a compiler has to do its job just once and never has to be 
used when a program is actually running.

Assemblers and Assembly Language
Assembly language, as we have seen, is neither an interpreted language 
nor a compiled language. Converting an assembly-language program 
into machine language requires an assembler-editor (also referred to as 
an assembler).

Because of the close relationship between machine language and 
assembly language, an assembler does not have nearly as difficult a task 
as an interpreter or a compiler. Each time an interpreter or compiler 
converts an instruction into machine language, a block—sometimes a very 
large block—of machine code has to be generated. But an assembler has 
to translate only one instruction at a time. The instructions used in 
assembly language perform much simpler functions than the instruc 
tions used in most high-level languages, so source-code programs written 
in assembly language tend to be much longer than similar programs
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written in high-level languages. However, the instruction set used in 
assembly language is extremely versatile, since the mnemonics can be 
combined in an almost endless variety of ways.

Assembly language is also extremely memory-efficient, because 
assembly-language programs are created by human programmers, not 
churned out robotically by electromechanical code-generating machines. 
When a program is written in a high-level language, the result is usual 
ly a series of machine-language routines that are rather mindlessly 
strung together, one after another, like clothes hanging on a line. The 
interpreter or compiler that translates such a program into machine 
code typically repeats the same sequence of code again and again, usu 
ally wasting both memory and processing time.

In contrast, a good assembly-language programmer will usually 
write an important block of code just once during the course of a pro 
gram. From that point on, it will be used as a subroutine, which con 
serves memory and shortens processing time.

Machine Language: A Language of Numbers

To understand what happens when an assembly-language program is 
assembled into a machine-language program, it helps to identify some 
of the differences and similarities between machine language and 
assembly language.

Machine language, in its purest form, is composed of binary 
numbers— numbers written as strings of l ’s and 0’s. Program 1-2 shows 
what the HI.TEST program presented at the beginning of this chapter 
looks like when it's written as a pure machine-language program in 
binary numbers.

Program 1-2 
HI.TEST.BIN
The HI.TEST Program (Binary Code Version)
10101001
11001000
0 0 1 0 0 0 0 0
11101101
11111101
10101001
11001001
0 0 1 0 0 0 0 0
11101101
11111101
0 1 1 0 0 0 0 0
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As you can see, it wouldn’t be easy to write a program in binary 
numbers. Fortunately, you’ll seldom have to. Although your computer 
sees every machine-language program as a string of binary numbers, 
nobody actually writes programs in binary notation. Instead, listings 
of machine-language programs are usually written in a notation system 
called the hexadecimal system.

In spite of appearances, hexadecimal numbers are closely related to 
binary numbers. Hex numbers are written not as strings of l ’s and 0’s, 
but as ordinary arabic numerals, with the letters A through F thrown 
in to express some extra values. Hex numbers are written as combina 
tions of letters and numbers because, unlike ordinary decimal numbers, 
they aren’t based on the value 10. Instead, they’re based on the value 16, 
and the letters A through F are used to represent the values 10 through 
15. You’ll learn more about the hexadecimal system—and why it’s used 
in assembly-language programs—beginning with Chapter 2. In the 
meantime, look at Program 1-3 to see what the HI.TEST program looks 
like written in hexadecimal numbers.

Program 1-3 
HI.TEST.HEX
The HI.TEST Proyram (Hexadecimal Version)
A9 C8 
20 ED FD 
A9 C9 
20 ED FD 
60

The hex numbers in Program 1-3 have exactly the same values as 
the binary numbers that you saw in the binary version of the program. 
You may not yet understand what the instructions in the program 
mean, but you can see that the hexadecimal version of the program 
looks a little more comprehensible than the binary version. (It’s easier to 
type into the computer, too!)

Assembly Language: A Language of Mnemonics

You now know that assembly language is very closely related to machine 
language. But the relationship between assembly language and machine 
language is not always obvious at first glance. Assembly language, 
unlike machine language, is written using three-letter instructions 
called mnemonics. To the casual observer, then, assembly language 
doesn’t look a thing like machine language.

For every three-letter instruction used in assembly language, there
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is a numeric instruction that means exactly the same thing in machine 
language. In other words, there is generally a one-to-one correlation 
between the mnemonics used in an assembly-language program and the 
numeric instructions used in the machine-language version of the same 
program.

This relationship between machine language and assembly language 
makes it easy to convert a machine-language program into assembly 
language or to convert an assembly-language program into machine 
language. Simply change each instruction to the equivalent instruction 
of the other language. Program 1-4 shows the close relationship 
between machine language and assembly language.

Program 1-4 
HI.TEST.ASM
The HI.TEST Program (Assembled Version)
COL.  1 COL.  2 COL.  3
LINE NO. OBJECT CODE SOURCE CODE

1
2
3
4
5

A9 C8 LDA US C8
20 ED FD JSR $ F D ED
A9 C9 LDA US C9
20 ED FD JSR $ F D ED
60 RTS

Object Code and Source Code
If you look carefully at Columns 2 and 3 of Program 1-4, you’ll see close 
similarities. For reasons that will become clear later, the letters and 
numbers in Column 2 are arranged slightly differently from those in 
Column 3, but certain patterns are the same in both columns. In 
Column 2, for example, the machine-language instruction A9 is used 
twice: once in line 1 and again in line 3. In Column 3, the assembly- 
language mnemonic LDA is also used twice—on the same lines and in 
the same positions as the machine-language instruction A9. Apparently, 
the object-code instruction A9 equates to the source-code instruction 
LDA. As it turns out, that’s true.

Refer once more to the object-code listing in Column 2; you’ll see that 
the machine-code instruction 20 is also used twice. In both cases, it is 
the machine-code equivalent of the source-code instruction JSR.

Now you’ve had a first-hand look at how assembly language com 
pares with machine language. Later in this chapter, we’ll discuss the 
similarities and differences between machine language and assembly 
language in greater detail. First, though, let’s examine Program 1-5, a 
listing of the assembly-language version of the HI.TEST program.
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Program 1-5 
HI.TEST.S
The HI.TEST Program (Source-Code Version)
LDA #200
JSR $FDED
LDA #201
JSR $FDED
RTS

What the HI.TEST.S Program Does

As you can see, HI.TEST.S is a very short and simple assembly- 
language program. It contains only three mnemonics—LDA, JSR, and 
RTS—and three numbers—the hexadecimal number FDED and the 
decimal numbers 200 and 201. The number 200 is a screen-display code 
that equates to the letter H. The number 201 is a display-code number 
for the next letter in the alphabet, the letter I. And the hexadecimal 
number FDED (65005 in decimal notation) is the starting address of a 
handy machine-language subroutine (built into your Apple) that will 
print a character on the screen.

In the HI.TEST.S program, the numbers 200 and 201 are preceded 
by the symbol and the hex number FDED is preceded by the sym 
bol In 6502/6502B/65C02 assembly language generally, when the 
symbol precedes a number, it means that the number is to be inter 
preted as a literal number, not as a memory address. In the HI.TEST.S 
program, if the numbers 200 and 201 were not preceded by the symbol 

they would be interpreted as addresses in your computer’s memory. 
Since they do have a prefix, however, they are interpreted as actual 
numbers.

The other special symbol in the HI.TEST.S program—the dollar 
sign in front of the number FDED — is an assembly-language prefix for 
hexadecimal numbers. If you’re familiar with hexadecimal notation, you 
can probably tell by looking at the number FDED that it’s a hexadeci 
mal number. But sometimes decimal numbers and hex numbers look 
exactly alike. Therefore, in the HI.TEST.S program, the symbol is 
used to show that the number $FDED is to be treated as a hexadecimal 
number.

In Apple Ilc/IIe assembly language, it is possible to use both the 
symbol and the symbol in front of the same number (as long as 
the comes first). Please note, however, that the symbol is not used 
in front of the number $FDED in the HI.TEST.S program because in
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this program, $FDED should be interpreted as a memory address, not 
as a literal number. In your Apple, as mentioned previously, $FDED is 
the memory address of a built-in subroutine that prints a character on 
the screen. That is the subroutine called in lines 2 and 4 of the 
HI.TESTS program.

Before we can understand how the HI.TEST.S program works when 
assembled into machine language, we need to take a closer look at your 
computer’s main microprocessor: its 6502B or 65C02 chip.

The 6502B/65C02 chip is the heart—or, more accurately, the 
brain —of your computer. The 6502B/65C02 is a very complex chip, but 
it has only seven main components: an arithmetic logical unit, or ALU, 
and six internal registers. The functions and features of all of these com 
ponents will be covered in later chapters. To help you understand how 
the HI.TEST.S program works, though, here’s a sneak preview of a 
very special 6502B/65C02 register, called the accumulator.

The accumulator is the busiest register in the 6502B/65C02 chip. 
Before any mathematical or logical operation can be performed on a 
number in 6502B/65C02 assembly language, the number has to be 
loaded into the accumulator. The assembly-language instruction that is 
usually used to load a number into the accumulator is LDA.

Let’s look at line 1 of the HI.TEST.S program.

LDA #200

In this line, the statement “LDA #200” means “Load the accumulator 
with the literal number 200.” In the world of computer programming, a 
number can be used to represent many different things. In the 
HI.TEST.S program, the number 200 represents the letter “H”. Here’s 
why.

A special system called ASCII is often used to encode letters, 
numbers, and special characters in computer programs. In the ASCII 
system, each letter, number, and special symbol on the typewriter key 
board has a number that can represent it in programs. Over the years, 
the ASCII system has become more or less standardized in the comput 
er industry. However, since Apple computers make use of inverse video, 
flashing video, and other special effects, Apple uses a modified ASCII 
system. In the Apple system, the number 200 is an ASCII code for the 
letter “H”, displayed as a capital letter in normal video. What line 1 of 
the HI.TEST.S program really means, then, is “Load the accumulator 
with the modified ASCII code for an uppercase ‘H’ ”.

J SR SFDED
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In 6502B/65C02 assembly language, the mnemonic JSR means 
“Jump to subroutine.” This instruction is used in much the same way as 
the GOSUB instruction is used in BASIC. When the mnemonic JSR is 
used in an assembly-language program, it causes the program to jump 
to a subroutine that is expected to start at the memory address that 
follows the JSR instruction.

In assembly language, the mnemonic JSR is usually used along with 
another mnemonic, RTS, which means “Return from subroutine.”

The RTS instruction also corresponds to a BASIC instruction, 
RETURN. When a JSR instruction is encountered in an assembly- 
language program, the address of the very next instruction in the pro 
gram is first placed in an easily accessible location in a special block of 
memory called a stack. Then the program jumps to whatever address 
follows the JSR instruction. This address is usually the starting address 
of a subroutine.

When a subroutine is called with a JSR instruction, the subroutine 
usually ends with an RTS instruction. When that RTS instruction is 
reached, any address that has been placed on the stack by a JSR 
instruction is retrieved. The program then returns to that address and 
processing of the main body of the program resumes.

Line 2 of the HI.TESTS program should now be clear. The state 
ment “JSR $FDED” means “Jump to the subroutine that begins at 
memory address $FDED.” This subroutine takes whatever screen code 
is stored in the accumulator and automatically displays the correspond 
ing character on the screen. Then it returns control to the program in 
progress—in this case, the HI.TEST program.

A number of handy I/O routines similar to this one are built into the 
Apple lie and the Apple lie. We’ll be using quite a few of them in this 
book.
LDA #201

In Apple Ilc/IIe assembly language, the number 201 is an Apple 
ASCII code for a normal capital "I". In the HI.TESTS program, then, 
the statement “LDA #201” means “Load the accumulator with the Apple 
ASCII code for an uppercase ‘I’."
JSR $FDED

This statement is identical to the statement in line 2. It means 
“Jump to the subroutine that starts at memory address $FDED." This 
time, however, since the accumulator has been loaded with the value 
201, the subroutine that starts at $FDED will cause an “I” to be dis 
played on the screen.
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RTS

When an RTS instruction is used to terminate a subroutine, it usual 
ly causes a program to jump back to where it was before the subroutine 
was called. In this case, however, RTS is used to terminate a whole pro 
gram, not just a subroutine. When RTS is used to terminate a complete 
program, it usually returns control of the computer to whatever pro 
gram or system was in control before the terminated program began. If 
you were to call the HI.TEST program from BASIC, then, the RTS 
instruction in line 5 would transfer control to your computer’s BASIC 
interpreter.

Two Additional Programs

Quite a bit of ground has been covered in this introductory chapter. 
We’ve taken a look at the overall architecture of microcomputers in gen 
eral, and the Apple lie and lie in particular. We’ve compared assembly 
language with various high-level languages, and we’ve discussed the 
ways in which assembly language and high-level languages are trans 
lated into machine language. We’ve compared decimal, hexadecimal, 
and binary numbers, and we’ve seen how hexadecimal numbers are 
used in assembly-language programs. We’ve peeked inside your Apple’s 
central microprocessor, we’ve seen how source code is assembled into 
object code, and we’ve observed how your computer steps through its 
memory as it processes a machine-language program. We’ve even made 
a line-by-line analysis of a short assembly-language program and seen 
how a machine-language program can be called from BASIC without 
having to be processed through an assembler.

Now let’s take a look at another BASIC program that makes use of a 
little assembly language. Program 1-6 is called FLASH.BAS. Type it 
and run it, and you’ll see an interesting display on your computer 
screen.

Program 1-6 
FLASH.BAS
A BASIC Program for Flashing a Message on the Screen
10 REM *** FLASH.BAS ***
20 TEXT : HOME
30 PRINT : POKE 4 9 1 6 4 , 1 :  POKE 4 9 1 6 6 , 1 :  POKE 50, 127  
40 PRINT : PRINT "FLASH!  APPLE OWNER BREAKS MACHINE CODE!"  
50 GOTO 50
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How FLASH.BAS Works

If you’ve done much programming in BASIC, you’ve probably seen— 
and may have even written—BASIC programs that produce flashing 
text displays like the one in FLASH.BAS. Nevertheless, this little 
BASIC program is unusual because it doesn’t use BASIC instructions to 
generate its flashing 40-column screen display. Instead, it does its job 
with a series of well-placed POKE commands.

In the FLASH.BAS program, POKE commands are used to insert 
numbers directly into three memory addresses that your computer uses 
to generate screen displays.

In line 30, the statement POKE 49164,1 puts your Apple into its 40- 
column mode. In the same line, the statement POKE 49166,1 makes 
sure that your computer’s main character set is turned on and that an 
alternate character set that it also has access to is turned off.

The last statement in line 30—POKE 50,127—is the statement that 
turns on your computer’s flashing mode. Then your Apple is ready to 
print the flashing message that appears in line 40. Finally, in line 50, 
the program winds up in an endless loop that prevents anything else 
from being displayed on the screen.

A Program for Displaying Mouse Icons
Before we move on to Chapter 2, here’s one more program, presented 
especially for owners of Apple He’s and late model Apple He’s. It isn’t 
an assembly-language program or a machine-language program, and it 
doesn’t even include any machine-language instructions. But it will 
probably interest you if you’re an Apple lie owner, and an assembly- 
language version of the program will be presented later on in this 
volume.

Here’s how the program works. The Apple Ilc/IIe has two character 
sets—a standard character set and an alternate character set. But the 
alternate character sets built into Apple computers vary from model to 
model. If your computer is an Apple lie, or an Apple He with built-in 
mouse ROMs, its built-in character set includes 32 mouse icons (special 
graphics characters designed for use with the Apple lie mouse). In the 
Apple lie  and the current-model Apple He. mouse icons are what you 
get when your computer is in uppercase and in its flashing mode. But if 
you own an Apple He and haven’t had special mousetext ROM installed, 
then you’ll get just what you’d ordinarily expect in an uppercase flash 
ing print mode: uppercase flashing characters.
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If your computer is an Apple lie  or a fairly new Apple lie, you can 
display all of your mouse icons on the screen with this BASIC program. 

Type the MOUSETEXT.BAS program, run it, and enjoy!

Program 1-7 
MOUSETEXT.BAS
A BASIC Program That Displays Mouse Icons
10 REM *** MOUSETEXT.BAS ***
20 PRINT CHR$ ( 4 ) ; " PR#3" : REM TURN ON ENHANCED VIDEO

FIRMWARE
30 PRINT CHR$ (27) ; C H R $ ( 1 7 ) :  REM ESC/CONTROL-Q (SET

4 0 - C OL MODE)
40 PRINT CHR$ (15) : REM CONTROL-O (SET REVERSE MODE)
50 PRINT CHR$ (27) : REM ESCAPE KEY (TURN ON MOUSETEXT)
60 FOR L = 64 TO 95 : PRINT CHRS ( L ) ; :  NEXT L:  REM PRINT

MOUSE ICONS
70 PRINT CHRS (24) : REM CONTROL-X (TURN OFF MOUSETEXT)
80 PRINT CHRS (14) : REM CONTROL-N (DISPLAY NORMAL

CHARACTERS)





Number Systems

Most people are accustomed to using only decimal numbers, which are 
based on the digits 1 through 10. But at some time, you may have also 
encountered the roman numeral system, which uses letters to represent 
numbers. There are many other numeric systems that are different 
from the decimal system, such as the Chinese system, the Hebrew sys 
tem, and the Sanskrit system.

In the world of computer programming, three numeric systems are 
commonly used. They are as follows:

• The decimal system, which is based on the value 10 and is written 
using the digits 0 through 9.

• The binary system, which is based on the value 2 and is written 
using only two digits: 0 and 1.

• The hexadecimal system, which is based on the value 16 and is 
written using the digits 0 through 9 plus the letters A through F.

19
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Number-Base Prefixes

When a binary number appears in an Apple lie or He assembly- 
language program, the prefix “%” is used by most assemblers to distin 
guish it from a decimal or hexadecimal number. When a hexadecimal 
number appears in an Apple assembly-language program, the prefix 

is used by most assemblers to indicate that it is a hexadecimal 
number.

No special prefix is used in front of a decimal number; if a number 
with no prefix appears in a program, it is presumed to be a decimal 
number.

The following illustration shows how prefixes are used to distinguish 
among binary, hexadecimal, and decimal numbers in assembly-language 
programs.

%1101 The binary number 1101 (decimal 13)
$1101 The hexadecimal number 1101 (decimal 4353)

1101 The decimal number 1101

Using Binary Numbers

A computer can understand only one language: a language that is made 
up solely of numbers and is called machine language. Machine lan 
guage, at its most basic level, consists of binary numbers ( l’s and 0’s). 
Before data can be loaded into a computer, it must somehow be con 
verted into strings of l ’s and 0’s.

In the binary notation system, the l ’s and 0’s that make up binary 
numbers are known as bits. A series of four bits is called a nibble (or 
nybble), a series of eight bits is called a byte, and a series of 16 bits is 
usually called a irord (although there are 8-bit words too).

When the bits and bytes that make up a machine-language program 
are processed by a computer, they are converted into strings of on-and- 
off electrical pulses. Inside a computer, these on-and-off pulses cause the 
current flowing through various electrical lines to fluctuate between 
low and high levels. When the electrical current falls below a certain 
predetermined level, the switch is considered off, and its state is repre 
sented as a 0 in the binary notation system. When the level of the cur 
rent rises above a certain level, the switch is considered on. and its state 
is represented as a 1.
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Now we’re going to examine a series of 8-bit binary numbers. Look 
at the numbers in this list closely, and you’ll see that every binary 
number that ends in 0 is twice as large as the previous number.

00000001 =  1 
00000010 = 2 
00000100 = 4
00001000 = 8 
00010000 = 16 
00100000 = 32 
01000000 = 64 
10000000 = 128

Now here are two more numbers that are noteworthy, but for com 
pletely different reasons:

%11111111 = 255 
%11111111 11111111 = 65,535

The number %11111111, or 255, is noteworthy because it’s the largest 
8-bit number. And the number %1111111111111111, or 65,535, is the larg 
est 16-bit number. (The space in the middle of the number %1U11111 
11111111 was put there so the number would be easier to read. Spaces 
are often inserted in the middle of 8-bit numbers for the same reason. 
Sometimes, for example, you might see the binary number 11111111 
written 1111 1111.)

The Hexadecimal Number System

Since computers “think” in binary numbers, the binary system is 
obviously an excellent notational system for representing computer 
data. But binary numbers have one serious shortcoming: they’re ex 
tremely difficult to read. Thus the binary system is not the numeric 
system that is most often used in assembly-language programming. The 
numeric system that you’ll encounter most often in assembly-language 
programming is the hexadecimal system.

Just as binary numbers are based on the value 2, hexadecimal 
numbers are based on the value 16.

Hexadecimal numbers are often used in assembly-language pro 
gramming because they can help bridge the gap between the binary
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Table 2-

and decimal systems. Since binary numbers have a base of 2 and hex 
numbers have a base of 16, a series of four binary bits can always be 
translated into one hexadecimal digit. So a series of eight bits (a byte) 
can always be represented by a pair of hexadecimal digits, and a series 
of 16 bits (a word) can always be represented by a four-digit hexadeci 
mal number.

In Table 2-1, the decimal, hexadecimal, and binary numbers from 1 
to 16 are compared. Examine the chart closely, and you’ll see that odd 
looking letter and number combinations like “FC1C”, “5DA4”, and even 
“ABCD” are perfectly good numbers in the hexadecimal system.

As you can see from Table 2-1, the decimal number 16 is written “10” 
in hex and “00010000” in binary and is thus a round number in both the 
binary and hexadecimal systems. The hexadecimal digit F, which 
comes just before hex 10, is written 00001111 in binary.

As you become more familiar with the binary and hexadecimal sys 
tems, you will begin to notice many other similarities between them. 
For example, the decimal number 255 (the largest 8-bit number) is 
11111111 in binary and FF in hex. The decimal number 65,535 (the 
highest memory address in a 64K computer) is written F F FF  in hex 
and 11111111 11111111 in binary.

1. Comparing Decimal, Hexadecimal, and Binary Numbers

Decimal Hexadecimal Binary
1 1 00000001
2 2 00000010
3 3 00000011
4 4 00000100
5 5 00000101
6 6 00000110
7 7 00000111
8 8 00001000
9 9 00001001

10 A 00001010
11 B 00001011
12 C 00001100
13 D 00001101
14 E 00001110
15 F 00001111
16 10 00010000
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Converting Numbers From One System to Another

Since hexadecimal numbers, decimal numbers, and binary numbers 
are all used in assembly-language programming, it would obviously be 
handy to have some kind of tool that could be used to convert numbers 
back and forth among these three numeric systems. Fortunately, a 
number of such tools are available. Here are a few.

Software-Based Converters

The machine-language monitor built into your Apple includes a decimal- 
to-hexadecimal converter and a hexadecimal-to-decimal converter. So 
do the Merlin Pro assembler and the Bugbyter debugging utility, which 
comes with the Apple ProDOS assembler. For more details on these 
utilities, see the Apple lie  and He technical reference manual and the 
manuals that come with the Merlin and Apple ProDOS assemblers.

Programmers’ Calculators

Texas Instruments makes an extremely useful calculator called the 
Programmer, which can perform decimal-to-hexadecimal conversions in 
a flash and can also add, subtract, multiply, and divide both decimal 
and hexadecimal numbers. Many assembly-language program designers 
use the TI Programmer or a similar calculator and wouldn’t dream of 
trying to get along without it.

Charts and Tables
Many books on assembly language contain charts that you can consult 
when you convert numbers from one notation system to another. You’ll 
find a few such charts in this chapter, and you’ll also find something 
much better: a series of BASIC programs that will automatically per 
form decimal-to-hexadecimal, decimal-to-binary, and binary-to-hexa- 
decimal conversions.

Let’s start with a program that will convert binary numbers to 
decimal numbers.

Converting Binary Numbers 
To Decimal Numbers

It isn’t difficult to convert a binary number to a decimal number. In a 
binary number, as we’ve seen, the bit farthest to the right represents 2
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Table 2-2. Values of the  B its in an 8-Bit B inary  N um ber

Bit 0 = 2 to the 0th power = 1
Bit 1 = 2 to the 1st power = 2
Bit 2 = 2 to the 2nd power = 4
Bit 3 = 2 to the 3rd power = 8
Bit 4 = 2 to the 4th power = 16
Bit 5 = 2 to the 5th power = 32
Bit 6 = 2 to the 6th power = 64
Bit 7 = 2 to the 7th power = 128

to the power 0. The next bit to the left represents 2 to the power 1, the 
next represents 2 to the power 2, and so on.

The digits in an 8-bit binary number are therefore numbered 0 to 7, 
starting from the far-right digit. The far-right bit—often referred to as 
bit 0—represents 2 to the 0th power, or the number 1. And the far-left 
bit—often called bit 7—equals 2 to the 7th power, or 128.

Table 2-2 is a list of simple equations that illustrate what each bit in 
an 8-bit binary number means.

Table 2-3 provides an easy method of converting any 8-bit binary 
number into its decimal equivalent. Instead of writing the number from

Table 2-3. Converting a Binary Number Into a Decimal Number
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left to right, write it instead in a vertical column, with bit 0 at the top of 
the column and bit 7 at the bottom. Then multiply each bit in the 
binary number by the decimal number that it represents. Add the 
results of all of these multiplications, and the total will be the decimal 
value of the binary number.

Suppose, for example, you wanted to convert the binary number 
00101001 into a decimal number. Table 2-3 shows how the conversion 
could be done.

If the calculation in Table 2-3 is correct, the binary number 00101001 
should equal the decimal number 41. Look up either 00101001 or 41 on 
any binary-to-decimal or decimal-to-binary conversion chart, and you’ll 
see that the calculation was accurate. This conversion technique will 
work with any other binary number.

Converting Decimal Numbers 
To Binary Numbers

Now we’ll go in the opposite direction and convert a decimal number to 
a binary number.

First, divide the number by 2. Write down both the quotient and the 
remainder. Since we’re dividing by 2, the remainder will be either a 1 
or a 0. We will therefore write down the quotient followed by either a 1 
or a 0.

Next, we’ll take the quotient, divide it by 2, and write down the 
result of that calculation. If there’s a remainder (a 1 or a 0), we’ll also 
write that below the first remainder.

When we are left with no more numbers to divide, we’ll write all of 
the remainders that we have, reading from the bottom to the top. Then 
we’ll have a binary number—a number made up of l ’s and 0’s. That 
number will be the binary equivalent of the original decimal number.

This conversion technique is illustrated in Table 2-4.
To complete the decimal-to-binary conversion illustrated in Table 2-4, 

simply copy the binary digits in the right-hand column, writing them 
horizontally from right to left with the top digit on the right. You’ll then 
see that the binary equivalent of the decimal (not hexadecimal) number 
117 is 01110101. If you have a decimal-to-binary conversion chart handy, 
you can use it to confirm the accuracy of this calculation.
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Table 2-4. C onverting a Decim al N um ber Into a B inary  N um ber

117/2 = 58 with a remainder of 1 
58/2 = 29 with a remainder of 0 
29/2 = 14 with a remainder of 1 
14/2 = 7 with a remainder of 0 
7/2 = 3 with a remainder of 1 
3/2 = 1 with a remainder of 1 
1/2 = 0 with a remainder of 1 
0/2 = 0 with a remainder of 0

Converting Binary Numbers 
To Hexadecimal Numbers

Here’s an even easier number-base conversion. To convert hexadecimal 
numbers to their binary equivalents and vice versa, merely use the 
chart in Table 2-5.

To convert a multiple-digit hex number into a binary number, all 
you need do is string the letters and digits in the hex number together 
and convert each one separately, as shown in Table 2-5. For example, 
the binary equivalent of the hexadecimal number CO is 1100 0000. The 
binary equivalent of the hex number 8F2 is 1000 1111 0010. The binary 
equivalent of the hex number 7A1B is 0111 1010 0001 1011. And so on.

To convert binary numbers to hexadecimal numbers, use the chart 
in reverse. The binary number 1101 0110 1110 0101. for example, is 
equivalent to the hexadecimal number D6E5.

Converting Decimal Numbers 
To Hexadecimal Numbers

It’s almost as simple to convert decimal numbers to hexadecimal 
numbers as it is to translate binary numbers to decimal numbers.

First, take a decimal integer that you want to convert and divide it 
by 16. Write down the remainder, like this:

64540/16 = 4033 with a remainder of 12
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Table 2-5. H exadecim al-to-B inary Conversion C h art

Hexadecimal Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
A 1010
B 1011
C 1100
D 1101
E 1110
F m i

Divide the integer part of the quotient by 16 and write down the 
result of that calculation.

4033/16 = 252 with a remainder of 1

Keep repeating this process until you have a quotient of 0. Here’s the 
entire set of calculations that are needed to convert the decimal number 
64540 into a hexadecimal number:

64540/16 = 4033 with a remainder of 12 
4033/16 = 252 with a remainder of 1 
252/16 = 15 with a remainder of 12 

15/16 = 0 with a remainder of 15

When you’ve finished this series of calculations, you must convert 
any remainder that’s greater than 9 into its hexadecimal equivalent. In 
this problem, three remainders are greater than 9: the value 12 in the 
first line, the value 12 in the third line, and the value 15 in the fourth 
line. The decimal number 12 equates to the letter C in hexadecimal
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notation, and the decimal number 15 equates to the letter F. So the 
remainders in the problem, converted into hex, are

C
1
C
F

Read the four numbers, starting from the bottom, and you have the 
hexadecimal number FC1C, which is the number we’re looking for, the 
hexadecimal equivalent of the decimal number 64540.

Doing It the Easy Way

In this chapter, we’ve compared three different number bases: the 
decimal system, the hexadecimal system, and the binary system. Now 
you know how to convert numbers from any of these three bases to any 
other. Some of the conversion techniques are quite simple; others are 
fairly complicated, and unless you have a photographic memory, you 
may not remember any of them. But fortunately, you won’t have to. Just 
type and save the program presented in Program 2-1, and you can let 
your computer do it for you.

Program 2-1, titled “By the Numbers,” is a menu-driven BASIC 
program that can convert numbers from any of the three bases dis 
cussed in this chapter to any other. The program assumes that you have 
an 80-column display.

In the next chapter, we’ll take a look inside your Apple’s main 
microprocessor and see what makes it tick. Then we’ll be ready to start 
actually writing some programs in assembly language.

Program 2-1 
BY THE NUMBERS
(A BASIC Number-Conversion Program)
10 REM *************************************************  
20 REM ***************** BY THE NUMBERS ****************  
30 REM ********* A NUMBER CONVERSION PROGRAM *********  
AO REM ***********************************************  
50 PRINT CHR$ ( 4 ) ; " P R # 3 "
60 DIM H E X $ ( 8 ) , B I T $ ( 8 ) , H $ ( 1 6 ) , B $ ( 1 6 ) , T E M P $ ( 2 ) , B I T ( 8 >
70 DATA 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , A , B , C , D , E , F  
80 DATA 0 0 0 0 , 0 0 0 1 , 0 0 1 0 , 0 0 1 1 , 0 1 0 0 , 0 1 0 1 , 0 1 1 0 , 0 1 1 1  
90 DATA 1 0 0 0 , 1 0 0 1 , 1 0 1 0 , 1 0 1 1 , 1 1 0 0 , 1 1 0 1 , 1 1 1 0 , 1 1 1 1  
100 FOR L = 1 TO 16: READ H $ ( L ) :  NEXT L 
110 FOR L = 1 TO 16: READ B $ ( L ) :  NEXT L
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120
130

140
150
160

170
180
190
200

210
220

230
240
250
260

270
280
290

300

310
320
330
340
350
360
370
380
390
400
410
420

430
440
450
460
470
480

490

500

510
520
530
540
550
560
570

BY THE NUMBERS: A NUMBER-BASE

(B) HEXADECIMAL NUMBERS TO DECIMAL NUMBERS" 
PRINT " (C) BINARY NUMBERS TO DECIMAL NUMBERS" 

DECIMAL NUMBERS TO BINARY NUMBERS"
(E) HEXADECIMAL NUMBERS TO BINARY

(D)

TEXT : HOME 
PRINT : PRINT "

CONVERSION PROGRAM"
PR1NT " COPYRIGHT (C) 1985,  MARK ANDREWS": PRINT
PRINT : PRINT "THIS PROGRAM WILL CONVERT:"
PRINT : PRINT " (A) DECIMAL NUMBERS TO HEXADECIMAL

NUMBERS"
PRINT "
PRINT :
PRINT "
PRINT : PRINT "

NUMBERS"
PRINT " (F) BINARY NUMBERS TO HEXADECIMAL NUMBERS"
PRINT : INPUT "WHAT KIND OF CONVERSION DO YOU WANT? 

(TYPE A- F)  : " ; A $
IF AS = " "  THEN 220 
IF LEN (AS) < > 1 THEN 220 
IF AS < "A"  OR AS > " F "  THEN 220 

A = ASC (AS) -  64:  REM TRANSLATE AS INTO AN INTEGER 
FROM 1 (A) TO 6 (F)

ON A GOTO 2 9 0 , 4 9 0 , 6 6 0 , 8 7 0 , 1 0 4 0 , 2 1 2 0
REM * * * * * * * * *  DECIMAL-HEXADECIMAL CONVERSION * * * * * * *  
TEXT : HOME : PRINT "DECIMAL-TO-HEXADECIMAL CONVERSION

(RANGE: 0 TO 99999999)"
PRINT : PRINT "TYPE A POSITIVE DECIMAL INTEGER (OR ’ M' 

FOR MENU): "
PRINT : INPUT "DEC:  " ; A S
FOR L = 1 TO 8 : HEXS(L)  = " " :  NEXT L
IF AS = "M" THEN 120
FOR L = 1 TO 8 : TS = RIGHTS ( A $ , L )
IF ASC (TS) < 48 OR ASC (TS) > 57 THEN 310 
NEXT L
IF LEN (AS) < 1 OR LEN (AS) > 8 THEN 310 

N = VAL (AS)
1 =  8
TMP = N:N = INT (N / 16)
TMP = TMP -  N * 16

IF t mp  < 10 THEN HEXS( I ) = RIGHTS ( STRS ( T M P ) , 1 ) :  
GOTO 440
HEXS( I ) = CHR$ (TMP " 10 + ASC ( " A " ) )

1F N < > 0  THEN 1 = 1 - 1 :  GOTO 400
PRINT "HEX:  " ;
FOR L = 1 T0 8:  PRINT H E X $ ( L ) ; :  NEXT L:  PRINT 
GOTO 310
REM * * * * * * * * * * * * *  HEXADECIMAL-TO-DECIMAL CONVERSION

TEXT : HOME : PRINT :
CONVERSION (RANGE 0 TO

PRINT : 
MENU) 

PRINT : 
IF AS = 
IF LEN

PRINT "TYPE HE 
PRINT
INPUT "HEX:  " ;  
"M" THEN 120 
(AS) > 8 THEN

PRINT "HEXADECIMAL-TO-DECIMAL  
F F F F F F F F ) "
XADECIMAL NUMBER (OR 'M'  FOR

AS

510

N = 0
FOR L = 1 T0 

HEXS( L) = MID$ 
IF HEXS( L ) <

LEN (AS)
( A $ , L , 1 )

0" OR HEXS(L) > " F "  THEN 510
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580 IF HEX$(L)  < 
GOTO 620

_  i i 9" THEN N = N * 16 + VAL <HEX$(L>):

590 IF  HEX$( L) < "A" THEN 510
600 IF HEX$(L)  > i i  p  i i THEN 510
610
620

N = N * 16 + 
NEXT L

ASC ( HEX$(L) )  - ASC ("A" ) + 10

630
640

PRINT "DEC:  
GOTO 510

" ; N : PRINT

650 REM ******* 
          

** BINARY-TO-DECIMAL CONVERSION ****

660 TEXT : HOME : REM CLEAR SCREEN
670 PRINT : PRINT "BINARY-TO-DECIMAL CONVERSION PROGRAM"
680 PRINT : PRINT "INSTRUCTIONS:  ENTER AN 8 - B I T  BINARY

NUMBER (OR 'M'  FOR MENU)"
690 PRINT : INPUT "BIN:  " ; A $
700 IF A$ = "M" THEN 120
710 IF LEN ( A$) <> 8 THEN 690
720 FOR L = 8 TO 1 STEP -  1
730 B$(L> = MID$ ( A $ , L , 1 )
740 IF B$(L> < > " 0"  AND B$(L)  < > "1"  THEN 680
750 NEXT L
760 FOR L = 1 TO 8
770 B I T ( L )  = VAL <B$(L))
780 NEXT L 
790 ANS = 0 
800 M = 256 
810 FOR L = 1 TO 8
820 M = M / 2:  ANS = ANS + B I T ( L) * M 
830 NEXT L
840 PRINT " DE CI MAL: " ; ANS  
850 GOTO 680
860 REM ********** DECIMAL-TO-BINARY CONVERSION

870 TEXT : HOME : PRINT "DECIMAL-TO-BINARY CONVERSION 
PROGRAM (RANGE 0 - 2 5 5 ) "

880 PRINT : PRINT "ENTER A POSITIVE INTEGER (OR * M * FOR 
MENU)"

890 PRINT : INPUT "DEC:  " ; A$
900 IF A$ = "M" THEN 120
910 IF VAL ( A$) < 0 OR VAL (A$) > 255 THEN 890 
920 NR = VAL (A$)
930 FOR L = 8 TO 1 STEP -  1
940 Q = NR / 2
950 R = Q -  INT (Q)
960 IF R = 0 THEN B T $ ( L) = " 0 " :  GOTO 980 
970 8 T $ ( L) = "1"
980 NR = INT (Q)
990 NEXT L
1000 PRINT "BINARY:  " ;
1010 FOR L = 1 TO 8: PRINT B T $ ( L ) ; :  NEXT L:  PRINT 
1020 GOTO 880
1030 REM * * * * * * * *  HEXADECIMAL-TO-BINARY CONVERSION

1040 TEXT : HOME : PRINT "HEXADECIMAL-TO-BINARY CONVERSION
PROGRAM (RANGE: 0 TO F F) "

1050 PRINT : PRINT "TYPE HEXADECIMAL NUMBER (OR 'M'  FOR 
MENU)"
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1060 PRINT : INPUT "HEX: " ; AS
1070 IF A$ = "M" THEN 120
1080 IF LEN ( A$ ) > 2 OR LEN (AS) < 1 THEN 1060
1090 HEX$(1) = " "  : HEXS(2) _  M II

2000 FOR L = 1 TO LEN (AS)
2010 HEX$(L) = MIDS ( A $ , L /1)
2020 IF HEXS(L)  < "0"  OR HEXS(L)  > "F"  THEN 1060
2030 IF HEXS( L) > "9"  AND HEXSS(L) < "A" THEN 1060
2040 NEXT L
2050 IF HEXS(2) = " "  THEN HEXS(2) = HEXS(1) : HEXS (1 ) =
2060 FOR L = 1 TO 16: IF H E X S (1) = H$(L) THEN BITS (1)

B$(L)
2070 NEXT L
2080 FOR L = 1 TO 16: IF H E X S (2 ) = H$ (L) THEN B I T S (2)

B$(L)
2090 NEXT L
2095 PRINT " BIN:  " 7
2100 PRINT B I T S (1) ; B I T $ ( 2 ) : GOTO 1060
2110 REM ************ BINARY TO HEXADECIMAL CONVERSION

2120 TEXT : HOME : PRINT "BINARY-TO-HEXADECIMAL  
CONVERSION"

2130 PRINT : PRINT "TYPE AN 8- BI T  BINARY NUMBER (OR *M'
FOR MENU): "

2140 PRINT : INPUT "BIN:  " ; A$
2145 IF A$ = "M" THEN 120 
2150 IF LEN <A$) < > 8  THEN 2140 
2160 FOR L = 8 TO 1 STEP -  1 
2170 B I T S ( L )  = MIDS ( A $ , L , 1 )
2180 IF B I T $ ( L) < > "0"  AND BI T $ ( L )  < > "1"  THEN 2140
2190 NEXT L
2200 BITS = B I T S (1) + BIT$<2) + BI TS( 3)  + BI T$( 4)  + BIT$(5)  

+ B I T S (6) + B I T S (7) + BITSC8)
2210 T1S = LEFTS ( B I T S , 4 ) : T 2 $  = RIGHTS ( B I T S , 4 )
2220 FOR L = 1 TO 16: IF T1S = BS(L)  THEN HEXSC1) = H$(L)  
2240 NEXT L
2250 FOR L = 1 TO 16: IF T2S = B$(L)  THEN HEXS(2) = H$(L)  
2260 NEXT L
2270 PRINT "HEX:  " ; HEXS( 1 ) ; HEXS(2)
2280 GOTO 2140





In the Chips

As discussed in Chapter 1, the brain of your computer is its central 
processing unit, or CPU.

A central processing unit, as its name implies, is the central compo 
nent in a computer system—the component in which all computing 
functions take place. In a microcomputer, such as the Apple lie  and He, 
all of the functions of a central processing unit are contained in a large- 
scale integrated circuit (LSI), sometimes referred to as a microprocessor 
unit (MPU).

Originally, the MPUs that were used in the Apple lie and the Apple 
He differed slightly. The Apple lie  was originally built around a micro 
processor called the 6502B. But the Apple lie, and newer Apple He’s, 
are built around a slightly more advanced chip called the 65C02. Both 
of these chips are members of the popular 6502 family of microproces 
sors, so all Apple He’s and Apple He’s are almost 100 percent compati 
ble. The 65C02 chip can run programs written for the 6502B, but pro 
grams written for the 65C02 will not necessarily run on the older 
6502B. (All of the programs in this book will run on both chips, 
however.)

33
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In addition to the 6502B and the 65C02, two new 16-bit chips are 
now available for Apple II-series computers. One of these chips, the 
65802, can process data at 16-bit speeds but can address only 64K of 
memory space—the same amount of memory space that can be handled 
by an unimproved (64K) Apple He. The 65802 is completely pin-compatible 
with a 6502, 6502B, or 65C02 chip, so it can be plugged directly into an 
Apple lie  or an Apple He. The 65802 can run standard 6502 software, 
as well as new software that is especially written to take advantage of 
its high-speed 16-bit data-handling capabilities.

The other new chip, the 65816, has a 16-bit data bus and a 24-bit 
address bus. It can handle up to 16 megabytes of address space. It man 
ages its memory in a more complex fashion than other 6502-series chips 
do, so it is not pin-compatible with the 6502B and 65C02 chips built into 
the Apple lie  and the Apple lie. It will, however, run software designed 
for the 6502 family of 8-bit chips, as well as specially designed 65802 
and 65816 software.

The architecture of the 6502B and 65C02 chips will be discussed 
later in this chapter, and the two new “superchips” will be covered in 
greater detail later in this book. But before you can understand the 
operation of any microcomputer chip—even the plain, no-frills 6502 
chip that was used in the first Apple II —you’ll have to know something 
about the operation of computer chips in general. You should also have a 
general idea of what goes on inside a chip when it processes data and 
how a chip accesses data that’s stored in the memory of an Apple II.

We begin by discussing how your Apple’s CPU locates data that is 
stored in your computer’s memory.

Your Apple’s Memory

You know that RAM is your computer’s short-term memory, while ROM 
is its long-term memory. In computer jargon. RAM is said to be volatile, 
while ROM is said to be non-volatile. That means that that RAM can be 
changed (or lost), while ROM cannot be.

RAM is the free memory space in your computer. When you turn 
your computer on, its RAM is as blank as a sheet of white paper. You 
can store anything in it that you wish, including text, data, programs, or 
even pictures that can be displayed on a screen (all of which, of course, 
must be represented by numbers).

When you turn your computer off, however, everything that you’ve 
stored in RAM disappears. That’s what keeps computer-disk manufac-
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turers in business. When you load a program that is on a disk into your 
Apple’s memory, the program always gets loaded into the part of 
memory that is RAM. When the power to your computer goes off, the 
part of its memory that gets erased is also RAM.

We have compared the RAM banks in a microcomputer with a bank 
of mailboxes built along a wall inside a post office. Inside a computer, 
each of these “mailboxes” is called a memory register. And each 
memory register, like each box in a bank of post office boxes, has a 
unique memory address. In an Apple lie  or Apple He, each memory 
address can hold only one 8-bit number—that is, a number ranging 
from 0 to 255. That number can represent one of only four things:

• The stored number itself

• A code representing a text character
• A machine-language instruction

• A data element (such as a part of a graphics picture).

Since a computer contains many memory registers, and since the 
value stored in each memory address or location can have various mean 
ings, a computer has to be told two things before it can run a program: 
where the program is situated in its memory and whether the value in 
each number in the program should be interpreted as a number, a text 
character, a machine-language instruction, or a data element.

Running a Machine-Language Program

Before a computer can run a machine-language program, it has to know 
the starting address of the program —the location at which the program 
has been stored in the computer’s memory. Once the computer knows 
where a program starts, it can go directly to the first instruction in the 
program and carry that instruction out. The computer will then move 
on to the next address in its memory where, if the program has been 
properly written, it will find another instruction.

When you write an assembly-language program with any of the 
three assemblers that were used in the writing of this book, you will 
usually indicate the memory location where a program begins by typing 
a line that looks something like this:

ORG $8000

In an assembly-language program, a line like the one above is called 
an origin directive (ORG). The Apple ProDOS assembler requires the
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use of an ORG directive, but you can get by without one if you own a 
Merlin assembler or an ORCA/M, since both of those assemblers will 
assign a default address to a program if you don’t provide one.

When your assembler encounters an ORG line at the beginning of a 
program, it will assemble the source code that follows into a machine- 
language program that begins at the address given in the directive; in 
this case, at hexadecimal memory address $8000 (or 32768 in decimal 
notation). Once the program has been assembled at the address given in 
the ORG directive—or at a default address—it can be saved on a disk 
and later run using a ProDOS command as simple as

BRUN PATHNAME

where the word PATHNAME represents the actual pathname of the 
program.

Using Data in an Assembly-Language Program

When an ORG line is used in an assembly-language program, it must 
point to the first memory address in the program that contains execut 
able code (machine code that has been generated by valid assembly- 
language instructions). An ORG line should never point to a program 
segment that is made up of non-executable machine code, such as a 
table of data. If it does, the computer will try to interpret the data as 
executable code and will attempt to run it, and the results will be 
unpredictable.

This does not mean that you can’t use data tables in an assembly- 
language program. You can, of course; but when a block of non 
executable data is included in an assembly-language program, it is 
usually stored in a separate block of memory. Then the data can be 
accessed as needed from the main body of the program without its get 
ting mixed up with executable code during the program’s execution.

8-Bit and 16-Bit Numbers

The Apple lie and the Apple He both belong to a class of computers 
called 8-bit computers. That’s because Apple II-series computers were all 
originally designed around the 6502 microprocessor, which is an 8-bit 
chip. Eight-bit chips can process binary numbers up to 8 places long, but 
no longer. As we saw in the previous chapter, a 6502/6502B/65C02 chip 
cannot perform a calculation on a binary number larger than 255 without 
breaking it down into smaller numbers. In fact, the 6502/6502B/65C02 
chip can’t even perform a calculation with a result that’s greater than 
255!
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Obviously, this 8-bit limitation makes the manipulation of large 
numbers very inconvenient. In effect, a 6502/6502B/65C02 chip is like a 
calculator that can’t handle a number larger than 255.

To work with numbers larger than 255, an 8-bit computer has to 
perform a rather complex series of operations. If a number is greater 
than 255, an 8-bit computer has to break it down into 8-bit chunks and 
perform each required calculation on each 8-bit number. Then the 
computer has to patch all of these 8-bit numbers together again.

If the result of a calculation is more than 8 bits long, things get even 
more complicated. That’s because the memory registers in the Apple lie 
and the Apple He are also incapable of handling numbers that are 
larger than 255. Each cell in your Apple’s random-access memory 
(RAM), as well as in its-read-only memory (ROM), is an 8-bit memory 
register. So, in order to store a number larger than 255 in your comput 
er’s memory, you’ll always have to break it up into two or more 8-bit 
numbers and then store each of those numbers in a separate memory 
location. If you ever want to refer to the original number again, you 
have to patch the 8-bit pieces back together.

The Memory Architecture
Of the 6502B/65C02 Microprocessor

We are now at a point that can be somewhat confusing. Although the 
Apple lie  and the Apple He cannot process numbers that are more than 
eight bits long, they can handle addresses that are up to 16 bits long. 
Figure 3-1, a simplified block diagram of your computer’s CPU and 
components that are connected to it, may help you understand what that 
means.

When you examine Figure 3-1, you’ll see that a 6502B/65C02 chip 
has

• Six internal registers (labeled PC, SP or S, P, X, Y, and A)
• An arithmetic/logical unit (labeled ALU)
• An 8-bit data bus and a 16-bit address bus.

Figure 3-1 also includes a block representing your computer’s input/ 
output (I/O) devices, as well as a block representing your Apple’s 
memory (RAM and ROM). I/O devices will be covered in Chapter 11. In 
this section we’ll focus on the portions of Figure 3-1 critical to memory: 
the data and address buses and the program counter.
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ADDRESS
BUS

®The Western Design Center, Inc. Used by permission.

Figure 3-1. Block diagram of the 6502B/65C02 microprocessor

Data and Address Buses
At the bottom of Figure 3-1, there’s a series of lines labeled “data bus.” 
Along the left side of the drawing there’s a row of arrows labeled 
“address bus.” In computer terminology, a bus is a line over which 
information is transmitted inside a computer. The long bars at the top 
and bottom of Figure 3-1 represent lines that are used for the transmis 
sion of data and addresses inside your Apple He or Apple lie.

Here’s a very important point about the two buses illustrated in Fig 
ure 3-1: the data bus at the bottom of the diagram is an 8-bit bus, and 
the address bus at the left is a 16-bit bus.

An 8-bit bus is a line over which information can be transmitted 
eight bits at a time. A 16-bit bus is a line over which information can be



In the Chips 39

moved 16 bits at a time. Therefore, since a 6502B/65C02 chip has an
8-bit data bus, it cannot manipulate chunks of data that are more than 
eight bits long. But, since it has a 16-bit address bus, it can keep track 
of memory addresses that are up to 16 bits long. Let’s see why.

The 6502B/65C02 Program Counter

In the center of Figure 3-1, there is a pair of boxes labeled PCL (for 
“Program Counter-Low”) and PCH (for “Program Counter-High,r). These 
two boxes represent an internal register called a program counter (PC). 
In 6502-family chips, the program counter is a register that is used to 
keep track of the addresses of memory registers being used by a pro 
gram. When your computer is running a machine-language program, 
the program counter in the CPU always holds the address of the next 
byte of data to be processed. Each time a byte is processed, the program 
counter is automatically incremented. It then holds the address of the 
next byte to be processed.

The PCL and PCH boxes in Figure 3-1 were given separate labels 
because the program counter in a 6502-family chip is actually made up 
of two 8-bit registers. These registers—the PCH and the PCL—are 
always used together as one 16-bit register which, as you have seen, is 
called the program counter.

Now you can understand how your computer keeps track of memory 
addresses up to 16 bits long: it simply uses two 8-bit registers together 
as a program counter. Thus it can handle memory addresses that 
extend from $0000 to $FFFF (or, in decimal notation, from 0 to 65535). 
As you may recall from Chapter 2, the binary equivalent of $FFFF, or 
65535, is 1111 1111 1111 1111 —the largest 16-bit number.

Now you know what people mean when they talk about 8-bit data 
buses and 16-bit address buses. And you also know why most 8-bit com 
puters on the market can access 64K of memory.

Bank Switching

If your computer is an Apple He with 64K of memory, that’s about all 
you need to know right now about the way your computer’s CPU 
accesses data in its memory.

If you own an Apple lie, or an Apple He with 128K of memory, 
there’s one more point to cover: how the engineers who designed your 
computer managed to fit 128K of memory into 64K of RAM.
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They did it with a design technique called bank-switching.
Bank-switching is not a very difficult concept. It involves switching 

different blocks of memory into the same address space. If you own an 
Apple lie  or an expanded Apple lie, your computer has two 64K blocks 
of memory, one called main memory and the other called auxiliary 
memory. To switch back and forth between these two blocks of memory, 
all you do is change the contents of a certain series of memory locations 
(specifically, the locations that extend from memory address $C003 to 
memory address $C016). These locations are sometimes called soft 
switches because they are used just like hardware switches to turn 
things off and on.

If it were not for bank-switching, your Apple lie  or expanded Apple 
lie  would have a memory capacity of only 64K. With the help of bank 
switching, an Apple lie or an expanded Apple He can hold 128K of 
data, even though it isn’t a true 128K computer. It’s actually more like 
two 64K computers hooked together and wired to the same keyboard. 
Once you know how to use the right soft switches to bank-switch 
between such a computer’s main and auxiliary memories, you can move 
back and forth between these two banks of memory quite freely. But 
you can never have access to both banks of memory at the same time. 
(Because switching occurs very quickly, it is not usually noticeable to 
the user. A programmer, however, must take it into account.)

Bank-switching techniques can also be used to switch certain seg 
ments of your computer’s main memory from ROM to RAM and back to 
ROM. All of these bank-switching operations will be explained in more 
detail in Chapter 11, whk h is devoted to the memory organization of the 
Apple lie  and the Apple lie. At this point, it is sufficient to understand 
that bank-switching techniques expand the memory capacity of the 
Apple lie from 64K to 128K, and can boost the capacity of the Apple He 
even more.

Your Apple’s CPU___________________________________

Refer again to Figure 3-1. The 6502B and 65C02 microprocessors that 
came with your Apple lie or lie contain, as mentioned earlier, seven 
main parts: six addressable registers and an arithmetic logical unit or 
ALU. (The new 65802 and 65816 chips will be discussed in connection 
with addressing at the conclusion of this chapter and in Chapter 7.)
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The Arithmetic Logical Unit

Just as your computer’s command center is its central microprocessor, a 
CPU’s command center is its ALU. Every time a 6502-based chip per 
forms a calculation or a logical operation, the ALU is the component 
inside the chip where the work is actually done.

The ALU can actually perform only two kinds of calculations: addi 
tion and subtraction. Division and multiplication problems can also be 
solved by the ALU, but only in the form of sequences of addition and 
subtraction operations.

The ALU can compare values, too, but only by performing subtrac 
tion operations. To compare two values, the ALU simply subtracts one 
of them from the other. It can then determine whether one of the values 
is larger than the other or whether both values are the same.

The Accumulator

In Figure 3-1 the ALU is pictured just above the accumulator. When 
two numbers are to be added, subtracted, or compared, one of the 
numbers is first stored in the 65C02/6502B’s accumulator. Next, the 
accumulator deposits that number in the ALU through one of the ALU’s 
inputs. The other number is then placed in the ALU through the ALU’s 
other input. Finally, the ALU carries out the requested calculation and 
the result appears at the output of the ALU. As soon as the answer 
appears, it is placed in the accumulator, where it replaces the value that 
was originally stored there.

Program 3-1 is a short assembly-language program that shows how 
this process works. This program is called ADDNRS.

Program 3-1
THE ADDNRS PROGRAM
An Example of an ALU Operation
LDA U2 
ADC #3 
STA $0300

The first instruction in the ADDNRS program, LDA, means “Load 
the accumulator.” When the instruction LDA is encountered in a pro 
gram, the accumulator is loaded with a certain value: specifically, the 
value of the operand that follows the instruction. In the ADDNRS pro 
gram the effect of the instruction LDA is to load the accumulator with 
the literal number 2. (The “#” sign in front of the numeral 2 means that
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the 2 in the instruction is to be interpreted as a literal number. If there 
were no “#”, the 2 would be interpreted as the address of a memory 
location.)

The second instruction in the ADDNRS program, ADC, means “Add 
with carry.” This command results in the addition of two numbers plus 
the carry bit (if the carry bit is set). In order to avoid an improper result 
when adding two 8-bit numbers, you should use the CLC (CLEAR 
CARRY command) prior to the ADC command. With the carry bit 
cleared, all the ADC instruction does is add 2 and 3.

As soon as the line “ADC #3” appears in the ADDNRS program, the 
2 that has been loaded into the accumulator is deposited into one of the 
inputs of the 6502 chip’s ALU. And the number 3, along with the 
instruction ADC, is placed in the ALU’s other input. The ALU then 
carries out the ADC instruction that it has received: it adds 2 and 3 and 
places their sum back in the accumulator.

Now we’re ready for the third and last instruction in the ADDNRS 
program. The instruction in line 3, STA, means “Store the contents of 
the accumulator” (in the memory address that follows). Since the 
accumulator now holds the value 5 (the sum of 2 and 3), the number 5 is 
about to be stored somewhere.

As you can see, the memory address that follows the instruction STA 
is $0300—the hexadecimal equivalent of the decimal number 768. So it 
appears that the number 5 is now going to be stored in memory location 
$0300.

Now take a look at the hexadecimal number $0300 in line 3. Since 
there is no “#” sign in front of the number $0300, the Apple ProDOS 
assembler will not interpret it as a literal number. Instead, $0300 will 
be interpreted as a memory address since it carries no other identifying 
labels. (If you did want your assembler to interpret $0300 as a literal 
number, you would have to write it as #$0300. When a symbol and a 
dollar sign both appear before a number, that number is interpreted as 
a literal hexadecimal number.)

If the third line of the program were “STA #$0300”, however, that 
would be a syntax error since STA (“Store the contents of the accumula 
tor in . . . ”) is an instruction that must be followed by a value that can be 
interpreted as a memory address.

The X Register
The X  register (abbreviated “X”) is an 8-bit register with a very special 
feature. It can be incremented and decremented automatically with a
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pair of convenient one-byte instructions: INX, which stands for “Incre 
ment the X register,” and DEX, which means “Decrement the X regis 
ter.” Since the X register can be incremented and decremented so easily, 
it is often used as an index register, or counter, during loops and 
read/data-type instructions in programs. When its special incrementing 
and decrementing features are not being used, the X register can be 
used for the temporary storage of data.

The Y Register

The Y  register (abbreviated “Y”) is also an 8-bit register and can also be 
incremented and decremented with a pair of special one-byte instruc 
tions. The mnemonics that are used to increment and decrement the Y 
register are INY and DEY. When its special incrementing and decre 
menting features are not being used, the Y register can also be used for 
the temporary storage of data.

The Program Counter

The program counter (PC) was described during our discussion of your 
computer’s memory. You will recall that the PC is a pair of 8-bit regis 
ters designed to be used together as one 16-bit register. When the 
65C02/6502B is running a machine-language program, the program 
counter always contains the 16-bit address of the next memory register 
to be accessed by the program. When that instruction has been carried 
out, the address of the next instruction is loaded into the program 
counter.

We have already mentioned that the two 8-bit registers that make up 
the program counter are often referred to as the Program Counter-Low 
(PCL) register and the Program Counter-High (PCH) register.

The Stack Pointer

The stack pointer (abbreviated as either “S” or “SP”) is an 8-bit register 
that always “points to,” or contains, the address of the top element in a 
block of RAM called the hardware stack. The hardware stack (also 
referred to as the stack) is a special block of memory in which data is 
often stored temporarily during the execution of a program. When sub 
routines are used in assembly-language programs, the 65C02/6502B 
chip uses the stack as a temporary storage location for return addresses. 
Beginning with Chapter 7, you will learn to use the stack for other pur 
poses in assembly-language programs.
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The Processor Status Register

The processor status register (also called the status register but abbre 
viated as “P” so it won’t be confused with the stack pointer register) is 
an 8-bit register that keeps track of the results of operations that have 
been performed by the 65C02/6502B. Let’s take a look at this very 
important register.

The P register is built differently from the other registers in the 
65C02/6502B, and it is used differently, too. Unlike the others, it isn’t 
designed for storing or processing ordinary 8-bit numbers. Instead, the 
P register’s bits are used as flags designed to keep track of several 
kinds of important information.

Four of the status register’s eight bits are called status flags. These 
four flags, with their abbreviations, are

• The carry flag (C)
• The overflow flag (V)
• The negative flag (.N)
• The zero flag (Z).

These flags are used to keep track of the results of operations being 
carried out by the other registers inside the 65C02/6502B processor.

Since the P register is an 8-bit register, it has four additional flags. 
Three of these flags are called condition flags and are used to determine 
whether certain conditions exist in a program:

• The interrupt disable flag (7)
• The break flag (B )
• The decimal mode fa g  (D).

The processor status register’s eighth bit is not used.

Layout of the Processor Status Register

The processor status register can be visualized as a rectangular box 
containing eight square compartments. Each compartment in the box is 
actually one of the P register’s eight bits. In the processor status regis 
ter, each of these bits is used as a flag.

If a given bit has the binary value 1. then it is said to be set. If it has 
the binary value 0, then it is said to be clear.

The bits in the 65C02/6502B status register—like the bits in all 
8-bit registers—are customarily numbered from 0 to 7. By convention, 
the far-right bit in an 8-bit register is generally referred to as bit 0,
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Bits 7 6 5 4 3 2 1 0

Flags N V B D I Z c

Figure 3-2. The 65C02/6502B processor status register

and the far-left bit is generally referred to as bit 7. The positions of 
these bits in the 6502B/65C02 status register are illustrated in Figure 
3-2 above.

Here’s a complete listing and explanation of the flags in the 
65C02/6502B processor status register.

Bit 0: The Carry Flag (C) The carry flag (C) is one of the busiest bits 
in the 65C02/6502B processor status register. It tells whether a number 
must be carried from one byte to another during an arithmetic 
operation.

In an 8-bit chip like the 65C02/6502B, the carry flag has special 
importance. Without a carry flag, the 65C02/6502B would not be able to 
perform operations on numbers larger than 255. When the 65C02/6502B 
chip has to perform an addition operation on a number greater than 
255, or if the result of a calculation might turn out to be greater than 
255, that number must be broken down into 8-bit segments for process 
ing and then patched back together. The P register’s carry flag plays an 
important role in this mathematical cutting and pasting.

If two 16-bit numbers are to be added, each number must first be 
broken down into two 8-bit bytes. The low-order bytes of the two 
numbers must then be added together. If this operation results in a sum 
greater than 255, the carry flag will automatically be set. Then, if the 
high-order bytes of the two numbers are added, the carry bit will be 
added automatically to their sum.

The carry flag is set and cleared not only in addition operations, but 
also in many other kinds of operations performed by the 65C02/6502B 
chip. Detailed instructions covering the use of the carry flag will be 
presented in Chapters 9 and 10.
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The assembly-language instruction to clear the carry flag is CLC, 
which stands for “Clear carry.” The mnemonic that sets the carry bit is 
SEC, which stands for “Set carry.”

Bit 1: The Zero Flag (Z) The zero flag is set when the result of an 
arithmetic operation, a logical operation, or a comparison operation is 0. 
When a memory location or an index register has been decremented to 
0, that will also set the zero flag.

When you write routines that make use of the zero flag, remember 
this 6502 convention which may seem odd to you: when the result of an 
operation is zero, the zero flag is set (to 1), and when the result of an 
operation is not zero, the zero flag is cleared (to 0). Don’t let this conven 
tion trip you up.

There are no assembly-language instructions to clear or set the zero 
flag because it’s strictly a read-only bit.

Bit 2: The Interrupt Disable Flag (I) In assembly-language terminol 
ogy, an interrupt instruction brings all of a computer’s operations to a 
halt so that some very important or time-critical operation can take 
place. Some interrupts are called maskable interrupts because special 
instructions can prevent them from taking place. Other interrupts are 
called nonmaskable because there is no way that a programmer can 
prevent them from occurring. Nonmaskable interrupts are not used in 
Apple Ilc/IIe programming.

You can disable a maskable interrupt by clearing the interrupt dis 
able bit of the processor status register. When this flag is set, maskable 
interrupts cannot take place. When it is clear, they can.

The mnemonic that clears the interrupt flag is CLI. The mnemonic 
that sets it is SEI.

Bit 3: The Decimal Mode Flag (D) Normally, the 65C02/6502B pro 
cessor operates in what is called binary mode, using standard 8-bit 
binary numbers. But your computer’s CPU can also operate in what is 
known as a binary-coded decimal, or BCD mode. To make your Apple 
operate in BCD mode, you have to set the decimal mode flag of the 
65C02/6502B status register.

When the 65C02/6502B chip is put in BCD mode, it uses only the 10 
standard decimal digits—the numbers 0 through 9. The hexadecimal 
digits A through F are not used in BCD operations. Furthermore, every 
digit in a BCD number is treated as an individual byte. For example, it 
would require three bytes (one byte per digit) to express the decimal
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number 255 as a BCD number. In your computer’s memory, the BCD 
number 255 would be stored this way:

BCD number: 2 5 5
Binary equivalent: 00000010 00000101 00000101

That is quite different, of course, from the way the decimal number 
255 would be expressed in conventional binary (non-BCD) notation. In 
binary arithmetic, the kind you’ll probably use most often in your 
assembly-language programs, the decimal number 255 would be ex 
pressed as a hexadecimal number.

Decimal number: 255
Hexadecimal equivalent: FF
Binary equivalent: 11111111

As you can see, at the rate of one byte per digit, it takes much more 
memory to store BCD numbers than it takes to store conventional 
binary numbers. (It is possible to “pack” BCD digits into half that 
amount of space with special procedures and additional processing 
time, as you’ll see in a later chapter.) Another disadvantage of BCD 
arithmetic is that it’s slower than binary arithmetic. But BCD math is 
based on the number 10 rather than the number 8, so it is much more 
accurate than hexadecimal math in terms of real-world, base-10 arith 
metic problems.

Another advantage of BCD numbers is that they’re easier to convert 
into decimal numbers than standard binary numbers are. BCD numbers 
are therefore sometimes used in programs calling for instant number 
display on a video monitor.

BCD numbers will be discussed further in a later chapter. For now, 
it’s sufficient to remember that when the status register’s decimal mode 
flag is set, the 65C02/6502B chip will perform all of its arithmetic using 
BCD numbers. If you aren’t using BCD arithmetic in your assembly- 
language programs, you must make sure that the decimal flag is clear 
before your computer starts performing arithmetical operations.

The assembly-language instruction that clears the decimal flag is 
CLD. The instruction that sets it is SED.

Bit 4: The Break Flag (B) The break flag is often used by pro 
grammers during the debugging of assembly-language programs. It is 
set by the assembly-language instruction BRK, an instruction ordinar 
ily used only during the debugging of programs.
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When a programmer is writing an assembly-language program, 
BRK instructions are often inserted at critical points in the program. 
The break flag is set following a software BREAK instruction. When 
encountered during the processing of the program, certain error 
flagging operations return control of the computer to the programmer. 
Thus, the BRK instruction halts program execution and causes the con 
tents of the 65C02/6502B chip’s A, X, Y, P, and S registers to be 
displayed on the screen. The contents of these registers can then be 
examined to see what, if anything, went wrong during the processing of 
the program.

Once a program has been debugged, any BRK instructions that were 
placed in it for debugging purposes are usually removed. The program 
will then run normally.

Bit 5: Unused The engineers who designed the 6502 chip left this bit 
unused. As you will see later in this chapter, though, bit 5 of the P 
register is used in the 6502’s two new 16-bit cousins, the 65802 and the 
65816.

Bit 6: The Overflow Flag (V) The overflow flag is used to detect an 
overflow in a binary number from bit 6 to bit 7. It is used primarily in 
operations dealing with signed (plus or minus) numbers. In an ordinary, 
unsigned binary number, the highest or most significant bit is bit 7. In a 
signed number, however, bit 7 is used to designate the number’s sign. If 
bit 7 of a signed number is clear, the number is positive. If bit 7 is set, 
the number is negative.

Since bit 7 of a signed number is not used as part of the number 
itself, the most significant bit of a signed number is bit 6. It is rather 
difficult, then, to perform carrying and borrowing operations in arith 
metic problems that deal with signed numbers, so the overflow flag is 
often used to keep track of carrying and borrowing operations in signed 
binary arithmetic. In an addition problem, the overflow flag is set when 
bit 7 of both addends is the same value and bit 7 of the sum is the 
opposite value. In a subtraction operation, the overflow flag is set when 
bit 7 of the subtrahend and minuend are opposite and bit 7 of the result 
has the same value as bit 7 of the subtrahend. In other words, the over 
flow flag is set when there is an overflow from bit 6 to bit 7 but there is 
no external carry or, conversely, when there is no overflow from bit 6 to 
bit 7 but there is an external carry. A more technical way to say this is 
that the overflow flag is set by performing an exclusive-OR operation on 
the carry-in and carry-out of bit 7. This procedure may seem quite com 
plicated, but without the help of the overflow flag it would be impossible 
to write programs to handle operations involving signed numbers.
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The assembly-language mnemonic that clears the overflow flag is 
CLV. The V flag can be cleared, but there is no specific instruction to 
set it.

Bit 7: The Negative Flag The negative flag (N) of the processor status 
register is set when the result of an operation is negative and cleared 
when the result of an operation is 0 or positive. The negative flag is 
often used in comparison operations and in loop countdowns designed to 
extend all the way down to 0.

The N bit is a read-only bit, so no instruction to set it is provided.

65802/65816 Architecture

As illustrated in Figure 3-1, the architecture of the 6502, 65C02, and 
6502B chips can be represented by the same block diagram. There are 
significant differences, however, between the architecture of the 
65C02/6502B chip and that of the two new 16-bit chips in the 6502 
family, the 65802 and the 65816.

The E (Emulation) Flag

In both the 65802 and the 65816, there is an extra status flag called the 
emulation (or E) flag.This flag is not part of the 65802/65816 processor 
status register but is an independent toggle switch built into the CPU 
itself. However, the 65802/65816 instruction XCE can be used to change 
the status of the E flag. By using an XCE instruction during an 
assembly-language program, you can temporarily exchange the posi 
tions of the free-floating E flag and the C (carry) flag of the processor 
status register. Since the carry flag ordinarily resides in bit 0 of the P 
register, the effect of the instruction XCE is to store the content of the E 
register in bit 0 of the P register, while placing the carry flag tempo 
rarily  in the E register. Once this exchange has taken place, an 
assembly-language instruction such as SEC (set carry) or CLC (clear 
carry) can be used to change the status of the E flag. Another XCE 
instruction can then be issued to restore the E flag and C flag back to 
their normal positions. The state of the E flag will then be changed, and 
the C flag can again be used normally.

When the E flag of the P register is cleared to 0, its default setting, 
the 65802/65816 is a 16-bit chip. When the E flag is set to 1, however, 
the 65802/65816 chip is placed in what is called a 6502 emulation mode.

When the 65802/65816 chip is in its default 16-bit mode, it can be 
programmed in a language that is a superset of standard 6502 assembly
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language. When the chip is in its 6502 emulation mode, it can be used 
exactly like a standard 6502 chip (or like a 65C02 or a 6502B). In its 
emulation mode, the 65802/65816 can recognize and process the same 
machine-language instructions as its 8-bit cousins can, so it can run 
software written for the 6502, the 6502B, and the 65C02.

Additional P Register Flags

There are two additional differences between the processor status regis 
ter of a 6502B/65C02 chip and the P register of the 65802 and the 
65816. Bit 4 of the P register—the break (B) flag on a 6502B/65C02 
chip—is known as the X  flag, or index register select flag, on the 
65802/65816. Bit 5 of the P register, which is not used by the 
6502B/65C02, is called the M flag, or memory select flag, on the 
65802/65816. Figure 3-3 shows how the bits of the 65802/65816 P regis 
ter are coded when the chip is in its 16-bit mode.

The M Flag When both the E flag and the M flag of the 65802/65816 
are clear, the chip’s accumulator is 16 bits long and is called the C regis 
ter. When the accumulator is in its 16-bit C-register mode, its lower 
eight bits are known as the A register and its higher eight bits are 
known as the B register. But the names of assembly-language instruc 
tions to the accumulator are not affected by these changes; the mne 
monic LDA, for example, remains LDA, and STA remains STA.

There are some changes, of course, in the way that LDA, STA, and 
other accumulator instructions work when the 65802/65816 is in its 16- 
bit mode. When the chip is in this mode, instructions such as LDA and 
STA can be used with two-byte operands. When a two-byte operand is 
used in this fashion, its low byte affects the accumulator’s A register, 
and its high byte affects the B register. For example, the statement

LDA #$8000

would load the literal value 00 into the A register and the literal value 
80 into the B register.

However, the statement

LDA $8000

would load the A register with the value of memory register $1000 and 
the B register with the value of memory register $1001.

The X Flag When both the E flag and the X flag of the 65802 65816 
are clear, the chip’s X and Y registers are 16 bits long. When the X and
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Figure 3-3. The 65802/65816 processor status register (when chip is in 16-bit mode)

65816 Registers 65802/65816 Registers

Data Bank Register X Register (X)

DBR XH XL

Data Bank Register Y Register (Y)

DBR YH YL

Stack Register (S)

0 0 SH SL

Accumulator (C)

B A

Program Bank Register Program Counter (PC)

PBR PCH PCL

Direct Register (D)

DH DL

Figure 3-4. Internal registers of the 65802 and 65816 microprocessors



52 Apple Roots

Y registers are in their 16-bit mode, their lower eight bits are known as 
XL and YL, and their higher eight bits are known as XH and YH.

The S Register
When the E register of the 65802/65816 is clear, the chip’s stack regis 
ter (S register) is 16 bits long. This expansion makes it possible to place 
the 65802/65816 chip’s hardware stack anywhere in memory.

The D Register
The 65802 chip has one more internal register than its 8-bit relatives. 
This extra register is called the direct page register; or D register. When 
the 65816’s E register is clear, the D register can be used to enhance the 
chip’s ability to handle a very useful and speedy type of addressing 
called zero-page addressing in 6502 assembly-language programming. 
The operation of the D register will be covered in detail in Chapter 7.

The 65816 Chip’s 24-Bit Registers
In addition to the D register, the 65816 chip has two other special regis 
ters: a program bank register, or PBR, and a data bank register, or 
DBR.

The program bank register is an 8-bit register that can extend the 
length of the 65816’s program counter to 24 bits. When the PBR is used, 
therefore, the 65816 can address up to 16 megabytes of memory.

With the help of the data bank registers, the 65816’s X and Y regis 
ters can also be expanded into 24-bit registers. And that capability pro 
vides the 65816 with a simple method for addressing up to 24 megabytes 
of data. The addressing capabilities of the 65816 will be explained in 
greater detail in Chapter 7. Meanwhile, Figure 3-4 is a block diagram 
that shows the internal registers of the 65802 and 65816.
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Writing and Assembling 
An Assembly-Language 
Program

In this chapter, you finally get a chance to write a real assembly- 
language program. You can’t create and assemble an assembly-language 
program, of course, unless you have a software package called a 
machine-language assembler. You may recall from the Introduction to 
this book that three different assemblers were used to write the pro 
grams in Apple Roots. To get the maximum possible value out of this 
book, you should probably own at least one of them.

• The Apple ProDOS Assembler Tools package, manufactured by 
Apple.

53
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• The Merlin Pro assembler, manufactured by Roger Wagner Pub 
lishing, Inc., of Santee, California.

• The ORCA/M assembler, manufactured by The Byte Works, Inc., 
of Albuquerque, New Mexico.

These three assemblers were compared fairly comprehensively in 
the Introduction. Now you will start using the assembler you have 
chosen.

This chapter is divided into three parts. I will explain how to type 
and assemble a program first using the Apple ProDOS assembler, then 
using the Merlin Pro assembler, and finally using the ORCA/M 
assembler.

No matter which assembler you’re using, you should read the discus 
sion of the Apple ProDOS assembler carefully, since it contains the only 
line-by-line explanation of how the program works.

As you may have guessed, the term “assembler” can mean two dif 
ferent things, depending upon the way in which it is used. In its more 
accurate sense, an assembler is just one part of an assembler/editor 
software package: the part that does the actual work of converting 
assembly language into machine language. But sometimes the word 
“assembler” is used to refer to a complete software development kit such 
as the Apple ProDOS assembler, the ORCA/M assembler, or the Merlin 
Pro. This book uses the word in both ways. The context in which the 
word is used should make its meaning clear.

The Apple ProDOS Assembler

The Apple ProDOS Assembler Tools kit is made up of four different 
programs:

• An editor, which can be used to create and edit assembly-language 
programs and to store them on disks (and also to create and edit 
ProDOS EXEC files and BASIC programs).

• An assembler, used to assemble source-code files into executable 
machine-language programs.

• An assembly-language debugging utility called the Bugbyter. 
which allows you to track down and correct errors in your 
assembly-language programs.

• A relocating loader used to load and execute assembly-language 
programs during the execution of BASIC programs.
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All of the programs in the Apple ProDOS assembler package are 
stored on a single disk. This disk is not copy-protected, so you can (and 
should) make at least one backup copy of it before you start using your 
ProDOS assembler package to write any programs. Once you have 
copied the master assembler disk, you can use your copy as a master. 
Then you can put the original master disk away for safekeeping.

Once you’ve made a copy of your Assembler Tools disk, boot your 
duplicate disk just as you would any other ProDOS disk. You should now 
see a display that looks like this:

PRODOS BASIC 1.0  
COPYRIGHT A PPLE ,  1983 
D

After the “]” prompt, there will be a flashing cursor. There you can now 
type the line

J-EDASM. SYSTEM

After a little disk-spinning, you will see this video display:

PRODOS EDITOR-ASSEMBLER //

ENTER THE DATE AND 
PRESS RETURN

DD-MMM-YY

There will be a flashing cursor over the first D in the last line of the 
display. Type the date over the letters DD (for date), MMM (for month), 
and YY (for year). You will then see

1
PRODOS EDITOR-ASSEMBLER //
BY JOHN ARKLEY 
(C) COPYRIGHT 1982

APPLE COMPUTER INC.
3

DD-MMM-YY

(DD-MMM-YY will vary according to what you type in.)
When you see that display, you’ll know that your assembler is in its 

command level mode, the mode in which you’ll be writing and editing 
assembly-language programs.
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The program that you will write in this chapter is the ADDNRS 
program presented in Chapter 3. As you may recall, ADDNRS is a very 
short and simple program. It simply adds the numbers 2 and 3 and 
stores their sum in a certain memory register (specifically, memory 
register $0300).

The version of the ADDNRS program that will be written using the 
Apple ProDOS assembler is called ADDNRS.SRC.

Entering the ADDNRS.SRC Program

Near the bottom of your monitor screen, just below the date, you will see 
a colon followed by a flashing cursor. The prompt just behind the 
cursor is the prompt you’ll always see when your assembler is in com 
mand (or editing) mode—that is, when you’re using the editor module of 
your Apple ProDOS Assembler Tools package.

When you see the colon prompt, type A for “Append.” You’ll then see 
the number 1 appear on your screen. That 1 is a line number—the 
number of the first line you’ll type when you start writing a source-code 
program.

Line Numbers in Apple ProDOS Assembler Programs The number 1 
appeared automatically on your screen because the Apple ProDOS 
source-code editor automatically generates line numbers in source-code 
programs, beginning with the number 1 and progressing in increments 
of 1. It is important to note, however, that the line numbers generated 
by the Apple ProDOS source-code editor are very different from the 
line numbers commonly used in BASIC programs. Unlike BASIC, 6502 
assembly language does not require the use of line numbers. In fact, 
some 6502-family assemblers—such as the ORCA/M assembler—do not 
use line numbers at all.

Line numbers are optional in assembly-language programs because 
a routine is never referred to by its number in 6502 assembly language; 
segments of source-code are usually accessed with the help of descrip 
tive labels. A descriptive label can be assigned to the first line of any 
routine in an assembly-language program and can then be used to 
access that routine whenever desired.

Since line numbers are not essential to the operation of assembly- 
language programs, the Apple ProDOS source-code editor generates 
what are sometimes referred to as relatin' line numbers. A relative line 
number is not an integral part of an assembly-language program; it is 
provided only as a convenience so that programmers and program users 
can find their way around more easily in assembly-language programs.
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There are advantages and disadvantages to using relative numbers. 
You never have to worry about numbering or renumbering the lines in a 
program. Relative line numbers are generated automatically, starting 
at the number 1 and progressing consecutively in increments of one. 
When the Apple ProDOS source-code editor numbers the lines of a pro 
gram, it never skips a number. It will automatically renumber the lines 
in a program, too; when a line is inserted or deleted, every line below it 
is immediately and automatically renumbered.

It’s important to treat relative line numbers with great care when 
you’re writing and editing an assembly-language program because they 
can change without notice. When you’re making multiple deletions of 
lines, for example, the lines that you delete first will change the 
numbers of later lines, so it’s smart to delete the lines with higher 
numbers first. Otherwise, you might later delete the wrong lines.

Take a close look at the number 1 on your screen, and you’ll see that 
it is followed by one space and a flashing cursor. Now type one more 
space, and then, without touching your RETURN key, type

ORG $1000

Line 1 of your program will read

1 ORG $1000

Now press the RETURN key. Your ProDOS editor will move down to the 
next line on your screen and print a 2, thus signaling that it’s ready for 
you to type line 2 of the ADDNRS.SRC program.

After the relative line number 2—but this time without an extra 
space—type a semicolon. Line 2 of your program will be displayed as

2 ;

Press the RETURN key again. Your editor will advance to line 3. Then 
type these two lines:

3 ; ADDNRS.SRC
4 ;

Press the carriage return again after line 4 and you will see

1 ORG $1000
2 ;
3 ; ADDNRS.SRC 
A ;
5
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In a moment, you learn what those lines mean. First, though, let’s 
examine a few of the important editing features of the Apple ProDOS 
assembler/editor system.

Single-Character Editing Functions If you make a mistake while 
you’re typing a line of source code using the ProDOS source-code editor, 
there are several ways you can correct it. If you are in “append” mode, 
you can change any letter in a line by typing another letter directly over 
it. You can delete a character that lies directly under your cursor by 
typing CONTROL-D. You can delete the character to the left of your 
cursor by using the DELETE key. You can insert a character into a line 
at the location of your cursor by typing CONTROL-I. If you change 
your mind about correcting a line and want to restore the original ver 
sion, you type CONTROL-R. (One word of caution, however: When the 
ProDOS assembler is in its “edit” mode, some of its responses to editing 
commands are different from the responses to the same commands in 
“add” mode. In “edit” mode, for example, the d e l e t e  key erases the 
character under the cursor, not the character to its left.)

Line-By-Line Editing Functions The Apple ProDOS source-code edi 
tor is a line-oriented editor; you can move back and forth within a line 
using your left and right ARROW keys, but you can’t move from line to 
line using your up and down ARROW keys. When you want to exit a line, 
you have to use the carriage return. And each time you type a carriage 
return at the end of a line, the line that precedes the carriage return 
line is automatically included in the program that you’re typing.

When you finish typing a program—or when you want to stop typing 
lines to go back and do some editing—you can make your assembler 
stop generating new line numbers by simply pressing the RETURN key 
twice. Then your editor will stop creating new line numbers and the 
prompt will be displayed on the screen.

1 4 - J UN-85

When you see that display, you can type A (for “append”), just as you 
did when you began this programming session. Your assembler will 
then resume numbering lines exactly where it left off. and you can con 
tinue writing your program.

Two other commands that can be used after the prompt are the L 
(for LIST) and P (for PRINT) commands. If you type an L command, 
your entire program will be listed, complete with line numbers, on your
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computer screen. The P command will also display your program on 
your screen, but without line numbers.

If you want to look at a specific line in a program, you can type the 
line number that you want after either the L command or the P com 
mand. If you want to display a block of lines, you can specify the first 
and last line number that you want to see by using this kind of format:

L beg i n #- en d#

or

P beg i n #- en d#

The DELETE Command Another command that can follow the 
prompt is D (for DELETE). To use the DELETE command, all you 
have to do is type the letter D followed by the number of the line (or 
lines) you want to delete. Suppose, for example, that you want to delete 
lines 2 and 3 in the above listing. You can do that by entering D2-3 after 
the prompt.

Still another command that can be used after the prompt is I (for 
INSERT). To use the INSERT command, type the letter I after a colon 
prompt, followed by the number of the line where you want your new 
line inserted. Let’s insert another semicolon at line 2 in the program you 
are creating. Press your RETURN key to get a colon prompt, and then 
type

12

You’ll see your assembler-editor respond with the number 2.
Now type a semicolon followed by two carriage returns. The Apple 

ProDOS source-code editor will display its prompt again, and you 
can then type L for list. Your assembler will then list your program; 
you’ll see that another line containing a semicolon has been inserted into 
your program at line 2. Notice that your assembler also has automati 
cally renumbered each line after the line that you’ve inserted, a process 
that was explained earlier.

Now that you’ve seen your assembler’s relative line-numbering sys 
tem in action, you can delete the extra semicolon that you added to your 
program. Press the carriage return to get a colon prompt and type D2. 
Then you can type L for LIST, to generate a listing showing you your 
program again.
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1 ORG $1000
2 ;
3 ; ADDNRS.SRC 
A ;

Besides the A, I, and D commands that you’ve just used, there’s also 
an R command that you can use to restore a line. In addition, the Apple 
ProDOS source-code editor also has commands that you can use to copy 
lines, find and replace strings, and perform many other useful func 
tions. Full details on how to use these editing functions and many others 
are provided in the instruction manual that came with your Apple Pro 
DOS assembler.

Other Features of the ProDOS Editor The Apple ProDOS editor has 
many other features that won’t be covered in this chapter. For example, 
there’s a SWAP command that you can use to tuck a source-code pro 
gram away in a hidden block of memory in order to write or edit 
another program. You can then SWAP your two programs back and 
forth at will, until you’re either ready to SAVE both of them or to delete 
one or both of them using another assembler command, KILL2.

Completing the ADDNRS.SRC Program

Now it’s time to finish typing the ADDNRS.SRC program. Program 4-1 
is a complete source-code listing of this program, and now is a good 
time to enter the rest of the listing into your computer. Before you start 
typing, though, here’s a word of caution. The Apple ProDOS assembler/ 
editor, like most assembler/editors, is very finicky about spacing, so be 
sure to type the ADDNRS.SRC program exactly as it appears in Pro 
gram 4-1. In lines 2 through 5, there should be no extra spaces between 
the relative line numbers generated by your assembler and the instruc 
tions that follow them. (The ProDOS editor will automatically insert 
one space after a line number.) There should be one extra space after 
line 1, however, and there should also be one extra space after line 
numbers 6 through 10. If you follow all of these rules of spacing (which 
will be explained more fully later in this chapter), your own source-code 
listing of the ADDNRS.SRC program should look just like Program 4-1.

Program 4-1
THE ADDNRS.SRC PROGRAM
(Apple ProDOS Assembler Version)
1 ORG $1000
2 ;
3 ; ADDNRS.SRC 
A ;
5 ADDNRS CLD
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6 CLC
7 LD A U 2
8 ADC nz
9 STA $0300

10 RTS

Listing Your Program

When you’ve finished typing line 10 of your ADDNRS.SRC program, 
just press your RETURN key twice. Then type either L or LIST, and the 
complete program will be listed on your computer screen.

You may have noticed that the ADDNRS.SRC program that you’ve 
just typed and listed is the same program that was first introduced in 
Chapter 3. Later on, when you run the program, you’ll learn exactly 
how it functions. You know that it adds the numbers 2 and 3 and stores 
the result in memory address $0300—or in decimal notation, memory 
register 768. You can see by looking at the program that the numbers 
are added in lines 7 and 8, and their sum is stored in memory register 
$0300 in line 9.

Spacing

Program 4-2 is an “explosion diagram” of the ADDNRS.SRC program. 
It does not follow the rules of spacing that were explained a few para 
graphs back, but it may give you a clearer picture of how the informa 
tion contained in a source-code listing can be split up into fields, or 
columns.

Program 4-2
THE ADDNRS.SRC PROGRAM, COLUMN BY COLUMN
LINE LABELS AND OP OPERAND
NO. REMARKS CODE COMMENTS

1 ORG $1000
2 /
3 ; ADDNRS.SRC
4 /
5 ADDNRS CLD
6 CLC
7 LD A #2
8 ADC nz
9 STA $0300

10 RTS

Fields in Source-Code Listings

As you can see by looking at Program 4-2, assembly-language programs 
that are created with the Apple ProDOS assembler-editor can be
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divided into several columns, or fields. The fields illustrated in Pro 
gram 4-2 are the label field, the op-code field, the operand field, and the 
comments field. In addition, one column is used for line numbers. How 
ever, since line numbers are optional in assembly-language programs, 
the column used for line numbers in a source-code listing is not consid 
ered a separate field.

The Label Field Labels, when they are used, always occupy the first 
field in an assembly-language source-code listing. Most types of state 
ments in an assembly-language program can be identified with labels, 
and labels are actually required with a few types of assembly-language 
commands.

Even though they are optional, labels are very im portant in 
65C02/6502B assembly language, since they are used instead of line 
numbers to address routines and subroutines in assembly language. In 
the ADDNRS.SRC program, the abbreviation ADDNRS in line 5 is a 
label, so it appears in the first field of Program 4-2.

In an assembly-language program, remarks can also start in the 
label field. When a remark begins in the label field, however, it must be 
preceded by some kind of identifying mark, usually an asterisk or a 
semicolon (depending on the assembler). On the Apple ProDOS assem 
bler, a remark can be preceded by either an asterisk or a semicolon.

When a remark starts in the label field, it may extend across other 
fields. A remark, like every other line in an assembly-language pro 
gram, always ends with a carriage return.

When a label is assigned to an assembly-language routine or an 
assembly-language program, the program can then be saved on a disk 
and used later as a subroutine or a secondary routine in a larger pro 
gram. Since the ADDNRS.SRC program has been assigned a label — 
the label ADDNRS, which appears in line 5—the program could be 
included in a larger program and then accessed using either the 
instruction JSR ADDNRS (the assembly-language equivalent to the 
GOSUB instruction in BASIC) or the instruction JMP ADDNRS (which 
works like BASIC’s GOTO instruction). Other jumping and branching 
instructions can be used with labeled routines and subroutines; they 
will all be covered in later chapters.

If ADDNRS.SRC were used as a subroutine in a longer program, the 
RTS (return from subroutine) instruction in line 10 would end the sub 
routine and return control to the main program. If ADDNRS.SRC were 
used to label a complete program, the RTS instruction would end the 
program. (The JSR and JMP instructions are discussed further in later 
chapters.)
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A label can be as short as one character or as long as the length of a 
statement permits. Most programmers use labels three to six characters 
long. However, some labels (such as A, X, Y) are restricted, and long 
labels are generally undesirable because they slow down assembly.
The Op-Code Field An operation-code (or op-code) mnemonic is 
another name for an assembly-language instruction. There are 57 op 
code mnemonics in the 6502B microprocessor used in the Apple He, and 
there are ten additional mnemonics in the expanded instruction set that 
can be used with the 65C02 chip used in the Apple lie.

Op-code mnemonics, such as CLC, CLD, LDA, ADC, STA, and RTS, 
are typed in the op-code field of assembly-language source-code listings. 
When you write a program using the Apple ProDOS Assembler Tools 
package, each op-code mnemonic you use must start at least two spaces 
after a line number or one space after a label. An op-code mnemonic 
placed in the wrong field will not be flagged as an error when you type 
your program, but will be flagged as an error when your program is 
assembled.

The op-code field in a source-code listing is also used for directives 
and pseudo-ops—words and symbols that are entered into a program 
like mnemonics but that are not actually included in the 6502 instruc 
tion set. The difference between an op code and a pseudo-op is that an op 
code tells a computer’s microprocessor to do something, while a pseudo 
op tells an assembler to do something while it is assembling a program. 
Thus, although op codes and mnemonics may resemble each other, they 
are actually quite different. Since op codes are part of the 6502 instruc 
tion set, they never vary from assembler to assembler. But the pseudo 
ops used by one assembler are often different from those used by 
another assembler, although there are many nearly standard pseudo-ops.

The ORG directive in line 1 of the ADDNRS.SRC program is one 
example of a pseudo-op. Almost all assemblers use an origin directive of 
one kind or another, but some use an equal sign (=) instead of the 
abbreviation ORG. In a 6502/65C02 assembly-language program, the 
ORG directive (or its equivalent) is used to tell the assembler where the 
assembly-language program will be stored in memory after it is con 
verted into machine code.

The Apple ProDOS assembler recognizes a number of other pseudo 
ops; a number of them will be covered in this chapter, and all of them 
are discussed in detail in the ProDOS Assembler Tools instruction 
manual.
The Operand Field The operand field in an Apple Ilc/IIe source-code 
listing starts one space after an op-code mnemonic. When an operand is
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used, its purpose is to expand an op-code mnemonic into a complete 
instruction. Some mnemonics—such as CLC, CLD, and RTS—do not 
require operands. Others—such as LDA, STA, and ADC—do require 
operands. You will learn more about operands in Chapter 6.

The Comments Field Although comments can start in the label field 
of an assembly-language program, they can also start to the right of the 
operand field, in a field of their own. Comments are used in assembly- 
language programs in much the same way that remarks are used in 
BASIC programs; they don’t affect a program in any way, but are used 
to explain programming procedures and to provide eye-saving white 
space in program listings.

The ADDNRS.SRC Program Line by Line

Now that we’ve looked at the ADDNRS.SRC program field by field, let’s 
examine it line by line. When the program has been typed as shown in 
Program 4-1 and then listed using the L command, it will appear on the 
screen as illustrated in Program 4-3.

Program 4-3
THE ADDNRS.SRC PROGRAM
(Apple ProDOS Assembler Version)

1 ORG $1000
2 /
3 ; ADDNRS.SRC
4 /
5 ADDNRS CLD
6 CLC
7 LDA #2
8 ADC #3
9 STA $0300

10 RTS

Here is a line-by-line analysis of Program 4-3.

Line 1: The ORG Directive Line 1 of Program 4-3 is the origin line of 
the ADDNRS.SRC program. When an ORG line is used in an assembly- 
language program, it tells where the program will be stored in RAM 
after it has been converted into object code. Not every assembler 
requires an ORG directive (the directive is optional, for example, in 
programs written for the Merlin Pro and ORCA/M assemblers). But the 
Apple ProDOS assembler does require every program to have an origin 
directive. If there is no origin line in a program written for the Apple 
ProDOS assembler, the assembler will not generate any source code.
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It’s not always easy to decide where in memory a program should 
start, particularly if you’re new to assembly-language programming. 
Your computer has many blocks of memory that you can’t use for 
assembly-language programs because they’re reserved for other uses, 
such as holding your computer’s operating system, its disk operating 
system, and its BASIC interpreter. Even the assemblers that were used 
to write the programs in this book take up blocks of memory, and if you 
accidentally overwrite the program that runs your assembler, your 
assembler won’t be able to assemble your program.

Deciding where to store a program in a computer’s memory is a 
tricky job, with many variables to be taken into account. This topic will 
be covered in more detail in Chapter 11, which is devoted solely to 
memory management. For now, it’s sufficient to remember that if you 
type the programs in this book exactly as they are written, they won’t 
venture into any reserved areas of your computer’s RAM.

Lines 2 Through 4: Remarks The semicolons that precede the text in 
lines 2 through 4 show that these lines are made up solely of remarks. 
Line 3 gives the name of the program. Lines 2 and 4 only serve to sur 
round the title line with space to make it easier to read.

It’s good programming practice in assembly language—as well as in 
most other programming languages—to use remarks and comments 
freely. You will find many explanatory comments and remarks in the 
programs in this book.

Line 5: A Label and an Op Code As you can see, the label field in this 
line has been used to assign the label ADDNRS to the entire 
ADDNRS.SRC program. The program would work perfectly without 
any label at all but, as previously noted, a program becomes more use 
ful when it does have a label, since it can then be accessed by that label 
and used as part of a larger program. Therefore, it’s a good idea to give 
labels to important routines and subroutines. A label not only makes a 
routine easier to reference, it also serves as a reminder of what the rou 
tine does (or, until your program is debugged, what it’s supposed to do).

As previously mentioned, the 65C02/6502B chip can perform arith 
metical operations on two kinds of numbers: ordinary binary numbers 
and binary-coded decimal (BCD) numbers. Much more information on 
binary and BCD numbers will be provided in Chapter 10. It’s sufficient 
now to recall that binary arithmetic is the kind most often used in 
65C02/6502B programs and that the mnemonic CLD clears the decimal 
flag of the 65C02/6502B microprocessor so that calculations can be
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carried out using binary numbers. (The command to set the decimal flag 
is SED.) It’s not necessary to clear the decimal flag before every arith 
metical operation in a program, but you should clear it before the first 
addition or subtraction operation in a program. That way you’ll never 
worry about whether it may have been set during a previous program.

Line 6: An Op Code Before you carry out an addition operation, clear 
the carry flag (CLC). The carry bit is affected by many kinds of opera 
tions and it’s best to be safe. It takes only one half millionth second and 
one byte of RAM to clear the carry flag. Compared to the time and 
energy that debugging can cost, that’s a bargain.

Line 7: Op Code and Operand (LDA #2) Before an addition operation 
takes place, the accumulator has to be loaded with one of the numbers 
that is to be added. In the ADDNRS program, LDA #2 is the statement 
that loads the accumulator. In this statement, the “#” sign in front of the 
number 2 means that the 2 is a literal number, not an address. If the 
instruction were LDA 2, the accumulator would be loaded with the con 
tents of memory address 0002 rather than with the number 2.

Line 8: Op Code and Operand (ADC #3) In this line, the statement 
ADC #3 is used to add the number in the accumulator to the literal 
numuer 3. The mnemonic ADC means “add with carry.” When this 
instruction is used in a program, it adds the value specified in the oper 
and to the value of the accumulator, plus the value of the carry bit of 
the processor status register. In this case, adding the carry bit has no 
effect, since the carry bit was cleared prior to our addition operation. 
There is no 65C02/6502B assembly language instruction that means 
“add without carry.” If you did want to add a number without a carry, 
though, you could do it by clearing the status register’s carry flag and 
then performing an “add with carry” operation.

Line 9: Op Code and Operand (STA $0300) This line stores the con 
tents of the accumulator—in this case, the sum of 2 and 3—in memory 
address $0300. Note that the symbol is not used before the operand 
($0300) in this instruction, since in this case the operand is a memory 
address, not a literal number.

Line 10: An Op Code (RTS) If the mnemonic RTS is used at the end 
of a subroutine, it works like the RETURN instruction in BASIC: it 
ends the subroutine and returns to the main body of a program, begin 
ning at the line following the line in which the RTS instruction appears. 
But if RTS is used at the end of the main body of a program, as it is
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here, the instruction has a different function. Instead of passing control 
of the program to a different line, it terminates the whole program and 
returns control of the computer to the next higher calling program that 
was in control before the program began —usually a disk operating sys 
tem (DOS), a keyboard-screen editor, or a machine-language monitor.

Printing Your Program

When you have finished typing your source-code listing, you can print it 
on a printer in two steps. F irst you must open a channel to your printer 
by typing the command PR# followed by the device number of your 
printer. If your computer is an Apple lie, the device number of your 
printer will always be 1 (unless the printer is hooked up to the modem 
port, in which case it will be PR#2). So, if you own an Apple lie, type 
PR#1. If you have an Apple lie  equipped with a printer, the number 
that follows the instruction PR# will always be the number of the 
expansion in which your printer card is installed. (Most Apple He’s have 
their printer interface installed in slot 1.) You type the slot number of 
your printer card.

After you’ve opened a channel to your printer, you’ll have to activate 
your printer by typing the command PTRON, which stands for “printer 
on.” You can then type either LIST or PRINT (or the abbreviation L or 
P) to get a hard-copy listing (or printout) of your program

Saving Your Program

Each time you write an assembly-language program using the Apple 
ProDOS Assembler Tools package, the source code that you enter winds 
up in an edit buffer that extends from memory address $0800 to memory 
address $9BFF. That’s a 37,887-byte block of RAM, large enough for 
quite a large source-code program. Unfortunately, however, that’s 
almost exactly the same block of memory that the assembler module in 
the ProDOS assembler-editor package has to use when it’s assembling a 
program. Since two programs can’t occupy the same memory space in a 
computer at the same time, any source code that’s in the Apple ProDOS 
edit buffer has to be cleared from the edit buffer before the ProDOS 
assembler can be loaded into RAM and the program assembled.

Since clearing a program from memory wipes it out forever, be sure 
you save a source-code listing on a disk as soon as it’s written. Fortu 
nately, the Apple ProDOS assembler-editor makes it difficult to wipe 
out a source-code listing accidentally. The assembler-editor won’t let you 
load its assembler module into memory (and thus wipe out whatever
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may be stored in the edit buffer) until you type the word NEW. It’s up 
to you to save any source code that you've been working on before you 
type NEW and erase the contents of the edit buffer.

Since it’s so important to save a source-code listing before assembly, 
let’s save the ADDNRS.SRC program on a disk. Then we can assemble 
the program.

Using ProDOS Commands

It isn’t difficult to save a program that has been created with the Apple 
ProDOS Assembler Tools package, since the editor module included in 
the package supports most of the commonly used ProDOS commands 
(such as PREFIX, CREATE, DELETE, LOCK, UNLOCK, CAT, 
LOAD, and SAVE). To invoke any supported ProDOS command while 
using the ProDOS Assembler Tools package, you type the desired com 
mand while your assembler-editor is in its command (edit) mode. If you 
understand the principles of the ProDOS environment, it’s easy to save 
a source-code program  using any legal pathname. To save the 
ADDNRS.SRC program that you’ve just written, for example, set up 
whatever ProDOS prefix you want to use, and then type

SAVE ADDNRS.SRC

When your disk drive has stopped whirring and clicking and the light 
on it has gone out, check to see if the ADDNRS.SRC program has been 
saved successfully.

Type the ProDOS command

CAT

Then, if you see the ADDNRS.SRC program listed on your disk’s direc 
tory, you can clear the edit buffer by typing

NEW

That operation will clear your edit buffer. Then you’re ready to assem 
ble the ADDNRS.SRC program.

Assembling a Program
With the Apple ProDOS Assembler

Once you’ve cleared your text buffer by typing NEW, assembling a 
source-code listing that has been saved on a disk is easy. Type a line like 
this:

ASM ADDNRS.SRC
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Your Apple ProDOS assembler will then do two things. It will read 
the source-code file named ADDNRS.SRC from the disk on which it is 
stored, and it will also generate an object-code file from the source-code 
file that it has read and store the object code on a disk. Unless requested 
to do otherwise, the assembler will store its object-code file on the same 
disk that the source-code file is stored on and will assign its object-code 
listing a default pathname that is exactly the same as the source-code 
listing of the same program, plus the suffix .0.

If you have a source-code program named ADDNRS.SRC saved on a 
disk, then you can easily assemble that program into executable object 
code with the Apple ProDOS assembler. Boot up your assembler-editor, 
make sure its text buffer is clear, and type the line ASM ADDNRS.SRC. 
Your assembler will then generate an executable object-code file 
from your source-code file and will call its new object-code file 
ADDNRS.SRC.O.

If you wish, try that procedure now. Next we’ll discuss some of the 
finer points of using the Apple ProDOS assembler. Finally, you’ll learn 
how to execute the object code that your assembler has generated from 
your ADDNRS.SRC program.

Using Optional Parameters
If you wish, you can instruct your assembler to save its object code on a 
different disk (or, more accurately, on a different ProDOS directory or 
subdirectory). You can also instruct your assembler to give its object- 
code file a name of your choosing rather than a default name.

Suppose, for example, that you had your ADDNRS.SRC program 
saved on a volume called SRCVOL and wanted to save the program in 
its object-code version on a different volume called OBJVOL. You can 
carry out that entire procedure by invoking a couple of optional 
parameters:
ASM / SRC VOL/ADDNRS. SRC, /OBJ VOL/ADDNRS.OBJ

The source-code program stored on the volume SRCVOL under the 
pathname ADDNRS.SRC will then be assembled into an object-code file 
on the volume OBJVOL, under the pathname ADDNRS.OBJ. In addi 
tion, a listing of the assembled program will be displayed on your com 
puter screen. Program 4-4 shows how the assembly listing will look on 
your screen.
Program 4-4 
ADDNRS.SRC
An Assembled Listing
SOURCE FILE  #01 =>SRCVOL/ADDNRS. SRC
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-------- NEXT OBJECT FILE NAME IS OBJV0L/ADDNRS
1000: 1000 1 ORG $1000
1000: 2 /
1000: 3 ; ADDNRS .SRC
1000: 4 /
1 0 0 0 : D8 5 ADDNRS CLD
1001 :18 6 CLC
1 0 0 2 : A9 02 7 LD A #2
1004: 69 03 8 ADC U 3
1 0 0 6 : 8D 00 03 9 STA $0300
1009: 60 10 RTS
#71000 ADDNRS
** SUCCESSFUL ASSEMBLY := NO ERRORS 
** ASSEMBLER CREATED ON 14-DEC-83 15:21  
** TOTAL LINES ASSEMBLED 10 
** FREE SPACE PAGE COUNT 84 
#

If you examine Program 4-4 carefully, you’ll see that lines 1 through 
4 of the ADDNRS program don’t generate any object code. The reason 
is that they contain no op codes or operands. Line 1 contains a pseudo 
op—ORG—which performs no function except to tell the ProDOS 
assembler where to set its program counter when it starts assembling 
object code. And lines 2 through 4 contain nothing but remarks, which 
show up on the ADDNRS program’s source-code and assembly listings 
but generate no object code.

Directing a Listing
To a Disk Drive or Printer

When the ProDOS assembler-editor assembles an Apple lie or Apple 
lie  program, an assembled listing like the one shown in Program 4-4 is 
ordinarily displayed on the computer’s screen. However, the ProDOS 
assembler has a PR# command that can be used to direct an assembled 
listing to another output device, such as a printer or even a disk drive. 
When an assembled listing is written to disk, it is saved in the form of 
an ordinary ASCII text file, not as a binary file of executable object 
code.

To store an assembled listing on a disk instead of displaying it on a 
screen, all you have to do is type the command PR# followed by the slot 
number of your disk drive, a comma, and an appropriate pathname. If 
your computer is an Apple lie, the PR# command will always be fol 
lowed by the number 6. If you own an Apple lie, the number that fol 
lows the PR# command will be the number of the expansion slot in 
which your disk-drive card is installed (usually slot 6).

This procedure is not nearly as complicated as it may seem at first 
glance. Let’s assume that your disk-drive card is installed in slot 6. Let’s
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also suppose that you have a source-code program named /SRCVOL/ 
ADDNRS.SRC and that you want to assemble it into an object-code 
program named OBJVOL/ADDNRS.OBJ. Finally, let’s suppose that you 
also want to save an assembled listing of the same program under the 
pathname /SRCVOL/ADDNRS.ASM. You could do all of that by typing 
these two lines:

PR# 6 , /SRCVOL/ADDNRS.ASM
ASM /SRCVOL/ADDNRS.SRC,/OBJVOL/ADDNRS.OBJ

Just type those two lines into your assembler and, if you have the 
necessary volumes in the right disk drives, your assembler should:

• Assemble the source-code program called /SRCVOL/ADDNRS. 
SRC.

• Save the assembled listing under the pathname /SRCVOL/ 
ADDNRS.ASM.

• Save the object code generated by the assembler under the path 
name /OBJVOL/ADDNRS.OBJ.

If you haven’t already done so, assemble and save an ADDNRS.OBJ 
program. First make any ProDOS prefix adjustments that you might 
have to make, and then type the line
ASM ADDNRS.SRC,ADDNRS.OBJ

Suppressing the Generation 
Of Object Code

If you want to display an assembler listing on your screen or print it on 
paper without generating an object-code file, it’s easy to do. To suppress 
the generation of an object-code file, type a comma and the symbol 
following the line containing your ASM command.

ASM ADDNRS. SRC, a

Your Apple ProDOS assembler will then print an assembly listing of 
your ADDNRS.SRC program but will not generate an object-code file.

The Merlin Pro Assembler

The rest of this chapter will be devoted to discussions of the Merlin Pro 
and ORCA/M assemblers. So if you’re working with an Apple ProDOS 
assembler, you may want to skip the rest of this chapter and move right
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on to Chapter 5. If you own an ORCA/M assembler, you may want to go 
directly to the final section of this chapter, where you will learn how to 
write and assemble a program using the ORCA/M system.

There are many similarities between the Apple ProDOS assembler 
and the Merlin Pro. Both assemblers use relative line numbers and 
many of the same editing functions. The pseudo-op codes used by the 
two assemblers are almost identical.

There are also many differences between the Merlin and Apple 
assemblers. The Merlin Pro, unlike Apple’s ProDOS assembler, is 
menu-driven. And Merlin is fully compatible with the instruction set of 
the 16-bit 65802 and 65816 chips, as well as the instruction sets of the 
Apple He’s 6502B chip and the 65C02 chip used in the Apple lie. Merlin 
also has a number of other special features—for example, an excellent 
linking utility and a number of additional editing commands.

The Merlin Pro also comes with an extensive library of macros — 
prewritten assembly-language routines that can be inserted automati 
cally into user-written programs and can save a lot of programming 
(and typing) time. Another bonus that you get with Merlin is a very fine 
disassembler called the Sourceror.

A disassembler is a utility for converting machine-language pro 
grams back into source code. If you want to find out how a machine- 
language program runs, you can use a disassembler to do a little 
“reverse engineering.” The Sourceror disassembler that comes with 
Merlin is one of the best disassemblers available.

In addition to the Sourceror, the Merlin Pro package includes an 
even more specialized utility called the Floating Point Sourceror, or 
Sourceror. FP. With the Sourceror. FP you can get a complete, 150-page, 
fully labeled disassembled listing of the resident Applesoft BASIC 
package that’s built into your Apple lie or lie.

Merlin’s Modules

When you buy a Merlin Pro package, you get two disks. Both disks can 
be copied, so as soon as you take them out of their sleeves you should 
make backup copies. One of the disks is formatted using DOS 3.3 (the 
disk operating system that Apple used for its II-series computers until 
ProDOS was developed). The other disk is a ProDOS disk, and that’s the 
one we’ll discuss in this section. The programs on the ProDOS disk are 
divided into five modules:

• An executive module
• An editor module
• An assembler module
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• A linker module
• A command interpreter module.

When Merlin is in its executive mode, a master menu is displayed on 
the screen, and any of the assembler’s other modes can be selected from 
the menu. If you want to create or edit an assembly-language program, 
you can select Merlin’s editor module. To assemble a program, you can 
use the assembler module. Use the linker module to link long programs 
together. You can also invoke most of Apple’s ProDOS file functions 
from Merlin’s command interpreter module.

Merlin’s Menu
Boot Merlin from a disk; the first screen display will look something 
like this:

1
MERLIN-PRO 1 . 34  
By Gl en  Br edon
a
(OF
C : C a t a l o g  
L:  Load s o u r c e  
S: Save s o u r c e  
A : Append f i l e  
D: D i s k  command 
E: E n t e r  ED/ASM 
0: Save o b j e c t  code 
3: Set  d a t e  
Q: Quit

%

All of the options on this menu are explained in detail in the instruc 
tion book that comes with the Merlin Pro assembler package. For now, 
you should note that Merlin can do quite a few things in executive mode, 
including loading and saving source code and object code and listing the 
contents of a disk (using the menu’s C command). You can read and 
write text files using Merlin’s R and W menu commands. You can even 
format disks, scratch files from disks, and perform numerous other disk- 
management functions using the executive menu’s X command.

At the bottom of your screen you will see a “%” sign followed by a 
flashing cursor. The “%” prompt always indicates that Merlin is in exec 
utive mode. When the assembler is in editor mode, the prompt changes 
to a colon. When it’s in monitor mode, the prompt is a dollar sign.

When you’ve located the “%” prompt, type the letter
E
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for “enter editor/assembler mode.” Then press a carriage return to acti 
vate Merlin’s editor module. To let you know that it’s in edit mode, Mer 
lin will print a prompt on your screen. Then type

A

for “add.” You will see the number 1 appear on your screen. That 1 is 
intended to be used as the first line number in a source-code program. 
Merlin automatically generates line numbers, beginning with the num 
ber 1 and progressing in increments of 1. The number 1 on your screen 
means that Merlin is ready to accept the first typed line of a source-code 
program.

If your assembler is working properly, the 1 on your screen is fol 
lowed by a space and a flashing cursor. Beginning at the cursor location, 
type an asterisk—without any additional spaces in front of it. Line 1 of 
your program will look like this:

1 *

Type a return and Merlin will advance automatically to line 2. Fol 
lowing the numeral 2, again without any extra spacing, type

*ADDNRS. S

and press the RETURN key. When Merlin advances to line 3, type 
another asterisk.

You should now see

1 *

2 * ADDNRS.S
3 *
4

There is one obvious difference between the above lines and the first 
three lines of the ADDNRS program that was created using the Apple 
ProDOS assembler. In the Apple ProDOS version of the program, 
comments in the label field can begin with either an asterisk or a 
semicolon. In the Merlin version, label-field comments always start with 
asterisks. If you try to set off a Merlin comment with a semicolon, your 
editor will accept it but your comment will automatically be tabbed all 
the way to the comment field (the fourth field on your screen).

When you’ve finished typing line 4 of the ADDNRS.S program, 
press your carriage return and you’ll see Merlin’s prompt again. 
Then you can type A (for ADD) again and continue writing your pro 
gram. If you prefer, you can type some other command.
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The Merlin assembler, like the Apple ProDOS assembler, will list a 
program on your screen if you type an L command after the editing 
prompt. The Merlin will also delete a line if you type a D. To list or 
delete a series of lines using Merlin, you can type the first and last line 
numbers in that series after your L or D command. Note that when 
you’re using Merlin, you have to separate the two numbers that follow a 
command with a comma, not with a dash. Here’s a Merlin command 
that will delete Lines 2 and 3:

02 , 3

Try the command. You can then restore the lines you’ve deleted by using 
the A command.

Another command that can be used after the prompt is I (for 
INSERT). Type the letter I after a colon prompt, followed by the 
number of the line where you want your new line inserted. For example, 
to insert another asterisk at Line 2 in the ADDNRS.S program, you 
could type

12

Merlin will respond with the number 2.
Now type an asterisk, followed by two carriage returns. Merlin will 

display its prompt again, and you can type L for list. Merlin will list 
your program, and you’ll see that another line containing an asterisk 
has been inserted into your program at line 2.

The Merlin Pro assembler, like the Apple ProDOS assembler, uses 
relative line numbering, so it automatically renumbers each line after 
you have inserted or deleted one or more lines. Remember to insert or 
delete higher-numbered lines before you make changes in lower- 
numbered lines to avoid deleting the wrong lines.

You can now delete that extra asterisk that you’ve just added to your 
program. Just press the carriage return to get a colon prompt and type 
D2. Then you can type L for LIST; you will get a listing showing that 
your program has been restored to this condition:

1 *
2 * ADDNRS.S
3 *
4

In addition to the A, I, and D commands, there’s also an R command 
that you can use to replace a line when you’re using the Merlin assem 
bler. And Merlin, like the Apple ProDOS assembler, also has commands
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that you can use to copy lines, to find and replace strings, and to per 
form many other useful functions. You can find details on how to use all 
of these functions by reading the Merlin Pro instruction manual.

Now let’s finish typing the ADDNRS.S program. Program 4-5 shows 
the program in its entirety.

Program 4-5
THE ADDNRS.S PROGRAM
(As Typed on the Merlin Pro Assembler)

1  
2   ADDDNRS.S
3  
4 ORG $8000
5 ADDNRS CLD
6 CLC
7 LD A #2
8 ADC #2
9 STA $02 A7

10 RTS
11

Before you’ve finished typing the ADDNRS.S program, you’ll proba 
bly notice that Merlin tabulates columns automatically, dividing a pro 
gram into easy-to-read fields. Merlin automatically generates a space 
after each line number, so you don’t have to type one. If you do type a 
space, you wind up in the third column (the one in which all of the 
three-letter abbreviations appear).

You may also notice that the ORG directive is followed by the num 
ber $8000 in the Merlin listing rather than by the number $1000, which 
appeared after ORG in the Apple ProDOS assembler listing. The reason 
is that the memory configurations of the two assemblers are quite dif 
ferent. More details on this subject will be provided in Chapter 11.

Listing Your Program

When you’ve reached Line 12 in your ADDNRS.S program, just press 
the RETURN key. Then you can type either L or LIST to see the com 
plete program listed on your computer screen.

Closer Look 
the ADDNRS Program

Program 4-6 is an explosion diagram of the ADDNRS program, as 
written using a Merlin Pro assembler. In this example (just as in Pro 
gram 4-2 earlier this chapter), the program is divided into four fields, 
or columns. Each field has a heading that describes the kind of infor 
mation it contains.



Writing and Assembling an Assembly-Language Program 77

As you examine this listing, please note that the Merlin assembler 
does not ordinarily produce listings that use this kind of spacing. These 
tabulations were used to give you a clear picture of the organization of 
an assembly-language program.

Program 4-6
THE ADDNRS.S PROGRAM 
(Merlin Pro Version)
LINE OP
NO. LABEL CODE

1 *
2 * ADDDNRS.S
3 *
4 ORG
5 ADDNRS CLD
6 CLC
7 LDA
8 ADC
9 STA

10 RTS
11

Printing Your Program

When you’ve finished typing your source-code listing using the Merlin 
editor, you can print it by typing the command

PR# 1

(This command will work for an Apple lie, or an Apple He with a 
printer card installed in expansion slot 1. If your printer card is 
installed in another slot, use the appropriate slot number.) If you want 
to print listings with page headings, you can also use the command 
PRTR. For detailed instructions on using these commands, please refer 
to your Merlin Pro instruction manual.

Assembling and Saving Your Program

To assemble the ADDNRS.S program using the Merlin assembler, 
simply type the command ASM following the prompt. Merlin will 
then ask you if you want to update your source-code file (with the cur 
rent date, for example). If you don’t want to update your file, you can 
type N (for “no”) and Merlin will assemble your source-code program 
very rapidly.

Before we save the ADDNRS.S program on a disk, let’s take time to 
compare the object code that your assembler has generated with the 
source code from which the object code was derived. In Program 4-7, in

OPERAND REMARKS

$8000

#2
#2
$02 A7
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the column labeled SOURCE CODE, you’ll see your source-code listing. 
In the next column you can see the machine-language version of the 
program. To the right of that you’ll find the meaning of each assembly- 
language/machine-language instruction.

Program 4-7
THE ADDNRS.S PROGRAM 
(Source Code/Machine Code Comparison)
SOURCE CODE MACHINE CODE MEANING

CLD D8 C l e a r  s t a t u s  r e g i s t e r ' s  d e c i m a l  
mode f l a g

CLC 18 C l e a r  s t a t u s  r e g i s t e r ' s  c a r r y
f lag

LD A M2 A9 02 Load a c c u m u l a t o r  wi th  the  number
ADC M2 69 03 Add 2 ,  wi th c a r r y
STA $0300 8D 00 03 S t o r e  r e s u l t  i n  Memory A dd r e s s

$0300
RTS 60 Re t u r n  f rom s u b r o u t i n e

Now we’ll save both your source-code listing and your object-code 
listing on a disk. First, type Q (for QUIT) after the prompt to put 
your assembler back into executive (menu) mode. Merlin’s main menu 
will reappear. You can then save your source code by selecting menu 
choice S and your object code by choosing menu choice 0.

When you type an S or an O to save a source-code or object-code 
listing, Merlin will ask you to name your program. When you name your 
program, you don’t have to add any suffix to indicate whether it’s a 
source-code listing or an object code program because Merlin will do 
that automatically. If you’re saving a source-code listing, the assembler 
will automatically add an S suffix to your pathname. If you’re saving a 
machine-code listing, Merlin will not add a suffix to the pathname of 
your object-code.

The ORCA/M Assembler

The ORCA/M assembler-editor package is manufactured by The Byte 
Works, Inc., of Albuquerque. New Mexico. If you own an ORCA/M or 
would like to learn about it, continue reading this chapter. If you’re 
using an Apple or Merlin assembler and are anxious to run the 
ADDNRS program, you should move right on to Chapter 5.

The ORCA/M (“MACRO” spelled backwards) is completely different 
from the Merlin Pro, the Apple ProDOS assembler, and almost every 
other microcomputer assembler. ORCA/M. although designed for small
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computers, is not a small assembler. The goal of its designers was to 
create a microcomputer assembler that would work like the assemblers 
used with big mainframes. They achieved that goal with admirable 
success. ORCA/M is one of the finest microcomputer assemblers on the 
market. And for a package that packs such power, it's remarkably easy 
to operate.

ORCA/M comes on two floppy diskettes, both formatted for ProDOS. 
Because both sides of each disk are used, ORCA/M is actually a four- 
disk program. The ORCA program is on side one of disk one. On the flip 
side of disk one there’s a set of ORCA and ProDOS utilities. On side one 
of disk two, there’s a gigantic library of macros—prewritten assembly- 
language routines that can be automatically inserted into user-written 
programs and thus save typing and programming time. On side two of 
disk two, there’s a large library of useful subroutines, some of which are 
designed to work with the macros on side one.

The ORCA/M assembler is beautifully designed. Once you learn how 
to use the system, it can do much of your programming work for you. 
With ORCA/M, you can write long programs in the form of short, easy- 
to-manage modules. When all of your modules are written, you can link 
your entire program together with an elegant linking system. And 
ORCA/M fully supports not only the 6502B and 65C02 chips, but also 
their descendents, the new 16-bit 65802 and 65816.

The weakest link in the ORCA/M system is its instruction manual. 
Even if you know a lot about assembly language, you might find the 
manual difficult to follow. The following discussion is intended to help 
you understand enough to get started programming with ORCA/M.

Booting the ORCA/M Assembler
Both disks in the ORCA/M package can be copied. Make copies and put 
your original disks away for safekeeping. (I strongly recommend that 
you equip your Apple with at least two disk drives before trying to use 
the ORCA/M program. It’s a very sophisticated program and does a lot 
of switching back and forth between disk and memory while it’s run 
ning. A pair of disk drives—or even a hard disk drive—can save you a 
lot of time when you’re using the ORCA/M program.)

Place your duplicate ORCA/M program disk in the disk drive that’s 
built into your Apple lie, or in drive 1 if you own an Apple lie. Then 
initialize your duplicate program disk as instructed in the System 
Initialization Manual that came with your ORCA/M assembler.

When you’ve initialized your program disk, put your duplicate pro 
gram disk in drive 1 and place an empty but formatted ProDOS disk in
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drive 2. Then boot your duplicate program disk as you would any other 
ProDOS diskette. You will then see a title screen.

1
0RCA/H0ST 4 . 0
C o p y r i g h t  (C) J a n u a r y  1985 
By The Byt e  Wor ks ,  I n c o r p o r a t e d
a)

#_

The “#” prompt that follows the title indicates that the ORCA/M 
assembler is in a mode called the command processor mode. When 
ORCA/M is in its command processor mode, it will accept a list of 
commands called monitor commands. This is a confusing name, since 
the ORCA/M monitor commands bear no relationship to your Apple’s 
built-in machine-language monitor.

Descriptions of the monitor commands that can be issued to the 
ORCA/M command processor can be found on pages 59 through 72 of 
the ORCA/M instruction manual. In this section, we will focus on only 
three of those commands: PREFIX, EDIT, and NEW.

PREFIX is a very convenient command since it can be used to 
change the ProDOS volume from which ORCA/M accesses files. If you 
have a two-drive system, you can instruct ORCA/M to get data from 
drive 2 by typing

p r e f i x  . D2

as soon as the title screen comes on. From then on, the assembler will 
load and save source-code and object-code files using drive 2.

The NEW and EDIT Commands

When you’ve booted your ORCA/M disk and its title screen is displayed, 
type the command NEW following the “/?” prompt on your screen. The 
NEW command means that you want to get into the editor mode but 
don’t have a file to load. If you want ORCA/M to load a file into memory 
and then go into edit mode to edit the file, type the word EDIT after the 
“#” prompt, followed by the pathname of the requested file.

# E DIT PATHNAME

When you type the monitor command NEW (or an EDIT command 
followed by a pathname), your disk drive will start spinning and you 
will soon see a new display: a blank screen with a flashing cursor in the
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upper-right corner and, across the bottom of the screen, a status line 
printed in inverse video. Examine the status line, and you should see a 
line of caret (A) symbols at various intervals, plus a line of text. The text 
will tell what line and column your cursor is on, the amount of memory 
that you’ve used so far, and the pathname (if any) of the source-code file 
that’s displayed on your screen.

Full-Screen Editor and Line Numbers

When you start typing a program using ORCA/M, you don’t have to 
worry about line numbers; there aren’t any. In addition, the ORCA/M 
editor is a screen editor, not a line editor, so you can use your cursor 
arrow keys to move your cursor all over the screen, just as you can with 
a word processor.

ORCA/M has something else in common with a word processor; it 
can copy blocks of text from one part of a program to another, it can 
delete them, and it can move them around. To copy, move, and delete 
blocks of text, you have to use ESCAPE key sequences that are described 
in detail in the ORCA/M instruction manual.

The ORCA/M editor also accepts many CONTROL key (A) commands. 
For example, you can move your cursor to the top of the screen with a 
AT, and to the bottom of the screen with AB. You can go to the first line 
of a file with a AF and to the last line with a AL. You can insert a line 
anywhere in a program by moving your cursor to the point where you 
want the line to be and then pressing an ESCAPE-B key sequence. You 
can delete a line with an ESCAPE-Y.

Other control and escape functions that can be used with the 
ORCA/M editor are described in the instruction manual and on the 
quick-reference card that comes with the ORCA/M package, so we 
won’t go into any more detail about them here. You should be ready now 
for some hands-on experience with the ORCA/M package. Type the list 
ing in Program 4-8. It’s called ADDNRS.SC, and it’s the ORCA/M ver 
sion of the ADDNRS program.

Program 4-8
THE ADDNRS.SC PROGRAM 
(ORCA/M Version)

KEEP ADDNRS

ADDNRS START

CLD
CLC
LDA U 2
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ADC »3 
STA $0300 
RTS

END

Notice that the ORCA/M version of the ADDNRS.SC program has a 
few lines that are lacking in the versions produced on the Apple 
assembler and the Merlin assembler. The first line of the program, 
which reads “KEEP ADDNRS”, is one such line. There’s also an extra 
line that reads “ADDNRS START” and another that reads “END”.

Notice also that the ADDNRS.SC program lacks an ORG line. The 
reason is that programs written on the ORCA/M assembler don’t 
require origin lines. If you provide ORCA/M with an ORG line, it can 
use it; but if you don’t, the assembler will automatically assign your 
program a starting address of $2000, and that’s usually a good place to 
start an ORCA/M program.

Let’s get back to the extra lines in the ADDNRS.SC program.

Keep, Start, and End Directives
As I’ve mentioned, the first unusual line in the ADDNRS.SC program 
is the one that reads “KEEP ADDNRS”. KEEP is a pseudo-op code 
that’s often used in ORCA/M programs. If a KEEP directive precedes a 
program, ORCA/M will save the object code that is produced when the 
program is assembled. The word used as the operand of the KEEP 
directive will be the pathname under which the object code is saved. If 
the KEEP directive is not used, the program’s object code will not be 
saved.

START and END are two other directives often seen in ORCA/M 
programs. They are used to delineate the starting and ending points of 
named code segments that can later be linked together to form longer 
programs. Since the START directive is used to identify a code segment 
by name, it requires a label—in this case, ADDNRS. the name of the 
program. The END directive requires no label.

Comments in ORCA/M Programs

The way in which ORCA/M handles comments deserves special men 
tion. In an ORCA/M program, a comment line can be preceded by a 
number symbol (#), a semicolon, or an exclamation point, but blank 
lines in ORCA/M programs are also treated as comments. A blank line 
has only one purpose, of course—to make a program easier to read by 
breaking up segments and providing space. But blank spaces can be 
quite effective in a program listing, as you can see in Program 4-8.
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Assembling the ADDNRS.SC Program

When you’ve typed the ADDNRS.SC program, hit a CONTROL-Q (the 
CONTROL key and the Q key simultaneously), and ORCA/M should 
respond with this screen display:

<R> R e t u r n  t o  E d i t o r  
<S> Save t o  t h e  Same Name 
<N> Save t o  a New Name 
<L> Load A n o t h e r  F i l e  
<E> E x i t  W i t h o u t  U p d a t i n g

E n t e r  S e l e c t i o n :  _

As you can see from the entries on this menu, its primary purpose is 
to enable you to load and save programs. Since you’ve written a pro 
gram that doesn’t yet have a name, the best way to save it would be to 
select menu choice R (“Save to a New Name”). Press your computer’s N 
key. The bottom line on your screen will change from “Enter Selection:” 
to “File Name:”. You can then type in ADDNRS.SC, which is the path 
name under which your ADDNRS source-code file will be saved.

When you’ve saved the ADDNRS.SRC program, you can put OR 
CA/M back into monitor mode by typing E (for “Exit Without Updat 
ing”). The ORCA/M “#” prompt will then appear on your screen. Type 
the word

ASSEMBLE

following the “#” prompt. The ADDNRS.SC program will then be 
assembled into machine language, and its object code will be saved to 
disk automatically, under the pathname ADDNRS (the word that was 
used in the program’s source-code listing as the operand of the KEEP 
directive).

Printing an Assembly Listing

When you assemble an ORCA/M program, you can send its assembly 
listing to a printer rather than to the screen with a statement such as

ASSEMBLE >. PRINTER

In the next chapter, you’ll learn how to run an assembled program.





Running an
Assembly-Language
Program

Once you've written and assembled an assembly-language program, 
what you have is a machine-language program. There are several 
methods that you can use to execute machine-language programs.

You can run a machine-language program using the ProDOS/ 
BASIC command BRUN, which exists solely for the purpose of loading 
and running machine-language programs. There’s also another DOS 
command, BLOAD, which will load a machine language into RAM but 
not execute it. BLOAD is designed to load your machine code so that you 
can execute it later, whenever you like and in whatever way you like. 
The BRUN and BLOAD commands are quite versatile; you can use 
them as direct commands or from within a BASIC program. You can 
also invoke the BLOAD command from many software packages,

85
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including the Apple ProDOS assembler, and from the Merlin Pro 
assembler and the Bugbyter debugging utility that comes in the Apple 
ProDOS Assembler Tools package.

Once you’ve loaded a machine-language program into RAM, you can 
run it using your computer’s built-in machine-language monitor. The 
Apple Ilc/IIe monitor has a special command—the G command—for 
running machine-language programs.

You can also execute a machine-language program using the Bug 
byter debugging utility. The Bugbyter is similar to the Apple Ilc/IIe 
monitor, but it has many additional functions.

You can execute a machine-language program from an Applesoft 
BASIC program using the CALL command, the USR(X) function, or 
the G command. (The Apple ProDOS Assembler Tools package also 
contains a utility called a relocating loader that can help you run 
assembly-language programs from BASIC programs. The Merlin Pro 
assembler and the ORCA/M assembler can also produce relocatable 
machine code that can be called from BASIC programs.)

You can even make a machine-language program load and execute 
automatically as soon as a disk on which it has been stored is booted. 
This procedure can be performed easily by using the ProDOS/BASIC 
STARTUP command.

Loading a Machine-Language Program

Before you can run a machine-language program, you have to load it 
into your computer’s memory. There are several different ways to load 
the program. From either a ProDOS or a BASIC environment, for 
example, you can both load and run a machine-language program by 
typing

BRUN ADDNRS. OBJ

If this line were entered as a direct BASIC/ProDOS command, the 
computer would check all available disk volumes for a machine- 
language program with the pathname ADDNRS.OBJ on the default 
drive. If the computer found such a program, it would load and execute 
the program. If the computer failed to find such a program, you would 
receive an error message.

The same thing would happen if your computer encountered the fol 
lowing line while running a BASIC program:
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10 PRINT CHR$( 4 ) ; "BRUN ADDNRS . OBJ"

(The syntax used in this line is the standard syntax for issuing Pro- 
DOS commands from BASIC programs. More details on this subject 
can be found in Apple’s BASIC Programming With ProDOS manual 
and other instruction books on ProDOS and Applesoft programming.)

Load Now, Run Later

If you want to load a machine-language program into your computer’s 
memory but don’t want to run the program immediately, you can use 
the BASIC/ProDOS command BLOAD. To use BLOAD as an imme 
diate command, just type

BLOAD ADDNRS.OBJ

To use the BLOAD command from a BASIC program, use the fol 
lowing format:

10 PRINT CHR$( 4 ) ; "BLOAD ADDNRS.OBJ"

The machine-language program will then be loaded into your com 
puter’s memory but will not be executed.

The BLOAD command can be invoked not only from ProDOS or a 
BASIC program, but also from the Apple ProDOS assembly-language 
editor and the Apple Bugbyter debugging utility. More information on 
these two methods of using the BLOAD command is provided later in 
this chapter.

Executing a Machine-Language Program

Once you’ve loaded a machine-language program into RAM, you can 
execute the program from the Apple Ilc/IIe monitor, from the Apple 
Bugbyter debugging utility, or from a ProDOS or BASIC environment. 
Let’s start with the Apple Ilc/IIe monitor.

The Apple Ilc/IIe Machine-Language Monitor

One of the easiest ways to execute a machine-language program is with 
your Apple’s built-in monitor. The Apple monitor is an extremely useful 
programming tool that has been built into Apple computers since they
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first went on the market. With this monitor you can peek into your 
computer’s memory and can list—and even change—the contents of its 
memory locations. The Apple monitor can translate the contents of 
memory locations into assembly language and can display assembly- 
language listings on your computer screen. It can also move blocks of 
memory from one location to another and can compare blocks of memory 
to see if they match. And—most important for our purposes at the 
moment—the Apple monitor can execute machine-language programs.

The Apple monitor can be invoked easily from Applesoft BASIC. You 
can also call the monitor from both the Apple ProDOS assembly- 
language editor and the Merlin assembler-editor. You can transfer con 
trol to your computer’s monitor with either package by typing the 
command MON and pressing RETURN.

You can invoke the monitor from BASIC by typing CALL -151 or 
CALL 65385 and then pressing RETURN.

Using the Apple llc/lle Monitor

Now let’s load a machine-language program into RAM and execute it 
using your computer’s built-in monitor.

Turn on your computer, get its BASIC interpreter up and running, 
and put the disk containing your ADDNRS.OBJ program into the disk 
drive. Make any ProDOS prefix adjustments that are necessary and 
then type BLOAD ADDNRS.OBJ and press RETURN. Next, type the 
command CALL -151 and p ress  RETURN again. You should then see the 
asterisk (*) prompt that lets you know your monitor is up and running.

When you see the prompt, type 4096 and press RETURN. That 
number is the decimal equivalent of the hexadecimal number $1000, 
which should be the starting address of your ADDNRS.OBJ program.

When your disk drive stops spinning, you can find out whether your 
ADDNRS.OBJ program has been successfully loaded or not by typing

*1000L

(The asterisk will be there already.)
The L in the monitor command 1000L stands for LIST. When you 

type the command followed by a carriage return, your monitor will dis 
assemble up to 20 lines of machine-language instructions beginning at 
memory address $1000 and list them on your computer screen. “Disas 
semble” means to translate a machine-language instruction back into 
assembly language. When your monitor disassembles the program that 
is now stored in the block of memory starting at $1000, you will see a 
screen display that looks like the following:
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A MONITOR DISASSEMBLY OF THE ADDNRS PROGRAM

COLUMN 1 COLUMN 2 COLUMN 3

1 0 0 0 -

1 0 0 1 -

10 0 2
1004-
1006-
1009-

08
18

CLD
CLC

A9 02 
69 03 
8D 00 03 
60

LOA #$02 
STA #$03 
STA $0300 
RTS

Below the displayed addresses, you’ll see 14 lines displaying the con 
tents of a series of addresses that are not part of the ADDNRS program. 
Your monitor’s L command always creates a 20-line screen display, but 
only six of those lines are needed to list the ADDNRS program. The 
contents of the extra addresses can vary, depending upon what kinds of 
programs you were running on the computer before you invoked your 
monitor. The extra addresses may contain nothing but a string of 0’s, 
each followed by the mnemonic BRK (an assembly-language instruction 
that equates to a 0 in machine language). Alternatively, the extra ad 
dresses may hold bits and pieces of a previously loaded program. 
Whether the addresses used by the ADDNRS.OBJ program have been 
previously occupied by another program or not, though, they’re all user- 
addressable RAM, which means that they can be freely overwritten. As 
long as the ADDNRS program ends with an RTS instruction (which it 
does), the contents of the addresses that follow it don’t matter.

The numbers in Column 1 of the illustration are the hexadecimal 
memory addresses in which the ADDNRS.OBJ program is stored. The 
numbers in Column 2 are hexadecimal machine-language instructions 
that are stored beginning at the addresses listed in Column 1. As you 
can see, an assembly-language listing of the complete ADDNRS.OBJ 
program is provided in Column 3.

Running a Program
Using the Apple llc/lle Monitor

Once you’ve called up a disassembled listing of a program and have 
examined it, you know that the program has been loaded successfully 
into your computer’s memory. But you won’t know whether the program 
actually works until you’ve executed it.

It’s very easy to execute a program using the Apple monitor. Before 
we do it, though, let’s take a look at the contents of another memory 
register—the one at memory address $0300. Memory register $0300, 
you may recall, is the one that is used to store the sum of 2 and 3 in the
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ADDNRS program. Let’s look into that register before we run the 
ADDNRS program.

Type

  0300

Your monitor display of the contents of memory register $0300 should 
look something like this:

0300-  00
�

You will know from that response that memory register $0300 con 
tains a 0. If $0300 doesn’t contain a 0, you can place a 0 in it by typing 
the number 0300 followed by a colon and a 0.

* 0 300: 0

You can use the colon command to place any 8-bit value in any 
memory register in RAM. You may want to experiment a little now, 
using the colon command to change the contents of memory address 
$0300 to different values and then checking to see whether it worked. 
When you’ve finished experimenting, be sure to clear register $0300 
to 0.

Now we can execute the ADDNRS program using the Apple Ilc/IIe’s 
monitor. Following the asterisk prompt, type the number 1000 (the 
starting address of the program) and the letter G.

*1000G

Then press a carriage return. The ADDNRS program should then run.
If everything is working correctly, you won’t see much happening 

when the ADDNRS program runs; all you’re likely to notice is another 
asterisk prompt on your screen. If all is as it should be, though, some 
thing will definitely have happened. To find out what, just type 0300 
after your monitor’s asterisk prompt. You should then see

0300-  05

That line will tell you that your computer’s monitor has successfully 
executed the ADDNRS.OBJ program.

This book is not really about the Apple Ilc/IIe monitor, so we only 
touch on the features of the monitor in this chapter. The Apple Ilc/IIe 
monitor can also change, move, and compare the contents of small or 
large blocks of memory, display and change the contents of the 65C02/
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6502B chip’s registers, and even perform 8-bit hexadecimal arithmetic. 
Details of these and other features of the Apple Ilc/IIe monitor can be 
found in your computer’s Reference Manual.

The ADDNRS.SR2 Program

Let’s take a look at a couple of machine-language programs that not 
only demonstrate how programs can be loaded and saved, but also show 
how a program, once loaded into memory, can provide an output to the 
screen. Look at Program 5-1, a new and improved version of the 
ADDNRS.SRC program. It was written using the Apple ProDOS 
assembler, but it will also run on the Merlin Pro and (with the minor 
modifications explained in Chapters 4 and 5) can easily be made to 
work on the ORCA/M. Since it’s based on the ADDNRS program, I’ve 
named it ADDNRS.SR2. However, if you own a Merlin Pro assembler, 
which automatically assigns the suffix “.S” to every source-code listing 
it saves, you can call the program ADDNRS2.S.

Program 5-1 
ADDNRS.SR2
1 ORG $1000
2 *

3 * ADDNRS.SR2
4 *
5 HOME EQU $FC58
6 PRHEX EQU $FDE3
7 *
8 ADDNRS J SR HOME
9 CLD

10 CLC
11 LDA #2
12 ADC #3
13 STA $0300
14 JSR PRHEX
15 RTS

The ADDNRS.SR2 program does everything that its predecessor 
did, plus a little  more. F irs t, it clears the screen, which the 
ADDNRS.SRC program didn’t do. Then, like ADDNRS.SRC, it adds 
the numbers 2 and 3 and stores their sum in memory register $0300. 
However, the new program also has an output function that prints the 
sum of 2 and 3 on the screen.
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The easiest way to type the ADDNRS.SR2 program is to load your 
original ADDNRS.SRC program into the computer and then use the 
editing features of your assembler to expand it into its new form. You 
can then save the edited version of the program under the new path 
name ADDNRS.SR2.

A Symbol Table

When you s ta r t  expanding  the ADDNRS.SRC program  into 
ADDNRS.SR2, the first two additions you’ll encounter are the ones in 
lines 5 and 6. Together, these two lines make up what is known in the 
world of assembly-language programming as a symbol table. Symbol 
tables are used in assembly-language programs to define constants and 
variables; most symbol tables also include line labels. Most assembly- 
language programs have symbol tables, and you’ll find a symbol table in 
every program that you’ll be working on from now on in this book.

In the ADDNRS.SR2 program, the symbol table in lines 5 and 6 
defines only two values, and they are both constants. In line 5, a con 
stant called HOME is defined as the hexadecimal value $FC58. In line 
6, a constant called PRHEX is defined as the hex value $FDE3. The 
two constants are defined with the help of a pseudo-op code that is writ 
ten EQU, which stands for “equals.” (In a symbol table it isn’t necessary 
to use the symbol “#” to indicate that a value is a literal number because 
every value listed there is assumed to be a literal number.) But what do 
the values and labels in this short symbol table mean?

You will recall a short assembly-language program called HI.TEST 
that was presented in Chapter 1. HI.TEST made use of a convenient 
machine-language subroutine that is built into the Apple lie and the 
Apple He. That subroutine, often called COUT in assembly-language 
programs, is built into ROM in both the Apple lie  and the Apple He. It 
starts at memory address $FDED, and it can be incorporated into any 
assembly-language program with a simple JSR command.

When the COUT subroutine is called, it expects the Apple ASCII 
code for a typed character to be stored in the 65C02 6502B accumula 
tor. If the value of a valid character is in the accumulator, that charac 
ter will be printed on the screen.

COUT is only one of a number of useful machine-language subrou 
tines that are built into the Apple lie and Apple He computers. All of 
these subroutines are listed and described in the Apple lie and Apple 
He reference manuals. If you continue to study assembly language after 
you finish this book, you should get to know all of these subroutines very 
well. Many of them perform extremely useful functions, and all of them
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are designed to be invoked with one simple assembly-language instruc 
tion: JSR. Since all of these routines are prewritten, they can save tre 
mendous amounts of labor, energy, and time.

Before we continue, I suggest that you assemble the ADDNRS.SR2 
program under the filename ADDNRS.OB2 and store it on a disk in 
both its source-code and object-code versions. Then we can work with 
the program during the rest of this chapter.

When you execute your expanded version of the ADDNRS program, 
you’ll see very clearly how the built-in routines labeled HOME and 
PRHEX are used. The HOME routine, which appears in Line 8, does 
the same thing that the instruction sequence HOME does in Applesoft 
BASIC. It clears the screen and places the cursor in the upper-left 
corner of your computer’s text display.

Lines 9 through 13 of the ADDNRS. SR2 perform exactly the same 
functions as lines 5 through 9 of the original ADDNRS.SRC program. 
When these lines are executed, the ADDNRS.SR2 program adds the 
numbers 2 and 3 and stores their sum in memory register $0300.

A Subroutine That Is Displayed 
On the Screen

Line 14 is another new addition to the original ADDNRS program. In 
this line, the built-in subroutine PRHEX is used to display the sum of 2 
and 3 on the screen. If you consult the list of built-in subroutines in your 
computer’s reference manual, you’ll discover that PRHEX actually dis 
plays one hexadecimal digit on the screen. But, since the digit 5 (the 
sum of 2 and 3) happens to be written the same way in the hex and 
decimal systems, it doesn’t matter in this case that the output of the 
PRHEX routine is actually a hexadecimal number.

In line 15, the ADDNRS.SR2 program ends the same way its prede 
cessor did, with the traditional RTS instruction.

The BRUN Command
Once you’ve typed and assembled a program, the easiest way to run it is 
with the ProDOS/BASIC BRUN command. To run the ADDNRS.OB2 
program using the BRUN command, store the program on a startup 
disk (one with both ProDOS and a BASIC.SYSTEM file recorded on it). 
Then boot the disk and type the command
BRUN ADDNRS.0B2

As soon as your startup disk boots, you will see the number 5 displayed 
in the upper-left corner of your screen.
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Creating a Startup Program

If your ADDNRS.SR2 program runs well with the BRUN command, 
you can easily fix it so that it will boot and run automatically whenever 
you tu rn  your com puter on. W ith the disk th a t contains the 
ADDNRS.SR2 program still in your disk drive, just type

RENAME ADDNRS.SR2,STARTUP

Then turn your computer off without changing disks, and after waiting 
30 seconds, turn it on again. Your ADDNRS.SR2 program, now 
renamed STARTUP, should now load itself and run automatically. If 
you reboot the disk with the ADDNRS.SR2 right now, and if everything 
works the way it should, your disk drive will whir and click the way it 
always does when it’s loading a program, and then you’ll see the number 
5 displayed at the top of your computer screen.

Devising a Better Startup Program

You probably won’t find many uses for a startup program that loads 
itself and then prints the sum of 2 and 3 in the upper-left corner of a 
computer screen. But the same principles that we used to turn the 
ADDNRS program into a startup program can be employed to create 
more useful kinds of startup routines. Program 5-2, for example, is an 
assembly-language program that will boot a disk and print a short 
greeting on your video monitor.

Program 5-2
AN ASSEMBLY-LANGUAGE HELLO PROGRAM 

1 *

2 * HELLO.SRC
3 *
4 0R6 $1000
5 *
6 COUT EQU $FDED ; SCREEN-PRI NT ING ROUTINE
7 HOME EQU SFC58 ;R0UTINE TO CLEAR SCREEN
8 *

9 HELLO JSR HOME ; CLEAR SCREEN
10 LOA #$C8 ; LOAD THE LETTER ' H'
11 JSR COUT ; PR I NT IT
12 L D A #$C9 ; LOAD THE LETTER ' I '
13 JSR COUT ; PRINT IT
14 LDA #$A 1 ; LOAD EXCLAMATION POINT
15 JSR COUT ; PRINT IT
16 RTS ; END OF PROGRAM

Notice that Program 5-2 is a slightly improved and expanded ver 
sion of the program called HI.TEST.SRC that was presented in Chapter
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1. With what you now know about assembly language, you shouldn’t 
have much trouble understanding it. It uses machine-language routines 
that are built into your Apple to clear the screen and type the message 
“HI!” It ends, as most good assembly-language programs do, with an 
RTS instruction.

Type the program, assemble it (as HI.TEST.OBJ) and execute it; it 
will clear your screen and place the cursor in home position. Then it 
will display the word

HI!

on your computer screen.
That message isn’t very long, but we’re not yet ready to display 

longer messages on a screen, since we haven’t discussed how text strings 
are handled in assembly language. Short as it is, though, the greeting 
“HI!” does make some sense, which is more than can be said for the 
cryptic 5 produced by the ADDNRS program. So perhaps we should 
give the ADDNRS.OBJ program its original name back and turn 
HELLO.OBJ into a startup program.

To restore ADDNRS.OB2’s original name, type

RENAME STARTUP,ADDNRS.0B2

Then you can type

RENAME HELLO. OBJ , STARTUP

Once you’ve done that, you’ll see a nice warm “HI!” in place of a 
mysterious 5 each time you boot your startup disk. Later on, when we 
discuss text strings, you’ll learn how to display longer startup messages 
on your screen.

Running an Assembly-Language 
Program From BASIC

Now that you know how to create an assembly-language startup disk, 
we’re ready to move on to a new subject: mixing BASIC and assembly 
language.

We know that an assembly-language program can be loaded and 
executed from a BASIC program by using a line like

10 PRINT C H R * ( 4 ) ; ” BRUN PATHNAME"
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This method, however, is not commonly used for running a machine- 
language program from a BASIC program because it doesn’t offer 
much in the way of versatility. When you use the BRUN command in a 
BASIC program, the machine-language program that it calls is always 
executed as soon as it is loaded. This process is not always desirable, 
since it relinquishes control immediately to whatever machine-language 
program has just been loaded. A more common technique is to load a 
machine-language program during the initialization phase of a BASIC 
program and to execute it later. Fortunately, there is a BASIC com 
mand, BLOAD, that will load a machine-language program into 
memory without running it. Once a program has been loaded into 
RAM, it can be executed at any time with the help of two other BASIC 
instructions: the CALL command and the USR(X) function.

To load a machine-language command using the BLOAD function, 
you type a line using this format:

10 PRINT CHR$( 4 ) ; "BLOAD PATHNAME"

When you put that kind of line in a BASIC program, your computer 
will look on whatever disk it is using (or on any volume you designate) 
for a machine-language program that has the requested filename. If it 
finds such a program, it will load it into RAM but will not run it. Once 
the machine-language program has been loaded, you can run it when 
ever you like during the course of your BASIC program, with either a 
CALL command or a USR(X) function.

Using the CALL Command

It’s easy to use Applesoft BASIC’s CALL command. All you have to do is 
load a machine-language program into RAM and then type the word 
CALL, followed by the decimal address of the machine-language pro 
gram. CALL can be used either as a direct command or from within a 
BASIC program. When it is invoked from a BASIC program, this is the 
syntax that is used:

20 CALL 4096

If this line were included in a BASIC program and a machine-language 
program were stored in memory beginning at decimal address 4096 
(hexadecimal address $1000), control would be transferred to the 
machine-language program beginning at $1000.

Let’s try that now, using the STARTUP program (formerly the 
HELLO.OBJ program) that you stored on a startup disk. Make sure
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that the startup disk is in your disk drive, and then type this two-line 
BASIC program:

10 PRINT C H R $ ( 4 ) ;  " B L 0 A D STARTUP"
20 CALL 4096

Then type the word RUN. Your STARTUP program —which begins 
at decimal address 4096 (or hex address $1000)—should now run. It 
should print “HI!” on your screen, and then, since it ends with an RTS 
instruction, it should pass control of your computer back to BASIC.

Before we move on to the USR(X) function, there is one special fea 
ture of the CALL function that is worth mentioning. In Applesoft 
BASIC, a CALL statement can be expressed as either a positive number 
or a negative number. If a CALL statement is expressed as a negative 
number, Applesoft BASIC will automatically add 65536 to it to obtain 
an equivalent positive address. This unusual feature of Applesoft 
BASIC can come in handy, since negative CALL addresses are often 
shorter and easier to remember than their positive counterparts. For 
example, you can access the Apple Ilc/IIe monitor by typing either 
CALL 65385 or CALL —151. The second statement is much easier to 
remember, so it is the one most often used. On the other hand, the nega 
tive counterpart of the number 4096 (hexadecimal $1000) is the un 
wieldy negative number —61440, so you probably wouldn’t want to use it.

The USR(X) Function

The USR(X) function is a little more complicated than the CALL 
command—and much more powerful. USR stands for “user-supplied 
routine,” and the purpose of the USR function is to give expert BASIC 
programmers a method for running high-speed machine-language rou 
tines from within BASIC programs. When you know how to program in 
both BASIC and assembly language, you can use the USR(X) function 
to perform mathematical computations that would run too slowly if they 
were programmed in BASIC—or computations that BASIC might not 
be able to handle at all. Suppose, for example, that you had access to a 
series of assembly-language routines for performing complex character- 
animation sequences in high-resolution graphics. You could use the 
USR(X) function to call those sequences and run them —at machine- 
language speeds—from within BASIC programs!

When you use USR(X), you can substitute any value you like for the X 
that appears between the parentheses in the function. Then, when you 
invoke the USR(X) function, three things will happen.
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First, the value that you have assigned to X will be stored automati 
cally in a specific series of addresses in your computer’s memory.

Second, the BASIC program that is in progress will be temporarily 
interrupted and control of your computer will be turned over to a 
machine-language program—usually a user-written machine-language 
program —that has been selected in advance.

Finally, once this preselected machine-language routine takes over, 
it can retrieve the value that has been passed to it via the USR(X) func 
tion and can perform any desired computation using that value. The 
result of that computation can then be stored in the same series of 
memory registers that the original value came from. Control can then 
be passed back to BASIC. Note that once a machine-language computa 
tion has been performed on the X variable in the USR(X) function, that 
variable will have a new value when control is passed back to BASIC.

To clarify this procedure, we will examine a couple of illustrative 
programs. These two programs —one written in BASIC and one writ 
ten in assembly language—have been interfaced with the USR(X) func 
tion. Program 5-3, which I’ve called DECHEX.BA2, is a BASIC pro 
gram that uses the USR(X) function to call a machine-language 
program. Program 5-4, which I’ve named DECHEX.SR2, is the source- 
code listing of the machine-code program that the BASIC program 
calls.

Before we start analyzing these two programs, you might want to 
type and save the DECHEX.BA2 program and type, assemble, and save 
the DECHEX.SR2 program. When you save the object-code version of 
the DECHEX.SR2 program, I suggest that you follow the same conven 
tion that we’ve followed up to now and assign it the pathname 
DECHEX.OB2.

When used together, Programs 5*3 and 5-4 will convert any signed 
16-bit decimal number into a hexadecimal number and will print the 
hex numbers on your computer screen. As you may notice, these two 
programs, even when they are combined, are considerably shorter than 
the BASIC program for converting decimal numbers to hexadecimal 
numbers that was presented in Chapter 2. In addition, these programs 
are capable of handling signed numbers, while the DECHEX program 
in Chapter 2 could handle only positive numbers. There are also other 
differences between the program in Chapter 2 and Programs 5*3 and 
5-4. Before we examine these differences, let’s take a close look at these 
two new programs.
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Program 5-3
USING THE USR(X) FUNCTION TO CALL 
A MACHINE-LANGUAGE PROGRAM
10 REM *** DECHEX.BA2 ***
20 REM
30 POKE 1 0 , 7 6 :  REM POKE JUMP INSTRUCTION ( $ 4 0  INTO 

MEMORY REGISTER 10 ($0A)
40 REM NOW POKE DECHEX.0B2 ADDRESS INTO REGISTERS 11 

AND 12 (SOB AND $0C>
50 HI = INT (4096 / 2 5 6 ) : L 0  = 4096 - HI * 256:  POKE 1 1 , LO: 

POKE 1 2 , HI
60 PRINT CHR$ ( 4 ) ;"BLOAD DECHEX.0B2"
70 TEXT : HOME : PRINT " DECIMAL-TO-HEXADECIMAL CONVERTER" 
80 PRINT : PRINT "TYPE A DECIMAL NUMBER"
90 PRINT "BETWEEN - 32767 AND 3 2 7 6 7 : " :  PRINT 
100 INPUT NR1 $:  IF VAL (NR1$) < -32767 OR VAL (NR1$) >

32767 THEN 80 
110 X = VAL ( NR1 $)
120 PRINT "HEX:  " ;
130 Y = INT ( USR (X))
140 PRINT : GOTO 80

Program 5-4
A SOURCE-CODE PROGRAM CALLED BY THE USR(X) FUNCTION

1 *

2 * DECHEX.SR2
3 *
4 ORG $1000
5 *
6 PRNTAX EQU $F941 ;ROUTINE TO PRINT A AND X IN HEX ON 

SCREEN
7 FLPINT EQU $E10C ; FLPT/INT CONVERSION ROUTINE
8 *

9 DECHEX JSR FLPINT ;CONVERT VALUE IN FLT PT ACCUM TO 
INTEGER

10 LDA $ A1 ; LOW BYTE OF RESULT
11 TAX ; PRNTAX GETS LOW BYTE FROM X REG
12 LDA $ AO ; HIGH BYTE OF RESULT
13 JSR PRNTAX ; PRNT AX GETS HI BYTE FROM ACCUMULATOR
14 RTS

The DECHEX.BA2 Program Line by Line Let’s examine Program 5-4, 
DECHEX.BA2, line by line. We’ll start with lines 30 through 50.
30 POKE 1 0 , 7 6 :  REM POKE JUMP INSTRUCTION ( $ 4 0  INTO 

MEMORY REGISTER 10 ($0A)
40 REM NOW POKE DECHEX.0B2 ADDRESS INTO REGISTERS 11 

AND 12 ( $0B AND $0C)
50 HI = INT (4096 / 2 5 6 ) :L0 = 4096 - HI * 256:  POKE 1 1 , LO 

POKE 1 2 , HI
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These three lines carry out an operation that must always be per 
formed before the USR(X) function is invoked. When the USR(X) func 
tion is used, it first looks in memory registers 10, 11, and 12 ($0A 
through $0C in hex notation). If it finds a set of machine-language 
instructions in those three registers, it will carry them out. If it finds no 
machine-language instructions in $0A through $0C, it will either return 
an error message or produce unpredictable and potentially disastrous 
results. So, before you invoke the USR(X) function, you always have to 
store three executable machine-language instructions in memory regis 
ters $0A through $0C.

In line 30 of the DECHEX.BA2 program, the machine-language op 
code $4C (76 in decimal notation) is stored in memory register $0A. $4C 
is a machine-language equivalent of the assembly-language mnemonic 
JMR JMP, as you may remember, is similar to the BASIC instruction 
GOTO. When JMP is used in an assembly-language program, it is 
always followed by either a memory address or a label that equates to 
an address. When the JMP instruction is encountered in a program, it 
causes the program to jump to the specified memory address.

In lines 40 and 50 of the DECHEX.BA2 program, a 16-bit value is 
stored in memory locations $0B and $0C (11 and 12 in decimal notation). 
As you can see, the number stored in those two registers is $1000 (or 
4096 in decimal notation). (Take a look at Program 5-4, and you’ll see 
what the value $1000 means when it follows a JMP instruction; it’s the 
starting  address of the assembly-language program  in the DE- 
CHEX.SR2 program.)

Now you can see what lines 30 through 50 of the DECHEX.BA2 
program do: they set things up so that when the USR(X) function is 
called later on in the DECHEX.BA2 program, it will transfer control of 
your computer to the DECHEX.SR2 program.

Next, let’s look at lines 60 through 130 of the DECHEX.BA2 
program.

60 PRINT CHR$ ( 4 ) ; "BL0AD DECHEX.0B2"
70 TEXT : HOME : PRINT "DECIMAL-TO-HEXADECIMAL CONVERTER" 
80 PRINT : PRINT "TYPE A DECIMAL NUMBER"
90 PRINT "BETWEEN - 32767 AND 3 2 7 6 7 : " :  PRINT
100 INPUT NR1$:  IF VAL (NR1$) < - 32767 OR VAL (NR1$)

> 32767 THEN 80 
110 X = VAL (NR1$)
120 PRINT "HEX:  " ;

Line 60 loads a program called DECHEX.OB2. (If you’ve assembled 
and saved the DECHEX.SR2 program in the way that I’ve suggested,
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DECHEX.OB2 will be the filename of the object-code version of 
DECHEX.SR2.)

In lines 70 through 90 of the DECHEX.BA2 program, a title and 
two lines of instructions are displayed on the screen. The instructions 
request that a number be typed in and state that the number must be 
between —32767 and 32767. Note that the original DECHEX program, 
presented in Chapter 2, was capable of handling only positive numbers, 
but the DECHEX.BA2 program can convert both positive and negative 
numbers into hexadecimal notation.

When you use the DECHEX.BA2 program, however, you must pay a 
certain price for this extra capability. As you may remember, the origi 
nal DECHEX program could convert any positive decimal number up 
to 65,535 into hexadecimal notation. The DECHEX.BA2 program can 
handle positive numbers only half that large; that is, up to 32767. Since 
it can also handle negative numbers down to —32768, the total number 
of values that the two programs can translate into hexadecimal 
numbers is the same. (We’ll learn more about negative numbers in 
Chapter 10, which is about assembly-language math.)

In line 100 of the DECHEX.BA2 program, an INPUT command is 
used to accept a typed number as a string. If the number is less than 
—32767 or more than 32767, the program refuses to accept it and calls 
for another input. Once a legal number has been entered, it is converted 
into a numeric value and is then defined as the value of the X variable 
in the USR(X) function. In line 120, the message “HEX: ” is printed on 
the screen.

Using the USR(X) Function When the USR(X) function is finally 
invoked in line 130, it first deposits the value of X in a special set of 
memory registers called a floating-point accumulator. A floating-point 
accumulator is a block of memory that is used for storing numbers dur 
ing operations that involve a procedure called floating-point arithmetic. 
In the Apple lie and the Apple He, the floating-point accumulator is 
situated in memory registers $9D to $A3.

In Chapter 10, which deals specifically with 6502B/65C02 math, 
floating-point arithmetic will be discussed in more detail. Now we’re 
going to make use of two more of the machine-language subroutines 
that are built into every Apple lie and Apple He. One of these subrou 
tines, which I call FLPINT, is designed to convert floating-point 
numbers to 16-bit binary numbers. The other subroutine, which I’ve 
named INTFLP, works the other way around: it converts 16-bit binary 
numbers to floating-point numbers. Here are brief explanations of these 
two subroutines.
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The FLPINT subroutine, which begins at memory address $E10C, 
will take whatever value is the floating-point accumulator and convert 
it into a floating-point number, depositing the high-order byte of the 
floating point number in memory register $A0 and the low-order byte 
in memory register $A1. To use this subroutine, you use the assembly- 
language instruction JSR to jump to the subroutine at memory address 
$E10C. The contents of the floating-point accumulator will then be con 
verted into a two-byte binary number and can be retrieved from 
memory registers $A0 and $A1.

(Please note that on page 174 of the 1982 edition of the Apple He 
Applesoft BASIC Programmer’s Reference Manual, the address of the 
FLPINT routine is given as $E01C. That address is incorrect; if you use 
it, the FLPINT routine won’t work. The correct address is the one given 
above: $E10C.)

To use the INTFLP routine, you have to place a two-byte binary in 
teger into the accumulator and the Y register of your computer’s 
6502B/65C02 microprocessor. The low byte of your two-byte number 
should be in the accumulator and the high byte should be in the Y regis 
ter. Then just do a JSR to jump to the INTFLP subroutine at memory 
address $E2F2. Upon return from that subroutine, the floating-point 
equivalent of the number that you stored in the A and Y registers will 
be in your computer’s floating-point accumulator.

Analyzing the DECHEX.SR2 Program Now we’re ready to examine 
line 130 of the DECHEX.BA2 program.

130 Y = INT ( USER (X))

This line invokes the USR(X) function. As we have seen, the USR(X) 
function first deposits the value of X in your computer’s floating-point 
accumulator. Then it transfers control to whatever machine-language 
program starts at the address that has been loaded into memory loca 
tions $0B and $0C. Since the address of the DECHEX.SR2 program is 
now stored in those locations (it was placed there in line 50 of the 
DECHEX.BA2 program), the machine-language program that the 
USR(X) function now jumps to is the DECHEX.SR2 program.

Now we’ll take a line-by-line look at the DECHEX.SR2 program, 
beginning with lines 6 and 7.

6 PRNTAX EQU $F941 ;R0UTINE TO PRINT A AND X IN HEX ON 
SCREEN

7 FLPINT EQU SE10C ; FLPT/INT CONVERSION ROUTINE



Running an Assembly-Language Program 103

Here we have another symbol table, a table that assigns labels to the 
starting addresses of important routines. In the two-line symbol table 
that appears in lines 6 and 7 of the DECHEX.SR2 program, only two 
addresses are listed. In line 6, the address of a routine called PRNTAX 
is defined as $F941. Then, in line 7, there’s an address for the FLPINT 
routine, which converts floating-point numbers into hexadecimal num 
bers. Since we’ve already discussed the FLPTINT subroutine, we can 
now direct our attention to the PRNTAX subroutine in the DECHEX 
.SR2 symbol table.

PRNTAX, like FLPINT, is built into the Apple lie and the Apple 
He. PRNTAX is an important routine in a program like DECHEX.SR2, 
since it can automatically display hexadecimal numbers on your comput 
er’s screen. To use PRNTAX, you have to place a 16-bit hexadecimal 
number in your 6502B/65C02 microprocessor’s A and X registers, with 
the high-order byte in the accumulator and the low-order byte in the X 
register. Then you can do a JSR to memory address $F941, and the 
number stored in the A and X registers will be displayed on your com 
puter screen.

Running the DECHEX.SR2 Program Before we start discussing the 
rest of the DECHEX.SR2 program, it’s important to remember what 
has happened up to now: a number has been typed in on your compu 
ter’s keyboard and has been stored in its floating-point accumulator. 
Then, with the help of the USR(X) function, control of your computer 
has been transferred to DECHEX.SR2.

9 DECHEX JSR FLPINT ;C0NVERT VALUE IN FLT PT ACCUM TO 
INTEGER

10 LDA $A1 ; LOW BYTE OF RESULT
11 TAX ; PRNTAX GETS LOW BYTE FROM X REG
12 LDA $A0 ;HIGH BYTE OF RESULT
13 JSR PRNTAX ; PRNTAX GETS HI BYTE FROM ACCUMULATOR
14 RTS

Now we’re ready to proceed. The FLPINT subroutine is called in 
line 9 of the DECHEX program, and the value in the floating-point 
accumulator—that is, the value that has been typed in—is converted 
into a two-byte integer. FLPINT stores the low byte of that integer in 
$A1 and stores the high byte in $A0. Then the FLPINT subroutine ends 
and transfers control back to the DECHEX.SR2 program.

In line 9 of the DECHEX.SR2 program, the accumulator is loaded 
with the value in $A1 (that is, the low byte of the two-byte integer 
returned by FLPINT). Then, in line 10, there’s an assembly-language
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mnemonic that we haven’t encountered before: TAX, which stands for 
“transfer the value in the accumulator to the X register.” In line 10, the 
TAX mnemonic does just what you’d expect it to do. It moves the value 
that has just been loaded into the accumulator into the X register. When 
that operation has been carried out, the low byte of the value returned 
by FLPINT is in the X register.

There are now only three more lines in the DECHEX.SR2 program. 
In line 10, the accumulator is loaded with the value stored in memory 
register $A0 (that is, the low byte of the value returned by FLPINT). 
Then in line 13 there’s a jump to the PRNTAX routine, which combines 
the value in the accumulator and the value in the X register and then 
displays the values as a four-digit hexadecimal number on the screen.

The USR(X) Function as a Programming Tool

The USR(X) function is one of the most complicated functions available 
in BASIC, but it is also one of the most powerful. Once you know how to 
use it, you can compile whole libraries of machine-language functions 
and use them at will in BASIC programs. As you now know, it is much 
easier to program in BASIC than in assembly language. Unfortunately, 
however, BASIC operates so slowly that it is simply incapable of han 
dling many kinds of routines, especially those involving the use of high- 
resolution graphics. The USR(X) function is powerful because it allows 
you, as a programmer, to move back and forth between BASIC and 
assembly language. If you know how to use the USR(X) function, you 
can take advantage of the best features of BASIC and assembly lan 
guage. You can use BASIC for writing the kinds of routines for which 
BASIC is best suited, and any time you like, you can also use the 
USR(X) function to call up high-speed, high-performance assembly- 
language routines.



The 6502B/65C02 
Instruction Set

Up to now, we’ve mainly discussed the syntax and the grammar of 
6502B/65C02 assembly language, and we’ll be covering those topics in 
more detail in later chapters. But this chapter is important because it is 
about the vocabulary of Apple lie/Apple lie  assembly language—the 
6502B/65C02 instruction set.

The chapter was not designed to be read in one sitting; it’s a refer 
ence chapter, so you should probably browse through it to get an idea of 
what kind of material the chapter contains. Then you can refer to it 
when necessary.

Most of this chapter is devoted to an alphabetical listing of the 
6502B/65C02 instruction set. The listing includes all 56 assembly- 
language instructions that are used by the 6502B microprocessor, plus 
eight additional instructions that can be used with the 65C02 processor. 
Each of these 65C02-specific instructions is marked with an asterisk. 
All of the addressing modes used by the 6502B and the 65C02 are also 
listed, and those that are applicable only to the 65C02 chip are 
identified.
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Instructions for the 65802 and the 65816—the two 16-bit chips that 
are now members of the 6502 family—are not included in the listing in 
this chapter. However, a complete listing of the 65802/65816 instruction 
set can be found in the Appendices.

Under each mnemonic listed, you’ll find a brief explanation of how 
that mnemonic is used in Apple lie  and Apple He assembly-language 
programs. In addition, the flags and registers affected by each mne 
monic are listed.

At the end of this chapter, following the alphabetical listing of the 
6502B/65C02 instruction set, you’ll find a special bonus: a BASIC pro 
gram called “The Byte Simulator” that will help you understand how 
your computer’s microprocessor processes the instruction set. The pro 
gram is written in BASIC, so you can type and execute it without using 
an assembler. When you run it, you’ll see how it got its name.

Abbreviations Used in This Chapter

The following section contains a complete listing of the 6502B/65C02 
microprocessor instruction set and includes all of the instruction mne 
monics used in Apple lie and Apple He assembly-language program 
ming. Of course, the list does not include pseudo-operations (also called 
pseudo-ops or directives), which vary from assembler to assembler. It 
does include addressing modes, which will be covered in Chapter 7. For 
a listing of the pseudo-ops used by your assembler, you should consult 
your assembler’s instruction manual.

Tables 6-1 through 6-3 define the abbreviations used in the instruc 
tion set.

Table 6-1. Processor Status (P) Register Flags

N Negative (sign) flag
V Overflow flag
B Break flag
D Decimal flag
I Interrupt flag
Z Zero flag
C Carry flag
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Table 6-2. 6502B/65C02 Memory Registers

A Accumulator
X X register
Y Y register
M Memory register

Table 6-3. 6502B/65C02 Addressing Modes

A Absolute addressing
AC Accumulator addressing
AI Absolute indexed indirect addressing (JMP instruction, 65C02 only)
Z Zero-page addressing (65C02 only)
IMM Immediate addressing
IND Absolute indirect addressing
IMP Implied addressing
AX Absolute,X (X-indexed) addressing
AY Absolute,Y (Y-indexed) addressing
IX Indexed indirect (Indirect,X) addressing
IY Indirect indexed (Indirect,Y) addressing
R Relative addressing
ZPG Zero-page indirect addressing

ZX Zero-page X-indexed (Zero-page,X) addressing
ZY Zero-page Y-indexed (Zero-page,Y) addressing

The Instruction Set

ADC (Add with carry) Adds the contents of the accumulator to the 
contents of a specified memory location or literal value. If the P regis 
ter’s carry flag is set, a carry is also added. The result of the addition 
operation is then stored in the accumulator.
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Flags affected:
Registers affected:
Addressing modes:

N, V, Z, C 
A
A, Z, IMM, AX, AY, IX, IY, ZX, ZPG*

AND (Logical AND) Performs a binary logical AND operation on the 
contents of the accumulator and the contents of a specified memory 
location or an immediate value. The result of the operation is stored in 
the accumulator.

Flags affected: 
Registers affected: 
Addressing modes:

N, Z 
A
A, Z, IMM, AX, AY, IX, IY, ZX, ZPG*

ASL (Arithmetic shift left) Moves each bit in the accumulator or a 
specified memory location one position to the left. A 0 is deposited into 
bit 0 position, and bit 7 is forced into the carry bit of the P register. The 
result of the operation is left in the accumulator or the affected memory 
register.

Flags affected: 
Registers affected: 
Addressing modes:

N, Z, C 
A, M
AC, A, Z, AX, ZX

BCC (Branch if carry clear) Executes a branch if the carry flag of the 
P register is clear. Results in no operation if the carry flag is set. The 
destination of the branch is calculated by adding a signed displacement, 
ranging from —128 to +127, to the address of the first instruction that 
follows the BCC instruction. This calculation results in an effective dis 
placement of +129 bytes to —126 bytes from the branch instruction. An 
attempt to use a BCC instruction for a longer branch will result in an 
“out of range” error.

Flags affected: None
Registers affected: None 
Addressing modes: R

BCS (Branch if carry set) Executes a branch if the carry flag of the P 
register is set. Results in no operation if the carry flag is clear. The 
destination of the branch is calculated by adding a signed displacement, 
ranging from —128 to +127, to the address of the first instruction that 
follows the BCS instruction. This results in an effective displacement of 
+ 129 bytes to —126 bytes from the branch instruction. An attempt to use
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a BCS instruction for a longer branch will result in an “out of range” 
error.

Flags affected: None
Registers affected: None 
Addressing modes: R

BEQ (Branch If equal) Executes a branch if the 0 flag of the P regis 
ter is set. Results in no operation if the 0 flag is clear. Can be used to 
jump to cause a branch if the result of a calculation is 0 or if two 
numbers are equal. The destination of the branch is calculated by 
adding a signed displacement, ranging from —128 to +127, to the 
address of the first instruction that follows the BEQ instruction. This 
calculation results in an effective displacement of +129 bytes to —126 
bytes from the branch instruction. An attempt to use a BEQ instruction 
for a longer branch will result in an “out of range” error.

Flags affected: None
Registers affected: None 
Addressing modes: R

BIT (Compare bits in accumulator with bits in a specified memory regis 
ter) Performs a binary logical AND operation on the contents of the 
accumulator and the contents of a specified memory address. The con 
tents of the accumulator are not affected, but three flags in the P regis 
ter are.

If any bits that are set in the accumulator match any bits that are set 
in the value being tested, the Z flag is cleared. If there are no set bits in 
the accumulator that match any set bits in the value being tested, the Z 
flag is set. Therefore, by using a BIT instruction followed by a BNE or 
BEQ instruction, you can determine whether any set bits in the accum 
ulator and the tested value match. If there is a match, a BIT/BNE test 
will succeed. If there is no match, a BIT/BEQ test will succeed.

The BIT instruction also has another effect: bits 6 and 7 of the value 
in memory being tested are transferred directly into the V and N bits of 
the status register. This feature provides a handy method for testing bit 
6 and bit 7 of any desired value in a single operation, and the BIT 
instruction is therefore used frequently in arithmetic operations involv 
ing signed numbers.

Flags affected: N, V, Z
Registers affected: None
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Addressing modes: A, Z, IMM*, AX*. ZX*

BMI (Branch on minus) Executes a branch if the N flag of the P 
register is set. Results in no operation if the N flag is clear. The destina 
tion of the branch is calculated by adding a signed displacement, rang 
ing from —128 to +127, to the address of the first instruction that follows 
the BMI instruction. This results in an effective displacement of +129 
bytes to —126 bytes from the branch instruction. An attempt to use a 
BMI instruction for a longer branch will result in an “out of range” 
error.

Flags affected: None
Registers affected: None 
Addressing modes: R

BNE (Branch if not equal) Executes a branch if the 0 flag of the P 
register is clear (that is, if the result of an operation is non-0). Results in 
no operation if the 0 flag is set. Can be used to jump to cause a branch if 
the result of a calculation is not 0 or if two numbers are not equal. The 
destination of the branch is calculated by adding a signed displacement, 
ranging from —128 to +127, to the address of the first instruction that 
follows the BNE instruction. This calculation results in an effective dis 
placement of +129 bytes to —126 bytes from the branch instruction. An 
attempt to use a BNE instruction for a longer branch will result in an 
“out of range” error.

Flags affected: None
Registers affected: None 
Addressing modes: R

BPL (Branch on plus) Executes a branch if the N flag is clear (that 
is, if the result of a calculation is positive). Results in no operation if the 
N flag is set. The destination of the branch is calculated by adding a 
signed displacement, ranging from —128 to +127, to the address of the 
first instruction that follows the BPL instruction. This results in an 
effective displacement of +129 bytes to —126 bytes from the branch 
instruction. An attempt to use a BPL instruction for a longer branch 
will result in an “out of range” error.

Flags affected: None
Registers affected: None 
Addressing modes: R



The 6502B/65C02 Instruction Set f f l

* BRA (Branch always) Executes a branch to a specified memory 
address. The destination of the branch is calculated by adding a signed 
displacement, ranging from -128 to +127, to the address of the first 
instruction that follows the BRA instruction. This calculation results in 
an effective displacement of +129 bytes to -126 bytes from the branch 
instruction. An attempt to use a BRA instruction for a longer branch 
will result in an “out of range” error.

Flags affected: None
Registers affected: None
Addressing modes: R

BRK (Break) The BRK instruction is a software-controlled interrupt 
that is often used to halt a program at a desired spot during debugging 
operations. When a BRK instruction is encountered in a program, the 
program counter is incremented by two and the break (B) flag of the P 
register is set. Next, the program counter is pushed onto the stack, high 
byte first. Then the contents of the P register, with the B flag set, are 
also pushed onto the stack.

When these operations are done, the interrupt flag (I) is set, disabling 
interrupts. Then a 16-bit address stored in a special 16-bit pointer is 
placed in the program counter. In the Apple lie and the Apple He, this 
pointer is contained in memory addresses $3F0 and $3F1, a pair of reg 
isters designed to be used only with the BRK instruction. In older 6502- 
based computers, the pointer is contained in memory addresses $FFFE 
and $ F F F F —the same addresses that are used as a vector by other 
types of interrupt instructions.

When a BRK instruction is issued, the BRK pointers used by the 
Apple lie  and the Apple He will usually halt whatever program is being 
executed and will pass control of the computer to its built-in machine- 
language monitor.

When control of the Apple Ile/IIc has been returned to the monitor, 
the contents of memory registers and microprocessor registers can be 
examined, and debugging of the program being executed can proceed. 
However, because the BRK instruction causes such a complex series of 
operations to take place, use of the instruction can sometimes have 
unforeseen results. To prevent unpleasant surprises from taking place 
when the BRK instruction is invoked, the Apple lie is equipped with a 
built-in interrupt handler that can handle BRK instructions in various 
ways, depending upon whether the computer is in 80-column mode and 
whether auxiliary memory and bank-switched memory are being used.
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By changing the contents of the BRK vector at memory addresses $3F0 
and $3F1, Apple lie owners can write their own BRK-handling routines 
if they wish. But for most debugging operations, there is probably no 
reason to try to override the BRK-handler that is built into the Apple 
l i e .

Flags affected: B
Registers affected: Stack pointer
Addressing modes: IMP

BVC (Branch if overflow clear) Executes a branch if the P register’s 
overflow (V) flag is clear. Results in no operation if the overflow flag is 
set. The destination of the branch is calculated by adding a signed dis 
placement, ranging from —128 to +127, to the address of the first 
instruction that follows the BVC instruction. This calculation results in 
an effective displacement of +129 bytes to —126 bytes from the branch 
instruction. An attempt to use a BVC instruction for a longer branch 
will result in an “out of range” error. This instruction is used primarily 
in operations involving signed numbers.

Flags affected: None
Registers affected: None 
Addressing modes: R

BVS (Branch If overflow set) Executes a branch if the P register’s 
overflow (V) flag is set. Results in no operation if the overflow flag is 
clear. The destination of the branch is calculated by adding a signed 
displacement, ranging from —128 to +127, to the address of the first 
instruction that follows the BVC instruction. This calculation results in 
an effective displacement of +129 bytes to —126 bytes from the branch 
instruction. An attempt to use a BVC instruction for a longer branch 
will result in an “out of range” error. This instruction is used primarily 
in operations involving signed numbers. However, it also provides an 
easy way to test bit 6 of any value.

Flags affected: None
Registers affected: None 
Addressing modes: R

CLC (Clear carry) Clears the carry bit of the processor status 
register.
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CLD (Clear decimal flag) Clears the decimal flag of the P register, 
putting the Apple Ilc/IIe into binary mode (its default mode) rather 
than into an alternate mode called BCD (or decimal mode). When the 
Apple lie  is in binary mode, it can carry out ordinary binary operations 
on ordinary binary numbers. When the computer is in BCD mode, it is 
capable of working with a special kind of numbers, called BCD 
numbers, which are more accurate than ordinary binary numbers but 
are more difficult to use. BCD numbers (covered in more detail in 
Chapters 2 and 10) are often used in business-related programs in 
which a high degree of accuracy in arithmetic is important. In most 
other kinds of 6502B/65C02 programs, the decimal flag is usually left 
clear and ordinary binary numbers are generally used.

Flags affected: D
Registers affected: None 
Addressing modes: IMP

CLI (Clear interrupt mask) Clears the interrupt flag of the P register, 
enabling interrupts to take place. Until the advent of the Apple lie, 
interrupts were not supported by Apple II-series computers and there 
fore were not used in Apple programs. However, the Apple He does sup 
port interrupts, and the Apple lie even has an extremely sophisticated 
built-in interrupt handler. Interrupts are a bit beyond the scope of this 
book, but they are becoming increasingly important, particularly in 
programs designed to be used with sophisticated peripherals such as 
the Apple mouse. Details on how interrupts are used in Apple Ilc/IIe 
programs can be found in the Apple lie and Apple He reference manu 
als and in manuals covering the operations of peripherals such as the 
Apple mouse.

Flags affected: I
Registers affected: None 
Addressing modes: IMP

CLV (Clear overflow flag) Clears the P register’s overflow flag by set 
ting it to 0. This instruction is used primarily in operations involving 
signed numbers. However, it can also be used to clear bit 6 of any value.

Flags affected: C
Registers affected: None
Addressing modes: IMP
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CMP (Compare with accumulator) Compares a specified literal num 
ber, or the contents of a specified memory location, with the contents of 
the accumulator. The N, Z, and C flags of the status register are 
affected by this operation, and a branch instruction usually follows it. 
The branch instruction that follows the CMP instruction can cause a 
program to branch to a given routine under certain conditions. For 
example, a branch might take place if the value in the accumulator is 
less than, equal to, or more than the value being tested. The CMP 
instruction, and the branching instructions that are used with it, are 
covered in more detail in Chapter 8.

Flags affected: N, Z, C
Registers affected: None
Addressing modes: A, Z, IMM, AX, AY, IX, IY, ZX, ZPG*

CPX (Compare with X register) Compares a specified literal number, 
or the contents of a specified memory location, with the contents of the 
X register. The N, Z, and C flags of the status register are affected by 
this operation, and a branch instruction usually follows. The branch 
instruction that follows the CPX instruction can, under certain condi 
tions, cause a program to branch to a given routine. For example, a 
branch might take place if the value in the X register is less than, equal 
to, or more than the value being tested.

Flags affected: N, Z, C
Registers affected: None 
Addressing modes: A, IMM, Z

CPY (Compare with Y register) Compares a specified literal number, 
or the contents of a specified memory location, with the contents of the 
Y register. The N, Z, and C flags of the status register are affected by 
this operation, and a branch instruction usually follows. The branch 
instruction that follows the CPY instruction can cause a program to 
branch to a given routine under certain conditions; for example, a 
branch might take place if the value in the Y register is less than, equal 
to, or more than the value being tested.

Flags affected: V
Registers affected: None
Addressing modes: IMP

Flags affected: N, Z, C



Registers affected: None 
Addressing modes: A, IMM, Z
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DEA or DEC A (Decrement accumulator) Decrements the contents of 
the accumulator by one. If the value of the accumulator is $00, the result 
of a DEA operation will be $FF, since there is no carry.

Flags affected: N, Z
Registers affected: A 
Addressing modes: AC

DEC (Decrement a memory location) Decrements the contents of a 
specified memory location by one. If the value in the location is $00, the 
result of a DEC operation will be $FF, since there is no carry.

Flags affected: N, Z
Registers affected: M
Addressing modes: ACC*, A, Z, AX, ZX

DEX (Decrement X register) Decrements the X register by one. If the 
value in the location is $00, the result of the DEX operation will be $FF, 
since there is no carry.

Flags affected: N, Z
Registers affected: X 
Addressing modes: IMP

DEY (Decrement Y register) Decrements the Y register by one. If the 
value in the location is $00, the result of the DEY operation will be $FF, 
since there is no carry.

Flags affected: N, Z
Registers affected: Y
Addressing modes: IMP

EOR (Exclusive-OR with accumulator) Performs an Exclusive-OR 
operation on the contents of the accumulator and a specified literal 
value or memory location. The N and Z flags are conditioned in accor 
dance with the result of the operation, and the result is stored in the 
accumulator.

Flags affected: N, Z
Registers affected: A
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Addressing modes: A, Z, I, AX, AY, IX, IY, ZX, ZPG*

INA or INC A (Increment accumulator) The content of the accumulator 
is incremented by one. If the content of the accumulator is $FF, the 
result of the INA operation will be $00, since there is no carry.

Flags affected: N, Z
Registers affected: A 
Addressing modes: AC

INC (Increment memory) The contents of a specified memory location 
are incremented by one. If the value in the location is $FF, the result of 
the INC operation will be $00, since there is no carry.

Flags affected: N, Z
Registers affected: M
Addressing modes: ACC*, A, Z, AX, ZX

INX (Increment X register) The contents of the X register are incre 
mented by one. If the value of the X register is $FF, the result of the 
INX operation will be $00, since there is no carry.

Flags affected: N, Z
Registers affected: X 
Addressing modes: IMP

INY (Increment Y register) The contents of the Y register are incre 
mented by one. If the value of the Y register is $FF, the result of the 
INY operation will be $00, since there is no carry.

Flags affected: N, Z
Registers affected: Y 
Addressing modes: IMP

JMP (Jump to address) Causes program execution to jump to a speci 
fied address.

Flags affected: None
Registers affected: None 
Addressing modes: A, IX*, IND

JSR (Jump to subroutine) Causes program execution to jump to the 
address that follows the instruction. That address should be the starting
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address of a subroutine that ends with the instruction RTS. When the 
program reaches that RTS instruction, execution of the program 
returns to the next instruction after the JSR instruction that caused the 
jump to the subroutine.

Flags affected: None
Registers affected: Stack pointer
Addressing modes: A

LDA (Load the accumulator) Loads the accumulator with either a 
specified value or the contents of a specified memory location. The N 
flag is conditioned if a value with the high bit set is loaded into the 
accumulator, and the Z flag is set if the value loaded into the accumula 
tor is 0.

Flags affected: N, Z
Registers affected: A
Addressing modes: A, Z, IMM, AX, AY, IX, IY, ZX, ZPG*

LDX (Load the X register) Loads the X register with either a speci 
fied value or the contents of a specified memory location. The N flag is 
conditioned if a value with the high bit set is loaded into the X register, 
and the Z flag is set if the value loaded into the X register is 0.

Flags affected: N, Z
Registers affected: X
Addressing modes: A, Z, IMM, AY, ZY

LDY (Load the Y register) Loads the Y register with either a specified 
value or the contents of a specified memory location. The N flag is con 
ditioned if a value with the high bit set is loaded into the Y register, and 
if the Z flag is set, the value loaded into the Y register is 0.

Flags affected: N, Z
Registers affected: Y
Addressing modes: A, Z, IMM, AX, ZX

LSR (Logical shift right) Each bit in the accumulator is moved one 
position to the right. A 0 is deposited into the bit 7 position, and bit 0 is 
deposited into the carry. The result is left in the accumulator or in the 
affected memory register.

Flags affected: N, Z, C
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Registers affected: A, M 
Addressing modes: AC, A, Z, AX, ZX

NOP (No operation) Causes the computer to do nothing for two clock 
cycles. Used in delay loops and to synchronize the timing of computer 
operations.

Flags affected: None
Registers affected: None 
Addressing modes: IMP

ORA (lnclu$ive-OR with the accumulator) Performs a binary inclusive- 
OR operation on the value in the accumulator and a literal value or the 
contents of a specified memory location. The N and Z flags are condi 
tioned in accordance with the result of the operation, and the result of 
the operation is deposited in the accumulator.

Flags affected: N, Z
Registers affected: A, M
Addressing modes: A, Z, IMM, AX, AY, IX, IY, ZX, ZPG*

PHA (Push accumulator) The contents of the accumulator are pushed 
on the stack. The accmulator and the P register are left unchanged.

Flags affected: None
Registers affected: Stack pointer 
Addressing modes: IMP

PHP (Push processor status) The contents of the P register are 
pushed on the stack. The P register itself is left unchanged and no other 
registers are affected.

Flags affected: None
Registers affected: Stack pointer 
Addressing modes: IMP

* PHX (Push X register on the stack) The contents of the X register 
are pushed on the stack. The X register and the P register are left 
unchanged.

Flags affected: None
Registers affected: Stack pointer
Addressing modes: IMP
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* PHY (Push Y register on the stack) The contents of the Y register 
are pushed on the stack. The Y register and the P register are left 
unchanged.

Flags affected: None
Registers affected: Stack pointer 
Addressing modes: IMP

PLA (Pull accumulator) One byte is removed from the stack and de 
posited in the accumulator. The N and Z flags are conditioned, just as if 
an LDA operation had been carried out.

Flags affected: N, Z
Registers affected: A, Stack pointer 
Addressing modes: IMP

PLP (Pull processor status) One byte is removed from the stack and 
deposited in the P register. This instruction is used to retrieve the status 
of the P register after it has been saved by pushing it onto the stack. All 
of the flags are thus conditioned to reflect the original status of the P 
register.

Flags affected: N, V, B, D, I, Z, C
Registers affected: Stack pointer
Addressing modes: IMP

* PLX (Pull X register) One byte is removed from the stack and depos 
ited in the X register. The N and Z flags are conditioned, just as if an 
LDX operation had been carried out.

Flags affected: N, Z
Registers affected: X, Stack pointer 
Addressing modes: IMP *

* PLY (Pull Y register) One byte is removed from the stack and depos 
ited in the Y register. The N and Z flags are conditioned, just as if an 
LDY operation had been carried out.

Flags affected: N, Z
Registers affected: Y, Stack pointer
Addressing modes: IMP
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ROL (Rotate left) Each bit in the accumulator or a specified memory 
location is moved one position to the left. The carry bit is deposited into 
the bit 0 location and is replaced by bit 7 of the accumulator or the 
affected memory register. The N and Z flags are conditioned in accor 
dance with the result of the rotation operation.

Flags affected: N, Z, C
Registers affected: A, M 
Addressing modes: AC, A, Z, AX, ZX

ROR (Rotate right) Each bit in the accumulator or a specified 
memory location is moved one position to the right. The carry bit is 
deposited into the bit 7 location and is replaced by bit 0 of the accumula 
tor or the affected memory register. The N and Z flags are conditioned 
in accordance with the result of the rotation operation.

Flags affected: N, Z, C
Registers affected: A, M 
Addressing modes: AC, A, Z, AX, ZX

RTI (Return from interrupt) The RTI instruction is used to end an 
interrupt in much the same way that an RTS instruction is used to end 
a subroutine. When an RTI instruction is issued, the program counter 
and the P register are pulled from the stack, and the stack pointer is 
adjusted to reflect the new state of the stack. Then the interrupt ends, 
and the program jumps back to where it left off before the interrupt 
began (that is, to the instruction following the instruction that began 
the interrupt). When using the RTI instruction, it is important to 
remember that although RTI restores the P register to its original state, 
RTI does not restore the original states of the X, Y, and A registers. That 
job is left to the programmer.

Flags affected: N, V, B, D, I, Z, C
Registers affected: PC, Stack pointer
Addressing modes: IMP

RTS (Return from subroutine) The RTS instruction serves two func 
tions. When used at the end of a machine-language program, it termi 
nates the program and passes control of the Apple Ilc/IIe to whatever 
system program was running when the machine-language program 
began; usually, this results in a return either to BASIC or to the Apple 
Ilc/IIe monitor.
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When RTS is used at the end of a subroutine, it has a completely 
different function; it pulls a 16-byte address from the top of the stack 
and loads that address into the 6502B/65C02 program counter. This 
operation ends the subroutine, and the program in progress then jumps 
back to where it was before the subroutine began (that is, to the instruc 
tion following the instruction that called the subroutine).

Flags affected: None
Registers affected: Stack pointer
Addressing modes: IMP

SBC (Subtract with carry) Subtracts a literal value or the contents of 
a specified memory location from the contents of the accumulator. The 
opposite of the carry is also subtracted—in other words, there is a bor 
row. The N, V, Z, and C flags are all conditioned by this operation, and 
the result of the operation is deposited in the accumulator.

Flags affected: N, V, Z, C
Registers affected: A
Addressing modes: A, Z, IMM, AX, AY, IX, IY, ZX, ZPG*

SEC (Set carry) The carry flag is set. This instruction usually pre 
cedes an SBC instruction. Its primary purpose is to set the carry flag so 
that there can be a borrow.

Flags affected: C
Registers affected: None 
Addressing modes: IMP

SED (Set decimal mode) Prepares the computer for operations using 
BCD (binary coded decimal) numbers. BCD arithmetic is more accu 
rate than binary arithmetic (the usual type of 6502B/65C02 arithmetic) 
but is slower and more difficult to use and consumes more memory. 
BCD arithmetic is usually used in accounting and bookkeeping pro 
grams and in floating-point arithmetic operations.

Flags affected: D
Registers affected: None 
Addressing modes: IMP

SEI (Set interrupt disable) Sets the interrupt (I) flag of the P register, 
disabling all maskable interrupts (IRQs). Setting the interrupt flag does
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not disable non-maskable interrupts (NMIs), which are essential to the 
operation of the Apple IIc/Apple He.

Flags affected: I
Registers affected: None 
Addressing modes: IMP

STA (Store accumulator) Stores the contents of the accumulator in a 
specified memory location. The contents of the accumulator are not 
affected.

Flags affected: None
Registers affected: M
Addressing modes: A, Z, AX, AY, IX, IY, ZX, ZPG*

STX (Store X register) Stores the contents of the X register in a speci 
fied memory location. The contents of the X register are not affected.

Flags affected: None
Registers affected: M
Addressing modes: A, Z, ZY

STY (Store Y register) Stores the contents of the Y register in a speci 
fied memory location. The contents of the Y register are not affected.

Flags affected: None
Registers affected: M 
Addressing modes: A, Z, ZX

* STZ (Store 0 in memory) Stores a 0 in a specified memory location.

Flags affected: None
Registers affected: None 
Addressing modes: A, Z, AX, ZX

TAX (Transfer accumulator to X register) The value in the accumula 
tor is deposited in the X register. The N and Z flags are conditioned in 
accordance with the result of this operation. The contents of the accum 
ulator are not changed.

Flags affected: N, Z
Registers affected: X
Addressing modes: IMP
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TAY (Transfer accumulator to Y register) The value in the accumula 
tor is deposited in the Y register. The N and Z flags are conditioned in 
accordance with the result of this operation. The contents of the accum 
ulator are not changed.

Flags affected: N, Z
Registers affected: Y 
Addressing modes: IMP

* TRB (Test and reset bits) A logical AND operation is performed on 
a memory location and the inverse of the accumulator value. The result 
is stored in the memory location; the Z flag is conditioned.

Flags affected: D, Z, C, N
Registers affected: M 
Addressing modes: A, Z

* TSB (Test and set bits) A logical OR operation is performed on a 
memory location and the value of the accumulator. The result is 
stored in the memory location and the Z flag is conditioned.

Flags affected: D, Z, C, N
Registers affected: M 
Addressing modes: A, Z

TSX (Transfer stack to X register) The value in the stack pointer is 
deposited in the X register. The N and Z flags are conditioned in accor 
dance with the result of this operation. The value of the stack pointer is 
not changed.

Flags affected: N, Z
Registers affected: X 
Addressing modes: IMP

TXA (Transfer X register to accumulator) The value in the X register 
is deposited in the accumulator. The N and Z flags are conditioned in 
accordance with the result of this operation. The value of the X register 
is not changed.

Flags affected: N, Z
Registers affected: A
Addressing modes: IMP
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TXS (Transfer X register to stack) The value in the X register is de 
posited in the stack pointer. No flags are conditioned by this operation. 
The value of the X register is not changed.

Flags affected: None
Registers affected: Stack pointer
Addressing modes: IMP

TYA (Transfer Y register to accumulator) The value in the Y register 
is deposited in the accumulator. The N and Z flags are conditioned by 
this operation. The value of the Y register is not changed.

Flags affected: N, Z
Registers affected: A 
Addressing modes: IMP

The Byte Simulator

Program 6-1 is a printout of “The Byte Simulator,” a program that will 
give you an inside look at what your computer’s microprocessor does 
when it processes the above instructions.

The Byte Simulator is not a real assembler, so you won’t be able to 
assemble and run programs with it. It has some other limitations, too; 
for example, it doesn’t allow the use of labels or indirect addressing (a 
topic that will be covered in detail in a later chapter). And, since it was 
designed to be compatible with all Apple He computers as well as the 
Apple lie, it won’t accept the eight instructions that are unique to the 
65C02 microprocessor.

One important feature of The Byte Simulator is that it can’t freeze 
your computer system, making everything you’re doing come to a crash 
ing halt. The reason is that The Byte Simulator will not actually poke 
values into your computer’s memory registers; it can read the contents 
of any memory register in your computer, but it can’t write to registers 
in RAM. So, although you can use the program to check the contents of 
any memory register in your computer, you won’t be courting disaster 
every time you key in an assembly-language instruction.

After you’ve typed and saved The Byte Simulator, you can see how it 
works by using it to type any of the programs presented so far in this 
book. Once you know how it works, you can use it to test any Apple He 
or Apple lie assembly-language program.
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When you load the program, you will first see a status line across the 
top of your screen. This line will show you the current status of the four 
most important registers inside the 65C02/6502B chip: the processor 
status register, the accumulator, and the X and Y registers. Beneath 
this status line, you’ll see a cursor. Starting at the cursor location, you 
can type an assembly-language program and see exactly how each 
instruction in the program would affect each register in your Apple’s 
main microprocessor if the program were actually running. Each time 
you type a line of assembly language using The Byte Simulator, it will 
show you how that line would affect your CPU’s internal registers and 
keep a running update of the contents of your CPU’s A, X and Y regis 
ters. The information will be displayed in both hex and binary notation.

As you continue to learn 6502B/65C02 assembly language, The Byte 
Simulator should be very helpful. Every instruction in 6502 assembly 
language has some effect on the registers inside your Apple’s CPU, and 
you can use The Byte Simulator to get an inside look at those effects.

Program 6-1
THE BYTE SIMULATOR
100 REM * * * * * * * * * * * * * * * * * * *  THE BYTE SIMULATOR * * * * * * * * * *  

* * * * * * * * * * *
110 DATA A S L , B R K , C L C , C L D , C L I , C L V , D E X , D E Y , I N X , I N Y , L S R , N O P ,  

PHA, PHP , PLA
120 DATA P L P , R O L , R O R , R T I , R T S , S E C , S E D , S E I , T A X , T A Y , T S X , T X A ,  

TXS, TYA
130 DATA A D C , A N D , C M P , C P X , C P Y , E 0 R , L D A , L D X , L D Y , 0 R A , S B C  
1A0 DATA A D C , A N D , A S L , B C C , B C S , B E Q , B I T , B M I , B N E , B P L , B V C , B V S ,  

CMP, CPX, CPY
150 DATA D E C , E O R , I N C , J M P , J S R , L D A , L D X , LDY, L S R, ORA , ROL , ROR,  

S B C , S T A , S T X
160 DATA S T Y , A S L , L S R , R O L , R O R
170 DATA 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , A , B , C , D , E , F
180 DATA 0 0 0 0 , 0 0 0 1 , 0 0 1 0 , 0 0 1 1 , 0 1 0 0 , 0 1 0 1 , 0 1 1 0 , 0 1 1 1
190 DATA 1 0 0 0 , 1 0 0 1 , 1 0 1 0 , 1 0 1 1 , 1 1 0 0 , 1 1 0 1 , 1 1 1 0 , 1 1 1 1
200 DIM H E X $ ( 8 ) , B I T $ ( 8 ) , H $ ( 1 6 ) , B $ ( 1 6 ) , T E M P $ ( 2 ) , B I T ( 8 ) , N $ ( 7 5 )
210 AH$ = " 0 0 " : XH$ = " 0 0 " : Y H S  = " 0 0 " : Z $  = " 0" : AD = 0: SC =

0 : YD = 0
220 AB$ = " 0 0 0 0 0 0 0 0 " : XB$ = " 00000000"  : YB$ 
230 N = 0 : V = 0 : B  = 0:D = 0 : 1  = 0 : Z  = 0: C  
240 IF RIGHTS ( A S , 1) = " " THEN 300
250 FOR L = 1 TO 75:  READ N S ( L ) :  NEXT L
260 FOR L = 1 TO 16:  READ H S ( L ) :  NEXT L:

READ B $ ( L ) :  NEXT L
270 PRINT CHRS ( 4 >; " PR#3" :  TEXT : REM 

PROGRAM
280 PRINT "NV-BDIZC A: " ; A H S ; "  X:

; YHS
290 PRINT N ; V ; " - " ; B ; D ; I ; Z ; C ; "  " ; A B $ ; "

PRINT : GOTO 310 
PRINT CHRS ( 7 ) :  REM RING BELL

=  " 0 0 0 0 0 0 0 0 "  

= 0

FOR L = 1 TO 16:  

CLEAR SCREEN,  START

; X H S ; " Y:

" ; X B S ; " " ;  YBS

300
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310 B = 0:  A$ = INPUT " '’ ; A $ :  REM TYPE SPACE BETWEEN
LAST PAIR OF QUOTES

320 IF LEN (A$> < 3 OR LEN (A$) > 10 THEN 300
330 IF LEN ( A$) = 3 THEN 420:  REM GOTO ONE-BYTE MNEMONIC

ROUTINES
340 IF MIDS ( A S , 4 , 1 )  < > CHR$ (32) THEN 300 
350 IF RIGHTS ( A S , 1 )  = CHRS (32) THEN 300 
360 GOTO 450:  REM GO TO MULTIPLE-BYTE MNEMONIC ROUTINES 
370 REM ***  ROUTINE TO CONVERT OPS & AOS TO BINARY 

NUMBERS ******
380 ODS = OPS: GOSUB 1130:  FOR L = 1 TO 8 : B I T S ( L )  = ZS:

NEXT L
390 FOR L = 1 TO 8 : B 1 S ( L )  = MIDS ( 0 B S , L , 1 ) :  NEXT L
400 FOR L = 1 TO 8 : B 2 S ( L )  = MIDS ( A B S , L , 1 ) :  NEXT L:  RETURN
410 REM ************** IMPLIED ADDRESSING *****************  

*********
420 FOR L = 1 TO 29:  IF AS = NS(L)  THEN OCS = AS:OC = L:

GOTO 1350

430 NEXT L:  GOTO 300
440 REM   ** * IMMEDIATE,  ABSOLUTE & ACCUMULATOR ADDRESSING

*********
450 oc$ = LEFTS ( A S , 3 ) : 0 P $ = MIDS (AS , 5 )
460 IF LEFTS ( 0 P S , 1 )  = AND MIDS ( O P S , 2 , 1 ) = "S"  THEN

FLAGS = ” AH":  GOTO 530
470 IF LEFTS ( 0 P S , 1 )  = THEN FLAGS = " AD" : GOTO 620
480 IF LEFTS ( 0 P S , 1 )  = " S " THEN FLAGS _ mI Hm. GOTO 690
490 IF OPS = "A" THEN 790
500 IF LEFTS ( 0 P $ , 1 )  < "0" AND LEFTS (0PS, 1 ) > "9"  THEN

300 : REM TRY AGAIN
510 FLAGS = " I D ” : GOTO 840
520 REM * * * * * * * * *  HEX OPERAND,  ABSOLUTE ADDRESSING ******  

**************
530 OPS = MIDS ( 0 P S , 3 ) : BAS = " H" :  REM HEX ADDRESS
540 FOR L = 30 TO 40:  IF OCS = N$(L)  THEN OC = L:  GOTO 560
550 NEXT L:  GOTO 300
560 IF LEN (OPS) > 2 THEN 300
570 FOR L = 1 TO LEN ( OP S ) : X$  = MIDS ( 0 P S , L , 1 ) :  IF XS <

ZS OR XS > " F "  THEN 300 
580 IF XS > "9"  AND XS < "A" THEN 300
590 IF LEN (OPS) = 1 THEN OPS = ZS + OPS
600 OHS = OPS: GOSUB 1030: 0PS = ODS: GOTO 670 
610 REM * * * * * * * * *  DECIMAL OPERAND, ABSOLUTE ADDRESSING ** 

************
620 OPS = MIDS ( O P S , 2 ) :BA$ = " D" :  REM DECIMAL ADDRESS 
630 FOR L = 30 TO 40:  IF OCS = N$(L)  THEN OC = L:  GOTO 650 
640 NEXT L:  GOTO 300
650 IF VAL (OPS) > 255 THEN 300
660 FOR L = 1 TO LEN ( OPS) : XS  = MIDS ( 0 P $ , L , 1 ) :  IF ASC

(XS) < 48 OR ASC 
(XS) > 57 THEN 420 
670 OC = OC -  29:  GOTO 1420
680 REM * * * * * * * * *  HEX OPERAND,  IMMEDIATE ADDRESSING *****  

* * * * * * * * * * *
690 OPS = MIDS ( O P S , 2 ) : BAS = "H" :  REM HEX ADDRESS
700 FOR L = 41 TO 71:  IF OCS = NS(L)  THEN OC = L:  GOTO 720
710 NEXT L:  GOTO 300
720 IF LEN (OPS) > <  THEN 300
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730 FOR L = 1 TO LEN ( OP$) : X$  = MIDS ( 0 P S , L , 1 ) :  IF XS <
Z$ OR X$ > MF" THEN 300 

740 IF X$ > " 9"  AND X$ < "A" THEN 300 
750 NEXT L
760 OHS = OPS: 60SUB 1030: 0PS = OD$:OP$ = STRS ( PEEK ( VAL 

( OPS) ) )
770 BAS = " D " : OC = OC -  40:  GOTO 1430
780 REM *************** ACCUMULATOR ADDRESSING ********* 

************

790 OPS = " A " :  REM ACCUMULATOR ADDRESSING
800 FOR L = 72 TO 75:  IF OCS = NS(L)  THEN OC = L -  71:  GOTO 

820
810 NEXT L:  GOTO 300
820 ON OC GOTO 1 5 1 0 , 1 7 6 0 , 1 7 9 0 , 1 8 1 0
830 REM *********** DECIMAL OPERAND, IMMEDIATE ADDRESSING

DECIMAL ADDRESS 
> 65535 THEN 300 
LEN (OPS) : XS = MIDS ( 0 P $ , L , 1 )  
ASC

IF ASC

840 BAS = "D" :  REM 
850 IF VAL (OPS)
860 FOR L = 1 TO 

(XS) < 48 OR 
(XS) > 57 THEN 300 
870 FOR L = 41 TO 71:
880 NEXT L:  GOTO 300
890 OPS = STRS ( PEEK ( VAL (OPS)) )
900 OC = OC -  40:  GOTO 1430
910 REM ************ DECIMAL-TO-HEXADECIMAL CONVERSION **  

************

IF OCS = NS( L) THEN OC = L:  GOTO 890

920 FOR L = 1 TO 4 : HEXS(L)  = NEXT L
930 FOR L = 1 TO 5 : TS  = RIGHTS ( O D S , L ) : NEXT L
940 NR = VAL ( O D S ) : X = 4
950 TMP = NR: NR = INT (NR / 16) : TMP = TMP -  NR * 16
960 IF TMP < 10 THEN HEXS(X) = RIGHTS ( STRS ( T M P ) , 1 ) :  GOTO 980
970 HEXS( X) = CHRS (TMP -  10 + ASC ( " A " ) )
980 IF NR < > 0  THEN X = X -  1: GOTO 950
990 OHS = HEXS(1) + HEXS(2)  + HEXS(3)  + HEX$(4)
1000 IF LEN (OHS) = 1 THEN OHS = ZS + OHS 
1010 RETURN
1020 REM ********** HEXADECIMAL-TO-DECIMAL CONVERSION *** 

**********
1030 NR = 0:  FOR L = 1 TO LEN ( OHS ) : HEXS( L) = MIDS 

( 0 H S , L , 1 )
1040 IF HEXS(L)  < = " 9 M THEN NR = NR * 16 + VAL ( H E X S ( L ) ) :

GOTO 1060
1050 NR = NR * 16 + ASC ( HE X S ( L) )  -  ASC ( " A" )  + 10 
1060 NEXT L : ODS = STRS (NR):  RETURN
1070 REM ************** BINARY-TO-DECIMAL CONVERSION **** 

**********
1080 FOR L = 8 TO 1 STEP -  1 : B S ( L )  = MIDS ( 0 B S , L , 1 ) :

NEXT L
1090 FOR L = 1 TO 8 : B I T ( L )  = VAL ( B$ ( L >) :  NEXT L:OD =

0 : M = 256
1100 FOR L = 1 TO 8 : M = M / 2:0D = OD + B I T ( L )  * M: NEXT L 
1110 ODS = STRS (OD):  RETURN
1120 REM ********** DECIMAL-TO-BINARY CONVERSION ********  

*************
1130 OD = VAL ( OPS) :  FOR L = 8 TO 1 STEP -  1 : Q = 0 0 /  2:R  

= Q -  INT (Q)



128 Apple Roots

1140 IF R = 0 THEN BT$(L)  = Z$:  GOTO 1160 
1150 BT$(L)  = " 1"
1160 OD = INT <Q): NEXT L
1170 0B$ = B T $ (1) + B T S (2) + BT$C3) + BT$(4)  + BT$(5)  +

B T $ (6) + B T $ (7) + B T $ ( 8 ) :  RETURN 
1180 REM ******** HEXADECIMAL-TO-BINARY CONVERSION ****** 

*************
1190 HEXS(1) = : HEXS(2) = FOR L = 1 TO LEN (OHS):

HEXS(L)  = MIDS ( 0 H $ , L , 1 )
1200 NEXT L:  IF HEX$(2)  = ""  THEN HEX$(2)  = HEXS( 1 ) : HEXS(1)

_  H Q . .

1210 FOR L = 1 TO 16:  IF HEXS(1) = HS(L)  THEN B I T S (1) = 
BS( L)

1220 NEXT L

1230 FOR L = 1 TO 16:  IF HEXS(2)  = H$(L)  THEN BI T $ ( 2)  =
BS (L)

1240 NEXT L
1250 OBS = B I T S O ) + BI TS<2) :  PRINT : RETURN
1260 REM ************ BINARY TO HEXADECIMAL CONVERSION **

1270 FOR L = 1 TO 8 : B I T S ( L )  = MIDS ( 0 B S , L , 1 ) :  NEXT L 
1280 BITS = B I T S (1) + BI T S ( 2 )  + BI T S ( 3 )  + BI T S ( 4 )  + BITS(5)

+ B I T S (6) + BI T S ( 7 )  + BI T S( 8)
1290 T1S = LEFTS ( B I T S , 4 ) : T 2 S  = RIGHTS ( B I T S , 4 ) :  FOR L =

1 TO 16
1300 IF T1S = BS(L)  THEN HEXS(1) = HS(L>
1310 NEXT L:  FOR L = 1 TO 16: IF T2S = BS( L)  THEN HEXS(2> = 

HS ( L)
1320 NEXT L:  IF HEX$(1)  = ""  THEN HEXS( 1)  = ZS:  IF  HEX$(2)

= "" THEN H E X S (2) = ZS 
1330 OHS = HEXS(1) + HE X$ ( 2 ) :  RETURN
1340 REM ****************** ON/GOTO DATA **************  

           
1350 ON OC GOTO 1 5 1 0 , 1 5 6 0 , 1 5 7 0 , 1 5 8 0 , 1 5 9 0 , 1 6 0 0 , 1 6 1 0 , 1 6 5 0 ,  

1690, 1730  
1360 NR = OC -  10
1370 ON NR GOTO 1 7 6 0 , 1 7 8 0 , 1 7 8 0 , 1 7 8 0 , 1 7 8 0 , 1 7 8 0 , 1 7 9 0 , 1 8 1 0 ,

1830. 1840  
1380 NR = NR -  10
1390 ON NR GOTO 1 8 5 0 , 1 8 6 0 , 1 8 7 0 , 1 8 8 0 , 1 9 0 0 , 1 9 2 0 , 1 9 3 0 , 1 9 4 0 ,

1950. 1840  
1400 NR = NR -  10
1410 ON NR GOTO 1 8 5 0 , 1 8 6 0 , 1 8 7 0 , 1 8 8 0 , 1 9 0 0 , 1 9 2 0 , 1 9 3 0 , 1 9 4 0 ,  

1950 , 1950
1420 ON OC GOTO 1 9 7 0 , 2 1 0 0 , 2 1 7 0 , 2 2 5 0 , 2 3 2 0 , 2 3 9 0 , 2 4 5 0 , 2 5 5 0 ,  

2 6 5 0 , 2 7 5 0 , 2 8 1 0
1430 ON OC GOTO 1 9 7 0 , 2 3 5 0 , 3 2 5 0 , 1 7 8 0 , 1 7 8 0 , 1 7 8 0 , 3 2 0 0 , 1 7 8 0 ,

1780. 1780  
1440 NR = OC -  10
1450 ON NR GOTO 1 7 8 0 , 1 7 8 0 , 3 2 5 0 , 2 2 5 0 , 2 3 2 0 , 3 2 6 0 , 2 3 9 0 , 3 2 9 0 ,

1780 . 1780  
1460 NR = NR -  10
1470 ON NR GOTO 2 4 5 0 , 2 5 5 0 , 2 6 5 0 , 3 3 2 0 , 2 7 5 0 , 3 3 4 0 , 3 3 6 0 , 2 8 1 0 ,

1780 . 1780  
1480 NR = NR -  10
1490 ON NR GOTO 1780 , 3390
1500 REM *********** OP-CODE ROUTINES START HERE ******** 

**********
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1520

1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630

1640
1650
1660
1670

1680
1690
1700

1710
1720
1730
1740
1750
1760

1770
1780
1790

      
1800 
1810

REM
1820
1830

1840
1850
1860
1870
1880

***
1890
1900

***
1910
1920

1510 C = VAL ( LEFTS ( A B $ , 1 ) ) : A B $  = MIDS ( A B S , 2) + Z$:
REM *** ASL ***
OB$ = ABS: GOSUB 1270:AH$ = 0H$:0P$ = OHS: GOSUB 1030:N
= 0 : Z  = 0

IF LEFTS ( 0 B S , 1 )  = " 1"  THEN N = 1 
IF VAL (ODS) = 0 THEN Z = 1 
GOTO 3390

B = 1: GOTO 3390 : REM * * BRK ***
C = 0:  GOTO 3390 : REM      CLCL ***
D = 0:  GOTO 3390 : REM     * CLD
I = 0:  GOTO 3390 : REM *** CLI ***
V = 0:  GOTO 3390 : REM      CLV ***
OHS = XHS: GOSUB 1030: XD = VAL (ODS):
XD := XD -  1 : IF XD < 0 THEN XD = 255
ODS = STRS (XD) : GOSUB 920 : XHS = OHS:
= OBS
TMP = XD: GOSUB 3410: GOTO 280
OHS = YHS: GOSUB 1030: YD = VAL (ODS):
YD = YD -  1 : IF YD < 0 THEN YD = 255
ODS = STRS (YD) : GOSUB 920 : YHS = OHS:
= OBS
TMP = YD: GOSUB 3410: GOTO 280
OHS = XHS: GOSUB 1030: XD = VAL (ODS):
ODS = STRS (XD) :  GOSUB 920:XHS = OHS: 
OBS
XD = XD + 1: IF XD > 255 THEN XD = 0

REM *** DEX *** 

GOSUB 1 1 9 0 : XBS

REM ***  DEY *** 

GOSUB 1 1 9 0 : YBS

REM *** INX *** 
GOSUB 1190:  XBS =

GOTO 1630
OHS = YHS: GOSUB 1030:YD = VAL (ODS):  REM *** INY *** 
YD = YD + 1: IF YD > 255 THEN YD = 0 

GOTO 1670
C = VAL ( RIGHTS ( A B $ , 1 ) ) : A B S  = Z$ + LEFTS ( A B S , 7) :  
REM *** LSR ***

GOTO 1520
GOTO 3390:  REM *** NOP,  PHA,  PHP,  PLA AND PLP ***

TMP = C : C = VAL ( LEFTS ( A B $ , 1 ) ) : A B S  = MIDS ( A B S , 2) + 
STRS (TMP):  REM 

ROL ***
GOTO 1520

TMP = C : C = VAL ( RIGHTS ( A B S , 1 ) ) : A B S  = STRS (TMP) + 
LEFTS ( A B S , 7 ) :
*** ROR ***

GOTO 1520
N = 0 : V  = U : B  = 0:D = 0 : 1  = 0 : Z  = 0: C  = 0:  GOTO 280:  
REM *** RTI ***

GOTO 3390:  REM *** RTS ***
C = 1: GOTO 3390:  REM * * *  SEC  **
D = 1: GOTO 3390:  REM *** SED ***
1 = 1 :  GOTO 3390:  REM *** SEI ***
XHS = AHS: XBS = ABS:OP$ = AHS: GOSUB 1030:TMP = VAL
(ODS):  REM

TAX ***
GOSUB 3410:  GOTO 3390

YHS = AHS: YBS = ABS:OPS = AHS: GOSUB 1030:TMP = VAL 
(ODS) :  REM *** TAY

GOSUB 3410:  GOTO 3390
XHS = " 0 0 " : XBS = " 0 0 0 0 0 0 0 0 " :  GOSUB 3410:  GOTO 3390:  REM 
*** JSX ***
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1930
1940
1950
1960

1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070

2080
2090
2100
2110
2120

2130
2140

2150
2160

2170

2180
2190
2200
2210
2220
2230
2240
2250

2260
2270
2280
2290
2300
2310
2320

2330
2340
2350
2360
2370
2380
2390
2400
2410

AH$ = XH$: AB$ = XB$: GOTO 1520:  REM *** TXA ***
GOTO 3390:  REM *** TXS ***

AHS = YH$: AB$ = YB$: GOTO 1520:  REM *** TYA ***
REM ************** ABSOLUTE-ADDRESS OPERANDS ******* 

       
IF D THEN 2950:  REM *** ADC ***

OP = VAL (OPS) :TMPS = AB$
GOSUB 1130:  PLUSS = 0B$

OHS = AHS: GOSUB 1030:ADS = OD$:AD = VAL (AD$):TMP = AD 
AD = AD + OP + C : C = 0:  IF AD > 255 THEN GOSUB 2090 
ADS = STRS (AD) :ODS = ADS: GOSUB 9 2 0 : AHS = OHS 

GOSUB 1 1 9 0 : ABS = OBS 
N = 0:  IF AD > 127 THEN N = 1 
Z = 0:  IF AD = 0 THEN Z = 1 
V = 0

( T MP S , 1) = LEFTS ( P L U S S , 1) AND 
> LEFTS ( A B S , 1) THEN V = 1 

GOSUB 1 0 3 0 : AHS = OHS: GOTO 280 
AD -  256:  RETURN 

REM *** AND ***
TO 8 : B I T S ( L) = " 0 " :  NEXT L 
TO 8:  IF B1S(L> = B2S( L)  THEN

IF LEFTS  
( T MP S , 1 ) <
ODS = ADS:
C = 1 : AD =

GOSUB 380 
FOR L = 1 
FOR L = 1 

B1S(L)
NEXT L

ABS = B I T S (1) + B I T S ( 2 )  + B I T S ( 3 )  
B I T S (6) + B I T S (7) + BI T S( 8)
OBS = ABS: GOSUB 1270:AHS = OHS 

GOSUB 1 0 3 0 : TMP = VAL (ODS):  GOSUB 
GOTO 280
OHS = AHS: GOSUB 1030:ADS = ODS:AD = 
VAL (OPS) :  REM *** CMP ***

IF AD = OP THEN Z = 1: GOTO 2200 
Z = 0

LEFTS

B I T S ( L )

+ B I T S (4) + B I T S (5) +

3410:  PRINT

VAL ( A D S ) : OP =

IF OP > AD THEN N = 1: GOTO 2220 
N = 0

IF AD > OP OR AD = OP THEN C = 1: GOTO 2240 
C = 0 

GOTO 3390
OHS = XHS: GOSUB 1030:XD$ = ODS:XD = VAL (XD$):OP = 
VAL (OPS) :  REM CPX 

IF XD = OP THEN Z = 1: GOTO 2280 
Z = 0

IF OP > XD THEN N = 1: GOTO 2300 
N = 0

IF XD > OP OR XD = OP THEN C = 1: GOTO 2320 
C = 0: GOTO 3380
OHS = YHS: GOSUB 1030:YDS = ODS:YD = VAL (YDS) :OP = 
VAL (OPS) :  REM *** CPY ***

IF YD = OP THEN Z = 1: GOTO 2350 
Z = 0

IF OP > YD THEN N = 1: GOTO 2370 
N = 0

IF YD > OP OR YD = OP THEN C = 1: GOTO 3110 
C = 0:  GOTO 3380 

GOSUB 400:  REM *** EOR ***
FOR L = 1 TO 8 : B I T S ( L) = " 0 " :  NEXT L:  FOR L = 1 TO 8
IF B1S( L)  = "1"  OR B2S(L)  = " 1"  THEN 2440
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2420 IF B1$ ( L) = B 2 $ ( L) THEN 2440 
2430 B I T S ( L )  = "1"
2440 NEXT L:  GOTO 2140
2450 IF D = 1 THEN 2480:  REM *** LD A ***
2460 ODS = OPS: GOSUB 920:AHS = OHS: GOSUB 1190:ABS = OBS
2470 TMP = VAL (OPS) :  GOSUB 3410:  GOTO 280
2480 IF FLAGS = "AD" AND VAL (OPS) > 99 THEN 300
2490 IF FLAGS < > "AD" THEN ODS = OPS: GOSUB 920:AHS =

OHS: GOTO 2530
2500 IF LEN (OPS) = 1 THEN OPS = ZS + OPS 
2510 AHS = OPS: OHS = AHS: GOTO 2530 
2520 ODS = OPS: GOSUB 920:AHS = OHS 
2530 GOSUB 1190: ABS = OBS
2540 TMP = VAL ( O P S ) :  GOSUB 3410:  GOTO 2470 
2550 IF D = 1 THEN 2580:  REM *** LDX ***
2560 ODS = OPS: GOSUB 920:XHS = OHS: GOSUB 1190:XBS = OBS
2570 TMP = VAL (OPS) :  GOSUB 3410:  GOTO 280
2580 IF FLAGS = "AD" AND VAL (OPS) > 99 THEN 300
2590 IF FLAGS < > "AD" THEN ODS = OPS: GOSUB 920:XHS =

OHS: GOTO 2630
2600 IF LEN (OPS) = 1 THEN OPS = ZS + OPS 
2610 XHS = OPS: OHS = XHS: GOTO 2630 
2620 ODS = OPS: GOSUB 920:XHS = OHS 
2630 GOSUB 1190:XBS = OBS
2640 TMP = VAL (ODS) :  GOSUB 3410:  GOTO 2570 
2650 IF D = 1 THEN 2680:  REM *** LDY ***
2660 ODS = OPS: GOSUB 920: YHS = OHS: GOSUB 1190:YBS = OBS
2670 TMP = VAL (OPS) :  GOSUB 3410:  GOTO 280
2680 IF FLAGS = "AD" AND VAL (OPS) > 99 THEN 300
2690 IF FLAGS < > "AD" THEN ODS = OPS: GOSUB 920:YHS =

OHS: GOTO 2730
2700 IF LEN (OPS) = 1 THEN OPS = ZS + OPS 
2710 YHS = OPS: OHS = YHS: GOTO 2730 
2720 ODS = OPS: GOSUB 920: YHS = OHS 
2730 GOSUB 1 1 9 0 : YBS = OBS
2740 TMP = VAL (ODS) :  GOSUB 3410:  GOTO 2670 
2750 GOSUB 380:  REM *** ORA ***
2760 FOR L = 1 TO 8:  IF B1S( L)  = "1"  OR B2S(L)  = "1"  THEN 

B I T S ( L )  = "1"
2770 NEXT L
2780 ABS = " " :  FOR L = 1 TO 8:ABS = ABS + B I T S ( L ) :  NEXT L 
2790 OBS = ABS: GOSUB 1270:AHS = OHS
2800 GOSUB 1 0 3 0 : TMP = VAL (ODS) :  GOSUB 3410:  GOTO 3390 
2810 IF D THEN 3060:  REM *** SBC ***
2820 OP = VAL ( O P S ) : TMPS = ABS 
2830 GOSUB 1 1 3 0 : MIS = OBS
2840 OHS = AHS: GOSUB 1030:ADS = ODS:AD = VAL (ADS):TMP = AD
2850 AD = AD -  OP: IF C = 0 THEN AD = AD -  1
2860 IF AD < 0 THEN AD = 256 + AD:C = 0
2870 ADS = STRS (AD):OD$ = ADS: GOSUB 920:AH$ = OHS
2880 GOSUB 1 1 9 0 : ABS = OBS
2890 N = 0 : IF AD > 127 THEN N = 1
2900 Z = 0 : IF AD = 0 THEN Z = 1
2910 V = 0 : IF LEFTS ( T M P S , 1) = LEFTS ( M I $ , 1 ) THEN 2930
2920 IF LEFTS (ABS, 1) = LEFTS ( T M P S , 1 ) THEN V = 1
2930 0D$ = ADS: GOSUB 1 0 3 0 : AHS = OHS: GOTO 280
2940 REM ***** BCD ADDITION ROUTINE *****
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2950 IF FLAGS < > "AD" THEN 1980
2960 IF LEFTS ( A H S , 1) > "9"  OR RIGHTS (AHS, 1)  > " 9"  THEN 

3030
2970 AD = VAL ( AHS)
2980 OP = VAL ( OPS) : AD = AD + OP + C:C = 0
2990 GOSUB 1 0 3 0 : TMP = VAL ( O D S ) : GOSUB 3410:  GOTO 3390
3000 IF AD > 99 THEN GOSUB 3040
3010 AHS = STRS (AD) :  IF LEN (AHS) = 1 THEN AHS = ZS + AHS
3020 OHS = AHS: GOSUB 1190:ABS = OBS: GOTO 280
3030 OHS = AHS: GOSUB 1030:AD$ = ODS:AD = VAL (ADS) :  GOTO

2980
3040 C = 1 : AD = AD -  100:  RETURN
3050 REM ******* BCD SUBTRACTION ROUTINE ****************  

*******
3060 IF FLAGS < > "AD" THEN 2820
3070 IF LEFTS (AHS, 1)  > " 9"  OR RIGHTS (AHS, 1)  > "9"  THEN 

3120
3080 AD = VAL (AHS)
3090 OP = VAL ( O P S ) : AD = AD -  OP: IF C = 0 THEN AD = AD - 1 
3100 IF AD < 0 THEN GOSUB 3130 
3110 GOTO 3010
3120 OHS = AHS: GOSUB 1030:ADS = ODS:AD = VAL (ADS):  GOTO 

3090
3130 C = 0 : AD = 100 + AD: RETURN
3140 REM ******** IMMEDIATE ADDRESS OPERANDS ************ 

****
3150 ODS = OPS: GOSUB 920:  GOSUB 1190:  REM ASL
3160 C = VAL ( LEFTS ( 0 B S , 1 ) ) : 0 B S  = MIDS ( O B S , 2) + ZS
3170 GOSUB 1270:  GOSUB 1030:X = VAL (O D S) :  IF X < 0 THEN N
3180 IF X = 0 THEN Z = 1
3190 GOTO 280
3200 GOSUB 1 0 3 0 : AD = VAL (O D S) :  REM *** B I T  ***
3210 GOSUB 1 1 3 0 : N = VAL ( LEFTS ( 0 B S , 1 ) ) : V  = VAL ( MIDS 

(0 8 5 , 2 , 1))
3220 GOSUB 400:  Z = 1:  FOR L = 1 TO 8
3230 IF B1S(L)  = " 1"  AND B2S( L)  = "1"  THEN Z = 0
3240 NEXT L:  GOTO 3390
3250 GOTO 2170
3260 OP = VAL ( OPS) : 0P  = OP -  1 : IF OP < 0 THEN N: REM DEC
3270 IF OP = 0 THEN Z = 1
3280 GOTO 3390
3290 OP = VAL ( OP S ) : 0 P  = OP + 1 : IF OP < 0 THEN N: REM INC
3300 IF OP = Z THEN Z
3310 GOTO 3390
3320 ODS = OPS: GOSUB 920:  GOSUB 1190
3330 C = VAL ( RIGHTS ( 0 B $ , 1 ) ) : OBS = ZS + LEFTS ( O B S , 7) :

GOTO 3170
3340 ODS = OPS: GOSUB 920:  GOSUB 1190:  REM ROL
3350 TMP = C:C = VAL ( LEFTS ( 0 B S , 1 ) ) : 0 B S  = MIDS ( OBS, 2) +

STRS ( T M P ) : GOTO 3170
3360 ODS = OPS: GOSUB 920:  GOSUB 1190:  REM ROR
3370 TMP = C:C = VAL ( RIGHTS ( 0 B S , 1 ) ) : 0 B S = STRS (TMP) +

LEFTS ( O B S , 7 ) :  GOTO 3170
3380 REM ********** p r i n t  LINE SPACE & GET ANOTHER LINE
3390 PRINT : GOTO 280
3400 REM *** ***  ***   SET Z AND N FLAGS                
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3410 N = 0:  I F  TMP > 127 THEN N = 1 
3420 Z = 0:  I F  TMP = 0 THEN Z = 1 
3430 RETURN
3440 IF FLAG* = "AH" AND ( LEFT* ( A H * , 1))  < "A" AND ( MID* 

( A H * , 2 , 1 )) < "A"  THEN 2480





Addressing Your 
Apple

In Chapter 1 ,1 mentioned that there is a one-to-one correlation between 
assembly language and machine language: for every mnemonic in an 
assembly-language program, there’s a numeric machine-language in 
struction that means exactly the same thing.

Actually, there are many assembly-language mnemonics that have 
more than one equivalent instruction in machine language. For exam 
ple, when you see the mnemonic ADC in an assembly-language pro 
gram, there are eight different numeric instructions that it can be con 
verted into when it is assembled into machine language. To understand 
why this is true, it is necessary to know something about how address 
ing modes are used in 6502B/65C02 assembly language.

An addressing mode is a technique for locating and using informa 
tion stored in a computer’s memory. The 6502 chip has 13 addressing 
modes, the 65C02 has 15. So your Apple lie  or lie  has either 13 or 15 
addressing modes, depending on which chip is installed. In this chapter, 
we’ll examine all fifteen 6502/65C02 addressing modes.
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First let’s look at Table 7-1, which shows that there are nine address 
ing modes that can be used with the mnemonic ADC.

If you examine Columns 2 and 3 in Table 7-1, you may notice a cur 
ious relationship between the assembly-language statements in Column 
2 and their machine-language equivalents in Column 3. In Column 2, 
labeled “Assembly-Language Statements,” each addressing mode uses 
the same mnemonic but a different operand. In Column 3, labeled 
“Machine-Code Equivalents,’’each statement has the same operand but 
a different op code.

This relationship illustrates an important difference between assem 
bly language and machine language. When you look at a program writ 
ten in 6502B/65C02 assembly language, the address mode that is used 
in each statement in the program is determined by the statement’s oper 
and. When a 6502B/65C02 program is translated into machine lan 
guage, however, the address mode that is used for each statement can be 
determined by looking at the statement’s op code.

Now let’s look at Table 7-2, which illustrates the addressing modes 
that can be used with either the 65C02 or the 6502B chip.

Of the 15 addressing modes illustrated in this table, only two have 
been used so far in this book: the immediate mode (such as LDA #2) and 
the absolute mode (such as LDA $0207). As you may recall from Chapter 
2, the operand of a statement written in the immediate addressing mode

Table 7-1. Differences in Assembly-Language and Machine-Language Addressing Modes

COLUMN 1: COLUMN 2: COLUMN 3: COLUMN 4:
ADDRESSING ASSEMBLY- MACHINE-CODE NO. OF

MODE LANGUAGE
STATEMENTS

EQUIVALENTS BYTES

Immediate ADC #$03 69 03 2
Zero Page ADC #$03 65 03 2
Zero Page,X ADC $03,X 75 03 2
Absolute ADC $0300 6D 00 03 3
Absolute Indexed,X ADC $0300,X 7D 00 03 3
Absolute Indexed,Y ADC $0300,Y 79 00 03 3
Indexed Indirect ADC ($03,X) 61 03 2
Indirect Indexed ADC ($03),Y 71 03 2
Zero-Page Indirect* ADC ($03) 72 03 2

65C02 only
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Table 7-2. The Addressing Modes of the 65C02/6502B Microprocessor

ADDRESSING MODE FORMAT
1. Implicit (Implied) RTS
2. Accumulator ASL A
3. Immediate LDA #2
4. Absolute LDA $02A 7
5. Zero Page STA $33
6. Relative BCC LABEL
7. Absolute Indexed,X LDA $9000,X
8. Absolute Indexed, Y LDA $9000, Y
9. Zero Page,X LDA $33,X

10. Zero Page,Y STX $33, Y
11. Indexed Indirect LDA ($33,X)
12. Indirect Indexed LDA ($33), Y
13. Absolute Indirect JMP ($089A)
14. Zero-Page Indirect* ADC ($0A)
15. Absolute Indexed Indirect* JMP ($089A,X)

*65C02 only

is always a literal value, while the operand of a statement written in the 
absolute mode is always a memory address. If the immediate-mode 
statement LDA #2 were encountered during the running of an assembly- 
language rogram, the literal value 2 would be loaded into the 
6502B/65C02 accumulator. However, if the absolute-mode statement 
LDA $0207 were encountered during the course of a program, the value 
stored in memory register $0207 would be loaded into the accumulator.

Another Look at the ADDRS Program

Program 7-1 is a printout of ADDNRS.SRC, an assembly-language pro 
gram we have already used in this book. The program is repeated here 
because it not only contains several addressing modes, it also illustrates 
how those modes are used in 6502B/65C02 assembly language. This ver 
sion of the ADDNRS.SRC program was written using the Merlin Pro 
assembler-editor system; however, if you own an Apple ProDOS assem 
bler or an ORCA/M assembler, you should be able by now to alter the 
program to meet your assembler’s requirements without too many prob 
lems, since the major differences in the formats used by these assemblers 
were described in previous chapters.
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Program 7-1
THE ADDNRS PROGRAM 

1  
2 * ADDNRS.SR2
3 *
4 ORG $8000
5 *
6 ADDNRS CLD
7 CLC ; Imp L i ed ad d r e s s i n g
8 LD A U2 ; Immed i at e a d d r e s s i n g
9 ADC M ; I mmedi at e a d d r e s s i n g

10 STA $0300 ; A b s o l u t e a d d r e s s i n g
11 RTS

Three address modes are used in the ADDNRS. SRC program, and 
all three are identified in the comments column of Program 7-1. We’ll 
now examine each of the three address modes used in the ADDNRS 
routine. (An asterisk indicates modes recognized by 65C02 only.)

Implied (Implicit) Addressing
The implied addressing mode is a mode that does not require—or 
perm it—an operand. When you use implied addressing, all you have to 
type is a three-letter mnemonic. You never have to specify an operand 
since an implied operand is contained within each mnemonic used in 
the implied addressing mode.

From a memory-management point of view, it’s a good idea to use as 
many implied address mnemonics as you can. Since an implied address 
mnemonic uses no operand, it requires only one byte of memory, rather 
than the two or three bytes that are consumed by statements written 
using other types of addressing.

Examples of implied addressing are

CLC ; (CLEAR THE CARRY B I T  OF THE P REGISTER)
DEX ; ( DECREMENT THE X REGISTER)
INY ; ( INCREMENT THE Y REGISTER)

Op-code mnemonics that can be used in the implicit addressing mode 
are BRK, CLC, CLD, CLI, CLV, DEX, DEY, INX. INY NOP, PHA, 
PHP, PHX*, PHY*, PLA, PLP, PLX* PLY*, RTI. RTS, SEC, SED, 
SEI, TAX, TAY, TSX, TXA, TXS. and TYA.

Immediate Addressing
The immediate addressing mode always requires an operand, and that 
operand is always a literal number. In a statement that uses immediate 
addressing, then, a “#” sign—the symbol for a literal number—always 
appears in front of the operand.
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When an immediate address is used in an assembly-language state 
ment, the assembler does not have to peek into a memory location to find 
a value. Instead, the value itself is placed directly into the accumulator. 
Then whatever operation the statement calls for can be performed 
immediately.

A statement written in the immediate addressing mode always 
requires two bytes of memory: one byte for the op code and one byte for 
the operand. An immediate mode statement never uses a two-byte oper 
and, since the 6502B/65C02 chip cannot handle any literal number 
larger than one byte.

Here are some examples of immediate addressing.

LDA #2 
ADC #$33 
SBC #253

Instructions that can be used in the immediate address mode are ADC, 
AND, BIT*, CMP, CPX, CPY, EOR, LDA, LDX, LDY, ORA, and SBC.

Absolute Addressing

Absolute addressing is another addressing mode that you’ve encountered 
in this book. In a statement that uses absolute addressing, the operand 
is a memory location, not a literal number. The mnemonic in an abso 
lute address statement, then, always calls for an operation to be per 
formed on a value stored in a specified memory location, not on the 
operand itself.

When a statement is written in the absolute addressing mode, the 
operand, being a memory address, always requires two bytes of 
memory. Since your Apple computer can handle addresses up to 16 bits 
long, two bytes are always reserved for operands that are used in the 
absolute addressing mode.

Here are some examples of assembly-language statements written in 
the absolute addressing mode.

LDA $0300 
STA 768 
CMP $ F F DO

Mnemonics that can be used in the absolute addressing mode are ADC, 
AND, ASL, BIT, CMP, CPX, CPY, DEC, EOR, INC, JMP, JSR, LDA, 
LDX, LDY, LSR, ORA, ROL, ROR, SBC, STA, STX, STY, STZ* TSB*, 
and TRB*.
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Zero-Page Addressing

Zero-page addressing is very similar to absolute addressing. When a 
statement is written using a zero-page address, a value is retrieved 
from a specified memory address, and that is the value on which the 
operand does its work. There is one important difference, though, 
between an absolute address and a zero-page address. When a state 
ment is written in the absolute address mode, the address that is 
accessed by the statement can lie in any part of available RAM. When a 
statement is written using page-zero addressing, however, the address 
that it accesses must lie in a special area of memory called, logically 
enough, Page Zero.

Specifically, the memory block in your computer known as Page 
Zero occupies the 256 memory registers that extend from memory 
address $00 through memory address $FF. You could also say that Page 
Zero extends $0000 to $00FF, but it isn’t really necessary to use those 
extra pairs of 0’s when you want to refer to a zero-page address. Usu 
ally, when you follow an assembly-language instruction with a one-byte 
address—or with a four-digit hex number that begins with two 0’s — 
your assembler will automatically interpret the address you’ve specified 
as a Page Zero address.

Since it only takes one byte to specify a Page Zero address, a state 
ment that uses zero-page addressing requires only two bytes of memory: 
one for the op code and one for the operand. Unfortunately, however, 
there often isn’t much free memory space on Page Zero, so it isn’t usual 
ly possible to use a lot of zero-page addressing in assembly-language 
programs.

In Chapter 11, which is devoted to memory management, there will 
be more information on Page Zero space and how it’s used. For now. 
here are a few examples of what zero-page addressing looks like in 
assembly-language programs.

If your computer is equipped with a 6502B chip, the instructions 
that you can use in the zero-page addressing mode are ADC, AND, 
ASL, BIT, CMP, CPX, CPY, DEC, EOR, INC. LDA, LDX, LDY, LSR, 
ORA, ROL, ROR, SBC, STA, STX, and STY. If your Apple has a 65C02 
chip, you can also use zero-page addressing for several new instruc 
tions: STZ (“store a zero in memory”), TRB (“test and reset memory 
bits with accumulator”), and TSB (“test and set memory bits with 
accumulator”).
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Accumulator Addressing

The accumulator addressing mode can be used with several mnemonics 
that perform operations on values stored in the 6502B/65C02 accumula 
tor. The command ASL A, for example, is used to shift each bit in the 
accumulator by one bit position, with a 0 taking the place of the far- 
right bit, and with the far-left bit (bit 7) dropping into the carry bit of 
the processor status (P) register.

If your computer is equipped with a 6502B chip, other instructions 
that can be used in the accumulator addressing mode are LSR, ROL, 
and ROR. If your Apple has a 65C02 chip, the accumulator addressing 
mode can also be used with the mnemonics INA or INC A (“increment 
accumulator”) and DEA (“decrement accumulator”).

If you own an ORCA/M assembler, you must use the letter A as an 
operand when you use the accumulator addressing mode. The Apple 
ProDOS assembler and the Merlin Pro assembler, however, will accept 
accumulator addressing mnemonics without their A operands.

Relative Addressing

Relative addressing is used with a programming technique called condi 
tional branching. Conditional branching instructions are similar to IF 
. . .  GOTO instructions in BASIC; they are used to make programs 
jump from one sequence of instructions to another when certain specific 
conditions are fulfilled.

There are eight conditional branching instructions that can be used 
with the 6502B chip, and there is one additional instruction that can be 
used with the 65C02. All nine branching instructions begin with B, 
which stands for “branch to.” The extra instruction that can be used 
with the 65C02 is BRA, which stands for “branch always.” As its name 
implies, the mnemonic BRA will cause a jump to another segment in a 
program under any condition.

The other eight conditional branching instructions that use relative 
addressing are BCC (branch to a specified address if the carry flag is 
clear), BCS (branch if the carry flag is set), BEQ (branch if the result of 
an operation is equal to 0), BNE (branch if the result of an operation is 
not equal to 0), BMI (branch if the result of an operation is minus), BPL 
(branch if the result of an operation is plus), BVC (branch if the over 
flow flag is clear), and BVS (branch if the overflow flag is set).
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How Branching Instructions Are Used The nine conditional branch 
ing instructions in 6502B/65C02 assembly language are most often used 
with threother instructions called comparison instructions. Typically, a 
comparison instruction is used to compare two values with each other, 
and the conditional branch instruction is then used to determine what 
should be done if the comparison turns out a certain way.

Usually, a branch instruction causes a program to jump to a speci 
fied address if certain conditions are met or not met. A branch might 
be made, for example, if one number is larger than another, if the two 
numbers are equal, or if a certain operation results in a positive, nega 
tive, or 0 value.

Conditional branching can also be based on the results of arithmetic 
or logical operations or can be invoked after various kinds of tests on 
bits, bytes, and other numerical values.

The three comparison instructions in 6502B/65C02 assembly lan 
guage are

• CMP (“compare the number in the accumulator with . . . ”)
• CPX (“compare the value in the X register with . . . ”)
• CPY (“compare the value in the Y register with . . . ”).

An Example of Conditional Branching Program 7-2, titled ADDCHK, 
is an example of an assembly-language routine that uses conditional 
branching. (The routine was typed using a Merlin Pro assembler but 
can be adapted easily to suit the Apple ProDOS assembler or the 
ORCA/M.)

Program 7-2 
ADDCHK
An Addition Program with Error-Checking 

1 *
2 * ADDCHK
3 *
4 ORG $8000
5 *
6 ADDCHK LDA ttO
7 STA $9000
8 *
9 CLD

10 CLC
11 LDA $0300
12 ADC $0301
13 BCS ERROR
14 RTS
15 *
16 ERROR LDA #1
17 STA $9000
18 RTS
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The ADDCHK program is an 8-bit addition routine with a simple 
error-checking utility built in. It adds two 8-bit values, using absolute 
addressing. If this calculation results in a 16-bit value (a number larger 
than 255), there will be an overflow error in addition and the carry bit 
of the processor status register will be set.

Here’s how the ADDCHK program works. In the two-line sequence 
labeled ADDCHK, a 0 is loaded into memory register $9000. Then the 
carry and decimal flags are cleared and the value in memory register 
$0300 is added to the value in memory register $0301. If this addition 
operation results in a carry, the carry bit of the processor status register 
will be set automatically.

After the addition operation is carried out, a BCS (branch if carry 
set) instruction is used to test the carry bit of the P register. If the test 
succeeds, the carry bit is set and the program branches to a routine 
labeled ERROR. If the carry bit is not set, the program ends.

In the routine labeled error, a flag—the number 1—is loaded into 
memory register $9000. Then the program ends.

Absolute Indexed Addressing

An indexed address, like a relative address, is calculated by using an 
offset. In an indexed address, however, the offset is determined by the 
current contents of the 6502B/65C02’s X register or Y register.

A statement containing an indexed address can be written using 
either of these formats:

LDA $02A7, X  
LDA $02A7, Y

How Absolute Indexed Addressing Works When indexed addressing 
is used in an assembly-language statement, the contents of either the X 
register or the Y register (depending upon which index register is 
being used) are added to the address given in the instruction to deter 
mine the final address.

Program 7-3, entitled PRINTIT, is an illustration of a program that 
makes use of indexed addressing. The program moves byte by byte 
through a string of ASCII characters, using a built-in Apple routine 
called COUT to display each character in the string on the screen. 
When the complete string has been displayed, the program ends.

The starting address of COUT, plus the ASCII code number for a 
carriage return, are defined in a symbol table that precedes the 
program.

More details on how programs like this one work will be provided in
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Chapter 8. The primary purpose of this example is to present an illus 
tration of indirect addressing.

Program 7-3 
PRINTIT
A Screen-Printing Program 
1 *

2 * PRINTIT
3 *
4 COUT EQU $FDED
5 EOL EQU 13
6 *
7 0R6 $8000
8 *

9 JMP PRINTIT  
10 *

11 TEXT DB 1 9 8 , 2 0 4 , 1 9 3 , 2 1 1 , 2 0 0 , 1 6 0 , 1 7 3 , 1 7 3 , 1 6 0 , 1 9 3 , 2 0 8 , 2 0 8 ,  
2 0 4 , 1 9 7 , 1 6 0

12 DB 2 0 7 , 2 1 5 , 2 0 6 , 1 9 7 , 2 1 0 , 1 6 0 , 1 9 4 , 2 1 0 , 1 9 7 , 1 9 3 , 2 0 3 , 2 1 1 , 1 6 0
13 DB 2 0 5 , 1 9 3 , 1 9 5 , 2 0 0 , 2 0 1 , 2 0 6 , 1 9 7 , 1 6 0 , 1 9 5 , 2 0 7 , 1 9 6 , 1 9 7 ,  

161, 13
14 *
15 PRINTIT LDX #0
16 LOOP LDA TEXT, X
17 J SR COUT
18 CMP #EOL
19 BEQ FINI
20 INX
21 JMP LOOP
22 FINI RTS
23 END

Testing for a Carriage Return When Program 7-3 begins, we know 
that the string ends with a carriage return (ASCII $0D), as strings 
often do in Apple programs.

As the program proceeds through the string, it tests each character 
to see whether it is a carriage return. If the character is not a carriage 
return, the program moves on to the next character. If the character is 
a carriage return, that means there are no more characters in the 
string, and the routine ends.

Absolute indexed addressing can be used with these 6502B/65C02 
instructions: ADC, AND, ASL (X only), CMP, DEC (X only), EOR, INC 
(X only), LDA, LDX (Y only), LDY (X only), LSR (X only), ORA. ROL 
(X only), ROR (X only), SBC. and STA. If your computer is equipped 
with a 65C02 chip, you can use two additional mnemonics—BIT and 
STZ (store 0)—in the absolute indexed (X only) addressing mode.
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Zero-Page, X Addressing

Zero-Page,X addressing is used just like Absolute Indexed,X address 
ing. However, the address used in the Zero-Page, X addressing mode 
must be located on Page Zero. Therefore, this form of addressing uses 
only one byte of memory as an operand when it is assembled into 
machine language.

Instructions that can be used in the Zero-Page, X addressing mode 
are ADC, AND, ASL, CMP, DEC, EOR, INC, LDA, LDY, LSR, ORA, 
ROL, ROR, SBC, STA, and STY. If your computer has a 65C02 chip, you 
can also use the mnemonics BIT and STZ (store 0) in the Zero-Page,X 
addressing mode.

Zero-Page, Y Addressing

Zero-Page, Y addressing works just like Zero-Page,X addressing but can 
be used with only two mnemonics: LDX and STX. If it weren’t for the 
Zero Page,Y addressing mode, it wouldn’t be possible to use absolute 
indexed addressing with the instructions LDX and STX.

Indirect Addressing

Indirect addressing can be divided into two subcategories: indexed 
indirect addressing and indirect indexed addressing. Those names can 
be confusing, but there’s a trick that you can use to differentiate them. 
Indexed indirect addressing—which has an X in the first word of its 
name—is an addressing mode that makes use of the 6502B/65C02 
chip’s X register. Indirect indexed addressing—which doesn’t have an 
X in the first word of its name—uses the 6502B/65C02’s Y register.

Both indexed indirect addressing and indirect indexed addressing 
are used primarily to look up data stored in tables.

Indexed Indirect Addressing Three things happen when a program 
uses indexed indirect addressing. First, the contents of the X register 
are added to a zero-page address—not to the contents of the address, 
but to the address itself. Next, the result of this calculation is inter 
preted as another zero-page address. Finally, when this second address 
has been calculated, the value that it contains, as well as the contents of 
the next address, are combined to form a third address. That third 
address is the address that will finally be interpreted as the operand of 
the statement in question.

Here is an example that might help clarify this process. Suppose that 
memory address $A0 in your computer holds the number $00, that
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memory address $A1 holds the number $80, and that the X register 
holds the number 00.

Here is a short chart illustrating those values.

$AO = #$00 
$A1 = #$80

X = #$00

Now let’s suppose you are running a program that contains the 
indexed indirect instruction LDA ($A0,X).

If all of those conditions exist when your computer encounters the 
instruction LDA ($A0,X), the computer will add the contents of the X 
register (a 0) to the number $A0. The sum of $A0 and 0 is, of course, 
$A0. Your computer will then go to memory addresses $A0 and $A1. It 
will find the number $00 in memory address $A0 and the number $80 
in address $A1.

Since 6502B/65C02-based computers store 16-bit numbers in reverse 
order—low byte first—your computer will interpret the number found 
in $A0 and $A1 as $8000. So it will load the accumulator with whatever 
number it finds stored in address $8000.

Now let’s imagine that when your computer encounters the state 
ment LDA ($A0,X), its 6502B/65C02 X register holds the number 04 
instead of the number 00.

Here is a chart illustrating those values, plus a few more equivalents 
that we’ll be using shortly.

$ A 0 = #$00 
$A1 = #$80 
$A2 = #$0D 
$A3 = #$ F F 
$ A4 = #$ F C 
$A5 = #$1C

X = #$04

If these conditions exist when your computer encounters the instruc 
tion LDA ($A0,X), your computer will add the number $04 (the value in 
the X register) to the number $A0 and then go to memory addresses 
$A4 and $A5. In those two addresses, it will find the final address (low 
byte first, of course) of the data it is looking for—in this case, $1CFC.

Indexed indirect addressing is a rare addressing mode not used in 
many assembly-language programs. When it is used, its purpose is to 
locate a 16-bit address in a table of addresses that is stored on Page 
Zero. Space on Page Zero is hard to find, though, so you probably won’t 
be able to store many address tables there. It’s not too likely, then, that 
you’ll find much use for this addressing mode.
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Indirect Indexed Addressing Indirect indexed addressing is used 
much more often than indexed indirect addressing in 6502B/65C02 
assembly language.

Indirect indexed addressing uses the Y register (never the X regis 
ter) as an offset to calculate the final address of the start of a table. The 
starting (or base) address of the table has to be stored on Page Zero but 
the table itself does not.

When an assembler encounters an indirect indexed address in a 
program, it first looks into the Page Zero address that is enclosed in the 
parentheses preceding the Y. The 16-bit value stored in that address 
and the following address are then added to the contents of the Y regis 
ter. The value that results is a 16-bit address—the address the state 
ment is looking for.

Here’s an example of indirect indexed addressing. If your computer 
is running a program and comes to the instruction ADC ($A0),Y. The 
computer will then look into memory addresses $A0 and $A1. Suppose 
that it finds the number $00 in memory register $A0 and the number 
$50 in $A1. Suppose also that the Y register contains a 4.

Here is a list that illustrates those conditions.

$A0 = #$00 
$A1 = #$50

r = #$04

If these conditions exist when your computer encounters the instruc 
tion ADC ($A0),Y, the computer will combine the numbers $00 and $50 
and will find (low bit first) the address $5000. It will then add the con 
tents of the Y register (4 in this case) to the number $5000 to arrive at a 
total of $5004.

The number $5004 is the final value of the operand ($A0,Y). There 
fore, the contents of the accumulator will be added to whatever number 
is stored in memory address $5004.

Once you understand indirect indexed addressing, it can be a very 
valuable tool in assembly-language programming. Only one address — 
the starting address of a table—has to be stored on Page Zero, where 
space is always scarce. Yet that address, added to the contents of the Y 
register, can be used as a pointer to locate any other address in your 
computer’s memory.

Absolute Indirect Addressing There is only one instruction—JM P— 
that you can use in the absolute indirect addressing mode. When abso 
lute indirect addressing is used, a 16-bit number is placed inside a pair 
of parentheses that follow the JMP instruction, as shown here.
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JMP ( $ 0 9 0 0 )

This number serves as a pointer to a pair of memory registers which, 
taken together, contain the address to which the desired jump will be 
made. Let’s suppose, for example, that the memory address $02A7 con 
tains the value $00 and that the address $02A8 holds the value $06. 
Let’s also suppose that the statement JMP ($02A7) is included in an 
Apple assembly-language program. In this case, the program being 
executed will jump to the address $0600—not to the address $02A7, as 
it would if the jump instruction were simply JMP $02A7.

Absolute Indexed Indirect Addressing Absolute indexed indirect ad 
dressing is an address mode that can be used only with the JMP 
instruction, and only on a computer equipped with a 65C02 chip. This is 
the format for writing a statement using absolute indexed indirect 
addressing:

JMP ( $ 8 0 0 0 , X)

When absolute indexed indirect addressing is used in an assembly- 
language program, the contents of the address that follows the instruc 
tion are added to the X register. The sum of this operation points to a 
memory address containing the lower byte of the effective address. The 
next memory location will contain the high byte of the effective address.

Zero-Page Indirect Addressing Zero-page indirect addressing is a new 
address mode that can be used only on a computer equipped with a 
65C02 chip. This is the format for using zero-page indirect addressing 
mode:

LDA ( $0A)

When the zero-page indirect addressing mode is used in an assembly- 
language program, the byte that follows the instruction is interpreted 
as zero-page address. This byte contains the low-order byte of the effec 
tive address, and the next address on Page Zero contains the high-order 
byte of the affected address.

In a 65C02-equipped Apple lie or Apple lie, zero-page addressing 
can be used with the following instructions: ADC. AND, CMP. EOR, 
LDA, ORA, SBC, and STA.
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A Pseudo-Address: The Stack

While we’re on the subject of 6502B/65C02 addressing modes, let’s take 
a look at a programming tool that’s related very closely to address 
ing: the hardware stack.

The hardware stack—often referred to simply as the stack — 
occupies the 256 bytes of memory from $0100 to $01FF in RAM.

The stack is what programmers sometimes call a LIFO (last-in, 
first-out) block of memory. It is often compared to a spring-loaded stack 
of plates in a diner; when you put a number in the memory location on 
top of the stack, it covers up the number that was previously on top. The 
number on top of the stack must then be removed before the number 
under it can be accessed.

Although the plate-stack illustration is a useful technique for de 
scribing how the stack works, it is not completely accurate; actually, the 
stack is nothing but a block of RAM. Let’s see what really happens 
when you place a number on your Apple’s hardware stack.

The block of memory in your computer’s hardware stack (extending 
from memory register $0100 to memory register $01FF) is used from 
high memory down: the first number that is stored on the stack will be 
in register $01FF, the next number will be placed in register $01FE, 
and so on. Because of this storage system, the last stack address that 
can be used is memory register $0100.

Your Apple’s 6502B or 65C02 chip keeps track of stack manipula 
tions with the help of a special register called the stack pointer (de 
scribed briefly in Chapter 3). When there is nothing stored on the stack, 
the value of the stack pointer is $FF. If you add $100 to that number, 
you get $01FF —the highest memory address on the stack. This is the 
address that will be used for the next (or in this case, the first) value 
that is stored on the stack.

As soon as a value is stored on the stack, your computer’s 6502B or 
65C02 chip will automatically decrement the stack pointer by one. Each 
time another value is stored on the stack, the stack pointer will be 
decremented again. Therefore, the stack pointer will always point to the 
address of the next value that will be stored on the stack.

Let’s suppose that several numbers have been stored on the stack and 
that we now want to retrieve one of those values. When a number that 
has been stored on the stack is retrieved, the value of the stack pointer
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Bottom of Stack Stack Addresses

$01FF

$01FE

$01FD

$01FD

Figure 7*1. How the stack pointer works

is incremented by one. That effectively removes one value from the 
stack, since it means that the next value stored on the stack will have 
the same position on the stack as the one that was removed. If you exam 
ine Figure 7-1, you’ll get an idea of how this process works. Figure 7-1 
shows an empty stack, with the stack pointer pointing to the first avail 
able address on the stack: $01FF.

In Figure 7-2, a number (whose value is arbitrary) has been placed 
on the stack. Notice that the value of the stack pointer has been decre 
mented. The number we have placed on the stack is now stored at the 
highest address in the stack, memory register $01FF.

In Figure 7-3, another number (also with an arbitrary value) has 
been placed on the stack. As you can see, the stack pointer has been 
decremented again and a second number is now on the stack.

In Figure 7-4 we’ll remove one number from the stack. Stack 
address $01FE still holds the value $33, but the value of the stack point 
er has been decremented and now points to memory address $01FE. 
The next number that is placed on the stack, then, will be stored at
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Bottom of Stack Stack Addresses

$4F $01FF

Stack Pointer

$FE ------► $01FE

$01FD

$01FD

Figure 7-2. Placing a number on the stack

Bottom of Stack Stack Addresses

$01FF

$01FE

$01FD

$01FD

Figure 7-3. Placing another number on the stack

$4F

$33

Stack Pointer

$FD
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Bottom of Stack Stack Addresses

$4F $01FF

Stack Pointer

$FE $33 $01FE

$01FD

$01FD

Figure 7-4. Pulling a num ber off the stack

Bottom of Stack Stack Addresses

$4F $01FF

$17 $01FE

Stack Pointer

$FD $01FD

$01FD

Figure 7-5. One last stack manipulation
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memory address $01FE. When that number is stored, the number pre 
viously stored in that stack position—$33—will be erased.

Let’s store one more number on the stack. This time the value of the 
number placed on the stack will be $17, as shown in Figure 7-5. 
Memory register $01FE now holds the value $17. The value of the stack 
pointer has been decremented, the value $33 has been erased by the 
value $17, and the next number placed on the stack will be stored in 
memory register $01FD.

How Your Operating System 
Uses the Stack

The 6502B/65C02 processor often uses the stack for temporary data 
storage during the operation of a program. When a program jumps to a 
subroutine, for example, the 6502B/65C02 chip takes the memory 
address that the program will later have to return to and pushes that 
address to the top of the stack. Then, when the subroutine ends with an 
RTS instruction, the return address is pulled from the top of the stack 
and loaded into the 6502B/65C02’s program counter. The program can 
then return to the proper address and normal processing can resume.

The stack is also used quite often in user-written programs. Here is 
an example of a routine that makes use of the stack. You may recognize 
it as a variation on the 8-bit addition program that we’ve been using 
throughout this book.

A Two-Part Program
In Program 7-4, we’ll put two 8-bit numbers on the stack. In Program 
7-5, we’ll take the numbers off the stack and add them. Program 7-4 
should be typed first but, before the program is assembled and exe 
cuted, Program 7-5 should be appended to Program 7-4.

Program 7-4 
STACKADD, PART 1
(Putting two number on the stack)
1 *
2 *STACKADD
3 *
4 ORG $8000
5 *
6 LDA #35 ; (OR ANY OTHER 8 - B I T  NUMBER)
7 PHA
8 LOA #49 ; ( OR ANY OTHER 8 - B I T  NUMBER)
9 PHA
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Now add Program 7-5 to the end of Program 7-4.

Program 7-5 
STACK ADD, PART 2
(Taking two numbers off the stack and adding them)

1 *

2 *WHEN THIS PROGRAM BEGINS,  TWO
3 *NUMBERS ARE ON THE STACK
4 CLD
5 CLC
6 PLA
7 STA $ FD
8 PLA
9 ADC $ FD

10 STA $FE
11 RTS

When you add Program 7-5 to Program 7-4, you get a straightforward 
8-bit addition routine that shows how convenient it can be to use the 
stack in assembly-language programs. First, a value is pulled from the 
stack and stored in the accumulator; then the value is stored in memory 
address $FD.

Next, another value is pulled from the stack and added to the value 
now stored in $FD. The result of this calculation is then stored in $FE 
and the routine ends.

As you can see, the stack can be a very convenient temporary storage 
area for data. The stack is very memory-efficient, too, since it doesn’t 
require the use of dedicated storage registers. It can also save time, 
since it takes only one instruction to push a value onto the stack and 
only one instruction to retrieve a value that has been stored there.

An Important Warning

You must be very careful when using the hardware stack in an 
assembly-language routine. When the routine ends, it’s extremely 
important to leave the stack exactly as you found it. If you’ve placed a 
value on the stack during the course of a routine, it must be removed 
from the stack before the routine ends and normal processing resumes. 
Failure to remove the value could result in program crashes, memory 
wipeouts, and other programming disasters. Nevertheless, if you take 
care to manage the stack properly, it can be a very powerful program 
ming tool.

Mnemonics that make use of the stack are PHA (“push the contents 
of the accumulator onto the stack”). PLA (“pull the top value off the 
stack and deposit it in the accumulator”), PHP (“push the contents of 
the P register onto the stack”), and PLP (“pull the top value off the
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stack and deposit it into the P register”). The instructions JSR and RTS 
and the 65C02 instructions PHX, PHY, PLX, and PLY also make use of 
the stack.

The PHP and PLP operations are often included in assembly- 
language subroutines so that the contents of the P register won’t  be 
deleted during subroutines. When you jump to a subroutine that might 
change the status of the P register, you should start the subroutine by 
pushing the contents of the P register onto the stack. Then, just before 
the subroutine ends, you can restore the P register’s previous state with 
a PHP instruction. If you follow this procedure, the contents of the P 
register won’t  be destroyed during the course of the subroutine.





Looping and 
Branching

Now that you’re familiar with the 6502B/65C02 instruction set and 
addressing modes, we can start doing some actual programming in 
Apple Ilc/IIe assembly language. In this chapter, you’ll learn how to 
display messages on the screen, encode and decode ASCII characters, 
and perform a number of other useful procedures in assembly lan 
guage, including:

• Incrementing and decrementing the X and Y registers.
• Using comparison and branching instructions together.
• Looping and branching.
• Using Apple assembler directives DFB (“define byte”), DB (which 

means the same thing), and DC (“define constant,” a directive used 
with the ORCA/M assembler package). DFB, DB, and DC are all 
used to reserve memory space for data in assembly-language pro 
grams.
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In this chapter we again use the COUT routine that's built into the 
Apple lie  and the Apple lie beginning at call address $FDED. We used 
the COUT routine in Chapter 1 to display the word “HI” on your com 
puter screen in the HI.TEST program.

A New Program

Program 8-1, entitled BULLETIN, is the longest type-and-run program 
that has been presented in this book. It was written using the Merlin 
Pro assembler, but it will also run on the Apple ProDOS assembler. An 
ORCA/M version of the program is provided in Program 8-2.

Program 8-1
THE BULLETIN PROGRAM
(Merlin Pro assembler version)

1 *

2 * BULLETIN
3 *
4 ORG $8000
5 *
6 BUFLEN EQU 29
7 COUT EQU $ FDED
8 *

9 JMP BEGIN
10 TEXT DB 1 9 5 , 1 9 7 , 2 0 4 , 1 9 7 , 2 1 1 , 2 1 2 , 2 0 1 , 1 9 3 , 2 0 4 , 1 6 0
11 DB 1 9 3 , 1 9 5 , 1 9 5 , 2 0 1 , 1 9 6 , 1 9 7 , 2 0 6 , 2 1 2 , 1 6 0
12 DB 2 1 0 , 1 9 7 , 2 0 8 , 2 0 7 , 2 1 0 , 2 1 2 , 1 9 7 , 1 9 6 , 1 7 3 , 1 7 3
13 *
14 BEGIN LDX #0
15 *
16 LOOP LDA TEXT , X
17 J SR COUT

18 INX
19 CPX 0BUFLEN
20 BNE LOOP
21 RTS

When you’ve typed, assembled, and executed the BULLETIN pro 
gram, you’ll see half of a cryptic message on your computer screen. The 
other half of the message will be presented later in this chapter, in a 
program called BULLETIN.B.

Saving the BULLETIN Program

Once your BULLETIN program is running properly, save it on a disk 
in both its source-code and object-code versions. Then we can take a look 
at how the program works.
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Let’s start with an explanation of the assembly-language directive 
DB, which means “define byte.” It appears in lines 10 through 12 of the 
Merlin/Apple assembler version of the program. (In the ORCA/M list 
ing, a slightly different directive, DC, for “define constant,” is used. 
We’ll discuss that directive in a moment.)

Directives like DB and DC are pseudo-operation codes (pseudo-ops) 
because they appear in the op-code column of assembly-language 
source-code listing but are not actually included in the standard 
6502B/65C02 assembly-language instruction set. As mentioned in Chap 
ter 4, the main difference between an op code and a pseudo-op is that an 
op code tells a microprocessor what to do, while a pseudo-op tells an 
assembler what to do. When a program is run through an assembler, 
each op code that program contains is translated into machine language, 
while each pseudo-op is used as an instruction by the assembler. When 
an assembler encounters the directive DB, for example, it interprets the 
numbers that follow the directive as literal numbers that are to be de 
posited into a consecutive series of registers in a computer’s memory. 
You’ll learn about many other kinds of pseudo-ops in later chapters.

Now let’s look at the directive DC, which is used in place of DB in the 
ORCA/M version of the BULLETIN program.

Program 8-2
THE BULLETIN PROGRAM
(ORCA/M Version)

KEEP BULLETIN
MAIN START

BUFLEN EQU 29
COUT EQU $FDED

JMP BEGIN

TEXT DC 1 1 • 1 9 5 , 1 9 7 , 2 0 4 , 1 9 7 , 2 1 1 , 2 1 2 , 2 0 1 , 1 9 3 , 2 0 4 , 1 6 0 *
DC 1 1 * 1 9 3 , 1 9 5 , 1 9 5 , 2 0 1 , 1 9 6 , 1 9 7 , 2 0 6 , 2 1 2 , 1 6 0 *
DC 1 1 ' 2 1 0 , 1 9 7 , 2 0 8 , 2 0 7 , 2 1 0 , 2 1 2 , 1 9 7 , 1 9 6 , 1 7 3 , 1 7 3  *

BEGIN LDX no

LOOP LD A TEXT, X
J SR COUT
IN X
CPX 0BUFLEN
BNE LOOP
RTS

END
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The directive DC, unlike DB, has to be told how to interpret any string 
of values that follows it. In the ORCA/M listing of the BULLETIN pro 
gram, the letter I that follows each DC directive stands for “integer,” 
and the numeral 1 that follows each I means that each value that fol 
lows is to be interpreted as a one-byte integer.

Notice that in the ORCA/M program, the numbers following the DC 
directives are enclosed in single quotes. This procedure is necessary 
because ORCA/M’s DC directive always expects subsequent numbers to 
be enclosed in delimiters.

Using the X and Y Registers as Counters

As pointed out in Chapter 3, the X and Y registers in the 6502B/65C02 
chip can be progressively incremented and decremented during loops in 
a program. In the BULLETIN program, the X register is incremented 
from 0 to 29 during a loop to keep track of a string of text characters 
being displayed on a screen. The characters are expressed as ASCII 
code numbers, and those code numbers are the values following the DB 
and DC directives in the BULLETIN program.

It isn’t difficult to see how the X-register loop in this program 
works. First, the statement LDX #0 is used to load the X register with a 
0. Then the loop begins. The first statement in the loop is “LDA 
TEXT,X”. This instruction uses indexed addressing to load the accumu 
lator with an ASCII code for a text character. The COUT routine is 
then used to display each character on the screen. By the time the loop 
ends, all 29 of the characters that follow the DB or DC directive have 
been displayed on the screen.

(Incidentally, there’s no need for symbols in front of the numbers 
that follow directives like DB and DC, since they are automatically inter 
preted as literal numbers by the assemblers that they’re designed for.)

Incrementing and Decrementing the X and Y Registers

In line 18 of the BULLETIN program, the mnemonic INX means 
“increment the X register.”

The first time the program progresses through the loop that starts at 
line 16, the X register will hold a 0. As soon as the COUT routine has 
displayed its first character on the screen, though, the INX instruction 
in line 18 will increment that 0 to a 1.

In line 19 we see the instruction CPX #BUFLEN. If you look back at 
line 6, you’ll see that BUFLEN is a constant that has been equated to 
the number 29. The instruction CPX tfBUFLEN, then, means “compare 
the value in the X register to the literal number 29.”
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This comparison determines whether all 29 characters have been 
displayed on the screen. Once you've displayed all 29 characters in the 
text string, press a carriage return to end the program.

Comparing Values in Assembly Language

There are three comparison instructions in 6502B/65C02 assembly lan 
guage: CMP, CPX, and CPY.

CMP means “compare to a value in the accumulator.” When the 
instruction CMP is used, followed by an operand, the value expressed by 
the operand is subtracted from the value in the accumulator. This sub 
traction operation is not performed to determine the exact difference 
between these two values, but merely to see whether they are equal, and 
if they are not equal, which is the larger.

If the value in the accumulator is equal to the tested value, the zero 
(Z) flag of the processor status (P) register will be set to 1. If the value 
in the accumulator is not equal to the tested value, the Z flag will be left 
in a cleared state.

If the value in the accumulator is less than the tested value, the 
carry (C) flag of the P register will be left in a cleared state. If the value 
in the accumulator is greater than the tested value, the carry flag will 
be set.

CPX and CPY work exactly like CMP, except that they are used to 
compare values with the contents of the X and Y registers. They have 
the same effects as CMP on the status flags of the P register.

Using Comparison and Branching Instructions Together

The three comparison instructions in Apple assembly language are usu 
ally used in conjunction with eight other assembly language instructions 
—the conditional branching instructions that I mentioned in Chapter 6.

The sample program called BULLETIN contains a conditional 
branching instruction in line 20. That instruction is BNE LOOP, which 
means “branch to the statement labeled loop if the zero flag (of the pro 
cessor status register) is not set.” Remember that in the 6502B/65C02 
processor status register, the zero flag is set (equals 1) if the result of an 
operation that has just been performed is 0, and the zero flag is cleared 
(equals 0) if the result of an operation that has just been performed is 
not 0.

When your computer encounters the BNE LOOP instruction in line 
20, it will keep branching back to line 16 (labeled LOOP) as long as the 
value of the X register has not yet been decremented to 0.

Once the value of the X register has been decremented to 0, the
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statement “BNE LOOP” in line 210 will be ignored and the program 
will move on to the next line. That line contains an RTS instruction that 
terminates the program.

Conditional Branching Instructions

We know that there are eight conditional branching instructions in 
6502B/65C02 assembly language. They all begin with the letter B, and 
they’re also called relative addressing or branching instructions. Table 
8*1 shows these eight instructions and their meanings.

How Branching Differs From Jumping

There is another category of 6502/6502B/65C02 instructions, called 
jump instructions. There are some important differences between jump 
instructions and branching instructions.

There are two jump instructions in 6502 assembly language: JMP 
and JSR. The JMP mnemonic is used much like the GOTO instruction 
in BASIC; when a JMP instruction is encountered in an assembly- 
language program, the program jumps to whatever memory address is 
specified by the operand that follows the JMP instruction.

The assembly-language instruction JSR is used much like BASIC’s 
GOSUB instruction. When a JSR instruction is encountered in an 
assembly-language program, the memory address of the next instruc-

Table 8-1. Conditional Branching Instructions

BCC—Branch if the carry (C) flag of the processor status (P) register is clear. (If the carry 
flag is set, the operation will have no effect.)

BCS—Branch if the carry (C) flag is set. (If the carry flag is clear, the operation will have 
no effect.)

BEQ—Branch if the result of an operation is zero (if the zero [Z] flag is set).
BMI—Branch on minus (if an operation results in a set N [negative] flag).
BNE—Branch if not equal to zero (if the zero [Z] flag isn’t set).
BPL—Branch on plus (if an operation results in a cleared negative [N] flag).
BVC —Branch if the overflow (V) flag is clear.
BVS —Branch if overflow (V) flag is set.
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tion in the program is stored on the hardware stack. Then the program 
jumps to whatever memory address is specified by the operand follow 
ing the JSR instruction.

The mnemonic JSR is designed primarily for use with subroutines. 
In 6502/6502B/65C02 assembly language, subroutines almost always 
end with RTS instructions.

In assembly language, RTS is the exact opposite of JSR. When an 
RTS instruction is encountered in a program, a memory address is 
removed from the stack and processing immediately jumps to that 
address. If the RTS instruction has been used to end a subroutine, the 
address pulled from the stack will usually be the one that was deposited 
there by the JSR instruction used to invoke the subroutine. Therefore, 
the processing of the program will resume at the line following the JSR 
instruction that was used to invoke the subroutine.

We have learned that branching instructions are conditional; jump 
instructions, however, are unconditional. When a jump instruction is 
encountered in a program, it will always be carried out. When a 
branching instruction is encountered in a program, it will be carried 
out only if certain specific conditions are fulfilled.

There is another important difference between a jump instruction 
and a branching instruction. In machine language, the operand that fol 
lows a jump instruction is always expressed as a 2-byte value and is al 
ways interpreted as the actual starting address of the destination of the 
jump instruction. However, when a branching instruction is assembled 
into machine language, the operand that follows the branching instruc 
tion is always converted to a signed 1-byte number. Then, when the 
program is executed, this signed 1-byte number is interpreted as an 
offset that points to the starting address of the destination of the branch 
instruction.

Let’s look at a sample statement containing a jump instruction.

JMP $cooo

If this statement were assembled into machine language and then exe 
cuted, the result would be quite straightforward: the value $C000 
would be loaded into your computer’s program counter and a jump to 
memory address $C000 would then occur.

Unfortunately, branching instructions are a little more complicated 
than jump instructions. Program 8-3 is a sample program that uses the 
branching instruction BCC, which means “branch if carry set.” The 
program is called BRANCHIT.S.
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Program 8-3
THE BRANCHIT.S PROGRAM (SOURCE-CODE VERSION)

1 ORG $8000
2 *

3 WHAZIS EQU $0300
4  *

5 LDA #5
6 CLC
7 ADC WHAZIS
8 BCS RETURN
9 TAX

10 RETURN RTS

Program 8-3 is a very straightforward subroutine. In line 5, the 
literal number 5 is loaded into the accumulator. Then the 6502B/65C02 
carry flag is cleared, and the value stored in memory address $0300 
(which has been labeled WHAZIS) is added to the value stored in the 
accumulator (now 5). Next, in line 8, a branching instruction is invoked. 
If adding 5 to the value of WHAZIS has resulted in a carry (if the sum 
of 5 and WHAZIS is greater than 255), the routine will branch to line 
10 and will end. However, if the sum of 5 and WHAZIS does not result 
in a carry—that is, if the sum is less than 255—the sum will be trans 
ferred to the X register before the routine ends.

Assembling the BRANCHIT.S Routine

Now take a look at an assembled listing of the BRANCHIT.S program 
as shown in Table 8-2. Lines 8 through 10 of Table 8-2 show how the 
branching instruction in the BRANCHIT.S program works. In line 8, to 
the left of the line number, you see

8 0 0 6 : B0 01

The first figure in this line, $8006, is the memory address in which 
the instruction BCS will be stored when it has been assembled into 
machine language. The second figure in the line, $B0, is the actual 
machine-language equivalent of the BCS instruction. The third number, 
$01, is an offset value that must be computed by your computer’s 6502B 
or 65C02 chip before it can carry out the BCS instruction.

Offset Values
In a 6502B/65C02 branching instruction, an offset value is a signed 
number that must be added to a given memory address in order to com-
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Table 8-2. The BRANCHIT.S Program (Assembled Version)

8000:
8000:

1
2 *

ORG $8000

8000:
8000:

3 WHAZIS
4 *

EQU $0300

8000:A 9 05 5 LDA #5
8002:18 6 CLC
8003:6D A7 02 7 ADC WHAZIS
8006:B0 01 8 BCS RETURN
8008:AA 9 TAX
8009:60 10 RETURN RTS

pute the destination address of the branching instruction. The address 
to which it must be added is always the address that follows the state 
ment containing the branching instruction. Therefore, the offset in line 
8 of the BRANCHIT.S program is 1. When that 1 is added to the 
address of the instruction following the branching instruction—$8008 
—the sum is $8009. That number is the address of the RTS instruction 
that ends the BRANCHIT.S program.

When you write a branching instruction in assembly language, you 
can follow it with either a literal address or a label that equates to an 
address. When your program is assembled into machine language, your 
assembler will convert that literal address or label into an offset value. 
From then on, each time your 6502B or 65C02 chip encounters a 
branching instruction during the execution of the assembled program, 
it will automatically use the offset that follows each branching instruc 
tion to compute the destination address of the branch.

Remember that an offset that follows a branching instruction can 
never be longer than one byte. Since this one byte is always interpreted 
by the 6502B/65C02 chip as a signed number, a branching offset can be 
no smaller than —128 and no larger than +127. Also, since this dis 
placement is always added to the address of the first instruction that 
follows a branching instruction, the effective displacement of a branch 
ing instruction can range only between —126 and +129. Thus, branches 
that occur as the result of branching instructions are subject to certain
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length limitations: the destination address of a branching instruction 
cannot be more than 126 bytes lower or more than 129 bytes higher than 
the address of the first instruction that follows the branching instruction.

What if you want to write an instruction that will branch to an 
address that does not fall within these limitations? If you want to exceed 
the distance limitations of a branching instruction, you simply use the 
instruction to branch to a jump instruction that has no such restrictions. 
Program 8-4 is an example of how that can be done.

Program 8-4
THE BRANCHIT.S PROGRAM (WITH A JUMP INSTRUCTION ADDED)

1 ORG $8000
2 *

3 WHAZIS EQU $0300 
A *
5 LDA #5
6 CLC
7 ADC WHAZIS
8 BCC CONT
9 JMP FARJ MP ; ( CAN BE ANYWHERE IN MEMORY)

10 CONT TAX
1 1 RTS

Long-Distance Branching

In the version of the BRANCHIT.S program shown in Program 8-4, the 
BCS instruction that appeared in the original program has been 
replaced by a BCC instruction. A new line, containing a JMP instruc 
tion that can jump to any address in memory, has been inserted follow 
ing the line containing the BCC instruction. In this version of the pro 
gram, if the addition of 5 to the value of WHAZIS results in a carry, the 
program will jump to an address labeled FARJMP that can be situated 
anywhere. Otherwise, the program jumps to line 10, labeled CONT (for 
“continue”), and proceeds as before.

How Conditional Branching Instructions Are Used

You have seen that the usual way to use a conditional branching instruc 
tion in 6502B/65C02 assembly language is to load the X or Y register 
with a 0 or some other value and then to load the A register (or a 
memory register) with a value to be used for a comparison. Next you 
use a conditional branching instruction to tell the computer what P reg 
ister flags to test and what to do if these tests succeed or fail.

Once you understand the general concept of conditional branching, 
you can use a simple table, such as Table 8-3, for writing conditional 
branching instructions.
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Table 8-3. Uses of Conditional Branching Instructions

TO TEST FOR: DO THIS: AND THEN THIS:
A = VALUE CMP #VALUE BEQ
A < >  VALUE CMP #VALUE BNE
A >= VALUE CMP #VALUE BCS
A >  VALUE CMP #VALUE BEQ and then BCS
A < VALUE CMP #VALUE BCC
A = (ADDR) CMP $ADDR BEQ
A < >  (ADDR) CMP $ADDR BNE
A >= (ADDR) CMP $ADDR BCS
A >  (ADDR) CMP $ADDR BEQ and then BCS
A < (ADDR) CMP $ADDR BCC
X = VALUE CPX #VALUE BEQ
X <> VALUE CPX #VALUE BNE
X >= VALUE CPX #VALUE BCS
X >  VALUE CPX #VALUE BEQ and then BCS
X < VALUE CPX #VALUE BCC
X = (ADDR) CPX $ADDR BEQ
X < >  (ADDR) CPX $ADDR BNE
X >= (ADDR) CPX $ADDR BCS
X >  (ADDR) CPX $ADDR BEQ and then BCS
X < (ADDR) CPX $ADDR BCC
Y = VALUE CPY #VALUE BEQ
Y < >  VALUE CPY #VALUE BNE
Y >= VALUE CPY #VALUE BCS
Y > VALUE CPY #VALUE BEQ and then BCS

Assembly-Language Loops

In 6502B/65C02 assembly language, comparison instructions and condi 
tional branch instructions are usually used together. In the sample pro 
gram called BULLETIN, the comparison instruction CPX and the 
branch instruction BNE are used together in a loop controlled by the 
incrementation of a value in the X register.

Each time the loop in the program goes through a cycle, the value in 
the X register is progressively incremented or decremented. Each time 
the program comes to the line containing the instruction INX, the value 
in the X register is compared to the literal number 29. When that 
number is reached, the loop ends.

The program will therefore keep looping back to the line containing 
the statement JSR COUT until 29 characters have been printed on the
screen.



168 Apple Roots

The BULLETIN.B Program

Now we’re ready to take a look at a new program entitled BULLE 
TIN.B. Program 8-5 will provide you with the second half of the cryptic 
message that was presented in the original BULLETIN program. It 
also contains some improvements that make it more versatile than its 
predecessor—and easier to understand.

Program 8-5 
BULLETIN.B
(Merlin Pro Assembler Version)

1 *

2 * BULLETIN. B
3 *
4 ORG $8000
5 *
6 EOL EQU 13
7 BUFLEN EQU 40
8 FILLCH EQU $20
9 C0UT EQU $FDED

10 *

11 JMP START
12 *

13 TEXT ASC "A DOGMA GOT HIT BY A KARMA"
14 DB EOL
15 *
16 * CLEAR TEXT BUFFER
17 *
18 START LD A FILLCH
19 LDX 0BUFLEN
20 STUFF DEX
21 STA TXTBUF,X
22 BNE STUFF
23 *
24 * STORE MESSAGE IN BUFFER
25 *
26 LDX #0
27 L00P1 LDA TEXT , X
28 STA TXTBUF,X
29 CMP #EOL
30 BEQ PRINT
31 INX
32 CPX #BUFLEN
33 BCC L00P1
34 *
35 * PRINT MESSAGE
36 *
37 PRINT LDX M0
38 L00P2 LDA TXTBUF,X
39 PHA
40 JSR COUT
41 PLA
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42 CMP //EOL
43 BN E NEXT
44 JMP FINI
45 NEXT IN X
46 CPX //BUFLEN
47 BCC L00P2
48  
49 FINI RTS
50  
51 TXTBUF DS BUFLEN

Program 8-5 was created on a Merlin Pro assembler but with minor 
modifications will also work on an Apple ProDOS assembler system. 
Program 8-6 is the same program typed on an ORCA/M system.

Program 8-6 
BULLETIN.B
(ORCA/M Assembler Version)

KEEP BULLETIN

MAIN START

EOL EQU 13
BUFLEN EQU 40
FILLCH EQU $20
COUT EQU $ F D E D

LD A 0FILLCH
LDX //BUFLEN

STUFF DEX
STA TXTBUF, X
BNE STUFF

LDX #0
L00P1 LD A TE XT,X

STA TXTBUF,X
CMP #EOL
BEQ
INX

PRINT

CPX //BUFLEN
BCC L00P1

PRINT LDX no
L00P2 LD A 

PHA
TXTBUF, X

JSR
PLA

COUT

CMP //EOL
BNE NEXT
JMP FINI

NEXT INX
CPX //BUFLEN
BCC L00P2

FINI RTS
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TEXT DC C 1A DOGMA GOT HIT BY A KARMA
DC H ' OD '

TXTBUF DS 40

END

As you can see, the BULLETIN.B program is quite similar to the 
original program. After you’ve typed, assembled, and run the BULLE 
TIN.B program, you’ll see that it performs essentially the same kind of 
operation as BULLETIN, but in a slightly more elegant way. The most 
obvious difference between the two programs is the way they handle 
text strings. The original BULLETIN program made use of a text 
string composed of ASCII codes. You’ll see when you type BULLE 
TIN.B that there’s usually no need to convert text strings into ASCII 
code numbers in order to use them in assembly-language programs. All 
three of the assemblers that were used to create the programs in this 
book are equipped with features that will do that job automatically.

Another important difference between BULLETIN.B and its prede 
cessor is the way the loop that reads the characters is written. In BUL 
LETIN, the loop counted the number of characters that had been 
printed on the screen and ended when the count reached 29. That’s a 
perfectly good system for printing text strings that are 29 characters 
long. It won’t display strings of other lengths, however, so it isn’t a very 
versatile routine for displaying characters on a screen.

Testing for a Carriage Return

BULLETIN.B is more versatile than BULLETIN because it can dis 
play strings of almost any length on a screen. The BULLETIN.B pro 
gram doesn’t keep track of the number of characters it has printed by 
maintaining a running count of how many letters have been displayed. 
Rather, when the program encounters a character, it tests the character 
to see if its value is $0D— the ASCII code for a carriage return or end- 
of-line (EOL) character. If the character is not an EOL, the computer 
displays it and goes on to the next character in the string. If the charac 
ter is an EOL character, the computer displays a carriage return on the 
screen and the routine ends.

Another difference between BULLETIN and BULLETIN.B is that 
the latter program doesn’t read characters and display them in the 
same step. Instead, the characters are first placed in a buffer, and then 
the contents of the buffer are printed on the screen.

Text buffers are often used in assembly-language programs because 
they are both versatile and easy to use. Text can be loaded into a buffer
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from a keyboard, for example, or from a telephone modem, or even 
directly from a computer’s memory. Conversely, once a string is in a 
buffer, it can be removed from the buffer in just as many different 
ways—no matter how the characters got into the buffer in the first 
place, and no matter what characters they are. Thus, once a few subrou 
tines have been written to fill a buffer and then to process it in some 
manner, those subroutines can be used for many different purposes. A 
buffer can therefore serve as a central repository for text strings, mak 
ing them easily accessible.

Clearing a Text Buffer
Before you use a text buffer, it’s always a good idea to clear it of leftover 
characters, so a buffer-clearing routine has been written into the BUL- 
LETIN.B program. It’s a short and simple routine that will clear a text 
buffer—or any other block of memory that doesn’t exceed its length 
limitations—and will fill the buffer with spaces, 0’s, or any other value 
you choose. In the BULLETIN.B program, the routine fills the buffer 
with a string of spaces; they will appear as blank spaces on your screen.

As you continue to work with assembly language, you’ll find that 
memory-clearing routines such as this one are useful in many kinds of 
programs. Word processors, telecommunications programs, and many 
other kinds of software packages make extensive use of routines that can 
clear values from blocks of memory and replace them with other values.

The memory-clearing routine in the BULLETIN.B program uses 
indexed (direct) addressing and an X register countdown. It will fill 
each memory address in a text buffer (TXTBUF) with a designated “fill 
character” (FILLCH). Then the routine ends.

The buffer-clearing routine in BULLETIN.B will work with any 8- 
bit fill character and with any buffer length (BUFLEN) up to 255 
characters. Later on in this book, you’ll find some 16-bit routines that 
can fill longer blocks of RAM with values.

One More Program: THE NAME GAME_______________

The final program in this chapter will make use of many of the pro 
gramming techniques we’ve learned so far. Program 8-7 is called THE 
NAME GAME. It was written on an Apple lie using a Merlin Pro 
assembler. With minor modifications, you can also type, assemble, and 
run it with an Apple ProDOS assembler. If you own an ORCA/M system,
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you should be able by now to make the modifications needed to type and 
assemble the program using the ORCA/M.

Program 8-7 
THE NAME GAME 

1 *

2 * THE NAME GAME
3 *
A ORG $8000
5 *
6 EOL EQU SOD ; RETURN KEY
7 EOF EQU $03
8 FILLCHR EQU $20 ;SPACE KEY
9 BUFLEN EQU 40

10 GETLN1 EQU $ F D6 F ;R0UTINE TO GET A LINE OF TEXT FROM 
KEYBOARD

11 COUT EQU $FDED ;R0UTINE TO PRINT A CHARACTER ON THE 
SCREEN

12 TEMPTR EQU $ FB
13 OSBUF EQU $200
14 *
15 JMP BEGIN
16 *
17 COUNT DS 1
18 INPBUF DS 80
19 *
20 TITLE  ASC "THE NAME GAME"
21 HEX OD
22 HELLO ASC " HELLO,  "
23 HEX 03
24 QUERY ASC "WHAT IS YOUR NAME?"
25 HEX OD
26 NAME ASC "GEORGE"
27 HEX OD
28 REBUFF ASC "GO AWAY, "
29 HEX 03
30 DEMAND ASC "BRING ME GEORGE!"
31 HEX OD
32 GREET ASC " H I ,  GEORGE!"
33 HEX OD
34 *
35 * CLEAR TEXT BUFFER
36 *
37 F I LL  LDA 0FILLCHR
38 LDX 0BUFLEN
39 FILLOOP DEX
40 STA INPBUF,X
41 BN E FILLOOP
42 RTS
43 *
44 PRINT LDY #0
45 SHOW LDA ( TEMPTR) , Y
46 CMP #EOF
47 BEQ DONE
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48 PHA
49 JSR COUT
50 PLA
51 CMP # EOL
52 BNE NEXT
53 JMP DONE
54 NEXT INY
55 CPY #BU FLEN
56 BCC SHOW
57 DONE RTS
58 *
59 BEGIN LDA #0
60 STA $C00A ; TURN ON 80-COLUMN FIRMWARE
61 J SR SC300 ; TRANSFER CONTROL TO 80-C0L  CARD
62 STA SCOOD ; TURN ON 80-COLUMN DISPLAY
63 JSR $ F C 58 ; CLEAR SCREEN & HOME CURSOR
64 *
65 * PRINT 'THE NAME GAME'
66  *

67 LDA #EOL
68 JSR COUT
69 LDA /KTI TLE
70 STA TEMPTR
71 LDA #>TITLE
72 STA TEMPTR+1
73 JSR PRINT
74 LDA 0EOL
75 JSR COUT
76 *
77 * PRINT ' HELLO . . . '
78 *
79 LDA #<HELLO
80 STA TEMPTR
81 LDA #>HELLO
82 STA TEMPTR+1
83 JSR PRINT
84 *
85 * PRINT 'WHAT IS YOUR NAME?'
86  *

87 ASK LDA (IKQUERY
88 STA TEMPTR
89 LDA #>QUERY
90 STA TEMPTR+1
91 JSR PRINT
92 LDA #EOL
93 JSR COUT
94 *
95 * INPUT A TYPED LINE
96 *
97 JSR GETLN1
98 STX COUNT
99 LDY #0

100 PRLOOP LDA OSBUF/ Y
101 STA INPBUF, Y
102 INY
103 DEX
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104 BNE PRL00P
105 *
106 * CHECK TO SEE IF NAME IS GEORGE
107 *
108 LDX COUNT
109 CPX #6
110 BNE NOGOOD
111 DEX
112 CHECK LDA INPBUF,X
113 CMP NAME,X
114 BNE NOGOOD
115 DEX
116 BNE CHECK
117 JMP DUNIT
118 *
119 * NO; PRINT 'GO AWAY . .
120  *

121 NOGOOD LDA #EOL
122 J SR COUT
123 LDA #<REBUFF
124 STA TEMPTR
125 LDA #>REBUF F
126 STA TEMPTR+1
127 JSR PRINT
128 *
129 * PRINT PLAYER' S NAME
130 *
131 LDA #<INPBUF
132 STA TEMPTR
133 LDA U>INPBU F
134 STA TEMPTR+1
135 JSR PRINT
136 LDA #EOL
137 JSR COUT
138 *
139 * PRINT 'BRING ME GEORGE!*
140 *
141 LDA #<DEMAND
142 STA TEMPTR
143 LDA #>DEMAND
144 STA TEMPTR+1
145 JSR PRINT
146 LDA #EOL
147 JSR COUT
148 JMP ASK
149 *
150 * YES;  PRINT GREETING
151 *
152 DUNIT JSR $ FBDD ;SOUND A BEEP
153 LDA #EOL
154 JSR COUT
155 LDA #<GREET
156 STA TEMPTR
157 LDA #>GREET
158 STA TEMPTR+1
159 JSR PRINT
160 RTS
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If you’ve typed, assembled, and executed the programs called BUL 
LETIN and BULLETIN.B, you shouldn’t have much trouble under 
standing how THE NAME GAME works. Using several fairly simple 
subroutines, it displays a short message on your screen and then waits 
for you to type a response. If the program considers your response 
incorrect, it prompts you to try again. When you finally enter the line 
the program is looking for, you get a “reward” message and the pro 
gram ends.

The GETLN1 Routine

In addition to the kernel routine COUT, which was used in the BUL 
LETIN and BULLETIN.B programs to display characters on the 
screen, THE NAME GAME makes use of a built-in routine called 
GETLN1 that can read lines of text that have been entered on your 
Apple’s keyboard. The call address of the GETLN1 routine is $FD6F, as 
you can see in line 10 of THE NAME GAME program. To use the 
GETLN1 routine in an assembly-language program, you list the routine’s 
address in the program’s symbol table, and then write a statement like

J SR GETLN1

If you look at line 97 of THE NAME GAME program, you’ll see that 
statement. When you run THE NAME GAME, that line is where your 
computer will stop and wait for you to type a name. As soon as you type 
a name, plus a carriage return, your Apple will store the line you’ve 
typed in a special buffer that begins at memory address 200. The 
number of characters in the line that you’ve typed will be left in the X 
register of your computer’s 6502B/65C02 microprocessor.

In THE NAME GAME’S symbol table, the buffer that starts at 
memory register 200 is called OSBUF. The contents of this buffer can 
change very quickly. Therefore, as soon as the buffer is used in THE 
NAME GAME program, its contents are copied into another buffer 
called INPBUF. (This procedure is carried out in lines 98 through 104.)

In lines 108 through 117, a check is made to see whether the name 
typed into OSBUF is George. If it isn’t, the program will jump to a 
routine that demands to see George. If the name typed in turns out to be 
George, the computer will respond with a beep and a greeting.

Using Your Apple’s 80-Column Display

Lines 59 and 60 of THE NAME GAME initialize the 80-column firm 
ware that enables the Apple lie  and the Apple He to generate an 80-
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column screen. In line 61, control is transferred to the 80-column firm 
ware with the assembly-language statement JSR $C300, which accom 
plishes the same task as the BASIC statement PR#3. In line 62, your 
computer’s 80-column display is actually turned on with the statement 
STA $C00D. Finally, in line 63, the program calls a built-in routine that 
starts at $FC58. This routine clears the screen display and places a cur 
sor in the upper-left corner of the screen.

Full details of how these routines work can be found in the Apple lie 
reference manual and the Apple He reference manual. If, however, you 
just want to know how to use your computer’s 80-column capabilities in 
an assembly-language program, lines 59 through 63 of THE NAME 
GAME contain everything you need to know.

Low-Byte and High-Byte Symbols

The technique used in THE NAME GAME for storing 16-bit numbers 
in high-order and low-order 8-bit memory locations is worth special 
mention. The technique first appears in lines 69 through 72.

69 LDA #<TITLE
70 STA TEMPTR
71 LDA #>TITLE
72 ST A . TEMPTR + 1

You can probably see what that sequence does. In source code recog 
nized by most assemblers, the string “#<HELLO” means “the low byte 
of the address labeled ‘HELLO’”, and the string “#>HELLO” means 
“the high byte of the address labeled ‘HELLO’”. (This string refers not 
to the contents of the address, by the way, but to the address itself since, 
in 6502/6510/8502 assembly language, the symbol “#” is used to identify 
a literal number.)

The above sequence of code first stores the low-order byte of the 
16-bit address of the string “HELLO” into the memory location labeled 
“TEMPTR” (which, as you can see by looking at the program’s symbol 
table, is memory address $FB). Then it stores the high-order byte of 
the address of the string labeled “HELLO” into memory location 
TEMPTR+1, or $FC.

Playing THE NAME GAME

When THE NAME GAME has called your Apple’s 80-column firmware 
into action, the program will continue by displaying its title on the 
screen. The next two routines display the line “Hello, what is your 
name?”



Looping and Branching 177

Then the program clears the text buffer and waits for you to type a 
response. As you type your answer, each character you enter will be 
placed in the text buffer. That process will continue until you stop typ 
ing characters and press a carriage return.

Next the program will examine the characters that you’ve entered to 
see whether they spell the name George. If they don’t, the program will 
demand: “BRING ME GEORGE!” When you finally type the name 
George, your computer will reward you with a beep and proclaim: “HI, 
GEORGE!”

You will find that the principles used to create the input and output 
routines for THE NAME GAME are used in many assembly-language 
programs. So, if you know how THE NAME GAME works, you’ve 
learned quite a b it—by George!





Single-Bit 
Manipulations of 
Binary Numbers

There are 65,536 bytes of memory in an unexpanded Apple He comput 
er and 131,072 bytes of memory in an Apple lie or a fully expanded He. 
Since there are eight bits in every byte, there are 524,288 bits in a no 
frills Apple He and 1,048,576 bits in a 128K Apple He or an off-the-rack 
Apple lie. What does that mean to an assembly-language programmer? 
If you know how to perform single-bit operations on binary numbers, 
you can control every binary bit in your Apple automatically. That’s a 
tremendous amount of control to have over a computer.

In the first chapter of this book, you learned how to control one of the 
most important bits in your Apple’s central microprocessor: the carry 
bit of the 6502B/65C02 processor status register. Manipulating the P 
register’s carry bit is one of the most important bit-manipulation tech 
niques in 6502B/65C02 assembly language. You’ve also had considerable
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experience in using the carry bit in addition programs.
In this chapter, you’ll have an opportunity to learn some new tech 

niques using the carry bit of the P register.

Using the Carry Bit 
In Bit-Shifting Operations

You know that your Apple’s 6502B/65C02 microprocessor is an 8-bit 
chip; it cannot perform operations on numbers larger than 255 without 
going through a number of steps.

The 6502B/65C02 must split a larger number into 8-bit chunks and 
then perform the requested operations on each part of the number. The 
number must then be made whole again.

Once you’re familiar with this process, it isn’t nearly as difficult as it 
sounds. In fact, the “scissors” that are used for this electronic cutting 
and pasting are actually contained in one tiny b it—the carry bit of the 
6502B/65C02’s P register.

Bit-Shifting Instructions

You’ve seen how how carry operations work in several programs in this 
book. In order to get a clearer look at how the carry works in 
6502B/65C02 arithmetic, though, it would be useful to examine four 
very specialized machine-language instructions: ASL  (arithmetic shift 
left), LSR  (logical shift right), ROL (rotate left), and ROR (rotate right). 
These four instructions are used very extensively in 6502B/65C02 
assembly language.

ASL (Arithmetic Shift Left)
As you will recall from Chapter 2 (the chapter on binary arithmetic), 
every number that ends in 0 in binary notation is double the preceding 
binary number that ends in 0. For example, 1000 0000 ($80) is double 
the number 0100 0000 ($40), which is double the number 0010 0000 
($20), which is double the number 0001 0000 ($10).

Therefore, it is extremely easy to multiply a binary number by 2. 
You just shift every bit in the number one space to the left and place a 0 
in the bit that has been emptied by this shift (bit 0, or the far-right bit 
of the number). If bit 7 (the far-left bit) of the number to be doubled is a 
1, then provision must be made for a carry.
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Figure 9-1. The ASL instruction

The entire operation we just described—shifting a byte left, with a 
carry—can be performed by a single instruction in 6502B/65C02 
assembly language. That instruction is ASL, which stands for “arith 
metic shift left.” As illustrated in Figure 9-1, the instruction ASL 
moves each bit in an 8-bit number one space to the left—each bit, that 
is, except bit 7. That bit drops into the carry bit of the processor status 
(P) register.

The ASL instruction has many uses in 6502B/65C02 assembly lan 
guage. For instance, it is an easy way of multiplying numbers by 2. 
Program 9-1 is a number-doubling routine as it might look in a pro 
gram created using a Merlin Pro or Apple ProDOS assembler.

Program 9-1
DOUBLING A NUMBER WITH THE ASL INSTRUCTION 
1 *

2 0R6 $8000
3 *
4 LDA #$40 ; REM 0100 0000
5 ASL A ; SHI FT VALUE IN ACCUMULATOR TO LEFT
6 STA $ FB
7 RTS

If you run Program 9-1 and then use the machine-language monitor 
to examine the contents of memory address $FB, you’ll see that the 
number $40 (0100 0000) has been doubled to $80 (1000 0000) before 
being stored in memory address $FB.

Another use for the ASL instruction is to pack data, which increases 
a computer’s effective memory capacity. Later in this chapter, there will 
be an example of how to pack data using the ASL instruction.
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B I T S

Figure 9-2. The LSR instruction

LSR (Logical Shift Right)

As shown in Figure 9*2, the instruction LSR (logical shift right) is the 
exact opposite of the instruction ASL.

How the LSR Instruction Works LSR, like ASL, works on whatever 
binary number is in the 6502B/65C02’s accumulator. However, it will 
shift each bit in the number one position to the right. Bit 7 of the new 
number (left empty by the LSR instruction) will be filled with a 0, and 
the LSR will be dumped into the carry flag of the P register.

As illustrated in Program 9*2, the LSR instruction can be used to 
divide any even 8-bit number by 2.

Program 9-2
DIVIDING A NUMBER BY 2 WITH THE LSR INSTRUCTION 

1 *

2 * LSRDIV
3 *
4 VALUE 1 EQU $ FB
5 VALUE2 EQU $ F C
6 *
7 0R6 $8000
8 *

9 LDA #6 ; OR ANY OTHER 8 - B I T  NUMBER
10 STA VALUE1
11 *

12 *N0W WE'LL DIVIDE BY 2
13 *
14 LDA VALUE1
15 LSR A
16 STA VALUE2
17 RTS
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In this program, the number stored in VALUE 1 is divided by 2 and 
the result is stored in VALUE2. This division routine will also tell you 
whether the number it has divided is odd or even. It leaves that piece of 
information in the carry bit of the 6502B/65C02 P register; if the rou 
tine leaves the carry bit clear, the number that was just divided is even. 
If the carry bit is set, the value is odd.

Later in this chapter, we will learn how to use LSR to unpack data.

Another Test for Odd or Even Program 9-3 is another routine that 
can determine whether a number is even or odd. In lines 12 and 13 of 
the ODDTEST routine, a memory register called FLGADR (for “flag 
address”) is cleared to 0. Then the contents of the memory register 
called VALUE 1 are shifted to the right one position and stored in a 
third register, VALUE2. If the value being shifted is even, the shift 
operation does not set the carry bit, and the subroutine ends. If the 
value being shifted is odd, the operation does set the carry bit, the pro 
gram jumps to line 220, and the set carry bit is rotated into the 
FLGADR register using an instruction called ROL. (You’ll learn more 
about ROL in a moment.) Thus, if the routine leaves a 0 in FLGADR, 
the number that was divided is even; if the routine ends with a 1 stored 
in FLGADR, the number that was divided is odd.

Program 9-3
THE ODDTEST ROUTINE
1 *
2 * ODDTEST
3 *
4 VALUE1 EQU $FB
5 VALUE2 EQU $FC
6 FLGADR EQU $FD
7 *
8 ORG $8000
9 *

10 LDA #7 ; (ODD)
11 STA VALUE1

12 LDA
13 STA
14 *
15 LDA
16 LSR
17 STA
18 *
19 BCS
20 RTS
21 *

22 FLAG
24 ROL
25 RTS

#0
FLGADR ; CLEARING FLGADR 

VALUE1
A ; PERFORM THE DIVISION 
VALUE2 ; DONE

FLAG
; END ROUTINE IF  CARRY CLEAR . . .

FLGADR
AND END THE PROGRAM/ •
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The use of LSR to unpack data that has been packed using ASL will 
be discussed later in this chapter.

ROL (Rotate Left) and ROR (Rotate Right)

The instructions ROL (rotate left) and ROR (rotate right) are also used 
to shift bits in binary numbers, but they use the carry bit differently 
from ASL and LSR. Figure 9-3 illustrates how the ROL instruction 
works.

ROL, like ASL, can be used to shift the contents of the accumulator 
or a memory register one place to the left. Unlike ASL, however, ROL 
does not place a 0 in the bit 0 position of the number being shifted into 
the carry bit. Instead, it rotates the carry bit into bit 0 of the register 
being shifted and then moves every other bit in that register one place 
to the left, rotating bit 7 back into the carry bit. If the carry bit is set 
when that happens, a 1 is placed in the bit 0 position of the byte being 
shifted. If the carry bit is clear, a 0 goes into the bit 0 position of the 
shifted register.

Figure 9*4 illustrates the use of the ROR instruction. ROR works 
just like ROL, but in the opposite direction. It moves each bit of the byte 
being shifted one position to the right and rotates the carry bit into the 
bit 7 position of the shifted byte. Bit 0 of the shifted byte is moved into 
the carry bit of the P register.

ROL and ROR are often used in 6502B/65C02 multiplication and 
division routines, as well as in other routines in which bits are shifted 
and tested.

Figure 9-3. The ROL (rotate left) instruction
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Figure 9-4. The ROR (rotate right) instruction

The Logical Operators

Let’s look at four important assembly-language mnemonics called logi 
cal operators. These instructions are AND (and), ORA (or), EOR (exclu 
sive or), and BIT (bit).

The four 6502B/65C02 logical operators AND, ORA, EOR, and BIT 
are all used to compare values. They work differently, however, from 
the comparison operators CMP, CPX, and CPY. The instructions CMP, 
CPX, and CPY yield very general results. They can determine only 
whether two values are equal and, if the values aren’t equal, which one 
is larger.

AND, ORA, EOR, and BIT are much more specific instructions. 
They are used to compare single bits of numbers and thus have many 
uses in writing assembly-language programs for the Apple Ile/IIc.

Boolean Logic
The four logical operators in assembly language use principles of 
mathematical science called Boolean logic. In Boolean logic, the binary 
numbers 0 and 1 are used not to express values, but to indicate whether 
a statement is true or false. If a statement is true, its value in Boolean 
logic is said to be 1. If the statement is false, its value is said to be 0.

In 6502B/65C02 assembly language, the operator AND has the same 
meaning that the word “and” has in English.
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Table 9-1. Truth Table for AND

0 0 1 1
AND 0 AND 1 AND 0 AND 1

0 0 0 1

If one bit AND another bit have a value of 1 (and are thus “true”), 
then the AND operator also yields a value of 1. However, if any other 
condition exists—if one bit is true and the other is false, or if both bits 
are false—then the AND operator returns a result of 0, or false.

The results of logical operators are often illustrated with diagrams 
called truth tables. Table 9-1 is a truth table for the AND operator.

In 6502B/65C02 assembly language, the AND instruction is often 
used in an operation called bit masking. The purpose of bit masking is to 
clear or set specific bits of a number. The AND operator can be used, 
for example, to clear any number of bits by placing a 0 in each bit that 
is to be cleared:

100 LDA # AA ;BINARY 1010 1010 
110 AND #F0 ; BINARY 1111 0000

If your computer encounters this sequence in a program, it will perform 
the following AND operation:

1010 1010 (contents of accumulator)
AND 1111 0000

1010 0000 (new value in accumulator)

In this example, the AND instruction clears the low nybble of $AA 
to $0 (with a result of $A0). The same technique would work with any 
other 8-bit number. No matter what number is being passed through 
the mask 1111 0000, its lower nybble will always be cleared to $00, and 
its upper nybble will always emerge from the AND operation unchanged.

The ORA Operator
When the instruction ORA (or) is used to compare a pair of bits, the 
result of the comparison is 1 (true) if the value of either bit is 1. Table
9-2 is the truth table for ORA.



Single-Bit Manipulations of Binary Numbers 187

Table 9-2. Truth Table for ORA

0
ORA 0

0
ORA 1

1
ORA 0

1
ORA 1

0 1 1 1

ORA is also used in bit-masking operations. Here is an example of a 
masking routine using ORA.

LDA VALUE 
ORA #$0F 
STA DEST

If the number in VALUE were $22 (binary 0010 0010), the following 
masking operation would then take place.

0010 0010 ( i n  a c c u m u l a t o r )
ORA 0000 1111 (#$0F)

0010 1111 (new v a l u e  i n  a c c u m u l a t o r )

The EOR Operator

The instruction EOR (exclusive or) will return a true value (1) if one— 
and only one—of the bits in the pair being tested is a 1. Table 9-3 is the 
truth table for the EOR operator.

The EOR instruction is often used for comparing bytes to determine 
if they are identical. If any bit in two bytes being compared is different, 
the result of the comparison will be non-0:

In Example 1, the bytes being compared are identical, so the result 
of the comparison is 0. In Example 2, one bit is different, so the result of 
the comparison is non-0.

The EOR operator is also used to complement values. If an 8-bit value

1011 0110
EOR 1011 0110 BUT:

Exam ple 1 Example 2
1011 0110 

EOR 1011 0111

0000 0000 0000 0001
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Table 9-3. Truth Table for EOR

0 0 1 1
EOR 0 EOR 1 EOR 0 EOR 1

0 1 1 0

is EOR’d with $FF, every bit in the value that is a 1 will be comple 
mented to a 0, and every bit that is a 0 will be complemented to a 1:

1110 0101 (in accumulator)
EOR 1111 1111

0001 1010 (new value in accumulator)

Still another useful characteristic of the EOR instruction is that 
when it is performed twice on a number using the same operand, the 
number will first be changed to another number and then be restored to 
its original value:

1110 0101 (in accumulator)
EOR 0101 0011

1011 0110 (new value accumulator)
EOR 0101 0011 (same operand as above)

1110 0101 (original value in accumulator restored)

This capability of the EOR instruction is often used in high- 
resolution graphics to place one image over another without destroying 
the one underneath.

Packing and Unpacking Data in Memory

Now we’re ready to discuss the packing and unpacking of data using 
bit-shifting and bit-testing instructions. First, let’s talk about how you 
can pack data to conserve space in your computer’s memory.

To get an idea of how data-packing works, suppose that you had a 
series of 4-bit values stored in a block of memory in your computer.
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These values could be ASCII characters, BCD numbers (more about 
those later), or any other kind of 4-bit values.

Using the ASL instruction, you can pack two such values into every 
byte of the block of memory in which they were stored. You can thus 
store the values in half the memory space that they had occupied in 
their unpacked form.

Program 9-4 is a routine you can use in a loop to pack each byte of 
data.

Program 9-4
PACKING DATA USING THE ASL INSTRUCTION

1  
2  PACKDATA
3  
4 ORG $8000
5 *
6 NYB1 EQU $ FB
7 NYB2 EQU $ F C
8 PKDBYT EQU $ FD
9 *

10 LD A #$04 ; OR ANY
11 STA NYB1
12 LD A #$06 ; OR ANY
13 STA NYB2
14  
15 CLC
16 LD A NYB1
17 ASL A
18 ASL A
19 ASL A
20 ASL A
21 ORA NYB2
22 STA PKDBYT
23 RTS

4 - B I T  VALUE 

4 - B I T  VALUE

How It Works

The routine in Program 9-4 will load a 4-bit value into the accumulator, 
shift that value to the high nybble in the accumulator, and then (using 
the ORA logical operator) place another 4-bit value in the low nybble of 
the accumulator. The accumulator will thus be packed with two four-bit 
values—and those two values will then be stored in “PKDBYT”, a sin 
gle 8-byte memory register.

Testing the Results

Type the program into the computer and execute it using your 
assembler’s machine-language monitor. After you’ve run the program, 
you can peek into your computer’s memory to see what has been done by
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using your Apple’s built-in monitor. Just call up the machine-language 
monitor and type the command

FB.  FD

followed by a carriage return. Your computer will then respond with the 
following line:

00FB-  04 06 46

This line tells you that the number $04 has been stored in memory 
address $FB and that the number $06 has been stored in memory 
address $FC. Both of these values have then been packed into memory 
address $FC.

You can see from this example how data-packing can increase a com 
puter’s effective memory capacity. Suppose you had a long document 
made up of pure ASCII characters, which can be stored in memory in 
the form of 4-bit numbers. Packing this text would cut in half the 
amount of memory the text occupied, since two characters could be 
stored in each 8-bit register of your computer’s memory.

Unpacking Data
It wouldn’t do any good to pack data, of course, if it couldn’t be 
unpacked later. Data packed using ASL can be unpacked using the 
complimentary instruction LSR (logical shift right), together with the 
logical operator AND. Program 9-5 is a routine that shows how data 
can be unpacked using the LSR instruction.

Program 9*5
UNPACKING DATA USING THE LSR INSTRUCTION 
10  *

20 * UNPACKIT 
30 *
40 PKDBYT EQU $FB 
50 LOWBYT EQU $FC 
60 HIBYT EQU $ FD 
70 *
80 ORG $8000 
90 *
100 LDA #255 ;0R ANY OTHER 8 - B I T  VALUE 
110 STA PKDBYT
120 LDA #0 ; CLEAR LOWBYT AND HIBYT 
130 STA LOWBYT 
140 STA HIBYT 
150 *
160 LDA PKDBYT
170 AND #$0F ;BINARY 0000 1111 
180 STA LOWBYT



Single-Bit Manipulations of Binary Numbers 191

190 LD A PKDBYT
200 LSR A
210 LSR A
220 LSR A
230 LSR A
240 STA HIBYT
250 RTS

The routine illustrated in Program 9-5 works much like Program 
9*4—but in reverse. In Program 9-5, the accumulator is loaded with an 
8-bit byte into which two 4-bit values have been packed. The upper four 
bits of this packed byte are then zeroed out using the logical operator 
AND. Then the lower nybble of the byte is stored in a memory register 
called LOWBYT.

Next, the accumulator is loaded for a second time with the packed 
byte. This time the byte is shifted four places to the right using the 
instruction LSR. This maneuver results in a 4-bit value that is finally 
stored in a memory register called HIBYT. The packed value in 
PKDBYT has thus been split, or unpacked, into two 4-bit values—one 
stored in LOBYT and the other in HIBYT. Each of those 4-bit numbers 
(which may represent an ASCII character or any other 4-bit value) can 
now be processed as a separate entity.

The BIT Operator

The BIT operator is an instruction that’s a little more complicated than 
AND, ORA, or EOR.

The BIT instruction is used to determine whether the value stored in 
a memory register matches a value stored in the accumulator. The 
instruction can be used only with absolute or zero-page addressing 
Here are two examples of correct formats for the BIT instruction.

BIT $ 0 2 A7

BIT $ FB

When the BIT instruction is used in either of these formats, a logical 
AND operation is performed on the byte being tested. The opposite of 
the result of this operation is then stored in the zero flag of the proces 
sor status register. In other words, if any set bits in the accumulator 
happen to match any set bits that are stored in the same positions in the 
value being tested, the Z flag will be cleared. If there are no set bits that 
match, the Z flag will be set.

Program 9-6 illustrates how the BIT instruction can be used.
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Program 9*6
USING THE BIT INSTRUCTION
1 LDA #01
2 BIT $02A7
3 BNE MATCH
4 JMP NOGOOD
5 MATCH RTS

A check is made to determine whether BIT is set in the value stored in 
memory register $02A7. If the bit is set, the flag of the P register will 
be cleared and the program will branch to the line labeled MATCH. If 
there is no match, the Z flag will be set, and the program will jump to 
whatever routine has been labeled NOGOOD.

The BIT mnemonic also performs a couple of other functions. When 
the BIT instruction is used, bits 6 and 7 of the value being tested are 
always deposited directly into bits 6 and 7 of the P register. That infor 
mation is very useful because bit 6 and bit 7 are very important flags in 
the 6502B/65C02 chip’s processor status register. Bit 6 is the P regis 
ter’s overflow (V) flag, and bit 7 is its negative (N) flag. Therefore, the 
BIT instruction can also be used as a quick method of checking either 
bit 6 or bit 7 of any 8-bit value. If bit 6 of the value being tested is set, 
the P register’s V flag will also be set, and a BVC or BVS instruction 
can then be used to determine what will happen next in the program. If 
bit 7 of the tested value is set, then the P register’s N flag will be set, 
and a BPL or BMI instruction can be used to determine the outcome of 
the routine.

It’s important to note that after all of these actions take place, the 
value in the accumulator and the memory location being tested always 
remain unchanged. Therefore, if you ever want to perform a logical 
AND operation without disturbing the value of the accumulator or the 
memory register you want to check, the BIT mnemonic may be the best 
instruction to use.
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Assembly-Language
Math

In this chapter, you’ll learn how your Apple adds, subtracts, multiplies, 
and divides. The Apple lie  or Apple He can handle many kinds of num 
bers—including binary, decimal, hexadecimal, signed, and unsigned 
numbers, as well as binary-coded decimal numbers and floating-point 
decimal numbers. In this chapter, we’re going to look at each of these 
types of numbers.

To understand how your computer works with numbers, it is essen 
tial to have a fairly good understanding of the busiest flag in the 
6502B/65C02 microprocessor chip: the carry flag of the 6502B/65C02’s 
processor status register, discussed briefly in Chapter 3.

A Close Look at the Carry Bit

The best way to get a close-up view of how the carry bit works is to 
examine it through an “electronic microscope”—that is, at the bit level.

193
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HEXADECIMAL BINARY
$04 0100

+ $01 + 0001

$05 0101

$08 1000
+ $03 + 0011

$0B 1011

Figure 10-1. Adding without a carry in the hex and binary systems

Figure 10-1 compares two 4-bit addition problems, one carried out 
using hexadecimal numbers and the other done with binary numbers. 
You can see that neither addition operation results in a carry; no carry 
is generated in either binary or hexadecimal notation.

Figure 10-2 illustrates two more addition problems, using larger (8- 
bit) numbers. The first of these two problems doesn’t generate a carry, 
but the second one does. Note that the sum in the second problem is a 
9-bit number — 1 1000 1100 in binary, or 18C in hexadecimal notation.

HEXADECIMAL BINARY
$8E 1000 1110

+ $23 + 0010 0011

$B1 1011 0001

$8D 1000 1101
$FF m i  m i

$018C (1) 1000 1100

Figure 10-2. Two more addition problems in hex and binary
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Program 10-1 is an assembly-language program that will perform 
the second addition problem in Figure 10*2.

Program 10-1 
ADDNCARRY 
8-Bit Addition With a Carry 
1 *
2 * ADDNCARRY
3 *
4 ORGS8000
5 *
6 CLD
7 CLC
8 LDA #$8D
9 ADC #$FF

10 STA $ FB
11 RTS

Type Program 10-1, assemble it, and then run it using your Apple’s 
machine-language monitor. Then use your monitor to take a look at the 
contents of memory location $FB: just type the address FB, and you 
will see a line something like this:

00FB-  8 C

That line will show you that memory address $FB now holds the 
number $8C. That isn’t the sum of the numbers $8D and $FF, but it’s 
close. In hexadecimal arithmetic, the sum of $8D and $FF is $18C — 
exactly the sum we got, plus a carry. But where is the carry? The miss 
ing carry must be tucked away in the carry bit of your computer’s pro 
cessor status register.

Looking for a Bit in a Haystack_______________________

Looking for a carry bit inside an Apple may seem like looking for a 
needle in a haystack, but finding a carry bit really isn’t too hard once 
you know where to look. One way to locate the carry that’s missing from 
the ADDNCARRY program listed above, for example, is by the inser 
tion of a few additional lines into the ADDNCARRY program. Program
10-2 is an expanded version of the program, with those extra lines 
inserted.
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Program 10-2 
ADDNCARRY2
Addition With a Carry (Improved Version)

1 *
2 * ADDNCARRY2
3 *
4 ORG $8000
5 *
6 CLD
7 CLC
8 LDA #$8D
9 ADC #$ F F

10 STA $ FB
11 LDA #0
12 ROL A
13 STA $ FC
14 RTS

In the lines that are added to the ADDNCARRY program in Pro 
gram 10-2, the accumulator is cleared and the bit-shifting operator 
ROL is then used to rotate the P register’s carry bit into the accumula 
tor. Next the contents of the accumulator are deposited into memory 
register $FC using an ordinary STA instruction. If this routine works, 
it means that we’ve found our missing carry bit.

To see whether the program works, you should now type it, assemble 
it, and run it. Then you can peek into memory addresses $FB and $FC 
using your machine-language monitor to see whether the calculation in 
the ADDNCARRY program resulted in a carry. Here, in Apple II moni 
tor format, is what those two registers should contain:

0 0 FB- 8 C 01

When the line shown appears on your monitor screen, it tells you that 
memory address $FB once again holds the number $8C (the result of 
our ADDNCARRY calculation, without its carry) and that the carry 
resulting from the calculation now resides in memory register $00FC.

A 16-Bit Addition Program

Program 10-3, entitled ADD 16, will add two 16-bit numbers. The same 
principles used in this program can also be used to write programs that 
will add numbers having 24 bits, 32 bits, and more.
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Program 10-3 
ADD 16
A 16-Bit Addition Program 

1 *
2 *ADD16
3 *
4 *THIS PROGRAM ADOS A 16- BI T  NUMBER IN $ FB AND $FC
5 *T0 A 1 6 - B I T  NUMBER IN $ FD AND $FE
6 *AND DEPOSITS THE RESULTS IN $0300 AND $0301
7 *
8 ORG $8000
9 *

10 CLD
11 CLC
12 LDA $ FB;REM LOW HALF OF 1 6 - BI T  NUMBER IN $ FB AND $FC
13 ADC $FD;REM LOW HALF OF 16- BI T  NUMBER IN $ FD AND $FE
14 STA $0300 ; LOW BYTE OF SUM
15 LDA $ FC ; REM HIGH HALF OF 16- BI T  NUMBER IN $FB AND $FC
16 ADC $ FE ; REM HIGH HALF OF 16- BI T  NUMBER IN $ FD AND $ FE
17 STA $0301 ; HIGH BYTE OF SUM
18 RTS

When you look at this program, remember that your Apple computer 
stores 16-bit numbers with the low-order byte first and the high-order 
byte second—the reverse of what you might expect. Once you under 
stand this characteristic of all 6502/6502B/65C02-based computers, 16- 
bit binary addition isn’t hard to understand.

In this program, we first clear the carry flag of the P register. Next 
we add the low byte of a 16-bit number in $FB and $FC to the low byte 
of a 16-bit number in $FD and $FE.

The result of this half of our calculation is then placed in memory 
address $0300. If there is a carry, the P register’s carry bit will be set 
automatically.

In the second half of the program, the high byte of the number in 
$FB and $FC is added to the high byte of the number in $FD and $FE. 
If the P register’s carry bit has been set as a result of the preceding 
addition operation, a carry will also be added to the high bytes of the 
two numbers. If the carry bit is clear, there will be no carry.

When this half of our calculation has been completed, its result is 
deposited into memory address $0301. Finally, the results of our com 
pleted addition problem are stored (low byte first) in memory addresses 
$0300 and $0301.
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16-Bit Subtraction

Program 10*4 illustrates a 16-bit subtraction program.

Program 10-4
SUB 16
A 16-Bit Subtraction Program 

1 *

2 *SUB16
3 *
4 *THIS PROGRAM SUBTRACTS A 1 6 - B I T  NUMBER IN $FB AND $FC
5 *FR0M A 1 6 - BI T  NUMBER IN $FD AND $ FE
6 *AND DEPOSITS THE RESULTS IN $0300 AND $0301
7 *
8 ORG $8000
9 *

10 CLD
11 SEC ; REM SET CARRY
12 LDA $FD;REM LOW HALF OF 1 6 - BI T  NUMBER IN $ FD AND $ FE
13 SBC $FB;REM LOW HALF OF 1 6 - BI T  NUMBER IN $ FB AND $FC
14 STA $0300 ; LOW BYTE OF THE ANSWER
15 LDA $FE ; REM HIGH HALF OF 1 6 - B I T  NUMBER IN $ FD AND $ FE
16 SBC $ FC ; REM HIGH HALF OF 1 6 - B I T  NUMBER IN $ FB AND $FC
17 STA $0301 ; HIGH BYTE OF THE ANSWER
18 RTS

Since subtraction is the exact opposite of addition, the carry flag is set, 
rather than cleared, before a subtraction operation is performed in 
6502B/65C02 binary arithmetic. In subtraction, the carry flag is 
treated as a borrow, not a carry, and it must therefore be set—rather 
than cleared—so that if a borrow is necessary, there will be a value to 
borrow from.

After the carry bit is set, a 6502B/65C02 subtraction problem is 
quite straightforward. In our sample problem, the 16-bit number in 
$FB and $FC is subtracted, low byte first, from the 16-bit number in 
$FD and $FE. The result of the problem—including, if necessary, a 
borrow from the high byte—is then stored in memory addresses $0300 
and $0301, low byte first.

Binary Multiplication

Binary numbers are multiplied the same way as decimal numbers. 
Figure 10-3 is an example of binary multiplication. Unfortunately, 
there are no 6502B/65C02 assembly-language instructions for multipli 
cation or division. To multiply a pair of numbers using 6502B/65C02
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0110 ($06)
x 0101 ($05)

0110
0000

0110
0000

0011110 ($1E)

Figure 10-3. An example of binary multiplication

assembly language, you have to perform a series of addition operations. 
To divide numbers, you have to perform subtraction sequences.

If you look closely at the multiplication problem in Figure 10-3, you 
will see that it isn’t difficult to split a multiplication problem into a 
series of addition problems. In the example, the binary number 0110 is 
first multiplied by 1. Then the result of this operation—also 0110, of 
course—is written down.

Next, 0110 is multiplied by 0. The result of that operation—a string 
of 0’s —is also shifted one space to the left and written down. Then 0110 
is multiplied by 1 again and the result is again shifted left and written 
down. Finally, another multiplication by 0 results in another string of 
0’s, which are also shifted left and noted.

Finally, all the partial products of our problem are added up, just as 
they would be in a conventional multiplication problem. The result of 
this addition, as you can see, is the final product $1E.

This multiplication technique works well, but it’s really an arbitrary 
method. Why, for example, did we shift each partial product in this 
problem to the left before writing it down? We could have accomplished 
the same result by shifting the partial product above it to the right 
before adding.

In 6502B/65C02 multiplication, that’s exactly what’s often done; 
instead of shifting each partial product to the left before storing it in 
memory, many 6502B/65C02 multiplication algorithms shift the pre 
ceding partial product to the right before adding it to the new one.

Program 10*5 is a program that shows you this method.
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Program 10-5 
MULT16
A 16-Bit Multiplication Program 

1 *
2 *MULT16
3 *
4 MPR EQU $ FD M U L T I P L I E R
5 MPD1 EQU $ FE MU L T I P L I C A N D
6 MPD2 EQU $0300 MEW MULTIPLICAND AFTER 8 SHIFTS
7 PRODL EQU $0301 ;L0W BYTE OF PRODUCT
8 PRODH EQU $0302 ;HIGH BYTE OF PRODUCT
9 *

10 ORG $8000
11 *
12 *THESE ARE THE NUMBERS WE WILL MULTIPLY
13 *
14 LDA #250
15 STA MPR
16 LDA #2
17 STA MPD1
18 *
19 MULT CLD
20 CLC
21 LDA #0 ; CLEAR ACCUMULATOR
22 STA MPD2 ;CLEAR ADDRESS FOR SHIFTED MULTIPLICAND
23 STA PRODH ; CLEAR HIGH BYTE OF PRODUCT ADDRESS
24 STA PRODL ; CLEAR LOW BYTE OF PRODUCT. ADDRESS
25 LDX #8 ; WE WILL USE THE X REGISTER AS A COUNTER
26 LOOP LSR MPR ; S H I F T  MULTIPLIER RIGHT;  LSB DROPS INTO

CARRY BIT
27 BCC NOADD ; TEST CARRY B I T ;  IF ZERO,  BRANCH TO NOADD
28 LDA PRODH
29 CLC
30 ADC MPD1 ; AD D HIGH BYTE OF PRODUCT TO MULTIPLICAND
31 STA PRODH ; RESULT IS NEW HIGH BYTE OF PRODUCT
32 LDA PRODL ; LOAD ACCUMULATOR WITH LOW BYTE OF PRODUCT
33 ADC MPD2 ; ADD HIGH PART OF MULTIPLICAND
34 STA PRODL ; RESULT IS NEW LOW BYTE OF PRODUCT
35 NOADD ASL MPD1 ; S H I F T  MULTIPLICAND LE F T ;  BIT 7 DROPS

INTO CARRY
36 ROL MPD2 ; ROT ATE CARRY BIT INTO BIT 7 OF MPD1
37 DEX ; DECREMENT CONTENTS OF X REGISTER
38 BNE LOOP ; I F  RESULT I S N ' T  ZERO,  JUMP BACK TO LOOP
39 RTS

As you can see, 8-bit binary multiplication isn’t exactly a snap. 
There’s a lot of left and right bit-shifting involved, and it’s hard to keep 
track of. In Program 10-5, the most difficult manipulation to follow is 
probably the one involving the multiplicand (MPD1 and MPD2). The 
multiplicand is only an 8-bit value, but it’s treated as a 16-bit value 
because it keeps getting shifted to the left; and while it is moving, it 
takes a 16-bit address (actually two 8-bit addresses) to hold it.
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To see for yourself how the program works, type it on your keyboard 
and assemble it. Then use the G command of your monitor to execute it. 
While you’re still in the monitor mode, you can look at the contents of 
memory addresses $0301 and $0302. These two registers should now 
hold the number $01F4 (low byte first). That’s the hex equivalent of the 
decimal number 500, which is, of course, the product of the decimal 
numbers 2 and 250—the problem that our program was supposed to 
multiply.

An Improved Multiplication Program

Although Program 10-5 works well, it isn’t the only 16-bit multiplica 
tion program available; in fact, it isn’t  even a very good one. There are 
many algorithms for binary multiplication, and some of them are short 
er and more efficient than the one we just executed. Program 10-6, for 
example, is considerably shorter and therefore is both more memory- 
efficient and faster-running. One of the best features of this improved 
multiplication program is that it uses the 6502B/65C02’s accumulator, 
rather than a memory address, for temporary storage of the problem’s 
results.

Program 10-6 
MULT16B
An Improved 16-Bit Multiplication Program 
1 *
2 * MULT16B
3 * (AN IMPROVED 1 6 - B I T  MULTIPLICATION PROGRAM)
4 *
5 PRODL EQU $ FD
6 PRODH EQU $FE
7 MPR EQU $0300
8 MPD EQU $0301
9 *

10 ORG $8000
11 *

12 VALUES LDA #10
13 STA MPR
14 LDA #10
15 STA MPD
16 *
17 LDA #0
18 STA PRODH
19 LDX #8
20 LOOP LSR MPR
21 BCC NOADD
22 CLC
23 ADC MPD
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24 NOADD ROR A
25 ROR PRODH
26 DEX
27 BN E LOOP
28 STA PRODL
29 RTS

You may want to test out the improved multiplication capabilities of 
Program 10-6 the same way that we tested Program 10*5: execute it 
using your machine-language monitor, and then use your monitor to 
look at the results.

You can experiment with these two multiplication problems as much 
as you like, trying out different values and seeing how those values are 
processed in each program.

However, the best way to become intimately familiar with how binary 
multiplication works is to do a few problems by hand, using pencil and 
paper. If you work enough binary multiplication problems on paper, 
you’ll soon understand the principles of 6502B/65C02 multiplication.

Multiprecision Binary Division

Earlier in this chapter, we demonstrated that subtraction is reverse 
addition. Similarly, division is nothing but reverse multiplication. We 
also know that the 6502B/65C02 chip, which has no specific instructions 
for multiplying numbers, also has no instructions for dividing numbers.

Still, it is possible to perform division—even multiple-precision long 
division—using instructions that are available to the 6502B/65C02 
microprocessor. The 6502B/65C02 chip can multiply numbers if the 
multiplication problems presented to it are broken down into sequences 
of addition problems. In the same way, the 6502B/65C02 chip can divide 
numbers, as long as the division problems presented to it are broken 
down into sequences of subtraction problems.

Program 10-7, for example, is a routine designed to divide one 
number by another number by breaking the division process down into 
a series of subtraction routines. During the execution of Program 10-7. 
the high part of the dividend will be stored in the accumulator and the 
low part of the dividend will be stored in a variable called DVDL.

The program contains a lot of shifting, rotating, subtracting, and 
decrementing of the X register. When the main body of the program 
ends, the quotient will be stored in a variable labeled QUOT, and the 
quotient’s remainder will be in the accumulator. Then, in line 38, the
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remainder will be moved out of the accumulator and into a variable 
called RMDR. An RTS instruction will end the program.

Program 10-7 
DIV8.16
A Binary Long-Division Program

1  
2 * DI V8. 16
3 *
4 0RG $8000
5  
6 DVDH EQU $ F D ; LOW PART OF DIVIDEND
7 DVDL EQU $ F E ; HIGH PART OF DIVIDEND
8 QU0T EQU $0300 ; QUOTI ENT
9 DIVS EQU $0301 ; DI VI S0R

10 RMDR EQU $0302 REMAINDER
11  
12 LDA #$1C ; J UST A SAMPLE VALUE
13 STA DVDL
14 LDA #$02 ; TH E DIVIDEND IS NOW $021C
15 STA DVDH
16 LDA #$05 ; ANOTHER SAMPLE VALUE
17 STA DIVS ; WE' RE DIVIDING BY 5
18  
19 LDA DVDH ; ACCUMULATOR WILL HOLD DVDH
20 LDX #08 ; FOR AN 8 - B I T  DIVISOR
21 SEC
22 SBC DIVS
23 DL00P PHP ; SAVE P REGISTER (ROL & ASL
24 ROL QUOT
25 ASL DVDL
26 ROL A
27 PLP ; RESTORE P REGISTER
28 BCC ADDIT
29 SBC DIVS
30 JMP NEXT
31 ADDIT ADC DIVS
32 NEXT DEX
33 BN E DLOOP
34 BCS FINI
35 ADC DIVS
36 CLC
37 F IN I ROL QUOT
38 STA RMDR
39 RTS

Running the Program

Program 10*7 can be used to divide any unsigned 16-bit number by any 
unsigned 8-bit number. As written, it divides the hexadecimal number 
$021C (540 in decimal notation) by 5. The quotient is stored in memory
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register $0300, and the remainder, if any, is stored in memory register 
$0302.

Type the program, assemble it, and run it, and then use your moni 
tor to inspect the contents of memory addresses $0300 and $0302. 
Address $0300 should now hold the hexadecimal number $6C (108 in 
decimal notation), and there should be a 0 in address $0302, since the 
quotient of 540 divided by 5 is 108, with no remainder.

Not the Ultimate Division Program

As you can see, it’s even more difficult to write a division routine for an 
Apple than it is to write an Apple multiplication program. In fact, writ 
ing just about any kind of multiple-precision math program for an 8-bit 
computer is usually more trouble than it’s worth. When you have to 
write a program in which just a few calculations have to be made, you 
can sometimes use short, simple routines such as the ones presented in 
this chapter.

However, assembly language is usually not the best language to use 
for writing long, complex programs that contain a lot of multiple- 
precision math. If you ever have to write such a program, you might 
find it worthwhile to write part of the program in assembly language 
and the other p a rt—the part with all the m ath—in BASIC. That way, 
you can take advantage of the excellent floating-point math package 
that’s built into the BASIC interpreter in your Apple. If you can’t do 
that, it might still be better to write the program in BASIC, Pascal, 
COBOL, Logo, or almost any other high-level programming language 
than in assembly language.

If, despite this warning, you still want to write complex math rou 
tines in 6502B/65C02 assembly language, there are a few books that 
may provide you with some help. One text that contains a number of 
fairly complex math routines you can type is 6502 Assembly Language 
Subroutines, written by Lance A. Leventhal and Winthrop Saville and 
published by Osborne/McGraw-Hill. There are also quite a few type- 
and-run math routines in some of the other manuals and texts listed in 
this book’s bibliography.

Signed Numbers

To represent a signed number in binary arithmetic, all you have to do is 
let the far-left bit (bit 7) represent a positive or negative sign. In signed 
binary arithmetic, if bit 7 of a number is 0, the number is positive; if bit 
7 is a 1, the number is negative.
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Obviously, if you use one bit of an 8-bit number to represent its sign, 
you no longer have an 8-bit number. What you then have is a 7-bit 
num ber—or, if you want to express it another way, you have a signed 
number that can represent values from —128 to +127 instead of from 0 
to 255.

Signed Binary Addition
It takes more than the redesignation of a bit to turn unsigned binary 
arithmetic operations into signed binary arithmetic operations. Con 
sider, for example, what we would get if we tried to add the numbers +5 
and —4 by doing nothing more than using bit 7 as a sign.

0000 0101 (+5)
+ 1000 0100 (-4)

1000 1001 (-9)

The answer is wrong. The answer should be +1.
The reason we got the wrong answer is that we tried to solve the 

problem without using a concept that is fundamental to the use of 
signed binary arithmetic: the concept of complements.

Complements are used in signed binary arithmetic because negative 
numbers are complements of positive numbers, and complements of 
numbers are very easy to calculate in binary arithmetic. In binary 
math, the complement of a 0 is a 1, and the complement of a 1 is a 0.

One’s and Two’s Complement Addition
It is reasonable to assume that the negative complement of a positive 
binary number could be arrived at by complementing each 0 in the 
number to a 1 and each 1 to a 0 (except for bit 7, of course, which must 
be used to represent the number’s sign). This technique of calculating 
the complement of a number by flipping its bits from 0 to 1 and from 1 
to 0 has a name in assembly-language circles. It’s called one’s complement 

To see if the one’s complement technique works, let’s try using it to 
add two signed numbers, say +8 and —5.

0000 1000 (+ 8)
+ 1111 1010 (—5) (one’s complement)

0000 0010 (+2) (plus carry)

That’s wrong, too! The answer should be +3. That takes us back to the 
drawing board. One’s complement arithmetic doesn’t work.

Fortunately, there’s another technique that does work. It’s called
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two’s complement. To use this technique, first calculate the one’s com 
plement of a positive number. Then simply add one. That will give you 
the two’s complement—the true complement—of the number. Then you 
can use the conventional rules of binary math on signed numbers.

Here are two examples of two’s complement addition.

0000 0101 (+5)
+ 1111 1000 (-8) (two’s complement)

1111 1101 (-3)

1111 1011 (—5) (two’s complement)
+  0000 1000 (+8)

0000 0011 (+3) (plus carry)

A Few Examples

It isn’t easy to explain why the two’s complement method works, but 
when you’ve worked with signed binary numbers for a while, you begin 
to get a feel for them. It helps to remember that the highest bit of a 
binary number is always interpreted as a sign in two’s complement 
notation, so a binary number with the highest bit set is always inter 
preted as a negative number. Therefore, the hexadecimal number $7F, 
which equates to the decimal number 127, is the highest positive 
number that can be expressed in 8-bit two’s complement notation.

If you increment the hex number $7F, you’ll see why this is true. In 
binary notation, $7F is written %0111 1111 (a binary number in which 
the high bit is not set). If you increment $7F, though, you’ll get $80, or 
%1000 0000, a number that has its high bit set and will therefore be 
interpreted in 8-bit two’s complement notation as —128, not +128. Thus, 
the largest positive number that can be expressed in 8-bit two’s com 
plement notation is 127.

Now let’s take a look at some negative binary numbers. In two’s 
complement arithmetic, negative numbers start at — 1 and work back 
ward, just as negative numbers do in ordinary arithmetic. In conven 
tional arithmetic, though, there’s no such number as —0, so when you 
decrement a 0, what you get is not minus 0, but — 1. If you decrement 
— 1 you get —2, which may look like a larger number but is really a 
smaller one. (If, for example, you decrement —2, you will get —3.)

Two’s complement arithmetic works in a similar fashion. If you 
decrement 0 using 8-bit two’s complement arithmetic, you’ll get $FF, 
which equates to —1 in decimal notation. Decrement $FF in two’s com 
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plement, and you get $FE, the 8-bit signed-binary equivalent of -2 . The 
decimal number - 3  is written $FD in 8-bit two’s complement notation, 
and the decimal number —4 is written $FC. Keep working backward, 
and you’ll eventually discover that the smallest negative number that 
can be expressed in 8-bit two’s complement notation is the hexadecimal 
number $80, which equates to —128 in conventional decimal numbers.

If you ever start writing programs that make use of signed binary 
numbers, you’ll actually need instructions much more detailed than the 
ones provided here. In this chapter, my intention is merely to introduce 
you to some of the techniques that are used in programs containing 
signed binary numbers.

Using the Overflow Flag
In signed binary arithmetic, when you carry out calculations using 
signed numbers, the overflow (V) flag of the processor status register — 
not the carry flag of the processor status register—is used to carry 
numbers from one byte to another. The reason is that the carry flag of 
the P register is set when there’s an overflow from bit 7 of a binary 
number; but when the number is a signed number, bit 7 is the sign bit, 
not part of the number. Therefore, the carry flag cannot be used to 
detect a carry in an operation that involves signed numbers.

You can, however, use the overflow bit of the processor status regis 
ter. The overflow bit is set when there is an overflow from bit 6, rather 
than bit 7. Thus it can be used as a carry bit in arithmetic operations on 
signed numbers.

As you may recall from high school algebra, the rules of adding, 
subtracting, multiplying, and dividing signed numbers are rather com 
plex; they vary according to the signs of the numbers that are involved 
in the calculations and according to what kinds of calculations are being 
performed. It should come as no surprise, then, that the rules for using 
the overflow flag in calculations involving signed binary numbers are 
also a little complicated. You can find them in textbooks on advanced 
assembly-language programming, but they are well beyond the scope of 
this chapter.

BCD (Binary-Coded Decimal) Numbers

In BCD notation, the digits 0 through 9 are expressed just as they are in 
conventional binary notation, but the hexadecimal digits $A through $F 
(%1010 through %1111 in binary) are not used. Long numbers, therefore,
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must be represented differently in BCD notation than they are in con 
ventional binary notation.

The decimal number 1258, for example, would be written in BCD 
notation as

1 2  5 8
0000 0001 0000 0002 0000 0101 0000 1000

In conventional binary notation, the same number would be written 
as

$0 $4 $E $A
0000 0100 1110 1010

which equates to $04EA, or the hexadecimal equivalent of 1258.
BCD notation is often used in bookkeeping and accounting programs 

because BCD arithmetic, unlike straight binary arithmetic, always 
yields results that are 100% accurate. BCD numbers are also sometimes 
used when it is desirable to display them instantly, digit by digit, as 
they are being used (for example, when numbers are being used for 
onscreen scorekeeping in a game program).

The main disadvantage of BCD numbers is that they tend to be dif 
ficult to work with. When you use BCD numbers, you must be 
extremely careful with signs, decimal points, and carry operations. You 
must also decide whether you want to use an 8-bit byte for each digit 
(which wastes memory, since it really only takes four bits to encode a 
BCD digit) or whether to pack two digits into each byte, which saves 
memory but consumes processing time.

Floating-Point Numbers

Floating-point numbers, as you may know, are numbers that enable com 
puters and calculators to perform mathematical calculations on decimal 
values and fractions. Most calculators use floating-point numbers to 
perform mathematical calculations, and so does the BASIC interpreter 
that’s built into your Apple. In the Apple’s floating-point package, num 
bers are broken into three parts—an exponent, a mantissa, and a sign. 
These parts are stored in a block of memory called a floating-point accu 
mulator, which resides in memory registers $61 to $66. There’s another 
floating-point accumulator in memory registers $69 through $6E.

Unfortunately for assembly-language programmers, it’s extremely 
difficult to understand how floating-point routines work, and it’s even
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more difficult to write them. It’s nice to know, then, that there’s a very 
good floating-point package built right into your Apple. To use the 
Apple floating-point package in an assembly-language program, all you 
have to do is write the program partly in assembly language and partly 
in BASIC and then intermix the BASIC and assembly-language sec 
tions of your program using the USR(X) function that was explained in 
Chapter 5. When you write a program in this fashion, you can use 
assembly language for the portions of the program that require high 
speed or high performance—and for portions of the program that 
require high-precision math, you can use BASIC to access your comput 
er’s built-in floating-point package. (You can also access the built-in 
floating-point routines from assembly-language programs, provided you 
know how to convert a floating-point number to a binary number, and 
vice versa, but that process is a bit beyond the scope of this chapter.)

Since the floating-point package exists and is easy to use, you may 
never need to know most of the programming techniques described in 
this chapter. An understanding of how they work, however, will defi 
nitely make you a better Apple assembly-language programmer.

Furthermore, you have to know at least the fundamentals of 
6502B/65C02 arithmetic if you want to become a good Apple assembly- 
language programmer. After all, mathematical processing, in one form 
or another, really is what computer programming is all about. Since 
your Apple adds, subtracts, compares, and bit-shifts its way through 
every program it processes, it would be difficult to write Apple pro 
grams for any length of time without knowing at least something about 
binary addition, subtraction, multiplication, and division. So even 
though you may never have to write an assembly-language routine that 
will perform long division on signed numbers, accurate to 17 decimal 
places, chances are pretty good that you’ll eventually have to use some 
arithmetic operations in at least some of the programs that you write. 
So before you move on to the next chapter, make sure that you under 
stand this one fairly well. You’ll be glad you did.
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11
The engineers who designed the Apple lie and the Apple He accom 
plished quite a feat. They crammed more than 128K of memory into a 
pair of 64K machines. The secret behind this remarkable operation can 
be summed up in one hyphenated word: bank-switching.

Bank-switching, you will recall from Chapter 3, is based on the con 
cept that two blocks of memory can share the same address space, as 
long as they do not try to occupy that space at the same time. This is the 
same concept families use when they share a vacation condominium but 
use it at different times.When bank-switching capabilities are built into 
a computer, various blocks of RAM and ROM are assigned identical 
addresses, and special switching facilities are then provided so that 
these blocks of memory can be switched into and out of the address 
space they share. Program designers can then move specific blocks of 
memory in and out of the address space that is available, in accordance 
with the changing needs of their programs.

In Apple computers, bank-switching is usually accomplished with 
the aid of special electronic circuits called soft switches. A soft switch, 
as its name implies, is a microcomputer circuit that can be used just
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like a switch. When a computer is designed to use bank-switching for 
memory management, soft switches are built into the machine and can 
be used in programs to determine which blocks of bank-switched 
memory will occupy specific addresses. Soft switches can also be used to 
protect certain blocks of memory by making it possible to read those 
blocks of memory but impossible to write to them.

Memory: Some Basic Concepts

In order to understand how bank-switching works, it helps to have in 
mind a few basic concepts of memory management. Here are some of 
the principles of microcomputer memory mapping.

The Difference a “K” Makes

The letter K, an abbreviation of the word kilobyte, stands for the 
decimal number 1024. The decimal number 1024 equates to the hexa 
decimal number $400. A kilobyte derives its name from the fact that it 
is very close to the decimal value 1000, which has long been abbreviated 
kilo (and sometimes “K”). A 64K computer, then, is one that can address 
65,536 (1024 X 64) bytes of memory. A 128K computer has twice that 
memory capacity: 131,072 (1024 X 128) bytes of memory.

The “Page” Concept

In the world of 8-bit microcomputers, a block of 256 memory addresses 
(usually numbered from 0 to 255) is called a page. A page is a very 
convenient unit of measurement to use when you are dealing with 
microcomputers, since the decimal numbers 0 to 255 equate to the hexa 
decimal numbers $00 to $FF and can therefore be expressed as the first 
two digits of a four-digit hexadecimal address. In an Apple lie or He 
computer, Page Zero consists of memory addresses $00 through $FF, 
Page One includes memory addresses $0100 through $01FF, and so on. 
The highest memory page in an Apple II-series computer is Page $FF, 
which includes memory addresses $FF00 through $FFFF.

In Apple graphics (and text), the word page can also refer to a seg 
ment of memory that is used for a screen display. This is a completely 
different meaning of the word page from the one we’re considering now. 
The context in which the word is used will usually make its meaning 
clear.
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Bank-Switching

Figure 11-1 is a memory map that shows how bank-switching works in 
the Apple lie. An Apple lie  equipped with an expanded 80-column text 
card uses exactly the same memory map. In Figure 11-1, there are two
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long ribbons, one labeled “Main RAM” and the other labeled “Auxiliary 
RAM.” These two ribbons represent the 128 kilobytes of memory that 
are built into the Apple lie  and are also available in a fully expanded 
Apple He.

Examine the memory addresses that are printed alongside the 
“Main Memory” and “Auxiliary Memory” columns in Figure 11-1, and 
you will see that both columns use the same series of addresses: the 64K 
of address space that extends from $0000 to $FFFF (or from 0 to 65,535 
in decimal notation). To the right of these two columns there is a shorter 
column, labeled “Bank-Switched ROM,” that extends from memory 
address $C100 through memory address $FFFF.

With the help of the soft switches built into the Apple lie and the 
Apple lie, it is possible to write assembly-language programs that use 
both the main and auxiliary banks that are available in an Apple lie or 
an expanded Apple He. With the help of these soft switches, almost all 
of the 128K of memory space on the Apple Ilc/IIe memory map can be 
used as RAM. Alternatively, in programs that make use of Applesoft 
BASIC or the built-in Apple Ilc/IIe monitor, ROM can be switched into 
the address space ranging from $D000 to $FFFF, and both Applesoft 
BASIC and the built-in Apple monitor can then be used in programs.

Main and Auxiliary RAM

The 48K block of memory that extends from $0000 to $BFFF can be 
used as either main RAM or auxiliary RAM. Furthermore, it is possible 
to write assembly-language programs that can read from one of these 
data banks and write to the other. Therefore, a program that is stored 
in one memory space can read and write data that is stored in the other.

There are two soft switches that can be used to switch back and 
forth between the main and auxiliary memory banks in assembly- 
language programs. One of these switches, labeled RAMRD, is used to 
select main or auxiliary memory for reading. The other switch, labeled 
RAMWRT, selects main or auxiliary memory for writing.

The RAMRD switch occupies three memory registers: $C002, $C003, 
and $C013. The RAMWRT switch also occupies three memory regis 
ters: $C004, $C005, and $C014.

Storing any value in the RAMRD soft switch at $C002 turns the 
RAMRD switch off and selects main memory for reading. Storing any 
value in the RAMRD soft switch at $C003 turns the switch on and 
selects auxiliary memory for reading.
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Placing any value in the RAMWRT soft switch at $C004 turns the 
RAMWRT switch off and selects main memory for writing. Placing any 
value in the RAMWRT soft switch at $C005 turns the switch on and 
selects auxiliary memory for writing.

By reading the values of memory registers $C013 and $C014, a pro 
grammer can check on the status of either the RAMRD switch or the 
RAMWRT switch. If register $C013 has its high bit set, then the 
RAMRD switch is on and auxiliary memory has been selected for read 
ing. If register $C014 has its high bit set, then the RAMWRT switch is 
on and auxiliary memory has been selected for writing.

The functions of the RAMRD and RAMWRT switches—along with 
the functions of several other soft switches—are listed in Table 11-3.

Main and Auxiliary Bank-Switched 
Memory

Another block of memory that can be controlled by bank-switching is the 
segment that extends from $D000 to $FFFF. By setting and clearing 
soft switches in various combinations, a programmer can use this 
memory bank as main memory, auxiliary memory, or ROM. Further 
more, the block of memory that extends from $D000 to $DFFF can be 
subdivided into a pair of memory blocks. These blocks are labeled 
“$D000 Bank 1” and “$D000 Bank 2” in Figure 11-1. The $D000-to- 
$DFFF memory block can thus be used in five different ways: as Main 
Memory Bank 1, Main Memory Bank 2, Auxiliary Memory Bank 1, 
Auxiliary Memory Bank 2, and ROM.

The entire block of memory that extends from $D000 to $FFFF can 
be controlled with a series of soft switches located at memory addresses 
$C080 to $C08F. With the help of these switches, it is possible to write 
assembly-language programs that will read from the ROM that extends 
from $D000 to $FFFF while writing to the RAM (either the main RAM 
or the auxiliary RAM) that resides in the same block of memory. The 
same series of soft switches also controls whether $D000 Bank 1 or 
$D000 Bank 2 is selected for reading and/or writing.

Table 11-1 illustrates how the soft switches at $C080 to $C08F are 
used. To use the soft switches listed in Table 11-1, it is not necessary to 
write any values into them; as strange as it may seem, a programmer 
has only to read the switch to turn it on. When the switch is read, 
nothing has to be done with the value that is obtained, since the very act 
of reading the switch sets it.
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Table 11-1. Bank-Select Soft Switches

Address Double-Read
of Switch Operation? Function

$C080 
Bank 2.

N Read from RAM; no writing; use $D000

$C081 
Bank 2.

Y Read from ROM; write to RAM; use $D000

$C082 
Bank 2.

N Read from ROM; no writing; use $D000

$C083 
Bank 2.

Y Read from and write to RAM; use $D000

$C088 
Bank 1.

N Read from RAM; no writing; use $D000

$C089 
Bank 1.

Y Read from ROM; write to RAM; use $D000

$C08A 
Bank 1.

N Read from ROM; no writing; use $D000.
f

$C08B 
Bank 1.

Y Read from and write to RAM; use $D000

Here is an example of how the switch at $C080 can be set using a 
read operation:

LDA $C080

The mnemonic LDA is, of course, a “read” instruction. Under ordi 
nary conditions, the instruction LDA has no effect at all on the contents 
of the memory register that follows it. In the Apple Ilc/IIe, however, 
memory address $C080 is one of the soft switches that are affected by 
“read” instructions such as LDA. Thus, when the instruction

LDA $C080

is encountered in an Apple Ilc/IIe assembly-language program, the soft 
switch at memory address $C080 will be set, and the instructions listed 
for $C080 in Table 11-1 will be followed.

Double-Read Operations
When a switch is so sensitive that it can be set using what is ordinarily 
a read-only command, unfortunate—even disastrous—accidents can 
occur. So the engineers who designed the Apple lie and the Apple He
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built extra protection into some of the more critical soft switches at 
memory locations $C080 through $C08F. To set these switches, it is 
necessary to read them twice—in other words, to carry out two consec 
utive “read” operations. For example, to set the switch at memory loca 
tion $C083, you have to carry out a pair of operations:
LDA $C083 
LOA $ C083

Other Soft Switches

In addition to the soft switches listed in Table 11-1, two other switches 
are sometimes used in Apple Ilc/IIe bank-switching operations.

• A soft switch labeled RDBNK2, and located at memory address 
$C011, can be read to determine whether $D000 Bank 1 or $D000 
Bank 2 is in use. If bit 7 of RDBNK2 is set, Bank 2 is being used. 
If bit 7 of RDBNK2 is clear, Bank 1 is being used.

• A soft switch labeled RDLCRAM, located at memory address 
$C012, can be read to determine whether RAM or ROM is being 
read. If bit 7 of RDLCRAM is set, RAM is being read. If bit 7 of 
RDLCRAM is clear, ROM is being read.

Two Stacks and Two Zero Pages
If you look at the bottom of Figure 11-1, in memory locations $0000 to 
$01FF, you will see that there are two stacks and two Zero Pages—one 
pair residing in main memory and the other situated in auxiliary 
memory. When the soft switches RAMRD and RAMWRT are used to 
determine whether main or auxiliary memory is to be used in a pro 
gram, the stack and the Zero Page that reside in the appropriate 
memory bank are automatically selected. However, if you don’t want to 
accept this automatic selection process, there is a soft switch that you 
can use to make a manual selection of the stack and Zero Page that you 
want to use in a program. This soft switch, labeled ALTZP, is made up 
of three memory registers: $C008, $C009, and $C016.

Storing any value in $C008 turns the ALTZP switch off and selects 
the main-memory stack and Zero Page for both reading and writing. 
Storing any value in $C009 turns the switch on and selects the 
auxiliary-memory stack and Zero Page for both reading and writing.

The soft switch at memory register $C016 can be used to check the 
status of the ALTZP switch. If the high bit of $C016 is set, then ALTZP 
is on and the alternate-memory stack and Zero Page are selected. If the 
high bit of $C016 is clear, then ALTZP is off and the main-memory
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stack and Zero Page are selected.
If you use the ALTZP soft switch, you have to be careful. When the 

ALTZP switch is used to change the location of Page Zero, it also 
changes the location of your computer’s hardware stack—and that 
change, if sloppily carried out, can wreak havoc on the program you are 
running. Another potential problem is that the ALTZP switch can be 
overridden by the RAMRD and the RAMWRT switches, since these two 
switches automatically select which stack and Zero Page will be used in 
a program. Still another possible source of trouble is your Apple’s inter 
rupt handler, which can turn off the ALTZP switch without warning.

Before you can use the ALTZP switch safely, then, you need a thor 
ough understanding of interrupts, stack operations, the RAMRD and 
RAMWRT switches, and a few other techniques that are touched upon 
only briefly in this book. If you’re a beginning-level assembly-language 
programmer, you should consider not using the ALTZP switch very 
often right now.

Non-Switchable Memory

The blocks of memory that extend from $C000 to $CFFF are reserved 
for use by the Apple Ilc/IIe operating system and are not subject to 
control by bank-switching. The contents of these blocks of memory will 
be covered in greater detail in the following section.

A More Detailed Memory Map

The first section of this chapter was a very brief introduction to Apple 
IIc/Apple He memory management. Now we will explore the same 
topic in a little more detail by using the map that appears in Figure
11- 2.

In exploring the memory map in Figure 11-2, we’ll start at the 
bottom—or, in computer jargon, in low memory—and work our way up 
to the top of the Apple He/Apple He memory map. Along the way. we’ll 
pause at a number of locations and take a close look at the contents of 
some of the more important segments of your Apple’s memory.

Addresses $00 to $FF (Page Zero)

As pointed out earlier in this chapter, memory addresses $00 to $FF are 
known collectively as the Zero Page, or Page Zero. When Page Zero is 
used in a computer program, it can speed up the operation of the pro 
gram. When a machine-language operand can be expressed as a Zero-
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Page address, only one byte of memory is required, rather than the two 
bytes of memory required by a non-Zero-Page address. The program 
can thus be written in fewer bytes and will therefore run faster.

More important, there are some addressing modes—specifically, 
indirect addressing modes—that require the use of Zero-Page addresses.

$FFFF

$E000

$D000

$C100
$C000

$6000

$4000

$2000

$0C00

$0800

$0400

$0200

$0100

$0000

Main
RAM

Auxiliary
RAM

Bank-Switched
ROM

Main
Bank-

Switched
RAM

$D000 
Bank 1

$FFFF

$D000 
Bank 2

Auxiliary
Bank-

Switched
RAM

$D000 
Bank 1

$FFFF

$F800

$D000 
Bank 2

Monitor
Firmware

Applesoft
BASIC

Interpreter

ROM

Hardware Addresses

Main
RAM

HRP2*

HRP1*

Main
RAM

TLP2*

TLP1*

O.S. Addresses

Stack

Page 0

$6000

$4000

$2000

$0C00

$0800

$0400

$0200

$0100

$0000

Auxiliary
RAM

HRP2X*

HRP1X*

Auxiliary
RAM

TLP2X*

TLPlX*

Aux. Stack

Aux. Page 0 ♦For explanations of abbreviations, 
see text.

Figure 11-2. Memory map of the Apple lie  and the fully expanded Apple He
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Since indirect addressing modes are very powerful, most assembly- 
language programs make extensive use of Page Zero.

Unfortunately, it is not always easy to find free space on Page Zero 
for user-written programs. That’s because Page Zero is so useful that 
the engineers who designed your computer have claimed most of it for 
themselves.

• Applesoft BASIC uses Zero-Page registers $00 through $05, $0A 
through $18, and most of the memory registers from $50 through 
$ F 8 .

• The Apple Ilc/IIe machine-language monitor uses Zero-Page reg 
isters $00 through $19 and $1E through $25.

• The ProDOS disk operating system uses Zero-Page registers $0A 
through $1E. However, the ProDOS system saves the information 
in registers $10 through $1E before it uses them, and it restores 
the contents of those registers after they are used. In effect, then, 
the only registers that ProDOS claims for its exclusive use are 
$0A through $0F.

Since most of Page Zero is used by BASIC, the Apple monitor, and 
ProDOS, there are only a few small blocks of Page-Zero space that are 
completely free for use in user-written programs written under Pro 
DOS. Table 11-2 is a list of all such Zero-Page locations.

If you use only the Zero-Page locations in Table 11*2 in your 
assembly-language programs, you won’t interfere with the operation of 
Applesoft BASIC, ProDOS, or your computer’s machine-language moni 
tor. However, if you ever need to use more Zero-Page locations than the 
ones listed in Table 11-2, you have several options:

• Make sure that your program doesn’t require the use of Applesoft 
BASIC. If you write a program that is completely independent of 
BASIC, it can make free use of addresses $56 through $FF—and 
that’s most of Page Zero.

• Disable interrupts with an SEI instruction, and then save the con 
tents of part of Page Zero in another segment of memory. You can 
then use the part of Page Zero that has been saved. After you have 
finished using that part of Page Zero, you can restore its original 
contents with another block move. You can restore interrupts with 
a CLI instruction to resume normal O.S. operations.

• With the help of the RAMRD and RAMWRT soft switches (and 
other soft switches that will be mentioned later in this book), you 
can write your program so that it resides in auxiliary memory.
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Table 11-2. Zero-Page Locations Available to User-Written Programs

Then you won’t have to worry about any of the main-memory Zero- 
Page registers that are claimed by Applesoft, ProDOS, or your 
computer’s machine-language monitor. Alternatively, you can use 
the ALTZP soft switch to select the Zero Page that is located in 
auxiliary memory. If you choose that procedure, please heed the 
warnings about the ALTZP switch provided earlier in this chapter.

Addresses $0100 to $01FF 
(Page 1: the Stack)

The stack is located in Page $01 of your computer’s memory —that is, in 
memory addresses $0100 through $01FF. (A detailed explanation of the 
hardware stack was presented in Chapter 5.)

In the sections of this chapter that dealt with soft and Zero-Page 
addresses, we learned that there are actually two stacks in an Apple lie 
and expanded Apple H e—one residing in main memory and the other 
situated  in aux iliary  memory. Three soft switches —RAMRD, 
RAMWRT and ALTZP—can be used to switch back and forth between 
these two stacks during assembly-language programs. However, great 
caution should be exercised when these switches are used to change the 
location of the stack, since moving the stack without taking the proper 
precautions can crash an assembly-language program.

Addresses $0200 to $02FF 
(Page 2: the Input Buffer)

Both Applesoft BASIC and the Apple Ilc/IIe monitor use memory ad 
dresses $0200 through $02FF as a keyboard-input buffer. This buffer is 
used by both Applesoft BASIC and the GETLN routine that is built into 
the Apple lie and the Apple lie. Since this buffer occupies a full page of
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memory—specifically, Page 2—it is 256 bytes long. In assembly- 
language programs that do not require the use of input strings, this 
segment of memory can be used for other purposes. If input strings are 
required but will never reach a length of 256 bytes, then the upper part 
of Page 2 can be used in assembly-language programs. In auxiliary 
memory, the $0200-to-$02FF memory block can be used as free RAM.

Addresses $0300 to $03FF
(Page 3: Vectors and Link Addresses)

The ProDOS disk operating system and the Apple Ilc/IIe monitor use 
the address space from $03F0 through $03FF for certain link addresses 
and vectors. The addresses from $0300 to $03EF are generally available 
to user-written assembly-language programs. In auxiliary memory, the 
$0300-to-$03FF memory block can be used as free RAM.

Addresses $0400 to $07FF:
Text and Low-Resolution Page 1

The segment of memory that extends from $0400 to $07FF is the pri 
mary screen display area in the Apple lie and the Apple He. When your 
Apple is in 40-column text mode, the memory registers that extend 
from $0400 to $07FF are used to hold the text characters that appear 
on your monitor screen. When the $0400-to-$7FFF memory block is not 
needed to generate screen displays, it can be used as ordinary free 
RAM in assembly-language programs.

Since the $0400-to-$07FF memory bank is the main screen display 
area in the Apple Ilc/IIe, it is sometimes known as Text and Low- 
Resolution Page 1, or TLPl. (The word page, in this case, refers to a 
display screen.)

To create an 80-column text display, the Apple Ilc/IIe ordinarily 
uses two screen display areas, usually TLPl and TLP1X. Alternatively, 
display areas TLP2 (Text and Low-Resolution Page 2) and TLP2X may 
be used. When the Apple Ilc/IIe is in 80-column mode, it creates an 
80-column screen display by interleaving whatever main-memory screen 
buffer is being used with the corresponding screen buffer in auxiliary 
memory. When this technique is used, every other character on the 
screen comes from the main-memory screen buffer, and the characters 
in between come from the auxiliary-memory screen buffer. A more 
detailed explanation of how this process works will be provided in later 
chapters that deal specifically with Apple graphics and video screen 
displays.
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Addresses $0800 to $0BFF:
Text and Low-Resolution Page 2

As we have seen, Text and Low-Resolution Page 2 (TLP2) is an alternate 
screen buffer that can be used to generate a 40-column text display. 
This screen buffer is sometimes used together with TLP1 so that pro 
grams can “flip” back and forth instantly between different screen dis 
plays. If the $0800-to-$0BFF memory block is not needed in a program, 
it can be used as free RAM.

In auxiliary memory, the screen display area that corresponds to 
TLP2 is known as TLP2X. TLP2X, like TPL2, can be used as free RAM 
when it is not needed for screen displays.

In addition to the text and low-resolution screen buffers described 
above, four high-resolution screen buffers are also available in the Apple 
lie and the expanded Apple He. Locations and descriptions of these 
high-resolution screen-memory areas will be listed later in this section.

In the Apple lie  and the Apple He, soft switches are used to deter 
mine which area or areas of memory will be used to generate screen 
displays. This set of soft switches is described in Table 11-3.

Table 11-3. How Soft Switches Are Used to Select Buffers for Screen Displays

Name 
of Switch

Location 
of Switch How Switch Is Used

RAMRD $C002 Writing any value to $C002 turns RAMRD off and 
selects main memory for reading.

RAMRD $C003 Writing any value to $C003 turns RAMRD on and 
selects auxiliary memory for reading.

RAMWRT $C004 Writing any value to $C004 turns RAMWRT off and 
selects main memory for writing.

RAMWRT $C005 Writing any value to $C005 turns RAMWRT on and 
selects auxiliary memory for writing.

HIRES $C056 Writing any value to $C056 turns HIRES off. When 
HIRES is off, a text and low-resolution page (TLP) is 
displayed, and PAGE2 switches between TLP1 and TLP2.

HIRES $C057 Writing any value to $C057 turns HIRES on. When 
HIRES is on, a high-resolution page is displayed and 
PAGE2 switches between HRP1 and HRP2.

80STORE $C000 Writing any value to $C000 turns 80STORE off. When 
80STORE is off, RAMRD and RAMWRT will deter 
mine whether the display space in main or auxiliary 
memory will be used for reading and writing. PAGE2 
will select pages for display, but not for reading and 
writing.
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Table 11-3. How Soft Switches Are Used to Select Buffers for Screen Displays
(continued)

Name Location
of Switch of Switch How Switch Is Used
80STORE $C001 Writing any value to $C001 turns 80STORE on. When 

80STORE is on, PAGE2 will switch between TLP1 and 
TLP1X (if HIRES is off) or between HRP1 and HRP1X 
(if HIRES is on). Also, RAMRD and RAMWRT will be 
overridden with respect to screen displays, and pages 
selected by HIRES and PAGE2 will be displayed.

PAGE 2 $C054 Writing any value to $C054 turns PAGE2 off When 
PAGE2 is off and HIRES is off, TLP1 will be selected. 
When PAGE2 is off and HIRES is on, HRP1 will be 
selected. If 80STORE is off, RAMRD and RAMWRT 
will determine whether the display space in main or 
auxiliary memory will be used for reading and writ 
ing, and PAGE2 will select pages for display, but not 
for reading and writing. If 80STORE is on, then 
RAMRD and RAMWRT will be overridden with 
respect to screen displays, and pages selected by 
HIRES and PAGE2 will be displayed.

PAGE2 $C055 Writing any value to $C055 turns PAGE2 on. When 
PAGE2 is on and HIRES is off, TLP2 will be selected. 
When PAGE2 is on and HIRES is on, HRP2 will be 
selected. If 80STORE is off, RAMRD and RAMWRT 
will determine whether the display space in main or 
auxiliary memory will be used for reading and writ 
ing, and PAGE2 will select pages for display, but not 
for reading and writing. If 80STORE is on, then 
RAMRD and RAMWRT will be overridden with 
respect to screen displays, and pages selected by 
HIRES and PAGE2 will be displayed.

RDRAM RD $C013 Bit 7 of $C013 can be read to determine whether main 
(0) or auxiliary (1) memory is in use for reading.

RDRAMWRT $C014 Bit 7 of $C014 can be read to determine whether main 
(0) or auxiliary (1) memory is in use for writing.

RDHIRES $C01D Bit 7 or $C01D can be read to determine whether 
HIRES is on (1) or off (0).

RD80STORE $C018 Bit 7 or $C018 can be read to determine whether 
80STORE is on (D or off (0).

RDPAGE2 $C01C Bit 7 or $C01C can be read to determine whether 
PAGE2 is on (1) or off (0).
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Addresses $0C00 to $1FFF:
Free RAM

The memory registers that extend from $0C00 to $1FFF are free RAM 
and can be used for any purpose in user-written programs. Since it is 
considered good programming practice to separate the memory areas 
that are used for programs from memory areas that are used for data, 
the $0C00-to-$lFFF (memory block) is often used for data tables in 
Apple Ilc/IIe programs. The larger block of free RAM that extends 
from $6000 to $BFFF (or from $2000 or $4000 to $BFFF, if high- 
resolution screen graphics are not needed) can then be used for storing 
executable-code portions of machine-language programs.

In auxiliary memory, just as in main memory, the $0C00-to-$lFFF 
memory bank is available for use as free RAM.

Addresses $2000 to $5FFF:
High-Resolution Pages 1 and 2

Memory block HRP1, which extends from $2000 to $3FFF, is the 
screen-memory buffer that is used most often to create high-resolution 
graphics displays. Many high-resolution graphics programs also make 
use of screen memory area HRP2, which extends from $4000 to $5FFF. 
When these blocks of memory are not needed to generate screen dis 
plays, they can be used as free RAM.

In auxiliary memory, the memory block that extends from $2000 to 
$3FFF is called HRP1X, and the memory block that extends from 
$4000 to $5FFF is called HRP2X. These memory banks can also be 
used as free RAM when they are not needed to generate screen displays.

The Apple Ilc/IIe can generate double high-resolution color graphics 
by interleaving the high-resolution screen buffers in main memory with 
their corresponding buffers in auxiliary memory. More about double 
high-resolution graphics will be provided in the graphics chapters of 
this book.

Addresses $6000 to $BFFF:
Free RAM

As mentioned earlier in this chapter, the memory bank that extends 
from $6000 to $BFFF in main memory is called main RAM, and the 
48K bank that extends from $6000 to $BFFF in auxiliary memory is
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called auxiliary RAM. These are the primary RAM banks in the Apple 
lie and the Apple He. Both banks are available for use in user-written 
programs.

Addresses $C000 to $C0FF:
Hardware Addresses

The memory registers that extend from $C000 to $C0FF are used for 
five different types of hardware functions:

• The data input can be read to determine whether a key on the 
keyboard has been pressed and what key that is.

• A set of flag inputs can be used to read hand controllers, the OPEN- 
APPLE and CLOSED-APPLE keys on the Apple Ilc/IIe keyboard, and 
the button switch on the Apple mouse.

• A pair of strobe outputs can determine whether a key has been 
pressed and what key that is; they can also read game paddles.

• A toggle switch operates the small loudspeaker in the Apple Ilc/IIe.
• A series of soft switches, some of which have been mentioned in 

this chapter. Other soft switches that reside in the $C000-to- 
$C0FF block of memory will be described in chapters 12 and 13.

Addresses $C100 to $CFFF:
ROM Addresses

The block of memory that extends from $C100 to $CFFF is dedicated 
solely to ROM. The ROM addresses that reside in this block of memory 
include:

• Entry points for accessing Serial Port 1 and Serial Port 2 on the 
lie.

• Entry points for accessing video output, enhanced video output, 
and miscellaneous I/O.

• In an Apple lie or a mouse-equipped He, entry points for accessing 
Mouse firmware.

• Entry points for disk I/O.

RAM Addresses $D000 to $FFFF
When addresses $D000 to $FFFF are used as RAM. the block of 
memory that extends from $D000 to $DFFF can be used in four differ 
ent ways: as Main Memory $D000 Bank 1, Main Memory $D000 Bank 
2, Auxiliary Memory $D()0() Bank 1, and Auxiliary Memory Bank 
$D000 Bank 2. Switching back and forth among these four memory
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banks is controlled by means of soft switches, using the techniques de 
scribed earlier in this chapter.

The block of memory that extends from $E000 to $FFFF can be 
used in two different ways: as main bank-switched RAM  or as auxiliary 
bank-switched RAM. Switching back and forth between this pair of 
memory banks is also controlled by means of soft switches. The soft 
switches that are available for this purpose and the techniques for using 
them are listed in Table 11-1.

ROM Addresses $D000 to $F7FF:
The BASIC Interpreter

An Applesoft BASIC interpreter is built into both the Apple lie and the 
Apple He. This interpreter resides in the block of memory that extends 
from $D000 to $F800. It can only be used when ROM is switched into 
this block of memory. The soft switches listed in Table 11-1 can be used 
to place ROM in the $D000-to-$F800 block of memory.

ROM Addresses $F800 to $FFFF:
The Monitor

When ROM is switched into the $F800-to-$FFFF memory block, that is 
where the Apple Ilc/IIe monitor resides. Since the monitor is a handy 
utility to have around when assembly-language programs are being 
written and debugged, it’s usually a good idea to avoid placing user- 
written code into this segment of memory.

Under ProDOS Assembly-Language 
Programming

With the introduction of the Apple lie, a new operating system called 
ProDOS replaced Apple’s old II-series disk operating system, DOS 3.3. 
Most professional software for the Apple lie and the Apple lie is now 
written under ProDOS, so it would probably make sense for you to 
write your assembly-language programs under ProDOS, too.

ProDOS is not just a disk operating system. It is a complete operat 
ing system that allows an assembly-language programmer to manage 
many of the resources provided by the Apple lie and the Apple lie. 
ProDOS functions primarily as a disk operating system, but it also 
handles interrupts. In addition, ProDOS has a built-in memory- 
management tool called a Machine Language Interface, or MLI. This 
Machine Language Interface is the portion of the operating system that
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receives, validates, and issues operating-system commands.
In Apple Ilc/IIe assembly language, MLI commands are used in 

much the same way that DOS commands are used in BASIC. In Apple 
Ilc/IIe assembly-language programs, MLI calls can be used to open 
files, close files, create files, delete files, and perform many other disk- 
related functions. (In fact, virtually all ProDOS commands available in 
BASIC—and some that are not—are available through MLI.)

A complete discussion of ProDOS and the ProDOS Machine Lan 
guage Interface is beyond the scope of this chapter. If you want to learn 
more about ProDOS, there are several books on the subject that you 
should read, including the ProDOS User’s Manual, BASIC Program 
ming With ProDOS, and of course, the ProDOS Technical Reference 
Manual. The main purpose of this section is to tell you where ProDOS 
resides when it’s loaded into your computer’s memory so you won’t 
overwrite ProDOS when writing programs to be run on a ProDOS- 
equipped Apple lie or Apple lie.

A ProDOS Memory Map

When ProDOS is loaded into the memory of an Apple lie  or an Apple 
He, it takes up varying amounts of RAM, depending upon the configura 
tion of the computer. If ProDOS is used with an Apple lie, or with an 
Apple He equipped with an expanded 80-column card, some of the 
space consumed by ProDOS is situated in main memory and some is 
located in auxiliary memory. ProDOS is usually loaded into memory 
along with a file called BASIC.SYSTEM, which enables ProDOS to 
process BASIC commands. When ProDOS and BASIC.SYSTEM are 
loaded simultaneously, additional memory space is consumed, since the 
BASIC.SYSTEM file on a ProDOS startup disk includes a ProDOS 
command interpreter.

Figure 11-3 is a map that shows what blocks of memory are con 
sumed by the ProDOS and BASIC.SYSTEM files on a ProDOS startup 
disk when ProDOS is loaded into memory. Assembly-language pro 
grams that are designed to be run under ProDOS control should not 
encroach upon the shaded areas in Figure 11-3.

Memory Requirements of Assemblers

When you write an assembly-language program, you should be aware of 
where your assembler-editor system resides in your computer’s memory.
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Figure 11-3. ProDOS and BASIC memory map
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Then you can avoid the danger of writing a program that damages your 
assembler while it’s editing or assembling your program.

Merlin’s Memory

The Merlin Pro assembler is a complex piece of software, and it con 
sumes quite a bit of RAM, in both main and auxiliary memory. But 
Merlin provides a linking feature that can be used to link long 
programs together by assembling them directly on a disk. Details on how 
to use this linker can be found in the Merlin instruction manual.

Mapping the Apple ProDOS Assembler

Figure 11-4 is a memory map of the Apple ProDOS assembler-editor. 
The Apple package consumes less memory space than Merlin does, and 
all the space it occupies is in main memory. Thus the Apple ProDOS 
assembler leaves all 64K of auxiliary memory free for use by user- 
written programs.

One noteworthy feature of the Apple ProDOS package is that its edi 
tor and assembler do not reside in memory at the same time. Therefore, 
when you write a source-code program using the Apple assembler, you 
have to save it on a disk before you can assemble it. That process takes 
time, but it saves memory.

Memory Requirements 
Of the ORCA/M Assembler

When the ORCA/M assembler is used to edit and assemble a program, 
it performs even more disk-swapping than does the Apple assembler- 
editor system. Because of all this disk-swapping—and because of the 
elegant way in which ORCA/M is designed—it is possible for the user 
of an ORCA/M system to write very long assembly-language programs 
and place them almost anywhere in memory. According to The Byte 
Works of Albuquerque, New Mexico, which manufactures ORCA/M, 
the following list presents virtually all of the memory constraints on the 
user of an ORCA/M assembler:

• The ORCA/M assembler-editor runs under the control of a pro 
gram that is called ORCA.HOST. This program, which occupies 
addresses $0800 through $1FFF, must remain in memory at all 
times when ORCA/M is running. Therefore, it must never be 
overwritten by a user-written program.

• On Page Zero, memory locations $00 through $7F are available for 
use in user-written programs, but addresses $80 through $FF 
should be avoided, since they are used by the ORCA/M system.
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• The ProDOS line buffer uses memory registers $200 through 
$2FF, and ORCA/M uses the ProDOS line buffer when the 
assembler is in command mode. Until a program is debugged and 
ready to run, it is a good idea to avoid using these memory 
addresses.

• Non-standard clock cards sometimes use memory registers $300 to 
$3FF, so assembly-language programs that make use of these reg 
isters could interfere with the operation of such cards. (This re 
striction applies to programs written using any assembler, not just 
ORCA/M.)

Conclusion

Once you’re familiar with the memory requirements (and the memory 
limitations) of your computer, operating system, and assembler-editor 
system, you have all the information you need to use memory safely and 
efficiently in assembly-language programs.



Fundamentals 
Of Apple llc/lle 
Graphics

Unless you spend most of your free time with other programmers, 
you’ve probably noticed that most people aren’t too impressed with ele 
gant algorithms or long listings of assembly-language code. Fortu 
nately, though, if you know how to write graphics programs—especially 
the kind of fast-action, razzle-dazzle programs that can be created only 
in assembly language—then you really can amaze your friends with 
your knowledge of assembly language. If that prospect intrigues you, 
don’t stop now, because the rest of this book is about assembly-language 
graphics programs.

In this chapter, you’ll learn how the Apple lie and the Apple lie gen 
erate their text and graphics displays. In Chapter 13, you’ll have a chance 
to type and run programs that demonstrate your computer’s low-resolu 
tion graphics mode; you’ll also see how game paddles, joysticks, and the
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Apple mouse can be used in assembly-language programs. Chapter 14 
will show you how to customize a character set, how to display standard- 
size and headline-size characters on a high-resolution screen, and how 
to write programs using double high-resolution graphics.

Text and Graphics Modes

If you own an Apple lie, or a late-model Apple He with an expanded 
memory 80-column card installed, your computer can be used in six 
primary text and graphics modes:

• Forty-column text
• Eighty-column text
• Low-resolution graphics
• Double low-resolution graphics
• High-resolution graphics
• Double high-resolution graphics.

All six of these display modes will be discussed at least briefly in 
this chapter. However, we will focus most of our attention on the two 
most commonly used display modes in Apple Ilc/IIe graphics pro 
gramming: the standard low-resolution graphics mode and the stan 
dard high-resolution graphics mode.

40-Column and 80-Column Text Modes

A standard Apple He, without an 80-column text card or an AppleColor 
Adaptor card installed, has only one text mode: a 40-column mode that 
generates a 40-column by 24-line text display. An Apple lie, or an Apple 
lie equipped with an 80-column card, can generate either a 40-column 
by 24-line text display or an 80-column by 24-line text display.

As you may recall from Chapter 11, the Apple lie and the Apple He 
are equipped with soft switches that can be used to determine whether 
a 40-column or an 80-column display will be used in an assembly lan 
guage program. Soft switches can also be used to switch back and forth 
between text and graphics displays and to place a four-line, 40-column 
or 80-column “text window” at the bottom of a low-resolution or high- 
resolution graphics screen.
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Memory Mapping

Your Apple lie  or Apple He uses a technique called memory mapping to 
create its text and graphics displays. This means that, by storing spe 
cific values in a certain block of your computer’s memory, you can con 
trol its screen display. When your Apple is in one of its text modes, for 
example, you can store ASCII (American Standard Code for Informa 
tion Interchange) codes (modified for Apple computers) in a specific 
block of RAM. Once you have done that, your computer’s operating sys 
tem will convert each code number that you have used into a letter, 
number, or special character. Then it will display each character in a 
screen position that is determined by the specific byte in RAM in which 
the code number for the character has been stored.

Ordinarily, the Apple ASCII codes that generate a 40-column text 
display are stored in the area of RAM called Text and Low-Resolution 
Display Page 1, extending from memory address $400 to memory 
address $7FF. Alternatively, these codes can be stored in the block of 
RAM known as Text and Low-Resolution Display Page 2, which ranges 
from $800 to $BFF.

If you own an Apple lie, or an Apple lie equipped with an expanded 
80-column card, there are two other areas of RAM that can be used as 
screen memory for a 40-column text display. These blocks of RAM, 
called Text and Low-Resolution Display Pages IX and 2X, extend from 
$400 to $7FF and from $800 to $BFF in auxiliary memory.

In both the Apple lie  and the Apple He, soft switches can be used to 
determine what areas of main and auxiliary memory will be used for 
screen memory. The functions and memory addresses of most of these 
soft switches were listed in Chapter 11. Memory maps showing the 
segments of RAM that can be used for storing text and graphics infor 
mation were also presented in Chapter 11.

Figure 12-1 is a memory map of Display Page 1, the area of memory 
most often used for an Apple Ilc/IIe 40-column text display.

Creating an 80-Column Text Display

An Apple lie, or an Apple lie equipped with an 80-column text or color 
card, is also capable of generating an 80-column by 24-line text display. 
When an Apple lie  or He is in 80-column text mode, the ASCII codes 
for characters in even-numbered screen columns (with the first column
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Figure 12-1. 40-column text screen display map

on the screen numbered Column 0) are stored on Display Page 1 in 
main memory. The codes for the characters in odd-numbered screen 
columns (with the second column on the screen numbered Column 0) 
are stored on Display Page IX in auxiliary memory. When the charac 
ters from these two blocks of memory are displayed on an 80-column 
screen, they are automatically interleaved as illustrated in Figure 12-2.

Fortunately, you may never have to worry about this interleaving 
process when you write text programs for your Apple lie or He. This 
process will ordinarily be taken care of by your computer’s operating 
system.
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Figure 12-2. 80-column text screen display map

Low-Resolution Graphics

The memory-mapping system that is used for low-resolution graphics is 
very similar to the system used for a 40-column text display. An Apple 
Ilc/IIe low-resolution graphics screen is made up of a grid of colored 
rectangles called picture elements, or pixels. This matrix of colored 
blocks measures 40 pixels wide by 48 pixels deep—in other words, 40 
columns by 48 rows.

To put your computer into low-resolution graphics mode, you simply 
set a soft switch situated at memory address $C056, as explained in 
Chapter 11.
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Once your computer is in low-resolution graphics mode, you can 
create a low-resolution display by storing data in Display Pages 1, 2, 
IX, and 2X (the same areas of memory that store the Apple ASCII 
codes used for 40-column text displays). When your computer is in low- 
resolution graphics mode, however, it will not interpret the data stored 
in these areas as codes for text characters. Instead, it will interpret 
them as colors and will display those colors on the screen.

In low-resolution graphics mode, the Apple Ilc/IIe can display 16 
colors, including black and white. These colors, along with the codes 
that are used to generate them in low-resolution graphics, are listed in 
Table 12-1.

Figure 12-3 shows how Display Page 1 is laid out when it is used to 
display a low-resolution graphics screen. Each byte stored in screen 
memory is used to generate two colored pixels, one sitting on top of the 
other. Thus there are twice as many elements on a low-resolution 
graphics screen as there are on a 40-column text screen; a low- 
resolution graphics screen measures 40 columns by 48 rows, while a 
40-column text screen measures 40 columns by 24 rows.

High-Resolution Graphics

In high-resolution (or high-res) graphics mode, your computer can dis 
play a grid of screen dots measuring 280 dots wide by 192 dots deep in 
monochrome; the effective resolution is 140 dots wide by 192 dots deep 
when colors are used. In color high-resolution graphics, the color of

Table 12-1. Color Codes Used in Low-Resolution Graphics

HEX COLOR HEX COLOR
$0 Black $8 Brown
$1 Magenta $9 Orange
$2 Dark Blue $A Gray 2
$3 Purple $B Pink
$4 Dark Green $C Light Green
$5 Gray 1 $D Yellow
$6 Medium Blue $E Aquamarine
$7 Light Blue $F White
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Figure 12-3. Low-resolution graphics screen map

each pixel on the screen can be individually controlled. When you know 
how to use high-resolution graphics, you can create pictures and charac 
ters that are fairly detailed and quite attractive.

There are some limitations, however, on the ways in which colors can 
be used in Apple Ilc/IIe high-resolution graphics. Only six true colors 
are available in high-res graphics: black, white, violet, green, orange, 
and blue. By using alternating rows of colors, you can blend some of 
these colors to create other colors, but unless you’re a real expert at this 
kind of color blending, it’s seldom worth the effort that it requires.

There are also limitations on the way that the six colors available in 
high-resolution graphics can be combined. These limitations will be
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explained in detail in Chapter 14, which deals solely with high- 
resolution graphics.

When your computer is in high-resolution graphics mode, the area of 
RAM that is used most often for screen memory ranges from memory 
address $2000 to $3FFF—a total of 8192 bytes of memory. This block of 
memory is sometimes referred to as High-Resolution Page 1. Another 
8192-byte block of memory, ranging from $4000 to $5FFF, is also used 
quite often. This block of RAM is sometimes referred to as High- 
Resolution Page 2.

If you own an Apple lie  or an Apple lie  equipped with an expanded 
80-column card, two more blocks of high-resolution screen memory are 
available. These two segments of RAM are High-Resolution Display 
Page IX, which extends from $2000 to $3FFF in auxiliary memory, 
and High-Resolution Display Page 2X, which ranges from $4000 to 
$5FFF in auxiliary memory.

Your Apple uses what is often referred to as a bit-mapped screen 
display when it is in high-resolution graphics mode. In a bit-mapped 
screen display—the type of display most often used in commercial 
graphics programs—each dot on the screen corresponds to a bit in the 
computer’s memory. When a bit is set, a dot on the screen generally 
lights up; when the bit is cleared, the dot goes dark. Every dot on the 
screen can thus be controlled individually by a bit-mapped graphics 
program.

In Apple Ilc/IIe high-resolution graphics, each byte in screen 
memory controls seven dots on the screen. Since there are eight bits in a 
byte, one bit in each byte is therefore left free for use as a status bit. By 
setting or clearing this status bit, a programmer can control the colors 
generated by the other bits in the same byte when they are displayed on 
the screen.

More details on how this process works will be provided in Chapter 
14. Meanwhile, we’ll take a brief look at double low-resolution graphics 
and double high-resolution graphics, two display modes that were not 
available to Apple programmers until the introduction of the Apple lie 
and the Apple He.

Double Low-Resolution Graphics

Double low-resolution graphics, as its name implies, is a screen display 
mode with twice the resolution of ordinary low-resolution graphics. 
With double low-resolution graphics, you can create a 16-color screen 
display that is 80 pixels wide and 48 pixels high.
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If you own an Apple lie, or an Apple lie with an 80-column card and 
a Revision-B (or later) motherboard, you can write and run double low- 
resolution graphics programs.

To find out what kind of circuit board your lie has, open it up and 
look at the markings that are printed on the main circuit board just be 
hind its expansion slots. On a Revision-B computer, you’ll see the letter 
B after the part number. (The part number for my lie  is 820-0064-B.) 
On a Revision-A machine, the letter after the part number will be an A.

To use double low-resolution (or double high-resolution) graphics 
with an Apple lie, you also need a properly configured 80-column text 
or text/color card. If you have a standard, non-color 80-column card, you 
also have to connect Pins 50 and 55 on your card. If your non-color card 
is an unexpanded model (without an extra 64K of memory), you need to 
connect those pins with a soldering iron. (Unless you’re a real hardware 
expert, you should seek the assistance of a qualified technician.)

Having an expanded non-color card, however, makes the job of con 
necting Pins 50 and 55 much easier. All you have to do is connect a 
jumper cable that came with your card. You won’t have to do any hard 
ware work at all, though, if you have an Apple lie or an Apple He with a 
Text/AppleColor card installed, because your computer is ready for 
double low-res and double high-res graphics display.

Once you’re sure that your computer can handle double low-res pro 
gramming, you can put it into double low-res mode by storing any value 
at all in the soft switches situated at memory addresses $C050, $C056, 
$C052, $C00D, $C05E, and $C05F. As you can determine for yourself by 
consulting the soft-switch tables in Chapter 11, setting these four soft 
switches will select graphics rather than text, low-resolution rather 
than high-resolution graphics, and full-screen graphics (without a text 
window). Setting these switches will also turn on your computer’s 80- 
column firmware. Next you have to turn on still another soft switch, 
called AN3, which is situated at memory locations $C05E and $C05F. 
To enable double low-resolution or double high-resolution graphics, you 
have to turn AN3 off by either reading or writing to memory address 
$C05E. To disable double low-resolution or double high-resolution graph 
ics, you have to turn AN3 on by either reading or writing to memory 
address $C05F.

To put a properly equipped Apple into double low-resolution mode, 
the following sequence of instructions could be used:
STA $C050 ; TURN OFF TEXT MODE
STA $C056 ; TURN OFF HI-RES MODE
STA SC052 ; TURN OFF MIXED MODE (OPTIONAL)
STA $C00D ; TU RN ON 80-COLUMN DISPLAY 
STA SC05E ; ENABLE DOUBLE LOW-RES GRAPHICS
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When an Apple lie or lie is in double low-resolution graphics mode, 
it displays colors in much the same way that it displays 80-column text 
when it's in 80-column text mode. When double low-res graphics are en 
abled, the data stored in Low-Resolution Graphics Page 1 (the block of 
memory that extends from $400 to $7FF in main memory) will be dis 
played as blocks of color in even-numbered columns (beginning with Col 
umn 0) on your computer screen. These colors will be interleaved with 
colors generated by data stored on Low-Resolution Graphics Page IX (the 
block of memory that extends from $400 to $700 in auxiliary memory). 
The colors generated by Page IX will be displayed in the odd-numbered 
columns (beginning with Column 1) on your computer screen.

Auxiliary-Memory Color Codes

If you ever decide you want to use double low-resolution graphics, you 
may encounter one small problem: because of main-memory and 
auxiliary-memory timing differences, the color codes that are used for 
low-resolution data stored in auxiliary memory are different from those 
used for data stored in main memory. Table 12-2 lists the color codes 
used for double low-resolution graphics data stored in auxiliary memory.

Double High-Resolution Graphics

Double high-resolution graphics is a mode that offers either twice the 
resolution or twice the number of colors of ordinary high-resolution

Table 12-2. Color Codes Used for Double Low-Resolution Graphics Data Stored in 
Auxiliary Memory

HEX COLOR HEX COLOR
$0 Black $4 Brown
$8 Magenta $C Orange
$1 Dark Blue $5 Gray 2
$9 Purple $D Pink
$2 Dark Green $6 Light Green
$A Gray 1 $E Yellow
$3 Medium Blue $7 Aquamarine
$B Light Blue $F White
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graphics. By using double high-resolution graphics, you can create an 
ultra-high-resolution monochrome display that measures 560 dots wide 
by 192 dots high. Alternatively, you can create a 16-color display meas 
uring 140 dots wide by 192 dots high that can display any dot on the 
screen in any of the 16 available colors.

The screen map that is used for double high-resolution graphics is 
similar to the one used for an 80-column text display. When an Apple 
lie  or He is in high-resolution mode, it interleaves screen data from 
High-Resolution Display Pages 1 and IX, thus displaying two bytes in 
the space normally occupied by one. Pages HRP2 and HRP2X in auxil 
iary memory can also be used for the storage of double high-resolution 
screen data.

To use double high-resolution graphics, you need either any Apple 
lie  or an Apple lie  that is equipped to generate double low-resolution 
graphics. To get the maximum benefit from double high-resolution 
graphics, you also need either an 80-column monochrome monitor (for 
double high-resolution monochrome displays) or a high-quality, 80- 
column RGB monitor (for double high-resolution color displays). It is 
possible to display double high-res graphics in color on an ordinary 40- 
column color monitor or TV set, but single dots will sometimes appear 
more dimly than normal.

Mapping the Graphics Screens

Now that we’ve taken a brief glance at each of the graphics modes that 
can be generated by the Apple lie  and lie, we’re ready to examine in 
more detail the screen maps used by each of these graphics modes.

First, however, let’s take a closer look at the 40-column text display 
illustrated in Figure 12-1. Notice that strings of hexadecimal numbers 
have been used to identify each column and each row on the map. These 
numbers look like column and row coordinates, but that’s not really 
what they are. The numbers running down the side of the map are 
actually memory addresses—specifically, the addresses of the initial 
bytes in each column. Because these addresses are used to represent 
vertical (or Y) positions on the memory map, they are sometimes 
referred to as Y  addresses. The numbers across the top of the map rep 
resent offsets that can be added to the map’s Y addresses to determine 
the exact memory address of any byte displayed on the map. Since these 
numbers are used to represent the horizontal (or X) position on the 
map, they are sometimes referred to as A  offsets.
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— 40 bytes—

-------------- l z q  oytes

|-^ ----40 bytes---- ----40 bytes— U  8 ^
1 bytes*

$400 Row 0 Row 8 Row 16 •

$480 Row 1 Row 9 Row 17 •

$500 Row 2 Row 10 Row 18 •

$580 Row 3 Row 11 Row 19 •

$600 Row 4 Row 12 Row 20 •

$680 Row 5 Row 13 Row 21 •

$700 Row 6 Row 14 Row 22 •

$780 Row 7 Row 15 Row 23 •

"These are “screen holes,” not used for screen memory. These 
“leftover” addresses are used by peripheral and expansion cards.

Figure 12-4. How screen display memory is stored in RAM

By using the X offsets and Y addresses on an Apple screen map, the 
exact memory location of any byte on the map can easily be pinpointed. 
Merely add the character’s X offset to its Y address. That will give you 
the character’s exact address in RAM.

If you look closely at the X offsets across the top of Figure 12-1, you 
will see that the columns on the map are numbered consecutively from 
$00 to $27 —or from 0 to 39 in decimal notation. That numbering makes 
it easy to determine the screen column location of any character. It 
doesn’t matter what row a character is on; if it’s in a given column on 
the screen, its X offset will always be the same.

Notice that the Y addresses down the side of Figure 12-1 are not 
consecutively numbered. Instead, they are arranged in three batches of 
eight rows each. The first eight rows on the screen map are numbered 
$400 through $780. The next eight rows are numbered $428 through 
$7A8. The eight rows at the bottom of the screen are numbered $450 
through $7D0.
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At first glance, this numbering system might seem strange and 
cumbersome. Actually, however, it does make some sense. If your com 
puter’s screen memory were not split up, but were simply dropped into 
a solid, 960-byte block of RAM, X offsets and Y addresses could not be 
used to locate the characters on the screen. Characters in the same 
column on the screen would hardly ever have the same X offset, and 
characters in the same row on the screen would not necessarily have the 
same Y address. Therefore, the somewhat confusing X-offset and Y- 
address system that is used for your computer’s 40-column screen dis 
play is clearly preferable to no system at all.

Figure 12-4 shows what the Apple Ilc/IIe 40-column screen map 
looks like when it is displayed as a consecutive block of memory. As you 
can see, the address-and-offset system designed for your computer is 
quite memory-efficient. This system allows a 960-byte screen map to be 
placed into 1024 bytes of memory, leaving only 64 bytes unused. Yet 
each character on the screen can be located by adding a column offset to 
a row address.

There is one more point about screen mapping worth mentioning. 
The systems used for mapping low-resolution and high-resolution 
graphics are based on the same principles as those used in mapping 
your Apple’s 40-column text screen. Figure 12-3 clearly shows that the 
screen map used for low-resolution graphics is the same as the one used 
for 40-column text graphics. The only difference is that each byte on the 
screen has been split horizontally into two pixels.





13
Game Paddles, 
Joysticks, and 
The Apple Mouse

To become an expert graphics programmer for the Apple lie or the 
Apple He, it is essential to have an understanding of how to write pro 
grams for hand controllers, such as game paddles, joysticks, and the 
Apple mouse. In this chapter, you’ll learn how hand controllers work and 
how they are used in graphics programs. You’ll also be provided with 
two type-and-run programs that demonstrate how to program hand 
controllers in assembly language. One of these programs will illustrate 
the use of game paddles and joysticks. The other program will illustrate 
the use of the, Apple mouse.

247



248 Apple Roots

The Evolution of the Hand Controller

The first kind of hand controller to be used with Apple computers was 
the game paddle. Because the game paddle derives its name from its 
function, not from its looks, it bears little resemblance to other kinds of 
paddles. The devices are called paddles because they were used to simu 
late ping-pong paddles in the early arcade game Pong. Electronically, 
though, a game paddle is really a variable resistor; mechanically, it’s 
usually a rotary knob attached to a rectangular base.

Game paddles always come in pairs, and the pair of paddles that you 
get in a set are designed to be connected to the same I/O port. Thus, the 
paddles in a set always share the same port when they are connected to 
an Apple lie or He.

The Apple He has two kinds of ports to which game paddles can be 
connected. One of these ports is an internal 16-pin DIP socket that is 
installed on the Apple He motherboard and is labeled “GAME I/O”. The 
other paddle port available to He owners is a D-type miniature connec 
tor on the computer’s back panel. Both of these ports can also be used 
for the installation of joystick controls.

The Apple lie has only one port—a D-type connector on the back 
panel —to which game paddles can be connected. This port can also be 
used as a joystick connector and as a socket for a mouse control.

Paddles, Joysticks, and Mice Compared

Since a game paddle is nothing but a rotary controller, it can draw a 
line or move an object in only one direction on a computer screen. A 
joystick can be moved in any direction and can therefore move an object 
in any direction on a screen. However, a joystick does not usually offer 
as much control over positioning an object on a screen as does a game 
paddle.

A mouse, when properly programmed, combines the advantages of a 
game paddle and a joystick. A mouse can move an object anywhere on a 
screen, and the position of the object can be very accurately controlled.

How Game Paddles Work

We have learned that a game paddle is actually a variable resistor con 
trolled by a rotary knob. Since paddles are usually connected in pairs,
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the Apple Ilc/IIe has two analog inputs to which paddles can be con 
nected. Before a program can read these inputs, it must set a timing 
circuit that is connected to them. This circuit can be set by accessing a 
soft switch situated at memory address $C070. When the timing circuit 
is set, the high bits of four other memory registers—registers $C064 
through $C067—are each set to 1. Two of these registers (located at 
$C064 and $C065) correspond to the two game paddles that can be con 
nected to the Apple Ilc/IIe. These two game paddles are numbered 
Paddle 0 and Paddle 1.

If no game paddles or other I/O devices are connected to the Apple 
Ilc/IIe’s game port when Soft Switch $C070 is read, the high bits of 
memory registers $C064 through $C067 may remain set indefinitely. If, 
however, game paddles or other devices are connected to these inputs, 
the high bits of registers $C064 and $C067 will, after a period of time 
ranging from a fraction of a millisecond to about three milliseconds, 
change back to 0—and stay there. The exact amount of time that it 
takes for each of these bit changes to occur depends upon the resistance 
applied to the circuit that corresponds to each affected memory regis 
ter. Therefore, if Game Paddle 0 is turned far to the left when Soft 
Switch $C070 is accessed, it won’t take long for the high bit of register 
$C064 to change from a 1 to a 0. If Paddle 0 is set at a high position, the 
bit change will take longer. Similarly, if Paddle 0 is turned to the left, 
the high bit of register $C065 will change from 1 to 0 very quickly, and 
turning the paddle to the right will slow down the bit change.

To read the states of Paddles 0 and 1, a program must first access 
Soft Switch $C070. Then the program must set up a timing loop and use 
this loop to determine how long it takes the high bits of memory regis 
ters $C064 and $C067 to drop from 1 to 0.

This procedure would be quite a job for a programmer. Fortunately, 
however, the Apple lie  and Apple lie are provided wih a built-in sub 
routine that can take care of much of the work involved in reading a 
pair of game paddles. This routine is called PREAD, and its starting 
address is $FDB1E.

To use the PREAD subroutine, you have to store a number from 0 
through 3 in your microprocessor’s X register. If you’re using the 
PREAD routine to read a pair of game paddles, you can store either a 0 
or a 1 in the X register, depending upon which paddle you want to read. 
Then you can invoke the PREAD subroutine by doing a JSR to memory 
address $FB1E. When your computer returns from the subroutine, a 
number ranging from $00 to $FF will be stored in your microproces 
sor’s Y register. That number will reflect the state of the game paddle 
that you want to read.
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As you might guess, timing is critical when you’re writing this kind 
of program. There’s also a further complication in this particular pro 
gramming situation. Because it can take as long as three milliseconds 
for the high bits of registers $C064 through $C067 to drop from 1 to 0, 
there must be a delay of at least three milliseconds between the reading 
of register $C064 and the reading of register $C065. In other words, 
after you’ve read the state of one paddle, you must wait at least three 
milliseconds before you try to read the other one. This situation exists 
whether you write your own program for reading a pair of game pad 
dles or use your computer’s built-in PREAD routine.

How Joysticks Work

Game paddles aren’t used much anymore in Apple programs, but the 
joystick—a descendant of the game paddle—is still very popular. There 
are many similarities between programs written for paddles and pro 
grams written for joysticks. In fact, many programs that were origi 
nally written for game paddles will also work with a joystick, and some 
programs written for joysticks will also work with game paddles.

As previously mentioned, joysticks and game paddles can be plugged 
into the same I/O ports on both the Apple lie  and the Apple lie. Pro 
grams designed to be used with joysticks are written in exactly the 
same way as programs intended for use with game paddles. In a pro 
gram designed to be used with a joystick, memory register $C064 is 
used to read the left-to-right motion of the stick, and memory register 
$C065 is used to read the stick’s up-and-down motion. In other words, 
the horizontal axis of the joystick is treated as Paddle 0 and the vertical 
axis of the joystick is treated as Paddle 1 (although a few programs will 
reverse paddle axes).

When you want to read a joystick in an assembly-language program, 
you can either write your own routine (using registers $C070, $C064, 
and $C065) or use your computer’s built-in PREAD routine. No matter 
which option you select, though, you have to be careful about timing. 
When you use a joystick in a program, you can read the setting of either 
axis repeatedly, as rapidly as you like. However, you must always pro 
gram a delay of at least three milliseconds between the time you read 
one axis and the time you read the other.

Two other memory addresses that are often used in joystick pro 
grams are $C061, sometimes called Switch Input 0, and $C062, some-
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times called Switch Input 1. These addresses can be used to read the 
two pushbuttons on a joystick controller or the OPEN-APPLE and 
CLOSED-APPLE keys on the Apple Ilc/IIe keyboard. When Switch 0 on a 
joystick is pressed or the OPEN-APPLE key is pressed, bit 7 of $C061 goes 
from 1 to 0. When Switch 1 on a joystick is pressed or the CLOSED- 
APPLE key is pressed, bit 7 of $C062 goes from 1 to 0. The state of the 
switches on a joystick (or the state of the OPEN-APPLE and CLOSED- 
APPLE keys) can therefore be read by testing bit 7 (the sign bit) of 
memory registers $C061 and $C062 to determine whether the number 
in that location is greater than 127.

Using a Joystick in a Graphics Program

Before you type, assemble, and run an assembly-language program that 
illustrates how a joystick can be used in a low-resolution graphics pro 
gram, let’s take note of some facts about low-resolution graphics that 
were not covered in Chapter 12.

We learned in Chapter 12 that low-resolution graphics are a video 
graphics mode that can generate up to 16 colors in a screen display 
measuring 40 pixels wide by 48 pixels high. You may also remember 
that the column coordinates on a low-resolution screen map are laid out 
consecutively, but the row coordinates are not. Instead, like the row 
coordinates on all screen maps used by Apple II-series computers, the 
row coordinates used in low-resolution graphics are arranged in three 
groups of eight rows each, with the three groups of rows interleaved 
together.

To write programs in high-resolution graphics, it is helpful to 
understand this screen mapping system. Chapter 14 will cover high- 
resolution screen mapping in some detail. However, it is possible to 
write assembly-language programs using low-resolution graphics with 
out being concerned with the intricacies of Apple Ilc/IIe screen map 
ping. The designers of your Apple have provided a series of built-in sub 
routines designed to relieve you of much of the effort involved in 
low-resolution graphics programming:

• CLRSCR  is a subroutine that will clear your computer’s low- 
resolution screen to black. The CLRSCR routine starts at memory 
address $F832. To call it, you write a statement like this:

JSR $ F832
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If your computer is in low-resolution mode when you issue this 
command, the screen will be cleared. If it is in 40-column text 
mode, the screen will be filled with “@” characters, because the 
ASCII code of the character is $00—the same number used 
for the color black in the low-resolution graphics mode!

• SETCOL, a subroutine that starts at memory address $F864, can 
set the color that will be used for plotting operations in low- 
resolution graphics. To use the SETCOL routine, you load the 
accumulator with the code number of the color to be plotted and 
then do a JSR to $F864. (The code numbers of all 16 of the colors 
used in low-resolution graphics were listed in Chapter 12.)

• PLOT, a subroutine that begins at memory address $F800, can be 
used to plot a pixel in any low-resolution color at any location on 
the low-resolution screen. Before the PLOT routine is called, a row 
coordinate ranging from 0 to 39 must be placed in the Y register, 
and a column coordinate ranging from 0 to 47 must be placed in 
the accumulator. A single pixel will then be displayed on the 
screen in the specified location. The color of the pixel can be 
determined by using the SETCOL subroutine before the PLOT 
routine is called. The column and row coordinates used by PLOT 
run in consecutive order, without using the interleaved system 
employed in do-it-yourself plotting routines.

SKETCHER: A Low-Resolution 
Joystick Program

Program 13-1 is an assembly-language program called SKETCHER. It 
was written using a Merlin Pro assembler, but it can also be typed and 
assembled using an Apple ProDOS assembler. It uses a number of the 
programming techniques that have been described in this chapter, plus 
a few others that will be covered before the chapter ends. You will need 
a joystick to run the program, of course. After you have run the pro 
gram, we will examine it line by line.

Program 13-1
THE SKETCHER PROGRAM 
1 *

2 * SKETCHER
3 *
4 ORG $8000
5 *
6 * ADDRESSES OF SOFT SWITCH1ES
7 *
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8 TEXTOFF EQU $C050
9 HIRESOFF EQU $C056

10 CARDOFF EQU $COOC
11 MIXEDOFF EQU $C052
12 PAGE20FF EQU $C054
13 TIMER EQU $C070
14 SWITCH1 EQU $C061
15 SWITCH2 EQU $C062
16 *
17 * ADDRESSES OF BUI LT- I N FIRMWARE ROUTINES
18 *
19 CLRSCR EQU $F832
20 SETCOL EQU SF864
21 PLOT EQU $ F800
22 PREAD EQU SFB1E
23 *
24 * DEFINE CONSTANTS
25 *
26 PRODL EQU $0300
27 PRODH EQU PRODL+1
28 MPRL EQU PRODH+1
29 MPRH EQU MPRL+1
30 MPDL EQU MPRH+1
31 MPDH EQU MPDL+1
32 XCOORD EQU MPDH+1
33 YCOORD EQU XCOORD+1
34 XAXIS EQU YCOORD+1
35 YAXIS EQU XAXIS+1
36 *
37 JMP START
38 *
39 MULT 16 LDA #0
40 STA PRODL
41 STA PRODH
42 LDX #16
43 SHIFT ASL PRODL
44 ROL PRODH
45 ASL MPRL
46 ROL MPRH
47 BCC NOADD
48 CLC
49 LDA MPDL
50 ADC PRODL
51 STA PRODL
52 LDA MPDH
53 ADC PRODH
54 STA PRODH
55 NOADD DEX
56 BNE SHIFT
57 RTS
58 *
59 * DELAY LOOP ROUTINE
60 *
61 WAIT LDX #$ F F
62 LOOP DEX
63 BNE LOOP
64 RTS
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65 *
66 * MAIN PROGRAM STARTS HERE
67 *
68 * PUT COMPUTER IN LOW-RES GRAPHICS MODE
69 *
70 START STA TEXTOFF
71 STA HIRESOFF
72 STA CARDOFF
73 STA MIXEDOFF
74 STA PAGE20FF
75 *
76 * CLEAR SCREEN
77 *
78 J SR CLRSCR
79 *
80 * SET COLOR OF SCREEN DOT TO PINK
81 *
82 STA TIMER
83 LD A #11 ; PINK
84 J SR SETCOL
85 *
86 * READ JOYSTICK COORDINATES
87 *
88 RDSTICK EQU *
89 JSR WAIT
90 JSR WAIT
91 LDX no
92 JSR PREAD
93 STY XAXIS
94  
95 JSR WAIT
96 JSR WAIT
97 JSR WAIT
98 JSR WAIT
99 LDX #1

100 JSR PREAD
101 STY YAXIS
102 *

103 *  CHECK STATUS OF JOYSTICK SWITCHES
104 *
105 LDA SWITCH2
106 BMI START
107 LDA SWITCH1
108 BMI SKIP
109 LDA #0 ;BLACK
110 J SR SETCOL
111 JSR ERASE
112 LDA #11 ; PINK
113 JSR SETCOL
114 *
115 *  PLOT SCREEN DOT
116 *
117 SKIP LD A #0
118 STA MPDH
119 STA MPRH
120 LDA XAXIS
121 STA MPDL
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122 LDA #40
123 STA MPRL
124 JSR MULT1 6
125 LDA PROD H
126 STA XC00R D
127  
128 LDA #0
129 STA MPDH
130 STA MPRH
131 LDA YAXIS
132 STA MPDL
133 LDA #48
134 STA MPRL
135 JSR MULT1 6
136 LDA PRODH
137 STA YC00R D
138  
139 LDA YC00R D
140 LDY XC00R D
141 JSR PLOT
142 JMP RDSTI CK
143 ERASE LDA YC
144 LDY XC00R D
145 JSR PLOT
146 RTS

How the SKETCHER Program Works

The SKETCHER program starts at line 37, with a JMP instruction 
that skips to line 70. Beginning at line 70, five soft switches are set. 
These switches turn off your computer’s high-resolution mode, its 80- 
column firmware, its mixed mode (so there will be no text at the bottom 
of the screen), and its auxiliary memory. Next, in line 78, the low- 
resolution screen is cleared to black with a JSR CLRSCR statement.

In line 82, the soft switch at $C070 is set, starting a three- 
millisecond countdown so that the game paddle (or joystick) inputs at 
$C064 and $C065 can be read. Next, a JSR SETCOL statement is used 
to set the color of the low-resolution pixel to pink.

The heart of the SKETCHER program is the segment that extends 
from line 88 to line 101. During this sequence, a subroutine called WAIT 
(which begins at line 61) is called several times to activate the three- 
millisecond delay that must be inserted between the reading of one joy 
stick axis and the reading of the other. The remaining commands in the 
sequence are straightforward. In lines 91 through 93, the X register is 
loaded with a 0, and the monitor routine PREAD is used to read the X 
axis of the joystick. In lines 99 through 101, the X register is loaded 
with a 1, and the PREAD routine is used to read the state of the joy 
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stick’s Y axis. When this segment of code ends, the position of the joy 
stick’s X axis (expressed as a number ranging from $00 to $FF) is in a 
memory register labeled XAXIS, and the position of the joystick’s Y 
axis (also expressed as a number ranging from $00 through $FF) is in a 
memory register labeled YAXIS.

In lines 105 through 113, the states of the trigger buttons on the joy 
stick are checked to see if either button is being pressed. If the side 
button on the joystick (called Switch 1 in this program) is being 
pressed, the cursor will draw a line as it moves across the screen. If the 
top button on the joystick (Switch 2) is pressed, the screen will be 
cleared. If neither switch is pressed, movement of the joystick will 
cause the cursor to move around on the screen without drawing a line.

Lines 117 through 146 move the cursor and—if Switch 2 is being 
pressed—draw lines on the screen. In this sequence of code, a 16-bit 
multiplication routine is used to translate the numbers stored in XAXIS 
and YAXIS into two valid screen coordinates: a horizontal (or X) coor 
dinate, ranging from 0 through 39, and a vertical (or Y) coordinate, 
ranging from 0 through 47.

In lines 117 through 137, an interesting shortcut is used to make this 
conversion. First, the value stored in XAXIS is multiplied by 40. Then 
the high-order byte of the resulting product is stored in a memory reg 
ister labeled XCOORD.

Next, the value stored in YAXIS is multiplied by 48. Finally, the 
high-order byte of the product that results from this operation is stored 
in a memory register labeled YCOORD. Then these two coordinates are 
used to position the cursor on the screen.

This may sound like an odd way to calculate coordinates, but it 
makes a lot of sense in this application. Extracting the high byte of a 
16-bit number and leaving behind the low byte of the number is like 
dividing the 16-bit number by 256. When the value stored in XAXIS (a 
number ranging from $00 to $FF) is multiplied by 40 and the product 
thus derived is divided by 256, XAXIS is converted into a number rang 
ing from 0 through 39. That number—a legal screen coordinate—can 
then be stored in XCOORD.

In lines 116 through 125, when the value in YAXIS is multiplied by 
48 and the resulting product is divided by 256, the value of YAXIS is 
converted into a legal screen coordinate ranging from 0 through 47. 
That number is then stored in YCOORD.

The plotting routine in the SKETCHER program is the short seg 
ment of code that extends from line 139 to line 146. In this segment of 
code, the value of YCOORD is stored in the accumulator, the value of
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XCOORD is stored in the Y register, and the monitor subroutine PLOT 
is called. Then, in line 142, the program jumps to the line labeled 
RDSTICK, and another joystick reading and plotting sequence begins.

Disadvantages of Joysticks

When you run the SKETCHER program, you’ll probably notice that it 
has a couple of minor shortcomings. For example, if your joystick is an 
auto-centering model (and most joysticks are), the screen cursor will 
always return to the center of the screen when the joystick is released. 
Some joysticks have a defeatable self-centering feature so you can 
switch off the auto-centering mechanism and eliminate this problem. If 
you have a joystick with non-defeatable self-centering, such as the model 
marketed by Apple for the lie and the He, then your joystick will return 
automatically to the center position when you let it go.

If you move your joystick quickly when you run the SKETCHER 
program, you may notice another problem: gaps in the lines that the 
program draws on the screen. These gaps are caused by unavoidable 
delays in the SKETCHER program, especially the three-millisecond 
delay that has to be inserted between the reading of one joystick axis 
and the reading of the other.

The problems of auto-centering and gaps in lines can be solved in 
several ways. One way to take care of both problems simultaneously is to 
simplify the way in which a joystick is read. Instead of trying to keep 
track of the exact settings of a joystick at all times, you can use a pro 
gram that merely reads the direction in which the joystick is being 
held. As illustrated in Program 13-2, such a program can be written 
quite easily, even in BASIC.

Program 13-2 
JOYSTICK.BAS
A low-resolution joystick program 
10 REM **** JOYSTICK.BAS ****
20 REM * * * *  LOW-RESOLUTION JOYSTICK PROGRAM ****
30 GR : POKE -  16302, 0:  CALL -  1998:  C0L0R= 11: REM TURN

OFF MIXED MODE AND CLEAR TEXT WINDOW TO BLACK 
40 XM = PDL ( 0 ) : X = INT (XM / 6.4>:YM = PDL ( 1 ) : Y  = INT 

(YM / 5.3):  REM CONVERT JOYSTICK READINGS INTO LOW-RES
COLUMN AND ROW COORDINATES,  AND PRINT A PIXEL AT 
MIDSCREEN

50 IF PEEK (49250) > 127 THEN 30:  REM IF SWITCH 1 IS 
PRESSED, THEN RESTART

60 IF PEEK (49249) > 127 THEN 80: REM IF SWITCH 0 IS
PRESSED,  THEN DRAW A LI NE
C0L0R= 0: PLOT T X , T Y : C0L0R= 11: REM OTHERWISE,  ERASE 
AND REPLOT

70
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75 REM **** STICK-PLOTTING ROUTINES START HERE **** 
80 PLOT X , Y : T X  = X: TY  = Y: REM TX AND TY ARE USED FOR 

TEMPORARY STORAGE OF X AND Y COORDINATES 
90 GOSUB 190:  IF XP > XM - 5 THEN 120 
100 X = X -  1: IF X < 0 THEN X = 0 
110 GOTO 1 AO
120 IF XP < XM + 5 THEN 140
130 X = X + 1: IF X > 39 THEN X = 39
140 IF YP > YM -  5 THEN 160
150 Y = Y -  1: IF Y < 0 THEN Y = 0
160 IF YP < YM + 5 THEN 50
170 Y = Y + 1: IF Y > 47 THEN Y = 47
180 GOTO 50
185 REM **** SUBROUTINE FOR READING JOYSTICK ****
190 XP = PDL ( 0 ) : YP = PDL ( 1 ) :  RETURN

Program 13-2, entitled JOYSTICK.BAS, works much like the 
assembly-language SKETCHER listing presented in Program 13-1. 
However, as you’ll discover if you type and run the JOYSTICK.BAS 
program, it is not plagued by the two problems in the SKETCHER 
routine, holes in the lines and auto-centering.

Unfortunately, a price had to be paid for these advantages. The 
JOYSTICK.BAS program runs more slowly than the SKETCHER pro 
gram, and it offers the user considerably less control over the position of 
the cursor. When you run the JOYSTICK.BAS program, you can’t place 
the cursor anywhere you like on the screen. Instead, you can move it in 
only eight discrete directions: up, down, left, right, and the diagonals. 
And, you have no control over the speed at which the cursor moves.

You could speed up the JOYSTICK.BAS program, of course, by 
translating it into assembly language. That wouldn’t do much, however, 
to increase your control over the cursor on the screen.

In some applications, this limitation of control over the speed and 
positioning of the cursor is not important. In arcade-style games, for 
example, it is rarely necessary—and sometimes not even desirable—to 
have absolute control over the cursor’s direction and speed. However, in 
other applications, such as computer-art programs, a high degree of 
control over the cursor is important.

The Apple Mouse

The Apple mouse, as pointed out earlier in this chapter, combines the 
benefits of a course-charting joystick program with those of a program 
in which an absolute plotting system is used. Program 13-3, called 
MOUSKETCH, uses a mouse to draw pictures on a low-resolution 
screen. It works in much the same way as the SKETCHER program.



Paddles, Joysticks, and the Mouse 259

MOUSKETCH uses a mouse to move a blinking cursor around on the 
screen, and if the button on the mouse is pressed, the cursor will draw a 
line as it moves. There is only one button on an Apple mouse, so the 
button cannot be used to clear the screen. However, if either the OPEN- 
APPLE key or the CLOSED-APPLE key is pressed, the screen will clear 
and the program will start over.

If you own an Apple He, you’ll need a mouse card installed in Auxil 
iary Slot 4 for the MOUSKETCH program to run properly as written. 
If the mouse card is installed in some other slot, you’ll have to modify 
the program as described later in this chapter.

When you assemble and run the MOUSKETCH program, you may 
notice that it has two clear advantages over the SKETCHER program. 
First, because a mouse is not a self-centering device, the cursor does not 
return to the middle of the screen when you release the mouse. The 
second (and probably more important) advantage is that the MOUS 
KETCH program will almost never leave a gap in a line that it’s draw 
ing, no matter how rapidly you sweep the cursor across your screen.

Program 13-3
THE MOUSEKETCH PROGRAM

1 *

2 * MOUSKETCH
3 *
4 ORG $8000
5 *
6 JMP GO
7  
8 SLOT EQU $ FB
9 XPSN EQU S3B8

10 YPSN EQU $438
11 BUTTON EQU $6B8
12 *

13 * MOUSE ENTRY OFFSET POINTS
14 *
15 SETMS EQU $12
16 READMS EQU $14
17 INITMS EQU $19
18 CLAMPMS EQU $17
19 *
20 * ADDRESSES OF SOFT SWITCHES
21 *

22 TEXTOFF EQU $C050
23 HIRESOFF EQU $C056
24 FWOFF EQU $C00C
25 MIXEDOFF EQU $C052
26 PAGE20FF EQU $C054
27 *
28 * MOUSE FIRMWARE ROUTINES
29 *
30 CLRSCR EQU $F832
31 SETCOL EQU $F864



260 Apple Roots

32 PLOT EQU $ F800
33  
34   DEFINE CONSTANTS
35  
36 PROD L EQU $0300
37 PRODH EQU PRODL+1
38 M PR L EQU PRODH+1
39 MPRH EQU MPRL+1
40 MPDL EQU MPRH+1
41 M PD H EQU MPDL+1
42 XCOORD EQU MPDH+1
43 YCOORD EQU XCOORD + 1
44 XAXIS EQU YCOORD+1
45 YAXIS EQU XAXIS+1
46  
47   SIGNATURE BYTES
48  
49 CN EQU $C4
50 NO EQU $40
51  
52 * SELF-MODIFYING ROUTINE
53  

54 SETFW JMP $0000
55  
56   MAIN PROGRAM STARTS HERE
57  
58 GO EQU  
59 JSR IN IT I N I T I A L I Z E SCREEN
60 LD A #$00
61 STA SLOT
62 LD A # C N
63 STA SLOT+1
64 LD Y #INITMS
65 JSR CALLFW
66 J SR CLAMP
67 LD Y #S ETMS
68 LD A #$01 ; SET PASSIVE MODE
69 JSR CALLFW
70  
71   MAIN LOOP
72  
73 DOIT EQU *
74 LD Y #READMS
75 JSR CALLFW
76 JSR DRAW
77 JMP DOIT
78  
79   SUBROUTINES START HERE
80  
81 CALLFW EQU *
82 PHA
83 LD A (SLOT) , Y
84 LDX # C N
85 LD Y tt NO
86 STA SETFW+1
87 ST X SETFW+2
88 PLA



89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
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JSR SETFW 
RTS

�

* DRAW SCREEN DOT
�

DRAW EQU *
*

* CHECK MOUSE BUTTON AND APPLE KEYS
�

LD A $ C061
BMI 60
LD A $C062
BMI BEGIN
LDX SETFW+2
LD A BUTTON,X
BMI LEAP
LD A nO ; BLAC K
JSR SETCOL
JSR PLOTIT
LD A n 11 ; PINK
J SR SETCOL

  NOW DRAW DOT
�

LEAP LDX SETFW+2
LD A XPSN, X
STA X A XIS
L D A YPSN, X
STA YAXIS

 
LD A no
STA M PD H
STA MPRH
LD A X A X I S
STA MPDL
LD A n 40
STA MPRL
JSR MULT16
LD A PRODH
STA XCOORD

*
LD A no
STA M PD H
STA MPRH
LD A YAXIS
STA MPDL
LD A n 48
STA MPRL
JSR MULT16
LD A PRODH
STA YCOORD

*
PLOTIT LOA YCOORD

LD Y XCOORD
JSR PLOT
RTS
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146 CLAMP EQU *
147 LDA #$00
148 STA $478
149 STA $578
150 STA $5F8
151 LDA #$FF
152 STA $4F8
153 LDY #CLAMPMS
154 LDA #0
155 J SR CALLFW
156 LDY # C LAM PMS
157 LDA #1
158 JSR CALLFW
159 RTS
160 *
161 MULT16 LDA #0
162 STA PRODL
163 STA PRODH
164 LDX #16
165 SHIFT ASL PRODL
166 ROL PRODH
167 ASL MPRL
168 ROL MPRH
169 BCC NOADD
170 CLC
171 LDA MPDL
172 ADC PRODL
173 STA PRODL
174 LDA MPDH
175 ADC PRODH
176 STA PRODH
177 NOADD DEX
178 BNE SHIFT
179 RTS
180 *
181 * PUT COMPUTER IN LOW-RES MODE
182 *
183 INIT STA TEXTOFF
184 STA HIRESOFF
185 STA FWOFF
186 STA MIXEDOFF
187 STA PAGE20FF
188 *
189 * CLEAR SCREEN
190 *
191 JSR CLRSCR
192 *
193 * SET COLOR OF SCREEN DOT
194 *
195 LDA #11 ; PINK
196 JSR SETCOL
197 RTS

A Close Look at the Apple Mouse

The MOUSKETCH program begins at line 6 with a jump to line 58, the 
actual start of the program. At line 59, a subroutine labeled INIT is
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called, and the low-resolution screen is initialized in much the same way 
as in the SKETCHER program. Then, in lines 59 through 69, the firm 
ware that comes with the Apple mouse is initialized.

To understand this initialization process, it helps to know something 
about the operation and design of the Apple mouse. A mouse is a 
“sm art” I/O device; it comes with a complex set of firmware that makes 
it far more intelligent than a simple resistor-based device such as a 
joystick or a game paddle.

One difference between the Apple mouse and a simple joystick is 
that the Apple mouse can be operated in a number of different modes:

• In movement interrupt mode, the mouse generates an interrupt 
each time it is moved. A program will then read data generated by 
the mouse only when that data changes, rather than keeping con 
stant surveillance over the mouse to determine whether it has been 
moved. This mode can be useful in high-performance programs 
when processing time is at a premium. The intricacies of the 
movement interrupt mode are, however, beyond the scope of the 
introductory material presented in this chapter.

• In button interrupt mode, an interrupt is generated when the 
mouse button is pressed.

• Movement/button interrupt mode combines the two modes just de 
scribed.

• Screen refresh interrupt mode examines mouse data every sixtieth 
of a second, during the vertical blank interval that takes place 
between video screen refreshes. This mode can eliminate the flick 
ering that sometimes results when objects are moved around on a 
screen during the non-blank part of a video cycle.

• Passive or transparent mode uses an interrupt system built into 
the mouse firmware to update mouse data automatically. The 
transparent mode is the simplest mouse operating mode available, 
and it is the mode that we will concentrate on during the rest of 
this chapter.

Subroutines Provided With the Apple Mouse

To determine which mode will be used for mouse operations, a value 
called a mode byte must be loaded into your microprocessor’s accumula 
tor. Then a JSR must be done to a subroutine called SETMOUSE, 
which is built into the firmware that operates the Apple mouse. Before 
the SETMOUSE routine is invoked, however, a preliminary routine 
called INITMOUSE must be called.
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In addition to SETMOUSE and INITMOUSE, a number of other 
important mouse-related subroutines are built into the firmware that 
runs the mouse. To help programmers access these subroutines, the 
mouse firmware also contains a table that points to the entry address of 
each routine. In a mouse-equipped Apple He or lie, this table occupies 
memory addresses $Cnl2 through $Cnl9, with the variable n equating 
to the number of the slot where the mouse is installed. In an Apple lie, 
this slot is always Slot 4. In an Apple He, the slot number can vary, 
depending upon which expansion slot has been used for the mouse card.

Table 13-1 is a list of address pointers that are built into the Apple 
mouse firmware. In assembly-language programs, these pointers can be 
used to locate the low bytes of the starting addresses of mouse-related 
subroutines. The functions of these routines will be described later in 
this chapter.

In each address listed in Table 13-1, the high byte is always $Cn, 
with n equating to the mouse’s slot number. For example, if the mouse 
connected to your computer uses Slot 4, you can calculate the address 
for the routine INITMOUSE by adding the contents of address $C419 to 
the literal value $C400. You can determine the starting address of the 
SETMOUSE routine by adding the contents of address $C412 to the 
literal value $C400.

Once you know the starting address of a mouse routine you want to 
use, you can call the routine by storing certain values in your micropro 
cessor’s X and Y registers and then jumping to the mouse subroutine

Table 13-1. Mouse Subroutine Low-Byte Address Table

The following addresses hold the low bytes of the
starting addresses of mouse firmware routines:

$Cnl2 SETMOUSE
$Cnl3 SERVMOUSE
$Cnl4 READMOUSE
$Cnl5 CLEARMOUSE
$Cnl6 POSMOUSE
$Cnl7 CLAMPMOUSE
$Cnl8 HOME MOUSE
$Cnl9 INITMOUSE
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that you want to call. These are the values that must be stored in the X 
and Y registers before any mouse routine (except the SERVE MOUSE 
routine) can be called:

• The value $Cn (with n equating to the mouse’s slot number) must 
be stored in the X register.

• The value $n0 (with n equating to the mouse’s slot number) must 
be stored in the Y register.

Once the X and Y registers have been loaded in this fashion, the 
desired subroutine can be called.

In lines 49 and 50 of the MOUSKETCH program, two constants 
(labeled CN and NO) are assigned the values $C4 and $40 respectively. 
If you own an Apple He and have a mouse card installed in a slot other 
than Slot 4, you can alter these values in the program to reflect the slot 
in which your card is installed.

Calling the INITMOUSE Routine

Before you can use the Apple mouse, you must initialize it by calling the 
INITMOUSE routine. In the MOUSKETCH program, INITMOUSE is 
called in lines 60 through 65. In lines 59 through 63, the value $C400 is 
loaded into a pair of 8-bit Page Zero registers labeled SLOT and 
SLOT+1. Then, using the offset table defined in lines 15 through 18, the 
offset pointer for the INITMOUSE routine (that is, the literal value 19) 
is loaded into the 6502B/65C02 Y register. Next, a JSR instruction is 
used to jump to a subroutine labeled CALLFW (an abbreviation for 
“call firmware”). This subroutine starts at line 61.

When the CALLFW routine is called, the contents of the accumula 
tor are pushed onto the stack for safekeeping. Then, in line 83, an inter 
esting operation takes place. With the help of indirect indexed address 
ing, the value of the Y register—which in this case is the literal 
number 19—is added to the contents of memory address $C400. The 
number resulting from this calculation equates to a memory address. 
That address, as you can see by examining Table 13-1, is $C419, which 
holds the low byte of the starting address of INITMOUSE. In other 
words, in line 83 the low byte of the starting address of the INIT 
MOUSE routine is loaded into the accumulator.

Next, in lines 84 and 85 of the MOUSKETCH program, the X regis 
ter is loaded with the value $Cn and the Y register is loaded with the 
value $n0. In lines 86 and 87, a complex programming technique called 
address modification is used to JSR to the INITMOUSE routine. 
Though difficult to explain (and perhaps even more difficult to grasp),
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address modification is often used in assembly-language programming 
because it can lead to significant savings in both memory and process 
ing time.

In line 86, the value in the accumulator—which is the low byte of 
the starting address of the INITMOUSE routine —is stored in a 
memory address labeled SETFW+1. In line 87 the value of the X regis 
ter (the value $Cn) is stored in an address labeled SETFW+2.

To find these three memory addresses—SETFW, SETFW+1, and 
SETFW +2—move back to line 54 of the MOUSKETCH program; 
they’re all there.

Line 54 contains a three-byte statement: JMP $0000. That’s a three- 
byte instruction because it contains a one-byte instruction and a two- 
byte operand. If you break down the three bytes of the statement, you’ll 
see that, when the MOUSKETCH program is assembled into machine 
language, the machine-language equivalent of the mnemonic jump will 
be stored in the memory address labeled SETFW. The value $00 will be 
stored in each of the two memory registers that will follow memory 
address SETFW. In other words, memory address SETFW+1 and 
memory address SETFW+2 will each hold a 0 when the MOUS 
KETCH program is assembled into machine language.

But the 0’s stored in SETFW+1 and SETFW+2 at assembly time 
are actually dummy values. In lines 86 and 87, as we have just seen, new 
values are stored in these two memory addresses. In fact, by the time 
the subroutine labeled CALLFW ends, the starting address of the 
INITMS routine has replaced the dummy 0’s originally stored in 
SETFW+1 and SETFW+2.

Once all this is done, the original value of the A register is restored 
from the stack, and a JSR instruction is used to jump to memory 
address SETFW. These two operations take place in lines 88 and 89.

When the statement JSR SETFW is encountered in line 89, the 
address of the next instruction in the program is pushed onto the stack. 
(This always happens when a JSR instruction is used in a program.) 
Next, the program jumps first to line 54 and then to the address now 
stored in SETFW+1 and SETFW +2—which is, as we have seen, the 
starting address of the INITMS subroutine. The INITMS subroutine 
ends with an RTS instruction, which, like all RTS instructions, will pull 
its return address off the stack. In this case, the return address that is 
retrieved from the stack will be the address of another RTS instruction 
—the one at line 90 of the MOUSKETCH program. (The address of this 
RTS instruction was pushed onto the stack at line 89.) Once the pro 
gram finds its way back to the RTS instruction in line 90, that instruc-



Paddles, Joysticks, and the Mouse 267

tion will end the CALLFW routine. The program will then return to 
where it was before the CALLFW subroutine was called. In other 
words, the RTS instruction at line 90 will move the program back to 
line 66.

At line 66, the MOUSKETCH program jumps to a subroutine 
labeled CLAMR This routine, which starts at line 146, is used to set the 
minimum and maximum values that can be returned by the X axis and 
the Y axis of the Apple mouse. When the Apple mouse is first initial 
ized, the minimum and maximum values that can be returned for the 
values of both X and Y range from $00 to $3FF. In the MOUSKETCH 
program, the CLAMP subroutine is used to change the maximum 
values of both X and Y to $FF —the same values that are returned by 
Apple-compatible joysticks and game paddles. In the MOUSKETCH 
program, the boundaries for mouse data were changed to these new 
values so that routines originally written for the SKETCHER program 
could also be used in MOUSKETCH. This procedure saved considerable 
programming time when MOUSKETCH was being written.

In the CLAMP routine, a mouse firmware subroutine called 
CLAMPMS is used to set the new maximum and minimum values of 
the mouse’s X and Y positions. Before the CLAMPMOUSE routine is 
called, the accumulator must be loaded with either a 0 or a 1. If a 0 is in 
the accumulator when CLAMPMOUSE is called, then CLAMPMOUSE 
will set new values for the mouse’s X coordinates. If a 1 is in the accum 
ulator, CLAMPMOUSE will change the limits of the mouse’s Y 
coordinates.

When CLAMPMOUSE is executed, the contents of four memory 
addresses become the new high and low boundaries of the screen coor 
dinates of the mouse. These four addresses and their functions are

$478 Low b y t e  o f  new Low boundar y
$4F8 Low b y t e  o f  new h i gh  boun dar y
$578 High b y t e  o f  new Low boundar y
$5F8 Hi gh b y t e  of  new h i gh boundar y

During the CLAMP subroutine, CLAMPMOUSE is called twice — 
once for each mouse coordinate. Then the program returns to line 67, 
where a routine called SETMOUSE is called. In the MOUSKETCH 
program, SETMOUSE is used to put the mouse into passive mode.

Before the SETMOUSE routine is called, a value called a mode byte 
must be stored in the accumulator. Table 13-2 lists the mode bytes that 
can be used with the SETMOUSE subroutine.
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Table 13-2. Mode Bytes Used With the SETMOUSE Routine

$00 Turn mouse off
$01 Set transparent mode
$03 Set movement interrupt mode
$05 Set button interrupt mode
$07 Set movement/button interrupt mode
$08-$0F Bytes used to set screen refresh interrupt modes 

for the Apple lie  mouse

After the CLAMP subroutine is called, the MOUSKETCH program 
moves to its main loop, labeled DOIT, which begins at line 73. In the 
DOIT loop, a mouse firmware routine called READMOUSE is used to 
read the status of the joystick. Then the program jumps to a subroutine 
labeled PLOTDOT, which begins at line 94. The PLOTDOT routine 
works almost exactly like the RDSTICK routine in the SKETCHER 
program; it checks the OPEN-APPLE and CLOSED-APPLE keys to see 
whether the screen should be cleared and then checks the mouse button 
to see whether a line is to be drawn as the cursor moves. When the 
PLOTDOT subroutine ends, a JMP instruction is used to start the DOIT 
loop again.
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Apple Graphics

If you know BASIC—even a little BASIC—you can write some fairly 
impressive programs in low-resolution graphics. To create eye-catching, 
fast-action, high-resolution programs, though, you almost have to use 
assembly language. In this chapter you’ll learn the principles of both 
high-resolution and double high-resolution graphics. You’ll also have an 
opportunity to type, assemble, and execute two high-resolution programs. 
The first program will allow you to type characters on your computer 
screen when your Apple is in high-resolution mode. The second program 
will enable you to type headline-size characters on a high-resolution 
screen. These characters will be displayed on the screen in color, if you 
have a color monitor, and they’ll be four times as large as the screen 
characters that your computer normally displays.

These two programs will make sense once you have a fundamental 
understanding of how the Apple lie  and the Apple lie generate their 
high-resolution screen displays.

Figure 14-1 is a screen map of High-Resolution Display Page 1, the 
block of RAM most often used as screen memory in the Apple lie and 
the Apple He. This block of RAM extends from memory address $2000 
to memory address $3FFF.

269
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X Offsets

Figure 14-1. A high-resolution graphics screen map

Notice that the screen map illustrated by Figure 14-1 is quite sim 
ilar to the 40-column text map illustrated in Chapter 12. The high- 
resolution map in Figure 14-1, like the text-display map that was shown 
in Chapter 12, is made up of 1024 rectangles arranged in a grid measur 
ing 40 columns wide by 24 columns deep. The same kind of system is 
used on both maps for locating individual rectangles. On each map, the 
first byte of each horizontal row is identified with a two-byte starting 
address, and each vertical column is identified with a one-byte offset. To 
pinpoint the location of a given rectangle on either map. you add a 
column offset, or X offset, to a row address or Y address. The result will 
be the starting address of the rectangle being accessed.
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The row addresses listed down the side of Figure 14-1 are arranged 
in exactly the same way as the Y addresses that were listed on the 40- 
column text map presented in Chapter 12. The Y addresses in Figure 
14-1, like those of the text map in Figure 12-1, are arranged in three 
groups of eight rows each. On the high-resolution map in Figure 14-1, 
the first group of row addresses extends from memory address $2000 to 
memory address $2380, and the second group extends from $2028 to 
$23A8. The third group of addresses extends from $2050 to $23D0.

At first glance, the layouts of these two maps look exactly alike. 
However, there is one important difference in the way the two maps are 
interpreted in computer programs. The text map in Figure 12-1 is just 
what it looks like: a map of 1024 bytes of data. However, the 1024- 
square map in Figure 14-1 actually represents 8192 bytes of data—or 
$2000 bytes in hexadecimal notation. The next section will explain how 
8912 bytes can be fit into 1024 screen squares.

How the Apple llc/lle  
Creates a Screen Display

When you want the Apple Ilc/IIe to display a character on a 40-column 
text screen, you can simply store an Apple ASCII code number for that 
character on the screen map illustrated in Figure 12-1. Your Apple lie 
or lie will then convert that character into a certain pattern of dots and 
display that pattern in the appropriate position on the screen.

Figure 14-2 illustrates the dot pattern generated and displayed by 
the Apple Ilc/IIe operating system when the key for the letter A is 
pressed on the computer keyboard.

x
x x 

x x 
x x 
xxxxx
X X 
X X

Figure 14-2. Screen dot pattern for the letter A
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When your computer is in 40-column text mode, each rectangle on its 
screen map represents a single character code, or just one byte of data. 
But, when this byte of data is passed along to the Apple Ilc/IIe charac 
ter generating circuitry, it is converted into eight bytes (64 bits) of data. 
These eight bytes are then used to create a dot pattern on the screen.

When your computer is in high-res mode, however, it generates what 
is known as a bit-mapped screen display. When bit-mapping is used to 
create an Apple Ilc/IIe screen display, the computer programmer has 
direct control over each dot that is displayed on the screen. Instead of 
storing one byte in a screen-map location and leaving it up to the com 
puter to convert that byte into a bit pattern, the programmer must store 
eight bytes of data in each of the 1064 rectangles shown on the memory 
map. Bit-mapping a high-resolution screen, therefore, requires eight 
times 1024 bytes, or 8192 bytes. (That’s $2000 bytes in hexadecimal 
notation.)

Since 8192 bytes are needed to bit-map a high-res screen, and since 
there are only 1024 cells on the map in Figure 14-1, it is obvious that 
some kind of trick must be used before the map in Figure 14-1 can be 
used to map a high-resolution screen. Since eight lines of dots on a high- 
resolution screen occupy the same space on the display as one row of 
characters, the total number of dot lines on a high-res display is eight 
times 24, or 192.

To display all of these rows on a high-resolution screen, the subset 
consisting of all of the first lines of dots in the first group of eight rows 
on the high-res screen map is stored in the first 1024 bytes of the block 
of memory being used for a high-resolution display. The subset consist 
ing of all of the second lines of dots is stored in the second 1024 bytes of 
screen memory—and so on, for a total of eight times 1024, or 8192 
bytes. In other words, each block of 1024 bytes in the high-resolution 
display page contains one line of dots out of every group of eight rows.

There is a short (if not simple) equation that you can use to locate the 
exact memory address of any byte on a high-resolution screen. Program 
14-1 is a short BASIC program that contains this equation. In this pro 
gram, Q stands for “quotient,” R stands for “remainder," and VP stands 
for the vertical position of a dot on a screen, expressed as a line number 
ranging from 0 to 192. When the equation in the program is solved, it 
will yield the value of YP, which stands for “Y position." In this equa 
tion, the Y position is the starting address of the line on the screen map 
that contains the desired byte. Once this value has been determined, you 
can add the byte’s X offset to the value of YP. The result of this calcula 
tion is the byte’s exact memory address.
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Program 14-1
Formula for Locating a Line Number on a High-Resolution Screen*
10 Q1 = INT (VP / 8 ) : R1 = VP -  Q1 * 8
20 Q2 = INT (Q1 / 8) : R2 = Q1 -  Q2 * 8
30 YP = 8192 + Q2 * 40 + R2 + 128 + R1 * 1024

* Adapted from a program in Graphically Speaking, a book by Mark
Pelczarski (Softalk Books, 830 Fourth Avenue, Geneva, Illinois 60134,
1983). Used by permission.

If you wanted to write a high-resolution graphics program in 
BASIC, you could use an equation like the one in Program 14-1 every 
time you wanted to plot a dot on the screen. It would make much more 
sense, however, to use the equation to set up a table of all 192 Y ad 
dresses on a high-resolution screen. Then your program could locate the
Y address of a screen line at any time by simply consulting that table.

Program 14-2
Program for Creating a Y-Address Lookup Table*
10 FOR VP = 0 TO 191
20 Q1 = INT (VP / 8 ) : R1 = VP -  Q1 * 8
30 02 = INT (Q1 / 8) : R2 = 01 -  Q2 * 8
40 YP = 8192 + Q2 * 40 + R2 + 128 + R1 * 1024
50 POKE 28672 + VP,  INT (YP / 256)
60 POKE 28864 + VP, YP -  INT (YP / 256) * 256 
70 NEXT VP

* Adapted from a program in Graphically Speaking, a book by Mark 
Pelczarski (Softalk Books, 830 Fourth Avenue, Geneva, Illinois 60134,
1983). Used by permission.

Program 14-2 is a BASIC program that creates a table of Y addresses. 
The program then stores that table in a segment of RAM beginning at 
memory address $7000 (28672 in decimal notation). The low byte of each
Y address is stored in the block of memory that begins at $7000, and the 
high byte of each Y address is stored in a second block of memory that 
begins at $70C0 (28864 in decimal notation). This strange-sounding pro 
gram actually makes using the table easier, since the offset that fetches 
the high byte of a Y address can also be used to fetch the low byte.

When you use a program like Program 14-2 to create a table, you 
can store the table on a disk as a binary file with a ProDOS command 
such as

BSAVE T A B L E , A 2 8 6 7 2 , L 3 8 4

As you may know, the number following the A in this command is 
the address where you want to store the table in memory. The number
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after the L is the length, in bytes, of the block of data that you want to 
store. This technique can be used for storing machine-language pro 
grams on a disk, as well as for storing data. Of course, once a program 
or data table has been stored on a disk, it can be easily retrieved from 
the disk and incorporated into other machine-language programs. Fur 
ther details on this process can be found in Apple’s ProDOS Technical 
Manual and other ProDOS manuals.

You may type and run Program 14-2 if you like, but there’s really no 
need to. The same routine, translated into assembly language, appears 
in the next program we’ll be examining. That program, called 
PRNTCHRS, is presented in Program 14-3. PRNTCHRS was created 
using a Merlin Pro assembler. With minor modifications, it will also 
work when typed and run using an Apple ProDOS assembler.

Program 14-3 
The PRNTCHRS Program 

1 *

2 * PRNTCHRS.S
3 *
4 ORG $ 6 F FD
5 *
6 JMP START
7 *
8 KYBD EQU $C000
9 STROBE EQU $C010 

10  *

11 TEMPLO EQU $06
12 TEMPHI EQU TEMPLO+1
13 CBASLO EQU TEMPHI+1
14 CBASHI EQU CBASL0+1
15 TABPTR EQU $4A
16 *
17 FILVAL EQU $300
18 TABSIZ EQU FILVAL+1
19 QU0T1 EQU TABSIZ+1
20 QU0T2 EQU QU0T1+1
21 REMDR1 EQU QU0T2+1
22 REMDR2 EQU REMDR1+1
23 YLINE EQU REMDR2+1
24 PR0DL EQU YLINE+2
25 PRODH EQU PRODL+1
26 MPRL EQU PRODH+1
27 MPRH EQU MPRL+1
28 MPDL EQU MPRH+1
29 MPDH EQU MPDL+1
30 TOTAL EQU MPDH+1
31 XPSN EQU TOTAL+2
32 YPSN EQU XPSN+1
33 *
34 KILOBYTE EQU 1024
35 SCRTOP EQU $2000
36 *
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PTRH EQU $8000 
PTRL EQU $80C0 
*
CHRTAB EQU $7000 
 

HEX 2 0 2 4 2 8 2 C3034383C2 0 2 4 2 8 2 C3034383C 
HEX 2 1 2 5 2 9 2 D3 1 3 5 3 9 3 D212 5 2 9 2 D3 1 3 5 3 9 3 D 
HEX 22262A2E32363A3E22262A2E32363A3E 
HEX 2 3272B2F33373B3F23272B2F33373B3F  
HEX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0  
HEX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0  
HEX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0  
HEX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0  
HEX 2 8 2 8 2 8 2 8 2 8 282828A8A8A8A8A8A8A8A8 
HEX 2828282828282828A8A8A8A8A8A8A8A8  
HEX 2828282828282828A8A8A8A8A8A8A8A8  
HEX 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 A8A8A8A8A8A8A8A8 
HEX 5050505050505050D0D0D0D0D0D0D0D0 
HEX 5050505050505050D0D0D0D0D0D0D0D0 
HEX 5050505050505050D0D0D0D0D0D0D0D0 
HEX 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0  DOD0D0D0D0D0D0 
HEX D0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 C1C1C1C001C1C 
HEX 00363 62 43 6 0 0 0 0 0 0 0 0 1 2 3  F3F123F3F12 
HEX 0 00 C3 F 03 3F303F0C000027170F3C3A39  
HEX 0 0 0 6 0 9 0 2 0 4 2 A11 2 EOOOCOC080C000000  
HEX 0 0 3 8 1 C0E0E0E1C38000E1C3838381C0E 
HEX 0 0 0 8 2 A1C3E1C2A08000C0C3 F3 FOCOCOO 
HEX 0 0 0 0 0 0 0 0 0 0 0 0 1 C1 8 0 C0 0 0 0 3 E3EOOOOOO 
HEX 0 0 0 0 0 0 0 0 0 0 0 0 1 C1 C00607038 1 C0 E0703 
HEX 0 0 1 E3 3 3 3 3 3 3 3 3 3 1 E 0 0 3 C 3 6 3 3 3 0 3 0 3 0 3 0  
HEX 0 0 1 E3F33 3 80E3F3F001E3 F303 E303 F1 E 
HEX 0 0 3 8 3 C3 6 3 3 3 F 3 0 3 0 0 0 3 F 3 F 0 3 1 F303F1E 
HEX 0 0 1 C0 6 0 3 1 F3 3 3 3 1 E003 F3F3 01 8 0 COCOC 
HEX 0 0 1 E3F331E333F1E001E3 F333E303E1E 
HEX 0 0 0 0 1 C1C0 0 0 0 1 C1C0 0 0 0 1 C1C0 0 0 0 1 C18 
HEX OC7 0 3 8 1 C0E1C3 8 7 0 0 0 0 0 3 E3E003E3EOO 
HEX 0 0 0 7 0 E1 C381COE07001E3F33180C00 
HEX 0 C0 07 F 7F7F7F7F7F7F7F1E3F333F3F33  
HEX 3 3 0 0 1 F 3 F 3 3 1 F 3 3 3 F 1 F 0 0 1 E 3 F 3 3 0 3 3 3 3 F 
HEX 1 E0 01 F3F3 3 3 3 3 3 3 F1F0 03 F3F0 3 1 F0 3 3 F 
HEX 3 F 0 0 3 F 3 F 0 3 1 F 1 F 0 3 0 3 0 0 1 E3F033B333F 
HEX 1 E0 03333333F3F3333003F3F0C0C0C3F 
HEX 3F00B0B0B0B0B3BF9E80333B1F0F1F3B 
HEX 3 3 0 0 0 3 0 3 0 3 0 3 0 3 3 F 3F0063776B636363  
HEX 6 3 0 0 3 3 3 3 3 7 3 F3B333 3 0 0 1 E3F3333333F 
HEX 1 E 0 0 1 F 3 F 3 3 3 F 1F 0 30 30 01 E3 F 23 23 2B 13  
HEX 2E00 1 F3 F 33 3F 1 F 3B33 00 1E3F 0 31 E3 03 F  
HEX 1 E003F3F0C0C0C0C0C0033335333333F 
HEX 1E00333 33 33 33 31 EOC0 0 6 3 6 3 6 3 6B6B77 
HEX 6 3 0 0 3 3 3 3 1 EOC1 E333 3 0 0 3 3 3 3 3 3 1 EOCOC 
HEX 0 C0 03 F 3 F 1 8 0 C0 6 3 F 3 F0 0 1 F 1 F 0 3 0 3 0 3 1 F  
HEX 1 F0 0 0 3 0 7 0 E1C387 060001 FI FI  8 1 8 1 8 1 F 
HEX 1 F 0 0 0 C1 E3 F 0 0 0 0 0 0 0 0 0 0 8 0 8 0 8 0 8 0 8 0  
HEX 8 0 FFFF060C1 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 E303E 
HEX 333 E0003031 F3333331 F0000001 E33 03 
HEX 3 3 1 E0 0 3 0 3 0 3 E3333333EOOOOOO1 E331F 
HEX 0 3 1 E 0 0 1 C 3 6 0 6 1 F 0 6 0 6 0 6 0 0 0 0 0 0 1 E3333 
HEX 3 E30 1 E0 30 31 F 3 3 3 3 3 3 3 3 0 0 0 0 0 C0 0 0 C0 C
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95 HEX 0C0C00300030303033331E030333180F
96 HEX 1B33000E0COCOCOCOC1E0000003FSB5B
97 HEX 5B5B0000001F333333330000001E3333
98 HEX 3 3 1 E0000001F33331F030300003E3333
99 HEX 3E303000001F330303030000001E031E

100 HEX 301E0006061F0606361C000000333333
101 HEX 3 3 3 E0000003333331EOC0000006D6D6D
102 HEX 6D7E000000331E0C1E33000000333333
103 HEX 3E301E00003F180C063F001C1E060706
104 HEX 1E1COOOCOCOCOCOCO COCOC0E1E183818
105 HEX 1E 0E 000000281400000000FFFFFFFF
106  
107   SET UP TABLE OF SCREEN ROW COORDINATES
108  
109 START LDY #0
110 YLOOP' CPY #192
111 BCC CONT
112 JMP EXIT
113  
114 * DIVIDE Y BY 8
115  
116 CONT T Y A
117 LSR
118 LSR
119 LSR
120 STA QU0T1
121  
122   GET REMAINDER OF DIVISION BY 8
123  
124 T Y A
125 AND #7
126 STA REMDR1
127  
128   DIVIDE QU0T1 BY 8
129  
130 LD A QU0T1
131 LSR
132 LSR
133 LSR
134 STA QU0T2
135  
136   GET REMAINDER
137  
138 LD A QU0T1
139 AND #7
140 STA REMDR2
141  
142 * CALCULATE LOW BYTE OF Y ADDRESS
143  
144 LD A #o
145 STA MPRH
146 STA MPDH
147 L D A QU0T2
148 STA MPRL
149 LD A #40
150 STA MPDL
151 J SR MULT16
152 L D A PRODL



153
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156
157
1 58
159
160
161
162
163
164
165
166
167
168
169
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175
176
177
178
179
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STA TOTAL
LD A PROD H
STA TOTAL+1

 
LD A #0
STA MPRH
STA MPDH
LD A REMDR2
STA MPRL
LD A #128
STA MPDL
JSR MULT16
CLC
LD A PRODL
ADC TOTAL
STA TOTAL
LD A PROD H
ADC TOTAL+1
STA TOTAL+1

 
LD A #0
STA MPRH
LD A REMDR1
STA MPRL
LD A #<KILOBYTE
STA MPDL
LD A #>KILOBYTE
STA MPDH
JSR MULT 16
CLC
LD A PRODL
ADC TOTAL
STA TOTAL
LD A PRODH
ADC TOTAL+1
STA TOTAL+1

*
CLC
LD A #<SCRTOP
ADC TOTAL
STA PTRL, Y
L D A #>SCRTOP
ADC TOTAL+1
STA PTRH,Y

 
INY
JMP YLOOP

*
EXIT EQU *

  I N I T I A L I Z E  SCREEN DISPLAY
�

IN IT STA SC050 ; TU RN OFF TEXT MODE 
STA $C052 ; TURN OFF MIXED MODE 
STA SC057 ; TURN ON HI-RES MODE

*

  CLEAR SCREEN
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211 LDA #0
212 STA FILVAL
213 LDA #$00
214 STA TABPTR
215 STA TABSIZ
216 LDA #$20
217 STA TABPTR+1
218 STA TABSIZ+1
219 JSR BLKFIL
220  *

221 * PRINT CHARACTER ON SCREEN
222  *

223 LDA #0
224 STA XVALUE
225 STA XPSN
226 STA YVALUE
227 STA YPSN
228 PRINTIT LDA KYBD
229 CMP #$80
230 BCC PRINTIT
231 STA STROBE
232 AND #$7 F ; CLEAR HIGH BIT
233 STA CHAR
234 LDX XPSN
235 STX XVALUE
236 LDY YPSN
237 STY YVALUE
238 JSR PRNTCHRS
239 *
240 * RESET SCREEN COORDINATES
241 *
242 LDX XPSN
243 IN X
244 CPX #40
245 BCC NEXT
246 CLC
247 LDA YPSN
248 ADC #8
249 CMP #185
250 BCC ITSOK
251 LDA #0
252 ITSOK STA YPSN
253 LDX #0
254 NEXT STX XPSN
255 JMP PRINTIT
256 *
257 * 16- BIT  MULTIPLICATION ROUTINE
258 *
259 MULT16 LDA #0
260 STA PRODL
261 STA PRODH
262 LDX #16
263 SHIFT ASL PRODL
264 ROL PRODH
265 ASL MPRL
266 ROL MPRH
267 BCC NOADD
268 CLC
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301
302
303
304
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LDA MPDL 
ADC PROD L 
STA PRO D L 
LDA MPDH 
ADC PRODH 
STA PRODH

NOADD DEX 
BNE SHIFT  
RTS

 
* PRNTCHRS ROUTINE
 
PRNTCHRS LD A #<CHRTAB  

STA CBASLO
LD A #> CHRTAB
STA CBASHI
LD A CHAR
LSR
LSR
LSR
LSR
LSR
CLC
ADC CBASHI
STA CBASHI
LD A CHAR
AND #$1 F
ASL
ASL
ASL
CLC
ADC CBASLO
STA CBASLO
LDX tto

LOOP LDY YVALUE
LD A PTRL , Y
STA TEMPLO
LD A PTRH,Y
STA TEMPHI
TX A
TAY
LD A (CBASLO) , Y
LDY XVALUE
STA ( TEMPLO) , Y
INC YVALUE
IN X
CPX #8
BNE LOOP
RTS

�

  BLOCK FILL  ROUTINE
�

BLKFIL  LD A FILVAL  
LDX TABSIZ+1 
BEQ PARTPG
l d y  no

FULLPG STA ( T ABP T R) . Y  
INY
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327 BNE FULLPG
328 INC TABPTR+1
329 DEX
330 BNE FULLPG
331 PARTPG LDX TABSIZ
332 BEQ FINI
333 LDY #0
334 PARTLP STA ( TABPTR) , Y
335 INY
336 DEX
337 BNE PARTLP
338 FINI RTS
339 *
340 CHAR DFB 0
341 XVALUE DFB 0
342 YVALUE DFB 0
343 *

Examining the PRNTCHRS Program

The PRNTCHRS program includes a long block of hexadecimal num 
bers that extends from line 42 to line 105. This section is actually a table 
of bit data that equates to a set of text characters similar to the ones 
built into the character-generator ROM of the Apple lie. Predesigned 
character sets such as the one used in this program are provided with a 
number of graphics utility packages. For example, the character set in 
the PRNTCHRS program is included in The Complete Graphics System 
from Penguin Software and is used here by permission. If you have a 
graphics package that includes a character set, you can substitute that 
set for the one in the PRNTCHRS program. You can even write your 
own, if you like.

If you use a substitute character set, it should be loaded into RAM 
starting at memory address $7000. If you use a character set that starts 
at some other address, you can copy it onto a disk, load it back into 
memory starting at $7000, and then copy it back onto a disk as a new 
file with a starting address of $7000. Once you have a character set that 
starts at $7000, you can substitute it for the one in the PRNTCHRS 
program by deleting lines 42 through 105 of the program, loading your 
own character set into RAM, and simply running the program. If you 
do use a substitute character set, be sure not to delete line 40, which 
tells the program where to look for a character set in memory. If you 
leave that line out of the program, the character set you use will never 
be found.

The PRNTCHRS program begins at line 6 with a JMP instruction 
that hops over the character set and goes to line 109. In the section of 
the program that begins there and extends through line 201, a Y-
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address lookup table is created and stored in a block of memory that 
starts at $8000. The routine that creates this table works exactly like the 
one in Program 14-2. The table-creating routine in the PRNTCHRS 
program is much longer than the routine in Program 14-2, but it works 
much faster because it is written in assembly language.

When the PRNTCHRS program finishes creating and storing its Y- 
address lookup table, it initializes a high-resolution graphics screen and 
clears High-Resolution Display Page 1 to black by storing a 0 in every 
byte on Display Page 1. To clear the screen, the program uses a block- 
fill subroutine that starts at line 321. This is a handy routine, since it 
can rapidly fill any block of RAM with any desired value. Using a vari 
able called FILVAL (fill value) and fancy low-byte and high-byte 
addressing techniques, it does its job in two stages. First, it fills as 
many IK pages (not display pages) as possible with the value of FIL 
VAL. Then it fills in any remaining partial page.

The heart of the PRNTCHRS program is the section that extends 
from line 223 to line 228. The first thing that happens in this block of 
code is that the screen coordinates for the first character to be 
displayed—represented by the variables XVALUE and YVALUE —are 
set to 0. The first character that is typed will therefore be displayed in 
the upper-left corner of the screen.

After the screen coordinates are set, a commonly used keyboard 
reading algorithm begins. Two important memory registers appear in 
this algorithm: memory address $C000, which is labeled KYBD, and 
memory address $C010, which is labeled STROBE. KYBD is a ROM 
address that can be checked to see whether a key has been pressed, and 
STROBE is a soft switch that can be used to clear a keyboard character 
after the character has been read.

When a key is pressed on an Apple Ilc/IIe keyboard, several things 
happen. First, the ASCII code for the character that has been typed is 
stored in the accumulator. Then bit 7 of memory register $C000 is set. 
By keeping an eye on memory address $C000, a program can look to see 
whether a character has been typed. As soon as a character has been 
typed, its ASCII code can be fetched from the accumulator.

In the PRNTCHRS program, memory address $C000 is checked in 
lines 228 and 229. In line 228, the accumulator is loaded with the value 
of $C000; in line 229, that value is compared with the literal value #$80. 
If the content of $C000 is less than 80, then bit 7 of $C000 has not been 
set, indicating that no character has been typed. If no character has 
been typed, the program will loop back to line 228. If bit 7 of $C000 is 
clear, however, a character has been typed, so the program will clear
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the keyboard strobe by accessing Soft Switch $C010. (A write operation 
is used for this operation in the PRNTCHRS program but, because of 
the peculiar way in which Apple II soft switches work, a read operation 
would also clear the strobe.) Clearing the strobe also clears the key 
board so another key can be read.

When a key has been pressed and the keyboard strobe has been 
cleared, the high bit of the value in the accumulator is cleared and the 
resulting value is stored in a variable called CHAR. The high bit of the 
accumulator is cleared because the character set in the PRNTCHRS 
program does not include any reverse, flashing, or alternate-font char 
acters. In the Apple ASCII system, such characters are assigned ASCII 
code numbers that have their high bits set. Since there are no such 
characters in the PRNTCHRS character set, the high bit of the ASCII 
code in the accumulator is cleared.

Once the ASCII code for a character has been stored in the variable 
CHAR, the bit pattern corresponding to that character must be found 
in the character set that begins at memory address $7000. Then the 
character’s bit pattern can be displayed on the screen.

The process of searching out a character’s bit pattern starts at line 
281. In lines 281 through 283, the starting address of the character-set 
table—which is called CHRTAB—is loaded into a pair of variables 
called CBASLO (character base-low) and CBASHI (character base- 
high). Then the accumulator is loaded with the ASCII code stored in the 
variable CHAR, and a series of LSR instructions is used to divide that 
value by 32. This operation is carried out because the character-set 
table fills four IK pages of memory, and each page holds the bit data for 
32 characters. Since the character table is arranged in ASCII-code 
order, dividing a character’s ASCII number by 32 will tell us what page 
it is on in the character table. Then, since it takes eight bytes to form a 
character, the remainder multiplied by eight will give us the charac 
ter’s location on that page.

In lines 294 through 301, a neat trick is used to calculate the 
remainder that must be multiplied by eight. In this segment of the pro 
gram, a logical AND operation is performed on the literal number $1F 
(decimal 31) and the ASCII code of the number stored in CHAR. Since 
31 is one less than 32—or 0001 1111 in binary notation—using AND on 
31 with any number will yield the remainder of a division of that 
number.

In lines 299 through 392, the quotient of the division problem we 
have just performed is added to the high byte of CHRTAB—the start 
ing address of the character table. The remainder of our division by 32
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is added to the low byte of CHRTAB and stored in CBASLO. When 
these two operations are complete, the high-order byte of the address of 
the character we’re seeking will be stored in the variable CBASHI, and 
the low byte will be stored in the variable CBASLO.

In the next section of the PRNTCHRS program, the variables XPSN 
and YPSN (X position and Y position) are used to represent the current 
screen coordinates of the last character displayed on the screen, while 
XVALUE and YVALUE represent the X offset of the next character to 
be printed. Two constants, PTRL and PTRH (pointer-low and pointer- 
high), hold the starting addresses of the low-byte and high-byte Y- 
lookup tables stored at memory addresses $8000 and $80C0. Two more 
variables, TEMPLO and TEMPHI, hold the starting address of the bit 
data that will be used to display the desired character on the screen.

The rest of the PRNTCHRS program uses indirect addressing, 
along with loops that increment and decrement registers, to display the 
bit patterns of characters on a screen. Using these techniques, the pro 
gram fetches consecutive bytes of character data from the character 
table at $7000. Then, using the same X offset and a series of different Y 
addresses, the program stores those eight bytes in a neat stack that 
forms a character on the screen.

Improving the PRNTCHRS Program

As you can see when you type, assemble, and run the PRNTCHRS pro 
gram, it could use some improvement. It has no backspacing feature for 
making corrections, and it offers no easy way to place a character in 
any specific position on the screen. Furthermore, there is no cursor, so 
there’s no way to tell exactly where a character will be displayed when 
it is placed on the screen.

If you run the PRNTCHRS program on a color television set or a 
color monitor, you’ll encounter one other problem: the letters that the 
program produces won’t be pure white. Instead, most of them have 
muddy-looking colors around the edges. Unfortunately, this “rainbow 
effect” is difficult to avoid when small characters are displayed on the 
Apple Ilc/IIe screen during high-resolution mode. As we shall soon see, 
the problem is caused by the color-generating techniques that Apple II 
computers use when they are in high-resolution mode. For reasons that 
will be made clear later in this chapter, dots that are turned on in cer 
tain dot columns on the Apple screen sometimes show up in one color 
while dots in the next column are displayed in another color.

The problem does not affect the Apple Ilc/IIe when it is in text
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mode, which uses different techniques to generate a video display. If 
you want to mix text and graphics on a high-resolution screen, however, 
there are two simple ways to avoid the rainbow effect. You can use a 
monochrome monitor, or you can improve the resolution by displaying 
larger characters on the screen.

Program 14-4, called HEADLINES, offers at least partial solutions 
to the problems presented in this section. HEADLINES, written on a 
Merlin Pro assembler, includes a backspace feature for error correc 
tion, and the characters that it produces, because of their size, can be 
placed easily anywhere on the screen. Its giant-sized characters also 
solve the rainbow problem.

Program 14-4
The HEADLINES Program 
1 *

2 * HEADLINES.S
3 *
A ORG $6 F F D
5 *
6 JMP START
7 *
8 KYBD EQU $C000
9 STROBE EQU $C010

10 *

11 TEMPLO EQU $06
12 TEMPHI EQU TEMPL0+1
13 CBASLO EQU TEMPHI+1
14 CBASHI EQU CBASL0+1
15 TABPTR EQU $4A
16 *
17 FILVAL EQU $300
18 TABSIZ EQU FILVAL+1
19 QU0T1 EQU TABS IZ +1
20 QU0T2 EQU QU0T1+1
21 REMDR1 EQU QU0T2+1
22 REMDR2 EQU R EM DR 1+1
23 YLINE EQU REMDR2+1
24 PRODL EQU YLINE+2
25 PRODH EQU PRODL+1
26 MPRL EQU PRODH+1
27 MPRH EQU MPRL+1
28 MPDL EQU MPRH + 1
29 MPDH EQU MPDL+1
30 TOTAL EQU MPDH+1
31 XPSN EQU TOTAL+2
32 YPSN EQU XPSN+1
33 COUNT EQU YPSN+1
34 OB EQU COUNT+1
35 NB1 EQU OB+1
36 NB2 EQU NB1+1
37 YCOUNT EQU NB2+1
38  
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93
94
95

KILOBYTE EQU 1024 
SC RTOP EQU $2000 
 
PTRH EQU $4000 
PTRL EQU $ 4 0 CO 
 

CHRTAB EQU *
*

HEX 2024282C3034 38 3 C2024282C3034 3 8 3 C 
HEX 2125292D3135393D2125292D31353930  
HEX 22262A2E32363A3E22262A2E32363A3E  
HEX 23272B2F33373B3F23272B2F33373B3F  
HEX 00000000000000008080808080808080  
HEX 00000000000000008080808080808080  
HEX 00000000000000008080808080808080  
HEX 00000000000000008080808080808080  
HEX 2828282828282828A8A8A8A8A8A8A8A8  
HEX 2828282828282828A8A8A8A8A8A8A8A8  
HEX 2828282828282828A8A8A8A8A8A8A8A8  
HEX 2828282828282828A8A8A8A8A8A8A8A8  
HEX 5050505050505050D0D0D0D0D0D0D0D0  
HEX 5050505050505050D0D0D0D0D0D0D0D0  
HEX 5050505050505050D0D0D0D0D0D0D0D0 
HEX 5050505050505050D0D0D0D0D0D0D0  
HEX D000000000000000001C1C1C1C001C1C  
HEX 003636243600000000123F3F12 3 F3F12 
HEX 000C3F033F303 FOC0000271 7 0 F3C3A39 
HEX 00060902042A112E000C0C080C000000  
HEX 0 0 3 8 1 C0E0E0E1C38000E1C3838381COE  
HEX 00082A1C3E1C2A08000C0C3F3FOCOCOO 
HEX 0000000000001C180C00003E3EOOOOOO 
HEX 0000000000001C1C006070381C0E0703 
HEX 0 0 1 E33333333331E003C363330303030  
HEX 001E3F33380E3F3F001E3F303E303F1E  
HEX 00 3 8 3 C36333F3030003F3F031F303F1E  
HEX 0 0 1 C06031F33331E003F3F30180C0C0C  
HEX 0 0 1 E3F331E333F1E001E3 F333 E303 E 1E 
HEX 00 0 0 1 C1C00001C1C00001C1C00001C18 
HEX 0C70381C0E1C387000003E3E003E3EOO  
HEX 00070E1C381C0E07001E3F33180C00  
HEX 0C007F 7F 7F 7F 7F 7F7F 7F 1E3F 333F 3F 33  
HEX 3 3 0 0 1 F3F331F333F1F001E3F3303333F  
HEX 1E 001F 3F 3333333F1F003F3F031F033F  
HEX 3F003F3F031F1F0303001E3F033B333F  
HEX 1E003333333F3F3333003F3F0C0C0C3F  
HEX 3F00B0B0B0B083BF9E80333B1F0F1F3B  
HEX 3300030 3 0 3 0 3 03 3 F3F00637 7 6 B636363 
HEX 6 3 0 0 33 3 3 3 7 3 F3B3333001E3F3333333F  
HEX 1E001F3F333F1F0303001E3F23232B13  
HEX 2E 001F 3F333F1F3B33001E 3F031E 303F  
HEX 1E003F3F0C0C0C0C0C0033333333333F  
HEX 1E0033 3 3 3333331EOC006363636B6B77 
HEX 6 3 0 0 33 3 3 1 EOC1E3333003333331EOCOC  
HEX 0 C 0 03 F 3 F 1 8 0 C 06 3 F 3 F 0 0 1 F 1F 0 3 0 3 0 3 1F 
HEX 1 F0003070E1C387060001F1F1818181F  
HEX 1 F0 0 0 C1E 3F 00000000008080808080  
HEX 8 0 FF F F 0 6 0 C1 8300000000000001E303E
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96 HEX 333E0003031F3333331F0000001E3303
97 HEX 3 3 1 E0030303E3333333E0000001E331F
98 HEX 0 31E001C36061F0606060000001E3333
99 HEX 3E301E03031F3333333300000COOOCOC

100 HEX 0 COC00300030303033331 E0303331BOF
101 HEX 1B33000E0C0C0C0C0C1E0000003 F5B5B
102 HEX 5B5B0000001F333333330000001E3333
103 HEX 3 3 1 E0000001F33331F030300003E3333
104 HEX 3 E303000001 F330303030000001 E031 E
105 HEX 3 0 1 E0006061F0606361C000000333333
106 HEX 3 3 3 E000000333 3 3 3 1 EOC0 0 00006D6D6D
107 HEX 6 D7E000000331E0C1E33000000333333
108 HEX 3E301E00003F180C063F001C1E060706
109 HEX 1E1C000C0C0C0C0C0C0C0C0E1E183818
110 HEX 1E0E0000002814 0 0 0 00 0 0 0 FFFFFFF  F
111  
112   SET UP TABLE OF SCREEN ROW COORDINATES
113 *
114 START LD Y #0
115 Y LOOP CPY #192
116 BCC CONT
117 JMP EXIT
118 *
119 * DIVIDE Y BY 8
120 *
121 CONT TYA
122 LSR
123 LSR
124 LSR
125 STA QU0T1
126  
1 27   GET REMAINDER OF DIVISION BY 8
128  
129 T Y A
130 AND #7
131 STA REMDR1
132  
133 * DIVIDE QU0T1 BY 8
134  
135 LD A QU0T1
136 LSR
137 LSR
138 LSR
139 STA QU0T2
140  
141 * GET REMAINDER
142  
143 LD A QU0T1
144 AND #7
145 STA REMDR2
146  
147 * CALCULATE LOW BYTE OF Y ADDRESS
148  
149 LD A #0
1 50 STA MPRH
151 STA MPDH
152 L D A QU0T2
153 STA MPRL



154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
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LD A #40
STA MPDL
J SR MULT16
LD A PROD L
STA TOTAL
LD A PRODH
STA TOTAL+1

*
LD A #0
STA MPRH
STA MPDH
LD A REMDR2
STA MPRL
LD A #128
STA MPDL
J SR MULT16
CLC
LD A P ROD L
ADC TOTAL
STA TOTAL
LD A PRODH
ADC TOTAL+1
STA TOTAL+1

*
LD A #0
STA MPRH
LD A REMDR1
STA MPRL
LD A #<KILOBYTE
STA MPDL
L D A #>KILOBYTE
STA MPDH
JSR MULT16
CLC
LD A PRODL
ADC TOTAL
STA TOTAL
L D A PRODH
ADC TOTAL+1
STA TOTAL+1

 
CLC
LD A #<SCRTOP
ADC TOTAL
STA PTRL, Y
L D A #>SCRTOP
ADC TOTAL+1
STA PTRH,Y

 
INY
JMP YLOOP

 
EXIT EQU *

  I N I T I A L I Z E  SCREEN DISPLAY
*
INIT STA $ C050 ; TURN OFF TEXT MODE 

STA $ C 05 2 ; TU RN OFF MIXED MODE
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212 STA SC057 ; TURN
213  
214   CLE AR SCREEN
215  
216 LD A #o
217 STA FILVAL
218 LD A #$oo
219 STA TABPTR
220 STA TABSIZ
221 LD A #$20
222 STA TAB PTR + 1
223 STA TABSIZ+1
224 JSR BLKFIL
225  
226 * PRI NT CHARACTER
227  
228 LD A #0
229 STA XVALUE
230 STA XPSN
231 STA YVALUE
232 STA YPSN
233  
234 SHOWC HRS JSR PRIN
235 JSR RESET
236 JMP SHOWCHRS
237 *
238 PRINT IT LD A KYBD
239 CMP #$80
240 BCC PRINTIT ; NO
241 STA STROBE
242 AND #$7 F ; CLEAR
243 CMP #8 ; LE FT ARR
244 BEQ BACKUP
245 CMP #127 ; DELETE
246 BN E JUMP
247  
248 BACKUP JSR MOVEBA
249 LD A #32 ; SPAC E
250 STA CHAR
251 LD A XPSN
252 STA XVALUE
253 LD A YPSN
254 STA YVALUE
255 JSR PRNTCHRS
256 JSR MOVEBACK
257 RTS
258  
259 MOVEBACK LDX XPSN
260 DEX
261 DEX
262 BPL LEAP
263 LD A YPSN
264 SEC
265 SBC #16
266 STA YPSN
267 LDX #38
268 LEAP STX XPSN
269 RTS

ON H I - R E S  MODE

ON SCREEN

T I T

KEY P R E S S E D ;  TRY AGAIN

HIGH B I T  
OW P R ESS ED ?

KEY

K



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
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JUMP CMP #32 ; CONTROL KEY PRESSED? 
BCC PRINTIT  
STA CHAR 
LDX XPSN 
STX XV ALU E 
LDY YPSN 
STY YVALU E 
JSR PRNTCHRS 
RTS

�

  RESET SCREEN COORDINATES
�

RESET LDX XPSN 
IN X 
INX
CPX #40 
BCC NEXT 
CLC
LDA YPSN 
ADC #16 
CMP #185 
BCC ITSOK 
LD A #0

ITSOK STA YPSN 
LDX #0

NEXT STX XPSN 
RTS

 
* 16- BI T  MULTIPLICATION ROUTINE
 
MULT16 LD A #0 

STA PRODL 
STA PROD H 
LDX #16

SHIFT ASL PRODL 
ROL PRODH 
ASL MPRL 
ROL MPRH 
BCC NOADD 
CLC
LD A MPDL 
ADC PRODL 
STA PRODL 
L DA M PD H 
ADC PRODH 
STA PRODH 

NOADD DEX 
BN E SHIFT  
RTS  

  PRNTCHRS  ROUTINE
�

PRNTCHRS LDA #<CHRTAB 
STA CBASLO 
LD A #> C H RT AB 
STA CBASHI  
LDA CHAR
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328 LSR
329 LSR
330 LSR
331 LSR
332 LSR
333 CLC
334 ADC CBASHI
335 STA CBASHI
336 LD A CHAR
337 AND # $1 F
338 ASL
339 ASL
340 ASL
341 CLC
342 ADC CBASLO
343 STA CBASLO
344 LDX #0
345 STX COUNT
346 LOOP LDY YVALUE
347 LD A PTRL, Y
348 STA TEMPLO
349 LD A PTRH,Y
350 STA TEMPHI
351 TX A
352 TAY
353 LD A (CBASLO) , Y
354 STA OB
355 *
356 * SPLIT ORIGINAL BYTE INTO NB1 AND NB2
357 *
358 ASL OB
359 *
360 LDY #3
361 LOOPA ASL OB
362 ROL NB2
363 SEC
364 ROL NB2
365 DEY
366 BN E LOOP
367 ASL OB
368 ROL NB2
369  
370 LDY #3
371 LOOPS SEC
372 ROL NB1
373 ASL OB
374 ROL NB 1
375 DEY
376 BN E LOOP
377 SEC
378 ROL NB 1
379  
380 L D A NB 1
381 ORA #$80
382 STA NB 1
383 LD A NB2
384 ORA #$80



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

Apple Graphics 291

STA NB2
 
* BACK TO ORIGINAL PROGRAM NOW

LD A #2
STA YCOUNT

*
TWICE LDA NB1

LD Y XVALUE
STA (TEMPLO) , Y
INC XVALUE
LD A NB2
LD Y XVALUE
STA (TEMPLO) , Y
LDX XPSN
STX XVALUE
INC YVALUE

 
LDX YCOUNT
DEX
STX YCOUNT
BEQ HOP

 
LDX YVALUE
LD A PTRL , X
STA TEMPLO
LD A PTRH,X
STA TEMPHI
JMP TWICE

 
HOP LDX COUNT

IN X
STX COUNT
CPX #8
BEQ SKIP
JMP LOOP

SKIP RTS
 
* BLOCK FILL  ROUTI
 
BLKFI L  LDA FILVAL

LDX TABSIZ+1
BEQ PARTPG
LD Y #0

FULLPG STA (TABPTR
INY
BN E FULLPG
INC TABPTR+1
DEX
BN E FULLPG

PARTPG LDX TABSIZ
BEQ FINI
LD Y #0

PARTLP STA (TABPTR
INY
DEX
BN E PARTLP
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442 FINI RTS
443 *
444 CHAR DFB 0
445 XVALUE DFB 0
446 YVALUE DFB 0
447 *

To understand how the HEADLINES program works, it helps to 
know something about the way the Apple lie and the Apple He generate 
color displays on a monitor screen. Figure 14-3 shows how your comput 
er’s color-generating system works.

As you can see in Figure 14-3, each character displayed on a high- 
resolution screen is represented by eight bytes of bit-map data. How 
ever, only seven bits in each byte are actually displayed on the screen. 
The high-order bit is not displayed, but is used as a color bit. In each 
byte on a screen map, the color bit determines what colors will be used 
when the other bits in the same byte are displayed on the screen.

With the help of the color bit in each byte, six colors can be dis 
played on an Apple IIc/Apple He high-resolution screen: black, white, 
green, violet, orange, and blue.

If the bits in a byte do not have to be displayed in color, but only in 
black and white, the setting of the color bit in that byte does not matter. 
If two screen dots situated next to each other are turned on —that is, if 
the two adjacent bits that represent them are set to 1—both dots will be 
displayed in white. However, if two screen dots situated next to each 
other are turned off—if the two adjacent bits that represent them are 
cleared to 0—both dots will be displayed in black.

When colors other than black and white are to be displayed on a 
screen, bits are not set or cleared in pairs. Instead, only one bit is set for 
each two bits to be displayed on the screen. If an even-numbered bit is 
set and the bit on its right is cleared, then both bits will be displayed in 
the color indicated by the set bit. If an even-numbered bit is cleared and 
the bit on its right is set, both bits will still be displayed in color, but the 
colors will be different.

As we have seen, the color bit of a byte is also a factor in determining 
a screen color. If the color bit of a byte is set, the colors generated by the 
other bits in that byte will be orange and blue. If the color bit of a byte 
is cleared, the colors generated by the other bits in that byte will be 
green and violet.

Still another factor that is used to determine screen colors is the 
column position of a given byte on the screen. If a byte is in an even- 
numbered screen column, then even-numbered bits will produce one 
color and odd-numbered bits will produce another: if a byte is in an 
odd-numbered screen column, these colors will be reversed. This may



Apple Graphics 293

Even Byte Columns Odd Byte Columns

0 1 2 3 4 5 6  7* 0 1 2 3 4 5 6  7*

Figure 14-3. How the Apple lie  and lie generate colors on the screen

sound like a strange way to lay out a screen map, but it does make sense. 
Since only seven bits in each byte are displayed on the screen, each 
screen column contains an odd number of dots. If the same on-off pat 
tern were used to generate the colors of even-numbered and odd- 
numbered bytes, then a pair of set bits or a pair of cleared bits would sit 
next to each other at each byte change, and the result would be either a 
pair of white dots or a pair of black dots. This problem has been avoided 
by using alternating dot patterns to produce the same color in even- 
numbered and odd-numbered columns on the screen. Thus a given on- 
off dot pattern can be used to generate a single color all the way across 
the screen.
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How Screen Data Is Stored in RAM

Before we move on to a line-by-line analysis of the HEADLINES pro 
gram, there is one more point that should be noted. As strange as this 
may sound, dots are reproduced on the Apple Ilc/IIe screen in the 
reverse order from the way they are stored in RAM. When a byte is 
stored in RAM, bit 0 (the low-order bit) is on the right and bit 7 (the 
high-order bit) is on the left. On an Apple Ilc/IIe screen display, how 
ever, the screen dot represented by bit 0 is on the left and the screen dot 
represented by bit 6 is on the right. (Bit 7, the color bit, is not displayed 
on the screen.)

Figure 14-4 shows how a dot pattern for the letter B might look on a 
screen, what that dot pattern would look like when converted into on-off 
screen data, and how the eight bytes used for the character would actu 
ally be stored in memory. As you can see, the bytes stored in RAM mir 
ror their corresponding bit patterns on the Apple Ilc/IIe screen.

How the HEADLINES Program Works

The HEADLINES program is quite similar to the PRNTCHRS pro 
gram. In fact, it’s the same program, with a few added improvements.

Appearance 
On Screen

0 1 2 3 4 5 6

•  •

•  •

•  •

Screen Dot 
Settings

0 1 2 3 4 5 6

1 1 1 1 1 0 0

1 1 0 0 1 1 0

1 1 0 0 1 1 0

1 1 1 1 1 0 0

1 1 0 0 1 1 0

1 1 0 0 1 1 0

1 1 1 1 1 0 0

0 0 0 0 0 0 0

Bytes Stored 
In RAM

7* 6 5 4 3 2 1 0

X 0 0 1 1 1 1 1

X 0 1 1 0 0 1 1

X 0 1 1 0 0 1 1

X 0 0 1 1 1 1 1

X 0 1 1 0 0 1 1

X 0 1 1 0 0 1 1

X 0 1 1 1 1 1 1

X 0 0 0 0 0 0 0

*Color bit

Figure 14-4. How a screen character is stored in RAM
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The most obvious difference between PRNTCHRS and HEAD 
LINES is that the characters displayed by HEADLINES are four 
times as large as those generated by PRNTCHRS, although they’re 
generated by exactly the same character set that was used for the 
PRNTCHRS program.

Another difference between the two programs is that the characters 
in the HEADLINES program are displayed against a blue background 
rather than the black background used in the PRNTCHRS program. 
Also, the characters are pure white with clean outlines, not vaguely 
defined and rainbow-edged like the characters in the PRNTCHRS 
program.

Still another difference between the programs is that HEADLINES 
has a built-in backspacing feature for error-correcting. Although the 
HEADLINES program doesn’t use a cursor, it usually isn’t too difficult 
to figure out where the next character will appear on the screen, since 
the program creates its blue background as it moves along.

The system that is used to blow up characters in the HEADLINES 
program is not really very difficult to understand. In lines 356 through 
421 of Program 14-4, each byte to be displayed on the screen is 
expanded into two bytes. The memory address in which the original 
byte is stored is labeled OB, and the two new bytes that are used to store 
the expanded byte are labeled NBl and NB2.

In lines 356 through 421, OB is expanded into NBl and NB2 with a 
series of ASL and ROL instructions. As these ASL and ROL operations 
take place, a set bit is inserted after each bit in the original byte. That 
insertion keeps the white characters in OB white but changes their 
background to a color. The program also sets the color byte of each bit, 
sets the even-numbered bits in even-numbered bytes, and sets the odd- 
numbered bits in odd-numbered bytes. These settings make the back 
ground of the displayed characters blue.

Once an original byte has been expanded into a pair of bytes labeled 
NBl and NB2, the two new bytes are displayed next to each other on 
the screen, making the character twice as wide as it is in the character 
set used by the program. After NBl and NB2 are displayed, their Y 
position is incremented to the address of the next Y line on the screen 
and they are displayed again, one pair of bytes right under the other. 
Thus each character on the screen is twice as high as it is in the charac 
ter set being used.

When a complete character has been displayed in this fashion, a rou 
tine called RESET (lines 283 to 297) is used to set the screen variables
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XPSN and YPSN to the proper settings for the display of another char 
acter. If the DELETE key or the left ARROW key is pressed, however, a 
routine called BACKUP (lines 248 to 269) is used to back up an invisible 
cursor, to clear the last character typed by displaying a space, and to 
back up again so that a new character can be typed. This backspacing 
feature makes it easy to correct typing errors when you use the HEAD 
LINES program.

Although HEADLINES was designed as a demonstration program, 
it could be expanded quite easily into a useful utility. With the addition 
of a simple screen-dump routine, screens created by the program could 
be stored on a disk and then used as title screens and for other kinds of 
eye-catching screen displays.

Double High-Resolution Graphics

With the advent of the Apple lie  and the Apple He, the world of double 
high-resolution graphics has been opened to Apple II programmers. If 
you have an Apple lie  or a properly equipped Apple He, you can use 
double high-resolution graphics to display up to 16 colors on a high- 
resolution screen or to increase the horizontal resolution of a mono 
chrome screen to 560 dots.

Furthermore, the color of each dot in a double high-resolution dis 
play can be controlled individually. Thus there are no restrictions on 
what colors can be placed next to each other within a byte—and the 
only restriction on the number of colors that can be displayed within a 
byte is the actual number of dots available.

The Apple lie  and He use a technique to generate double high- 
resolution graphics that resembles the one employed to produce an 80- 
column text display. When double high-resolution graphics are being 
used, the Apple Ilc/IIe fetches display data from the same screen map 
that is used in standard high-resolution graphics: High-Resolution Dis 
play Page 1, which extends from $2000 to $3FFF. In the double high- 
resolution graphics mode, though, the data retrieved from Display Page 
1 comes from both main and auxiliary memory. In a double high- 
resolution display, bytes from main and auxiliary memory are inter 
leaved in the same way that bytes are interleaved in an 80-column text 
display. A double high-resolution screen, like an 80-column text screen, 
measures 80 bytes wide. Even-numbered byte columns, starting with 
Column $00, come from auxiliary memory. Odd-numbered byte columns 
starting with Column $01 come from main memory.
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How Double High-Resolution 
Colors Are Programmed

The double high-resolution graphics mode generates colors differently 
from standard high-resolution graphics. In double high-resolution 
graphics, just as in standard high-resolution graphics, only seven bits of 
each byte are displayed on the screen. However, in a double high- 
resolution display, the high-order bit of each byte on the screen is not a 
color bit. In fact, in double high-resolution graphics the high-order bit 
of each byte is not significant. It is neither shown on the screen nor used 
as a color bit. It is simply not used at all.

Instead of using a color bit to set the color of each byte on the screen, 
the double high-resolution graphics mode sets the color of each dot on 
the screen in a very direct manner. A double high-resolution color dis 
play has an effective horizontal resolution of 140 dots—exactly the same 
resolution as a standard high-resolution display. However, a double 
high-resolution display has much more memory at its disposal than a 
standard high-resolution display. Thus, in a double high-resolution dis 
play, four bits of memory (instead of a single color bit) are used to 
determine the color of each dot on the screen. Table 14-1 lists the colors 
used in double high-resolution graphics, along with the code number of 
each color expressed in both hexadecimal and binary notation.

In double high-resolution graphics, as in standard high-resolution 
graphics, the bits used for dot patterns are displayed in reverse order

Table 14-1. Colors Used in Double High-Resolution Graphics

Color Hex Code Binary Code
Black $0 0000
Dark red $1 0001
Dark blue $2 0010
Violet $3 0011
Dark green $4 0100
Gray 1 $5 0101
Dark blue $6 0110
Light blue $7 0111
Brown $8 1000
Orange $9 1001
Gray 2 $A 1010
Pink $B 1011
Green $C 1100
Yellow $D 1101
Light green $E 1110
White $F m i



298 Apple Roots

from the way they are stored in RAM. Therefore, the dot patterns used 
to represent colors in double high-resolution graphics are the mirror 
images of their actual bit patterns. Table 14-2 lists the binary code for 
each color used in double high-resolution graphics, along with the dot 
pattern that is used to display each color on the screen.

Figure 14-5 illustrates how this color data is displayed and encoded 
in the 80 bytes of screen memory that are used to store each line of dots 
on the screen in RAM. Since only seven bits in each byte of screen 
memory are used, the bits that are used to generate color codes do not 
line up with the bytes in which they are stored. That fact makes double 
high-resolution graphics programs somewhat difficult to write. Before 
a program can display a given dot in a desired color on a screen, it must 
carry out a series of rather complex calculations. First, it must calcu 
late the column number of the byte in which the dot will appear. Then it 
must determine whether the data used to display the desired column 
will come from main memory or auxiliary memory. The program must 
also calculate the position of the desired bit within the desired byte. 
Then comes the most difficult problem. Since the dot patterns used to 
generate colors don’t line up very well with the boundaries of the bytes 
displayed on the screen, the arrangements of dots needed to draw a 
color differ from byte to byte. Specifically, there are four different dots 
that can be used to express each of the 16 colors used in double high- 
resolution graphics, and the dot pattern that must be used depends 
upon the column number of the byte in which the dot will appear.

Table 14-2. Dot Patterns of Colors Used in Double High-Resolution Graphics

Color Binary Code Dot Pattern

Black 0000 0000
Dark red 0001 1000
Dark blue 0010 0100
Violet 0011 1100
Dark green 0100 0010
Gray 1 0101 1010
Dark blue 0110 0110
Light blue 0111 1110
Brown 1000 0001
Orange 1001 1001
Gray 2 1010 0101
Pink 1011 1101
Green 1100 0011
Yellow 1101 1011
Light green 1110 0111
White 1111 m i
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Bytes
in RAM 6 5 4 3 2 1 0 6 5 4 3 2 1 0 6 5 4 3 2 1 0 6 5 4 3 2 1 0

Bytes on
screen map 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

Bvtes on
screen 0 1 2 3 0 1 2  3 0 1 2 3 0 1 2 3 0  1 2 3 0 1 2 3 0 1 2 3

Color ^  i’ " i
codes $xx $xx $xx $xx

Figure 14-5. How RAM bytes and color codes are displayed in double high-resolution 
graphics

One way to simplify the writing of a double high-resolution graphics 
program is to set up a table containing all of the color-code numbers 
used in double high-res graphics. That table can then be inserted into a 
machine-language program and consulted for the appropriate color- 
code number each time a color is used. Table 14-3 lists all 16 of the 
colors available in double high-resolution graphics, together with the 
four code numbers that are used for each color.

Table 14-3. Double High-Resolution Colors and Code Numbers

Color

Black 
Magenta 
Brown 
Orange 
Dark green 
Gray 1 
Green 
Yellow 
Dark blue 
Purple 
Gray 2 
Pink
Medium blue 
Light blue 
Aqua 
White

Aux. Memory, 
Even Columns

$00
$08
$44
$4C
$22
$2A
$66
$6E
$11
$19
$55
$5D
$33
$3B
$77
$7F

Main Memory, 
Even Columns

$00
$11
$08
$19
$44
$55
$4C
$5D
$22
$33
$2A
$3B
$66
$77
$6E
$7F

Aux. Memory, 
Odd Columns

$00
$22
$11
$33
$08
$2A
$19
$3B
$44
$66
$55
$77
$4C
$6E
$5D
$7F

Main Memory, 
Odd Columns

$00
$44
$22
$66
$11
$55
$33
$77
$08
$4C
$2A
$6E
$19
$5D
$3B
$7F
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Writing a Program in Double Hi-Res Graphics Program 14-5, titled 
DUBHIRES, is a type-and-run program that demonstrates how colors 
are programmed in double high-resolution graphics. It was written 
using a Merlin Pro assembler—but, like the other programs in this 
chapter, it can also be typed and run on an Apple ProDOS assembler 
with relatively minor modifications.

Program 14-5
A Double High-Resolution Graphics Program

1 *

2 * DUBHIRES.S
3 *
4 * THIS PROGRAM DISPLAYS ALL 16 OF THE COLORS THAT ARE
5 * AVAILABLE IN APPLE I I C / I I E  DOUBLE HIGH-RESOLUTION

GRAPHICS.
6 *

7 ORG $8000
8  
9 JMP INIT 

10  *

11 KILOBYTE EQU 1024
12 SCRTOP EQU $2000
13 *
14 LOOKHI EQU $9000
15 L00KL0 EQU $90C0
16 *
17 * SOFT SWITCHES
18 *
19 C0L80 EQU $C00D
20 TEXTOFF EQU $C050
21 MIXEDOFF EQU $C052
22 HIRES EQU $C057
23 ST0RE80 EQU $C001
24 PAGE20N EQU $C055
25 PAGE20FF EQU $C054
26 DHIRES EQU $C05E
27 *
28 * USER-DEFINED CONSTANTS
29 *
30 SCRPTR EQU $06
31 TEMPLO EQU SCRPTR+2
32 TEMPHI EQU TEMPLO+1
33 TABPTR EQU $1A
34 COLUMN EQU TABPTR+1
35 ROW EQU C OLUMN + 2
36 *
37 CLRFLG EQU $300
38 CLRPTR EQU CLRFLG+1
39 FILVAL EQU CLRPTR+1
40 TABSIZ EQU FILVAL+1
41 QUOT1 EQU TABSIZ+1
42 QUOT2 EQU QU0T1+1
43 REMDR1 EQU QU0T2+1
44 REMDR2 EQU REMDR1+1
45 YLINE EQU REMDR2+1



46 PRODL EQU YLINE+2
47 PROD H EQU PRODL + 1
48 MPRL EQU PRODH+1
49 MPRH EQU MPRL+1
50 MPDL EQU MPRH+1
51 MPDH EQU MPDL+1
52 TOTAL EQU MPDH+1
53 XPSN EQU TOTAL+2
54 YPSN EQU XPSN+1
55 CODENR EQU YPSN+1
56 BARCNT EQU CODENR+1
57 *
58 COLORS EQU *
59 *
60 WHITE HEX 7 F , 7 F , 7 F , 7 F
61 BLACK HEX 0 0 , 0 0 , 0 0 , 0 0
62 MAG HEX 0 8 , 1 1 , 2 2 , 4 4
63 BROWN HEX 4 4 , 0 8 , 1 1 , 2 2
64 ORANGE HEX 4 C , 1 9 , 3 3 , 6 6
65 DGREEN HEX 2 2 , 4 4 , 0 8 , 1 1
66 GRAY1 HEX 2 A , 5 5 , 2 A , 5 5
67 GREEN HEX 6 6 , 4 C , 19, 33
68 YELLOW HEX 6 E , 5 D , 3 B , 7 7
69 DBLUE HEX 1 1 , 2 2 , 4 4 , 0 8
70 PURPLE HEX 1 9 , 3 3 , 6 6 , 4C
71 GRAY2 HEX 5 5 , 2 A , 5 5 , 2 A
72 PINK HEX 5 D , 3 B , 7 7 , 6 E
73 MBLUE HEX 3 3 , 6 6 , 4 C , 19
74 LBLUE HEX 3 B , 7 7 , 6 E , 5 D
75 AQUA HEX 7 7 , 6 E , 5 D , 3 B
76 *
77 * SET UP DOUBLE HI-RES SCREEN
78 *
79 INIT LDA #0
80 STA STORE80
81 STA TEXTOFF
82 STA MIXEDOFF
83 STA PAGE20FF
84 STA HIRES
85 STA C0L80
86 STA DHIRES
87 *
88 * I N I T I A L I Z E  POINTERS
89 *
90 LDA #0
91 STA COLUMN
92 STA ROW
93 STA BARCNT
94 *
95 LDA #<SCRTOP
96 STA SCRPTR
97 LDA #>SCRTOP
98 STA SCRPTR+1
99 *

100 * SET UP Y ADDRESS TABLE
101 *
102 J SR MAKETAB
103 *
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104 * MAIN PROGRAM STARTS HERE
105 *
106 STA PAGE20N
107 JSR PRNTROW
108 STA PAGE20FF
109 JSR PRNTROW
110 RTS
111 *

112 PRNTROW LDY ROW
113 LDA LOOKLO,Y
114 STA TEMPLO
115 LDA LOOKHI,Y
116 STA TEMPHI
117 CLEARX LDX #0
118 LDY COLUMN
119 NXTCOL STA PAGE20N
120 JSR PRINT
121 STA PAGE20F F
122 JSR PRINT
123 INY
124 CPY #40 ;80 COLUMNS DONE YET?
125 BCS ROWDUN
126 STY COLUMN
127 CPX #4
128 BCS CLEARX
129 JMP NXTCOL
130 ROWDUN LDX ROW
131 IN X
132 CPX #192
133 BCS ALLDUN
134 JSR SETBAR
135 STX ROW
136 LDA #0
137 STA COLUMN
138 JMP PRNTROW
139 ALLDUN RTS
140 *
141 * SET UP TABLE OF SCREEN ROW COORDINATES
142 *
143 MAKETAB LDY #0
144 YLOOP CPY #192
145 BCC MOVEON
146 JMP EXIT
147 *
148 * DIVIDE Y BY 8
149 *
150 MOVEON TYA
151 LSR
152 LSR
153 LSR
154 STA QU0T1
155 *
156 * GET REMAINDER OF DIVISION BY 8
157 *
158 TYA
159 AND #7
160 STA REMDR1



161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
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  DIVIDE QU0T1 BY 8
 

LDA QUOT1
LSR
LSR
LSR
STA QU0T2

 
* GET REMAINDER
 

LDA QU0T1 
AND #7 
STA REMDR2

*
  CALCULATE LOW BYTE OF

LD A #0
STA MPRH
STA MPDH
LD A QU0T2
STA MPRL
L D A U 40
STA MPDL
J SR MULT16
LD A PRODL
STA TOTAL
LD A PRODH
STA TOTAL+1

LD A #0
STA MPRH
STA MPDH
LD A REMDR2
STA MPRL
LD A #128
STA MPDL
J SR MULT 16
CLC 
LD A PRODL
ADC TOTAL
STA TOTAL
LD A PRODH
ADC TOTAL+1
STA TOTAL+1

LD A #0
STA MPRH
LD A REMDR1
STA MPRL
LD A #<KILOBYTE
STA MPDL
LD A #>KILOBYTE
STA MPDH
JSR MULT 16
CLC 
LD A PRODL

ADDRESS
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218 ADC TOTAL
219 STA TOTAL
220 L D A PRODH
221 ADC TOTAL+1
222 STA TOT AL +1
223  
224 CLC
225 LD A #<SCRTOP
226 ADC TOTAL
227 STA LOOKLO,Y
228 LD A #>SCRTOP
229 ADC TOTAL+1
230 STA LOOKHI,Y
231  
232 INY
233 JMP YLOOP
234  
235 EXIT RTS
236  
237 * 16- BIT MULTIPLICATION ROUTINE
238  
239 MULT 16 LOA U0
240 STA PROD L
241 STA PRODH
242 LDX n 16
243 SHIFT ASL PRODL
244 ROL PRODH
245 ASL MPRL
246 ROL MPRH
247 BCC NOADD
248 CLC
249 LD A MPDL
250 ADC PRODL
251 STA PRODL
252 LD A M PD H
253 ADC PRODH
254 STA PRODH
255 NOADD DEX
256 BNE SHIFT
257 RTS
258  
259 * SELF-MODIFYING COLOR-PRINTING ROUT
260  
261 PRINT LDA COLORS,X
262 STA ( TEMPLO), Y
263 IN X
264 RTS
265  
266 * ROUTINE TO SET UP NEW COLOR BAR
267  
268 SETBAR TX A
269 PHA
270 LDX BARCNT
271 IN X
272 CPX #12
273 BCC LEAP
274 LD A PRINT+1
275 CLC
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276 ADC
277 STA
278 LDA
279 ADC
280 STA
281 LDX
282 LEAP
283 PLA
284 TAX
285 RTS

#4
PRINT+1
PRINT+2
# o
PRINT+2
#0
STX BARCNT

The DUBHIRES program starts at line 9 with a jump instruction 
that hops over a block of introductory data and goes to line 79, labeled 
INIT. This block of instructions, the first segment of executable code in 
the DUBHIRES program, turns on a group of soft switches that initial 
ize the double high-resolution graphics mode. All of these soft switches 
reside on Page $C0 of the Apple Ilc/IIe memory. The switch labeled 
DHIRES, situated at memory address $C05E, controls an annunciator 
that permits the use of double high-resolution graphics rather than text 
in what would ordinarily be the Apple Ilc/IIe’s 80-column text mode. 
(The uses of the other switches used in lines 79 through 86 were 
explained in Chapter 12.) The TEXTOFF switch, as its name implies, 
turns off your computer’s text mode and completes the job of enabling 
the use of graphics. The MIXEDOFF switch turns off the text window 
that is sometimes displayed at the bottom of an Apple Ilc/IIe text 
screen. HIRES sets up a high-resolution graphics screen, COL80 turns 
on your computer’s 80-column firmware, and STORE 80 determines 
whether the PAGE20FF switch will be used to switch between Text 
and High-Resolution Display Pages 1 and 2 or between the text and 
high-resolution display pages in main and auxiliary memory. Since the 
double high-resolution graphics mode interleaves the display pages in 
main and auxiliary memory, the STORE80 setting used in the DUB 
HIRES program is the one that switches between main and auxiliary 
memory.

In lines 88 through 99 of the DUBHIRES program, some important 
pointers are initialized. Then, in line 102, a subroutine that sets up a 
Y-address lookup table is called. This subroutine, called MAKETAB, 
works just like table-making routines that were used in the PRNTCHRS 
and HEADLINES programs earlier in this chapter. In the DUB 
HIRES program, however, the subroutine is used to look up addresses 
in two segments of memory—the high-resolution display page in main 
memory and the high-resolution display page in auxiliary memory.

The main part of the DUBHIRES program is only five lines long; it 
extends from line 106 to line 110. Yet it makes use of the long table 
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making routine beginning at line 143, plus three other subroutines: one 
that prints single rows of colors, one that chooses the code number for 
each color used, and one that divides the colors being displayed on the 
screen into 16 horizontal color bars.

The subroutine that prints single rows of colors is labeled PRNTROW 
and extends from line 112 to line 139. This block of code uses a simple 
loop to draw a colored line from the left of the screen to the right, call 
ing the MAKETAB routine to determine the memory address in which 
each byte in the line should be stored in order to make it appear in the 
correct position on the screen.

The colors used in the DUBHIRES program are taken from a color 
table that appears in lines 58 through 69. The color codes provided by 
this table are looked up and printed on the screen by a subroutine called 
PRINT, which appears in line 261. The PRINT subroutine is called 
from line 120 of the DUBHIRES program.

PRINT is noteworthy because it uses a recursive programming 
technique called address modification. Assembly-language routines that 
use address-modification techniques are sometimes called self-modifying 
routines.

When the DUBHIRES program is first loaded into memory, the 
PRINT subroutine uses indexed addressing to print the color white on a 
screen. As you can see by looking at the PRINT routine, this color comes 
from a line of data labeled COLOR—specifically, the string of data in 
line 60 of the DUBHIRES program.

After the PRINTROW and PRINT routines have been used to print 
a white bar on the screen, a routine called SETBAR is called. The 
SETBAR routine uses a loop to change the color being displayed so that 
a bar of another color can be shown. This is where the technique of 
address modification comes in.

To understand how address modification works, it helps to consider 
how assembly language and machine language are related. As we have 
seen, line 261 of the DUBHIRES program is labeled PRINT. Thus, 
when the program is assembled into machine language, the first byte of 
machine code in the line labeled PRINT will be a machine-language 
instruction that equates to the assembly-language mnemonic LDA.

Now look at the statement LDA COLORS.X in Line 261. This state 
ment was written using an addressing mode known as absolute indexed 
addressing.  According to the rules of Applellc/IIe assembly-language 
addressing, the absolute indexed addressing mode always uses a two- 
byte operand. Thus the operand COLORS,X is a two-byte operand.

When the DUBHIRES program is assembled into machine lan-
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guage, the assembly-language instruction LDA (which means “load the 
accumulator”) will be converted into the machine-language op code 
$BD. When the op code $BD is encountered in a machine-language pro 
gram, the value of the X register is added to the address specified by 
the two-byte operand that follows the op code, and the result of this 
calculation becomes the effective address of the instruction LDA. Once 
the effective address has been determined, the value stored in that 
address is loaded into the accumulator.

Since the operand COLORS,X follows an instruction which has been 
labeled PRINT, the first byte of the two-byte operand COLORS,X could 
also be referred to by the designation PRINT+1. Similarly, the second 
byte of the operand COLORS,X could be referred to as PRINT+2. And 
that is exactly how these two bytes are referred to in lines 274 through 
280, the section of the DUBHIRES program which makes use of the 
technique of address modification.

Once you understand how address modification works, it isn’t hard to 
understand how the technique is used in the DUBHIRES program. In 
Line 274, the literal number 4 is simply added to the contents of the two 
bytes referred to as PRINT+1 and PRINT+2 (in other words, to the 
operand of the LDA instruction in line 261). Then, the next time the 
PRINT subroutine is executed, the accumulator will be loaded not with 
the original value of the COLORS,X, but with that value plus U- The 
next time the SETBAR routine is called, the value of COLORS,X will 
again be incremented by four, and so on.

Self-modifying code, when properly used, can save both time and 
memory in an assembly-language program. It can also serve as a handy 
alternative to indirect indexed addressing when the Y register is being 
used for other purposes, as it is in the PRINT routine of the DUB 
HIRES program.
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Assembly-Language 
To Machine-Language 
Conversion Chart

Mnemonic Address Form at Function
ADC 61 Ind,X Add with carry
ADC 65 Zpg
ADC 69 Imm
ADC 6D Abs
ADC 71 Ind,Y
ADC 72* (Zpg)*
ADC 75 Zpg.X
ADC 79 Abs,Y
ADC 7D Abs,X

*(in first column) New mnemonic
(in second column) New machine-language op code
(in third column) New address mode
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Mnemonic Address Form at Function
AND 21 Ind,X Logical AND
AND 25 Zpg
AND 29 Imm
AND 2D Abs
AND 31 Ind,Y
AND 32* (Zpg)*
AND 35 Zpg,X
AND 39 Abs,Y
AND 3D Abs,X
ASL 06 Zpg Arithmetic shift left
ASL 0A Acc
ASL 0E Abs
ASL 16 Zpg,X
ASL IE Abs,X
BCC 90 Rel Branch if carry clear
BCS BO Rel Branch if carry set
BEQ F0 Rel Branch if equal to zero
BIT 24 Zpg Compare memory bits 

with accumulator
BIT 2C Abs
BIT 34* Zpg.X
BIT 3C* Abs.X
BIT 89* Imm
BMI 30 Rel Branch on minus
BNE DO Rel Branch if not equal to 

zero
BPL 10 Rel Branch on plus
BRA* 80* Rel Branch always
BRK 00 Imp Force break
BVC 50 Rel Branch if overflow clear
BVS 70 Rel Branch if overflow set
CLC 18 Imp Clear carry flag

!(in first column) New mnemonic
(in second column) New machine-language op code
(in third column) New address mode
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Mnemonic Address Form at Function
CLD D8 Imp Clear decimal flag
CLI 58 Imp Clear interrupt flag
CLV B8 Imp Clear overflow flag
CMP Cl Ind,X Compare memory with

CMP C5 Zpg
accumulator

CMP C9 Imm
CMP CD Abs
CMP D1 Ind,Y
CMP D2* (Zpg)*
CMP D5 Zpg,X
CMP D9 Abs,Y
CMP DD Abs,X
CPX EO Imm Compare memory with X

CPX E4 Zpg
register

CPX EC Abs
CPY CO Imm Compare memory with Y

CPY C4 Zpg
register

CPY CC Abs
DEA or 
DEC A* 3A* Acc Decrement accumulator
DEC C6 Zpg Decrement memory
DEC CE Abs
DEC D6 Zpg.X
DEC DE Abs,X
DEX CA Imp Decrement X register
DEY 88 Imp Decrement Y register
EOR 41 Ind.X Exclusive EOR
EOR 45 Zpg
EOR 49 Imm
EOR 4D Abs

*(in first column) New mnemonic
(in second column) New machine-language op code
(in third column) New address mode
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Mnemonic Address Form at Function
EOR 51 Ind,Y
EOR 52* (Zpg)*
EOR 55 Zpg,X
EOR 59 Abs.Y
EOR 5D Abs,X
INA or 
INC A* 1A* Acc Increment accumulator
INC E6 Zpg Increment memory
INC EE Abs
INC F6 Zpg.X
INC FE Abs,X
INX E8 Imp Increment X register
INY C8 Imp Increment Y register
JMP 4C Abs Jump to address
JMP 6C (Abs)
JMP 7C* Abs(Ind.X)*
JSR 20 Abs Jump to subroutine
LDA A1 Ind.X Load accumulator
LDA A5 Zpg
LDA A9 Imm
LDA AD Abs
LDA Bl Ind.Y
LDA B2* (Zpg)*
LDA B5 Zpg.X
LDA B9 Abs.Y
LDA BD Abs,X
LDX A2 Imm Load X register
LDX A6 Zpg
LDX AE Abs
LDX B6 Zpg.Y
LDX BE Abs.Y
LDY AO Imm Load Y register
LDY A4 Zpg

* (in first column) New mnemonic 
(in second column) New machine- language op code
(in third column) New address mode
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Mnemonic Address Form at Function
LDY AC Abs
LDY B4 Zpg,X
LSR 46 Zpg Logical shift right
LSR 4A Acc
LSR 4E Abs
LSR 56 Zpg,X
LSR 5E Abs.X
NOP EA Imp No operation
ORA 01 Ind,X Logical OR
ORA 05 Zpg
ORA 09 Imm
ORA 0D Abs
ORA 11 Ind,Y
ORA 12* (Zpg)*
ORA 15 Zpg,X
ORA 19 Abs,Y
ORA ID Abs.X
PHA 48 Imp Push accumulator
PHP 08 Imp Push processor (P) 

register
PHX* DA* Imp Push X register
PHY* 5A* Imp Push Y register
PLA 68 Imp Pull accumulator
PLP 28 Imp Pull processor status (P) 

register
PLX* FA* Imp Pull X register
PLY* 7A* Imp Pull Y register
ROL 26 Zpg Rotate left
ROL 2A Acc
ROL 2E Abs
ROL 3E Abs.X
ROL 36 ZX

*(in first column) New mnemonic
(in second column) New machine-language op code
(in third column) New address mode
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Mnemonic Address Form at Function
ROR 66 Zpg Rotate right
ROR 6A Acc
ROR 6E Abs
ROR 76 Zpg,X
ROR 7E Abs,X
RTI 40 Imp Return from interrupt
RTS 60 Imp Return from subroutine
SBC E l Ind,X Subtract with carry
SBC E5 Zpg
SBC E9 Imm
SBC ED Abs
SBC F I Ind,Y
SBC F2* (Zpg)*
SBC F5 Zpg,X
SBC F9 Abs,X
SBC FD Abs,Y
SEC 38 Imp Set carry flag
SED F8 Imp Set decimal flag
SEI 78 Imp Set interrupt flag
STA 81 Ind,X Store accumulator
STA 85 Zpg
STA 8D Abs
STA 91 Ind,Y
STA 92* (Zpg)*
STA 95 Zpg,X
STA 99 Abs,Y
STA 9D Abs.X
STX 86 Zpg Store X register
STX 8E Abs
STX 96 Zpg.Y
STY 84 Zpg
STY 8C Abs
STY 94 Zpg.X

* (in first column) New mnemonic
(in second column) New machine-language op code
(in third column) New address mode



Assembly-Language/Machine Language Conversion 315

Mnemonic Address Form at Function
STZ* 64* Zpg Store zero
STZ* 74* Zpg,X
STZ* 9C* Abs
STZ* 9E* Abs,X
TAX AA Imp Transfer A to X
TAY A8 Imp Transfer A to Y
TRB* 14* Zpg Test and reset bits
TRB* 1C* Abs
TSB* 04* Zpg Test and set bits
TSB* OC* Abs
TSX BA Imp Transfer stack pointer 

to X
TXA 8A Imp Transfer X to A
TXS 9A Imp Transfer X to stack 

pointer
TYA 98 Imp Transfer Y to A

* (in first column) New mnemonic 
(in second column) New machine-language op code 
(in third column) New address mode





Machine-Language 
To Assembly-Language 
Conversion Chart

Object Code Mnemonic Address
00 BRK Imp
01 ORA Ind,X
04* TSB* Zpg
05 ORA Zpg
06 ASL Zpg
08 PHP Imp
09 ORA Imm
0A ASL Acc

* (in first column) New mnemonic
(in second column) New machine-language op code
(in third column) New address mode
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Object Code Mnemonic Address

OC* TSB* Abs
OD ORA Abs
OE ASL Abs
10 BPL Rel
11 ORA Ind,Y
12* ORA (Zpg)*
14* TRB* Zpg
15 ORA Zpg,X
16 ASL Zpg,x
18 CLC Imp
19 ORA Abs,Y
1A* INA or INC A* Acc
1C* TRB* Abs
ID ORA Abs,X
IE ASL Abs,X
20 JSR Abs
21 AND Ind,X
24 BIT Zpg
25 AND Zpg
26 ROL Zpg
28 PLP Imp
29 AND Imm
2A ROL Acc
2C BIT Abs
2D AND Abs
2E ROL Abs
30 BMI Rel
31 AND Ind.Y
32* AND (Zpg)*
34* BIT Zpg.X
35 AND Zpg.X
36 ROL ZX
38 SEC Imp
39 AND Abs,Y

* (in first column) New mnemonic
(in second column) New machine-language op code
(in third column) New address mode



Machine Language/Assembly-Language Conversion 319

Object Code Mnemonic Address
3A* DEA or DEC A* Acc
3C* BIT Abs,X
3D AND Abs,X
3E ROL Abs,X
40 RTI Imp
41 EOR Ind.X
45 EOR Zpg
46 LSR Zpg
48 PHA Imp
49 EOR Imm
4A LSR Acc
4C JMP Abs
4D EOR Abs
4E LSR Abs
50 BVC Rel
51 EOR Ind,Y
52* EOR (Zpg)*
55 EOR Zpg.X
56 LSR Zpg,X
58 CLI Imp
59 EOR Abs,Y
5A* PHY* Imp
5D EOR Abs,X
5E LSR Abs,X
60 RTS Imp
61 ADC Ind,X
64* STZ* Zpg
65 ADC Zpg
66 ROR Zpg
68 PLA Imp
69 ADC Imm
6A ROR Acc
6C JMP (Abs)
6D ADC Abs
6E ROR Abs

* (in first column) New mnemonic
(in second column) New machine-language op code
(in third column) New address mode
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Object Code Mnemonic Address
70 BVS Rel
71 ADC Ind,Y
72* ADC (Zpg)*
74* STZ* Zpg.X
75 ADC Zpg,X
76 ROR Zpg.x
78 SEI Imp
79 ADC Abs,Y
7A* PLY* Imp
7C* JMP Abs(Ind,X)
7D ADC Abs,X
7E ROR Abs,X
80* BRA* Rel
81 STA Ind.X
84 STY Zpg
85 STA Zpg
86 STX Zpg
88 DEY Imp
89* BIT Imm
8A TXA Imp
8C STY Abs
8D STA Abs
8E STX Abs
90 BCC Rel
91 STA Ind.Y
92* STA (Zpg)*
94 STY Zpg.X
95 STA Zpg.X
96 STX Zpg.Y
98 TYA Imp
99 STA Abs.Y
9A TXS Imp
9C* STZ* Abs
9D STA Abs.X
9E* STZ* Abs.X

* (in first column) New mnemonic
(in second column) New machine-language op code
(in third column) New address mode
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Object Code Mnemonic Address
AO LDY Imm
A1 LDA Ind,X
A2 LDX Imm
A4 LDY Zp g
A5 LDA Zpg
A6 LDX Zpg
A8 TAY Imp
A9 LDA Imm
AA TAX Imp
AC LDY Abs
AD LDA Abs
AE LDX Abs
BO BCS Rel
B1 LDA Ind,Y
B2* LDA (Zpg)*
B4 LDY Zpg,X
B5 LDA Zpg.X
B6 LDX Zpg,Y
B8 CLV Imp
B9 LDA Abs,Y
BA TSX Imp
BC LDY Abs,X
BC LDY Abs,X
BD LDA Abs,X
BE LDX Abs,Y
CO CPY Imm
Cl CMP Ind,X
C4 CPY Zpg
C5 CMP Zpg
C6 DEC Zpg
C8 INY Imp
C9 CMP Imm
CA DEX Imp
CC CPY Abs
CD CMP Abs

* (in first column) New mnemonic
(in second column) New machine-language op code
(in third column) New address mode
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Object Code Mnemonic Address
CE DEC Abs
DO BNE Rel
D1 CMP Ind,Y
D2* CMP (Zpg)*
D5 CMP Zpg.X
D6 DEC Zpg,X
D8 CLD Imp
D9 CMP Abs,Y
DA* PHX* Imp
DD CMP Abs,X
DE DEC Abs,X
EO CPX Imm
E l SBC Ind,X
E4 CPX Zpg
E5 SBC Zpg
E6 INC Zpg
E8 INX Imp
E9 SBC Imm
EA NOP Imp
EC CPX Abs
ED SBC Abs
EE INC Abs
FO BEQ Rel
FI SBC Ind.Y
F2* SBC (Zpg)*
F5 SBC Zpg,X
F6 INC Zpg.X
F8 SED Imp
F9 SBC Abs,Y
FA* PLX* Imp
FD SBC Abs,X
FE INC Abs.X

* (in first column) New mnemonic
(in second column) New machine-language op code
(in third column) New address mode
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Instruction Set

A D C A d d  M e m o ry  to  A c c u m u la to r  w ith  C a rry L D Y Load Index Y w ith  M e m o ry
A N D " A N D "  M e m o ry  w ith  A c c u m u la to r LS R S hift O n e  Bit R ight
A S L S h ift O n e  B it L eft N O P N o  O p e ra tio n
B C C B ra n c h  on  C a rry  C le a r •* O R A "O R " M e m o ry  w ith  A c c u m u la to r
B C S B ra n c h  on  C a rry  Set P H A Push A c c u m u la to r  on S tack
B E Q B ra n c h  on  R e su lt Z e ro P H P Push P roc essor Status on S tack

*  B IT Test M e m o ry  B its  w ith  A c c u m u la to r • P H X Push In d ex  X on  S tack
B M I B ra n c h  on  R e su lt M in u s • P H Y Push In d ex  Y on  S tack
B N E B ra n c h  on R e su lt Not Z e ro PLA Pull A c c u m u la to r  from  Stack
B P L B ra n c h  on  R e su lt P lus P L P Pull P rocessor S ta tus  from  S tack

•  B R A B ra n c h  A lw a y s • PLX Pull In d ex  X fro m  S tack
B R K F o rc e  B rea k • PLY Pull In d ex  Y fro m  S tack
B V C B ra n c h  on O v e rflo w  C le a r R O L R o ta te  O n e  Bit Left
B V S B ra n c h  on O v e rflo w  Set R O R R o ta te  O n e  Bit R ight
C L C C le a r  C a rry  F lag R T I R e tu rn  fro m  In te rru p t
C L D C le a r  D e c im a l M o d e R T S R e tu rn  fro m  S u b ro u tin e
C L I C le a r  In te rru p t D is a b le  Bit * S B C S u b trac t M e m o ry  from  A c c u m u la to r  w ith  B o rrow
C L V C le a r  O v e rflo w  Flag S E C Set C a rry  Flag

*  C M P C o m p a re  M e m o ry  an d  A c c u m u la to r S E D Set D e c im a l M o d e
C P X C o m p a re  M e m o ry  an d  In d e x  X SE I Set In te rru p t D isab le  Bit
C P Y C o m p a re  M e m o ry  an d  In d e x  Y * STA S to re  A c c u m u la to r  in M e m o ry

*  D E C D e c re m e n t by  O n e S T X S to re  In d ex  X in M e m o ry
D E X D e c re m e n t In d e x  X by O n e S T Y S to re  In d e x  Y in M e m o ry
D E Y D e c re m e n t In d e x  Y by O n e • S T Z S to re  Z e ro  in M e m o ry

*  E O R "E x c lu s iv e -o r"  M e m o ry  w ith  A c c u m u la to r TA X T ransfer A c c u m u la to r  to Index X
*  IN C In c re m e n t b y  O n e TAY T rans fer A c c u m u la to r  to In d ex  Y

IN X In c re m e n t In d e x  X by O n e • T R B Test and  Reset M e m o ry  B its w ith  A c c u m u la to r
IN Y In c re m e n t In d e x  Y by  O n e • T S B Test and  Set M e m o ry  Bits w ith  A c c u m u la to r

*  J M P J u m p  to  N e w  L o c a tio n T S X Trans fe r S tack  P o in te r to  In d ex  X
JS R J u m p  to  N e w  L o c a tio n  S aving  R e tu rn  A d dress T X A Tran s fe r In d e x  X to A c c u m u la to r

*  L D A L o a d  A c c u m u la to r  w ith  M e m o ry T X S T rans fer In d e x  X to  S tack  P o in te r
L D X Lo a d  In d e x  X w ith  M e m o ry TY A Tran s fe r In d ex  Y to A c c u m u la to r

N ote . •  = N e w  In s tru c tio n
*  = O ld Instruction w ith New  Addressing M odes

Note: ©Western Design Center, Inc. 
Used by permission.
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65C02 Op Code 
Table

\ l s o

m s d \ 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 BRK ORA 
md. X

TSB *  
zpg

ORA
zpg

ASL
zpg

PHP ORA
imm

ASL
A

TSB *  
abs

ORA
abs

ASL
abs

0

1 BPL
rel

ORA 
md. Y

O R A *
md

TRB *  
zpg

ORA 
zpg. x

ASL 
zpg. x

CLC ORA 
abs. Y

IN C *
A

TRB *  
abs

ORA 
abs. X

ASL 
abs X

1

2 JSR
abs

AND 
md. X

BIT
zpg

AND
zpg

ROL
Zpg

PLP AND
imm

ROL
A

BIT
abs

AND
abs

ROL
abs

2

3 BMI
rel

AND 
md. Y

A N D *
md

BIT *
zpg. x

AND 
zpg. X

ROL 
zpg. X

SEC AND 
abs. Y

DEC*
A

BIT *
abs. X

AND
abs. X

ROL 
abs. X

3

4 RTI EOR
md. X

EOR
zpg

LSR
zpg

PHA EOR
imm

LSR
A

JMP
abs

EOR
abs

LSR
abs

4

5 BVC
rel

EOR 
md. Y

E O R *
ind

EOR 
zpg. x

LSR 
zpg. X

CLI EOR 
abs. Y

PHY* EOR 
abs. X

LSR 
abs. X

5

6 RTS ADC 
md, X

STZ * 
zpg

ADC
zpg

ROR
zpg

PLA ADC
imm

ROR
A

JMP
md

ADC
abs

ROR
abs

6

7 BVS
rel

ADC 
md. Y

A D C *
md

STZ *  
zpg. X

ADC 
Zpg. X

ROR 
zpg. X

SEI ADC 
abs. Y

PLY* JMP *  
md, X

ADC 
abs. X

ROR 
abs. X

7

8 BRA *  
rel

STA 
md. X

STY
zpg

STA
zpg

STX
zpg

DEY BIT *
imm

TXA STY
abs

STA
abs

STX
abs

8

9 BCC
rel

STA 
md. Y

S T A *
ind

STY 
zpg. X

STA 
zpg. x

STX 
zpg. Y

TYA STA 
abs. Y

TXS S T Z *
abs

STA 
abs. X

STZ *  
abs. X

9

A LDY
imm

LDA
ind. X

LDX
imm

LDY
zpg

LDA
zpg

LDX
Zpg

TAY LDA
imm

TAX LDY
abs

LDA
abs

LDX
abs

A

B BCS
rel

LDA
ind. Y

LD A *
md

LDY
zpg. x

LDA
zpg. x

LDX 
zpg. Y

CLV LDA 
abs. Y

TSX LDY 
abs. X

LDA 
abs. X

LDX 
abs. Y

B

C CPY
imm

CMP 
ind. X

CPY
zpg

CMP
zpg

DEC
zpg

INY CMP
imm

DEX CPY
abs

CMP
abs

DEC
abs

C

D BNE
rel

CMP
md, Y

CM P*
ind

CMP 
zpg. X

DEC 
Zpg. X

CLD CMP 
abs. Y

PHX* CMP 
abs. X

DEC 
abs. X

D

E CPX
imm

SBC 
md. X

CPX
zpg

SBC
zpg

INC
zpg

INX. SBC
imm

NOP CPX
abs

SBC
abs

INC
abs

E

F BEO
rel

SBC 
md, Y

SBC*
md

SBC 
zpg. x

INC 
zpg. X

SED SBC 
abs, Y

PLX* SBC
abs. x

INC 
abs. X

F

0 1 2 3 4 5 6 7 8 9 A B C D E F

NO TE. •  = New Instruction
*  = Old Instruction with New  

Addressing Mode
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Op Code Matrix Legend

IN S T R U C T IO N A D D R E S S IN G
M N E M O N IC

(C O M M E N T )
M O D E

BASE BASE
NO. BYTES NO. C YC LES

N o te : ©Western Design Center, Inc.
Used by permission.



65C02 Addressing 
Modes

Fifteen addressing modes are available to the user of the WOC W65SCXXX 
family of microprocessors The addressing modes are described in the 
following paragraphs

Immediate Addressing
With immediate addressing, the operand is contained m the second byte 
of the instruction, no further memory addressing is required

Absolute Addressing
For absolute addressing, the second byte of the instruction specifies the 
eight low order bits of the effective address while the third byte specifies 
the eight high order bits Therefore, this addressing mode allows access 
to the total 65K bytes of addressable memory.

Zero Page Addressing
Zero page addressing allows shorter code and execution times by only 
fetching the second byte of the instruction and assuming a zero high 
address byte The careful use of zero page addressing can result m signifi 
cant increase m code efficiency

Implied Addressing
In the implied addressing mode, the address containing the operand is 
implicitly stated in the operation code of the instruction

Accumulator Addressing
This form of addressing is represented with a one byte instruction and 
implies an operation on the accumulator. The op codes are included 
under implied addressing

Zero Page Indexed Indirect Addressing: (IND, X)
With zero page indexed indirect addressing (usually referred to as Indirect 
X) the second byte of the instruction is added to the contents of the X index 
register, the carry is discarded. The result of this addition points to a mem 
ory location on page zero whose contents is the low order eight bits of the 
effective address The next memory location in page zero contains the 
high order eight bits of the effective address Both memory locations 
specifying the high and low order bytes of the effective address must be 
m page zero

Absolute Indexed Indirect Addressing (Jump Instruction Only)
With absolute indexed indirect addressing, the contents of the second 
and third instruction bytes are added to the X register The result of this 
addition points to a memory location containing the lower-order eight 
b'ts o< the effective address The next memory location contains the 
higher-order eight bits of the effective address (opcode 7C).

Indirect Indexed Addressing :(IND), Y
This form of addressing is usually referred to as Indirect, Y The second 
byte of the instruction points to a memory location in page zero The con 
tents of this memory location is added to the contents of the Y index regis 
ter, the result being the low order eight bits of the effective address The 
carry from this addition is added to the contents of the next page zero 
memory location, the result being the high order eight bits of the effec 
tive address.

Zero Page Indexed Addressing
Zero page absolute addressing is used in conjunction with the index 
register and is referred to as "Zero Page. X" or "Zero Page, Y " The effective 
address is calculated by adding the second byte to the contents of the 
index register Since this is a form of "Zero Page" addressing, the content 
of the second byte references a location m page zero. Additionally, due 
to the "Zero Page" addressing nature of this mode, no carry is added to 
the high order eight bits of memory and crossing of page boundaries does 
not occur

Absolute Indexed Addressing
Absolute indexed addressing is used in conjunction with X and Y index 
register and is referred to as "Absolute. X." and "Absolute. Y ” The effective 
address is formed by adding the contents of X and Y to the address con 
tained in the second and third bytes of the instruction This mode allows 
the index register to contain the index or count value and the instruction 
to contain the base address. This type of indexing allows any location 
referencing and the index to modify multiple fields resulting in reduced 
coding and execution time.

Relative Addressing
Relative addressing is used only with branch instruction; it establishes 
a destination for the conditional branch

Zero Page Indirect Addressing: Indirect
In this form of addressing, the second byte of the instruction contains 
the low order eight bits of a memory location The high order eight bits 
is always zero The contents of the fully specified memory location is the 
low order byte of the effective address The next memory location con 
tains the high order byte of the effective address.

Absoluts Indirect Addressing (Jump Instruction Only)
The second byte of the instruction contains the low order eight bits of a 
memory location The high order eight bits of that memory location is 
contained in the third byte of the instruction The contents of the fully 
specified memory location is the low order byte of the effective address 
The next memory location contains the high order byte of the effective 
address which is loaded into the 16 bits of the program counter (op 
code 6C)

N o te : ©Western Design Center, Inc. Used by permission.
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The 65802/65816 
Instruction Set

A. The Original 6502 Instruction Set (151 Op Codes)
1 ADC Add Memory to Accumulator with Carry
2 AND "AND" Memory with Accumulator
3 ASL Shift Left One Bit (Memory or Accumulator)

4 BCC Branch on Carry Clear
5 BCS Branch on Carry Set
6 BEQ Branch on Result Zero
7 BIT Test Bits in Memory with Accumulator
8 BMI Branch on Result Minus
9 BNE Branch on Result Not Zero

10 BPL Branch on Result Plus
11 BRK Force Break
12 BVC Branch on Overflow Clear
13 BVS Branch on Overflow Set

14 c l c Clear Carry Flag
15 CLD Clear Decimal Mode
16 CLI Clear Interrupt Disable Bit
17 CLV Clear Overflow Flag
18 CMP Compare Memory and Accumulator
19 c p x Compare Memory and Index X
20 CPY Compare Memory and Index Y

21 DEC Decrement Memory by One
22 DEX Decrement Index X by One
23 DEY Decrement Index Y by One

24 EOR "Exclusive-or" Memory with Accumulator

25 INC Increment Memory by One
26 IN X Increment Index X by One
27 INY Increment Index Y by One

28 JMP Jump to New Location
29 JSR Jump to New Location Saving Return Address

30 LDA Load Accumulator with Memory
31 LDX Load Index X with Memory
32 LDY Load Index Y with Memory
33 LSR Shift One Bit Right (Memory or Accumulator)

34 NOP No Operation

35 ORA "OR' Memory with Accumulator

36 PHA Push Accumulator on Stack
37 PHP Push Processor Status on Stack
38 PLA Pull Accumulator from Stack
39 PLP Pull Processor Status from Stack

40 ROL Rotate One Bit Left (Memory or Accumulator)
41 ROR Rotate One Bit Right (Memory of Accumulator)
42 RTI Return from Interrupt
43 RTS Return from Subroutine

44 SBC Subtract Memory from Accumulator with Borrow
45 SEC Set Carry Flag
46 *SED Set Decimal Mode
47 SEI Set Interrupt Disable Status
48 STA Store Accumulator in Memory
49 STX Store Index X in Memory
50 STY Store Index Y in Memory

51 TAX Transfer Accumulator to Index X
52 TAY Transfer Accumulator to Index Y
53 TSX Transfer Stack Pointer to Index X
54 TXA Transfer Index X to Accumulator
55 TXS Transfer Index X to Stack Register
56 TYA Transfer Index Y to Accumulator

B. New W65SCXXX Instructions (13 Op Codes)
1 BRA Branch Relative always
2 PLX Pull X from Stack
3 PLY Pull Y from Stack
4 PHX Push X on Stack
5 PHY Push Y on Stack
6 STZ Store Zero m Memory (Direct. Direct. X Abs. Abs. X)
7 TRB Test and Reset Memory Bits Determined by 

Accumulator A (Direct and Absolute)
8 TSB Test and Set Memory Bits Determined by 

Accumulator A (Direct and Absolute)

c. New W65SCXXX Addressing Modes (14 Op Codes)
1 BIT Test Bits in Memory with Accumulator (Direct. X. 

Absolute. X Immediate)
2 DEC Decrement (Accumulator)
3 Group I Instructions (Direct Indirect (8 Op Codes))
4. INC Increment (Accumulator)
5 JMP Jump to New Location (Absolute Indexed Indirect)

C on tin u ed
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D. Group I Instructions with New Addressing Modes (48 Op Codes)
•  Direct Indirect Long Indexed with Y (8 Op Codes)
•  Direct Indirect Long (8 Op Codes)
•  Absolute Long and Absolute Long Indexed with X 

(16 Op Codes)
•  Stack Relative (8 Op Codes)
•  Stack Relative Indirect Indexed Y (8 Op Codes)

1 ADC Add Memory to Accumulator with Carry
2. AND "AND" Memory with Accumulator
3 CMP Compare Memory and Accumulator
4 EOR "Exclusive-or Memory with Accumulator
5 LDA Load Accumulator with Memory
6 ORA “Or" Memory with Accumulator
7 SBC Subtract Memory from Accumulator with Borrow
8 STA Store Accumulator in Memory

E. New Push and Pull Instructions (7 Op Codes)
1 PEA Push Effective Absolute Address or Immediate Data 

Word on Stack
2 PEI Push Effective Indirect Address or Direct Data Word 

on Stack
3 PER Push Effective Program Counter Relative Indirect Ad 

dress or Program Counter Relative Data Word on Stack
4 PLB Pull Data Bank Register from Stack
5 PLD Pull Direct Register from Stack
6 PHB Push Data Bank Register on Stack
7 PHD Push Direct Register on Stack
8 PHK Push Program Bank Register on stack

F. Status Register Instructions (2 Op Codes)
1 REP Reset Status Bits Defined by 

Immediate Byte 1 = Reset
0 = Do not change

2 SEP Set Status Bits Defined by
Immediate Byte 1 = Set

0 = Do not change

G. New Register Transfer Instructions (8 Op Codes)
1 TCD Transfer C Accumulator to Direct Register D
2 TDC Transfer Direct Register D to C Accumulator
3 TCS Transfer C Accumulator to Stack Register
4 TSC Transfer Stack Register to Accumulator C

5 TXY Transfer X to Y
6 TYX Transfer Y to X
7 XBA Exchange B and A
8 SCE Exchange Carry Bit C with Emulation Bit E

H. New Branch, Jump and Return Instructions (6 Op Codes)
1 BRL Branch Relative Long Always (16 Bit Relative—32768 

to + 32767) (Addressing Mode)
2 JML Jump Indirect Long
3 JMP Jump Absolute Long
4 JSL Jump to Subroutine Long (Uses RTL for Return)
5. JSR Jump to Subroutine (Indexed Indirect)
6 RTL Return from Subroutine Long

I. New Block Move Instructions (2 Op Codes)
1 MVN Move Block from Source (X Addressed) to Destination 

(Y Addressed). Block Length Defined by C.
X Y are Incremented.

2 MVP Move Block from Source (X Addressed) to Destination
(Y Addressed), Block Length Defined by C, 
X. Y are Decremented

J. New Co-Processor Operations (1 Op Code)
1. COP Co-Processor Instruction with Associated COP Vector 

and ABORT Input Supports Co-Processing Function 
i e , Floating Point Processors, etc

K. New System Control Instructions (3 Op Codes)
1 STP Stop-the-clock Instruction Stops the Oscillator Input

(or 02 Input) During 02 = 1 This Mode Is Released When 
RES Goes to a Zero System Initialization May Be 
Desired. However, if After RESET One Performed an 
RTI. Program Execution Begins With the Instruction 
Following the STP Op Code m Program Sequence

2 WAI Wait for Interrupt Pulls RDY Low and Is Cleared by IRQ
or NMI Active Input.

3 WDM There is One Reserved Op Code Defined as WDM Which
Will Be Used For Future Systems The W65SC816 
Performs a No-Operation

N o te : ©Western Design Center, Inc. 
Used by permission.



65816 Addressing 
Modes

Addressing Modes
Twenty-four addressing modes are available to the user of the 
W65SC816 family of microprocessors. The addressing modes are 
described in the following paragraphs

1. Immediate Addressing [imm]
With immediate addressing the operand is contained in the second 
byte (second and third byte for 16 bit data) of the instruction

2, 3. Absolute and Absolute Long Addressing [a], (si)
For absolute addressing the second byte of the instruction specifies 
the eight low order bits of the effective address while the third byte 
specifies the eight high order bits For absolute long addressing the 
fourth byte specifies the bank address The full 16.7 megabyte address 
space is addressed in the long mode In the short mode the bank 
address is specified by the data bank register.

4. Direct Addressing [d]
Direct addressing allows for shorter code and execution times by 
only fetching a second byte of instruction. The second byte is added 
to the direct register (D) value When the direct register low (DL) is 
zero fastest execution occurs The bank address is always zero.

5. Accumulator Addressing [acc]
This form of addressing is represented with a one byte instruction 
and performs an operation on the accumulator(s)

6. Implied Addressing [Imp]
In the implied addressing mode the address of the operand is implicitly 
stated in the operation code of the instruction.

7. 8. Direct Indirect Indexed and Direct Indirect Indexed Long
Addressing [(d), y], [(dl), y]

This form of addressing is usually referred to as Indirect. Y The 
second byte of the instruction is added to the direct register and 
points to a memory location in bank zero The contents of this memory 
location and the byte following (the next byte is the bank address for 
the Iona mode) are added to the Y index register with the result being 
the effective address For the short mode the bank address is speci 
fied by the data bank register Note that when DL equals zero execu 
tion is fastest

9. Direct Indexed Indirect Addressing [(d,x)J
With direct indexed indirect addressing (usually referred to as Indirect. 
X) the second byte of the instruction is added to the contents of the 
direct register and then adding the X register value. The result of these 
additions points to a memory location on bank zero whose contents 
is the low order byte of the effective address with the byte following 
the high byte of the effective address. The bank address of the ef 
fective address is specified by the data bank register.

10,11. Direct Indexed with X and Direct Indexed with Y Addressing 
[d,x], [d.y]

Direct indexed with X usually referred to as Direct, X and direct in 
dexed with Y usually referred to as Direct. Y are two byte instructions 
The second byte is added to the direct register (D) and this result is 
added to the appropriate index register The bank address is always 
zero Execution is fastest when the low byte of the direct register (DL) 
is zero.

12,13,14. Absolute Indexed with X, Absolute Indexed Long with X, 
and Absolute Indexed with Y Addressing [a,x], [al.x], [a,y]

Absolute indexed addressing is used in conjunction with the X and Y 
index registers and is referred to as Absolute. X Absolute Long. X and 
Absolute, Y. The effective address is formed by adding the contents 
of the X or Y register to the second and third bytes of the instructions 
The bank address is specified by the data bank register except in the 
long mode the fourth byte specifies the bank address

15,16. Program Counter Relative and Program Counter Relative 
Long Addressing [r], [rl]

Program counter relative addressing, usually referred to as relative 
and relative long addressing is used only with the branch instructions 
The second byte is added to the program counter which for relative 
creates a ♦ 128 or -127 byte offset. The second and third bytes are 
added to the program counter to create *32768 or -32767 byte offset 
for the branch always long operation

17. Absolute Indirect Addressing (Jump Instruction Only) [(a)]
The second and third bytes of the instruction contains the low and 
high order address bytes of a memory location located in bank zero 
This memory location and the byte following contain the effective 
address which is loaded into the program counter. The destination 
bank address is specified by the program bank register except for the 
JML instruction the third byte fetched is the destination bank address

Continued,
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18,19. Direct Indirect and Direct Indirect Long Addressing 
[(d)]. «dl)]

In this form of addressing the second byte of the instruction is added 
to the direct register and the result points to a memory location in 
bank zero The contents of this location and the following location 
(the next location is the bank address for the long mode) is the ef 
fective address The bank address is specified by the data bank regis 
ter for the direct indirect mode

20. Absolute Indexed Indirect Addressing (Jump and Jump to 
Subroutine) [(a,x)]

With absolute indexed indirect addressing the second and third 
bytes of the instruction are added to the X index register contents 
The result points to the low and (byte following) high order bytes 
which are loaded into the program counter The bank address is speci 
fied by the program bank register

21. Stack Addressing [s]
This addressing mode uses the stack register to address memory 
locations The instructions which use the stack addressing include 
push. pull, interrupts, jump to subroutine, return from interrupt and 
return from subroutine The bank address is always zero Vectors 
are always pulled from bank 00 (See Compatibility Issues for 6502 
Emulation)

22. Stack Relative Addressing [sr]
With stack relative addressing the second byte of the instruction is 
added to the stack register value This effective address points to a

data memory location on the stack For 16 bit data the next location 
on the stack is the high byte of data This addressing mode, m con 
junction with using the push instructions, may be used to pass data 
to subroutines using the stack The new TSC and TCS instructions 
provide fast stack modification The direct register can be used for 
user stack functions The bank register is always zero

23. Stack Relative Indirect Indexed Addressing [(sr),y]
With stack relative indirect indexed with V the second byte of the in 
struction is added to the stack register value The address formed by 
this addition points to the low byte (the next location contains the high 
byte) of an indirect address The Y register is added to this address to 
form the effective data address This addressing mode, in conjunction 
with using the push effective address (PEA. PEI. PER) instructions, 
may be used to pass data addresses to subroutines using the stack 
The new TSC and TCS instructions provide fast stack register modifi 
cation The direct register can be used for user stack functions The 
data bank register is the bank address for the effective address

24. Block Move Addressing [xyc]
This addressing mode is used for multiple byte moves forward (MVP) 
or backward (MVN) These three byte instructions use the X register 
for the source address, the Y register for the destination address and 
the C accumulator contains the number of bytes to be moved The 
destination bank address is the second byte of the instruction with the 
source bank specified by the third byte. The data bank register is 
loaded with the destination bank value (second byte of the instruction)

N o te : ©Western Design Center, Inc. 
Used by permission.
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65816 Op Code 
Table

0 1 2 3 4 5 6
LI

7
SD

8 9 A B C D E F

0
BRK s 

2 8

ORA(d.x) 

2 6

COP s 

2 * 8

ORA sr 
2 * 4

TSB d 

2 * 5

ORA d 

2 3

ASL d 

2 5

ORA(dl)

2 * 6

PHP s 

1 3

ORA imm 

2 2
ASL acc 

1 2

PHO s 
1 * 4

TSB a 
3 * 6

ORA a 

3 4

ASL a 
3 6

ORA at 
4 * 5

0

1
B P l r 

2 2

0RA(d).y 

2 5

ORA (d) 

2 * 5

0RA(sr).y 

_ 2 * 7

TRB d 

2 * 5

ORA d.x 

2 4

ASL d.x 

2 6

ORAIdD.y
2 * 6

CLC imp 

1 2

ORA a y 

3 4
INC acc 

1 * 2

TCS imp 

1 * 2

TRB a 
3 * 6

ORA a.x 

3 4

ASL a.x 

3 7

ORA al.x 

4 * 5
1

2
JSR  a 

3 6

ANO(d.x) 

2 6

JS L  al 

4 * 8

AND sr 
2 * 4

BIT d 

2 3

ANO d 

2 3

ROL d 

2 5

AND(dl)

2 * 6
PLP s 
1 4

ANO imm 

2 2

ROL acc 

1 2

PLD s 

1 * 5

BIT a

3 4

AND a 
3 4

ROL a 
3 6

AND al 

4 * 5
2

3
8MI r 

2 2

AND(d).y 

2 5

ANO(d)

2 * 5

AN0(sr).y
2 * 7

BIT d.x 

2 * 4
AND d.x 

2 4

ROL d.x 

2 6

AND(dl).y
2 * 6

SEC imp 

1 2

ANO a.y 
3 4

OEC acc 

1 * 2

TSC imp 
1 * 2

BIT a.x 

3 * 4

ANO a.x 
3 4

ROL a.x 

3 7

AND al.x 

4 * 5
3

4
RTI s 

1 7

EOR(d.x) 

2 6

WDM

RES^VEO

EOR sr 
2 * 4

MVP xyc

3 * 7
EOR d 

2 3

LSR d 

2 5

EOR(dl)
2 * 6

PHA s 

1 3

EOR imm 

2 2

LSR acc 

1 2

PHK s 

1*  3

JM P  a 

3 3

EOR a 

3 4

LSR a 

3 6

EOR al

4 * 5
4

5
8VC r 

2 2

E0R(d).y 

2 5

EOR (d) 

2 * 5

E0R(sr).y

2 * 7

MVN xyc
3 * 7

EOR d.x 
2 4

LSR d.x 

2 6

EOR(dl).y
2 * 6

CLI imp 

1 2

EOR a.y 

3 4

PHY s 

1 * 3

TCO imp 
1 * 2

JM P  al 
3 * 4

EOR a x  

3 4

LSR a x  

3 7

EOR al.x 

4 * 5
5

6
RTS s 

1 6

AOC(d.x) 

2 6

PER s 

3 * 6

ADC sr 
2 * 4

STZ d 

2 * 3

ADC d

2 3

ROR d

2 5

ADC(dl)

2 * 6

PLA s 

1 4

AOC imm 

2 2

ROR acc 

1 2

RTL S 
1 * 6

JM P (a) 

3 5

AOC a 
3 4

ROR a 

3 6

ADC al 

4 * 5
6

7

MSD

8

BVS r 

2 2

ADC(d).y 

2 5

AOC(d)

2 * 5

A0C(sr),y

2 * 7
STZ d.x 

2 * 4

ADC d.x 

2 4

ROR d.x 

2 6

ADC(dl) y 
2 * 6

SEI imp

1 2

ADC a.y 
3 4

PLY s 

1 * 4

TDC imp 

1 * 2

JMP(a.x)

3 * 6

ADC a.x 

3 4

ROR a.x 

3 7

A PC al.x 

4 * 5
7

BRA r

2 * 2

STA(d.x) 

2 6

BRL rl 

3 * 3

STA sr 

2 * 4

STY d 

2 3

STA d

2 3

STX d 

2 3

STA(dl)

2 * 6

DEY imp 

1 2

BIT imm 

2 * 2

TXA imm 

1 2

PHB S 

1 * 3

STY a 

3 4

STA a 

3 4

S.TX a 

3 6

STA a l

4 * 5
8

9
BCC r 

2 2

STA(d).y 

2 6

STA (d) 

2 * 5

STA(sr).y

2 * 7

STY d.x 

2 4

STA d.x 

2 4

STX d.y 

2 4

STA(dl).y

2 * 6

TYA imp 

1 2

STA a.y 

3 5

TXS imp 

1 2

TXY imp 

1 * 2

STZ a 
3 * 4

STA a.x 

3 5

STZ a.x 

3 * 5

STA al.x 

4 * 5
9

A
LDY imm 

2 2

LOA(d.x) 

2 6

LOX imm 

2 2

LOA sr 

2 * 4

LDY d 

2 3

LDA d 

2 3

LDX d

2 3

LDA(dl)

2 * 6

TAY imp 

1 2

LDA imm 

2 2

TAX imp 

1 2

PLB s 
1 * 4

LDY a 

3 4

LDA a 

3 4

LDX a
3 4

LDA al 

4 * 5
A

B
BCS r 

2 2

LDA(d),y 

2 5

LOA(d)

2 * 5

LDA(sr).y

2 * 7

LOY d.x 

2 4

LDA d.x 

2 4

LDX d.y 

2 4

LDA^dDy CLV imp 

1 2

LDA a.y 

3 4

TSX imp 

1 2

TYX imp 

1 * 2

LDY a.x 

3 4

LDA a.x 

3 4

LDX a.y 

3 4

LDA al.x 

4 * 5
B

C
CPY imm 

2 2

CMP(d.x) 

2 6

REP imm 

2 * 3

CMP sr 

2 * 4

CPY d

2 3

CMP d

2 3

DEC d 

2 5

CMP(dl)

2 * 6

INY imp 

1 2

CMP imm 

2 2

DEX imm 

1 2

WAI imp 

1 * 3

CPY a 

3 4

CMP a 

3 4

OEC a 

3 6

CMP al 

4 * 5
C

0
BNE r 

2 2

CMP(d).y 

2 5

CM P (d) 

2 * 5

CMP(sr).y

2 * 7
PEI s 

2 * 6

CMP d.x 

2 4

DEC d.x 

2 6

CMP(dl).y

2 * 6

CLO imp 

1 2

CMP a.y 

3 4

PHX s 

1 * 3

STP imp 

1 * 3
JM L (a) 

3 * 6

CMP a.x 

3 4

DEC a.x 

3 7

CMP al.x 

4 * 5
D

E
CPX imm 

2 2

SBC(d.x) 

2 6

SEP imm

2 * 3

SBC sr 
2 * 4

IPX  d

2 3

SBC d 

2 3

INC d 

2 5

SBC(dl) 

2 6

INX imp 

1 2

SBC imm 

2 2

NOP imp 

1 2

XBA imp 

1 * 3

CPX a 

'3 4

SBC a 

3 4

INC a 

3 6

SBC al 

4 * 5
E

F
BEQ r 

2 2

SBC(d).y 

2 5

SBC (d) 

2 * 5

SBC(sr).y

2 * 7

PEA s

3 * 5

SBC d.x 

2 4

INC d x 

2 6

SBC(dl) y 

2 * 6

SED imp 

1 2

SBC a.y 

3 4

PLX s 

1 * 4

XCE imp 

1 * 2

JSR(a.x)

3 * 6

SBC a.x 

3 4

INC a x 

3 7

SBC al.x 

4 * 5
F

*  New W65SC816 Op Codes

•  W65SC02 Op Codes
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Op Code Matrix Legend

INSTRUCTION ADDRESSING
MNEMONIC

(COMMENT)
MODE

BASE BASE
NO. BYTES NO CYCLES

N o te : ©Western Design Center, Inc. 
Used by permission.



The ASCII 
Character Set 
For the Apple II

I

A. $00-3F: Reverse Video Characters
Hex Dec Screen
$00 0 @
$01 1 A
$02 2 B
$03 3 C
$04 4 D
$05 5 E
$06 6 F
$07 7 G
$08 8 H
$09 9 I
$0A 10 J
$0B 11 K
$0C 12 L
$0D 13 M
$0E 14 N
$0F 15 0
$10 16 P
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$11
$12
$13
$14
$15
$16
$17
$18
$19
$1A
$1B
$1C
$1D
$1E
$1F
$20
$21
$22
$23
$24
$25
$26
$27
$28
$29
$2A
$2B
$2C
$2D
$2E
$2F
$30
$31
$32
$33
$34
$35
$36
$37

Hex

Q
R
S
T
U
V 
W 
X
Y 
Z
[
\

]

Screen

SPACE

#
$
%
&
f

(
)
*
+

/
0
1
2
3
4
5
6 
7

Dec
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
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Hex Dec Screen
$38 56 8
$39 57 9
$3A 58 ;

$3B 59 J
$3C 60 <
$3D 61 =
$3E 62 >
$3F 63 ?

$40-7F: Flashing Characters*
Hex Dec Screen
$40 64 @
$41 65 A
$42 66 B
$43 67 C
$44 68 D
$45 69 E
$46 70 F
$47 71 G
$48 72 H
$49 73 I
$4A 74 J
$4B 75 K
$4C 76 L
$4D 77 M
$4E 78 N
$4F 79 0
$50 80 P
$51 81 Q
$52 82 R
$53 83 S
$54 84 T
$55 85 U
$56 86 V
$57 87 W
$58 88 X

* ASCII characters $40 through $5F are displayed as special 
MouseText characters if mouse firmware is installed and active.
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$59
$5A
$5B
$5C
$5D
$5E
$5F
$60
$61
$62
$63
$64
$65
$66
$67
$68
$69
$6A
$6B
$6C
$6D
$6E
$6F
$70
$71
$72
$73
$74
$75
$76
$77
$78
$79
$7A
$7B

Hex
Y
Z
[
\

J

SPACE
!
v

#
$
%
&

(
)
*
+

Screen

/
0
1
2
3
4
5
6
7
8 
9

Dec
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
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$7C 124 <
$7D 125 =
$7E 126 >
$7F 127 ?

C. $80-9F: Control Characters

Hex Dec Key
$80 128 @
$81 129 A
$82 130 B
$83 131 C
$84 132 D
$85 133 E
$86 134 F
$87 135 G
$88 136 H
$89 137 I
$8A 138 J
$8B 139 K
$8C 140 L
$8D 141 M
$8E 142 N
$8F 143 0
$90 144 P
$91 145 Q
$92 146 R
$93 147 S
$94 148 T
$95 149 U
$96 150 V
$97 151 W
$98 152 X
$99 153 Y
$9A 154 Z
$9B 155 [
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Hex Dec Key
$9C 156 \
$9D 157 ]
$9E 158 n
$9F 159 _

D. $A0-FF: Normal Characters

Hex Dec Key
$A0 160 SPC
$A1 161 f
$A2 162
$A3 163 #
$A4 164 $
$A5 165 %
$A6 166 &
$A7 167
$A8 168 (
$A9 169 )
$AA 170 *
$AB 171 +
$AC 172
$AD 173
$AE 174 >
$AF 175 /
$B0 176 0
$B1 177 1
$B2 178 2
$B3 179 3
$B4 180 4
$B5 181 5
$B6 182 6
$B7 183 7
$B8 184 8
$B9 185 9
$BA 186 I
$BB 187
$BC 188 <
$BD 189 =
$BE 190 >
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$BF
$C0
$C1
$C2
$C3
$C4
$C5
$C6
$C7
$C8
$C9
$CA
$CB
$cc
$CD
$CE
$CF
$D0
$D1
$D2
$D3
$D4
$D 5
$D6
$D7
$D8
$D9
$DA
$DB
$DC
$DD
$DE
$DF
$E0
$E1
$E2
$E3
$E4
$E5
$E6

Hex Key
1
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V 
W 
X
Y 
Z
[
\

Jy

a
b
c
d
e
f

Dec
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
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$E7
$E8
$E9
$EA
$EB
$EC
$ED
$EE
$EF
$F0
$F1
$F2
$F3
$F4
$F5
$F6
$F7
$F8
$F9
$FA
$FB
$FC
$FD
$FE
$FF

Hex

s
h
i
j
k
1

m
n
o
P
q
r
s
t
u
V

w
X

y
z
[
/
]f

Rubout

KeyDec
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
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The Byte Works, Inc.
Harvard Table Tennis 
Apple Computer, Inc.
Radio Shack, A Division of Tandy Corp. 
Roger Wagner Publishing, Inc.
Texas Instruments, Inc.
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Index

A

Abbreviations used in instruction set, 
106

Absolute addressing, 139 
Absolute indexed addressing, 143, 306 
Absolute indexed indirect addressing, 

148
Absolute indirect addressing, 147 
Absolute mode, 136 
Accumulator, 41 
Accumulator addressing, 141 
ADC, 107
Addition of numbers, 196 
Address bus, 37, 38-39 
Addresses, 243 
Addressing, 135-155 
Addressing modes, 105-133, 135-156, 

219
Addressing modes, 65C02, 327 
Addressing modes, 65816, 331-342 
Address map, 218-227 
Address modification, 306 
Alternate character set, 16 
ALU, 13 
AND, 108 
Append, 58
Apple architecture, 3-6

Apple display, 80-column, 175 
Apple ProDOS assembler, 54-71 
Apple ProDOS Assembler Tools, ix, 

53
Arithmetic Logical Unit (ALU), 41
Arithmetic shift left (ASL), 180
ASCII Code, 13
ASL, 108
Assembler, 2
Assembler, ProDOS, 68
Assemblers, 8-9
Assembling an assembly-language 

program, 53-83 
Assembling, ORCA/M, 83 
Assembly language, 8-11 
Assembly-language instructions, 

105-133
Assembly-language loops, 167-171 
Assembly-language math, 193-210 
Assembly-language program, 36 
Assembly language to machine 

language, 309-315 
Auxiliary-memory color codes, 242

B

Bank-switched memory, main and 
auxiliary, 215-218

347



348 Apple Roots

Bank-switching, 39-40, 211, 213-214 
BASIC, 1, 7-8, 15, 54, 56, 86, 95, 

220, 269 
BCC, 108
BCD numbers, 65, 207-208 
BCS, 108 
BEQ, 109
Bibliography, 343-344 
Binary-coded decimal (BCD), 46-47 
Binary numbers, 9, 19-31 
Binary numbers, single-bit manipu 

lations, 179-192 
Bit, 20 
BIT, 109
Bit descriptions, 44-49 
Bit-mapped screen, 240 
Bit-mapping, 272 
BIT Operator, 191 
Bit-shifting, 180 
BLOAD, 85 
BMI, 110 
BNE, 110 
Boolean logic, 185 
Booting ORCA/M, 79 
BPL, 110 
BRA, 111
Branching, 142-143, 157-178 
Branching and comparison together, 

161
Break Flag, 47 
BRK, 111 
BRUN, 85, 93 
Buffer, 170 
BVC, 112 
BVS, 112 
Byte, 3, 20 
Byte Simulator, 124

C

CALL command in BASIC, 96 
Carriage return, 170 
Carry bit, 179, 193-195 
Carry Flag, 45
Central processing unit, 33-52 
Chip architecture, 49-52 
Chips, Apple, 6, 33-52
CLC, 112
CLD, 113

CLI, 113 
CLV, 113 
CMP, 114 
Color codes, 238 
Colors, 239 
Columns, 61
Command level mode, 55 
Comments, ORCA/M, 82 
Comments field, 64 
Comparing values, 161 
Comparison and branching together, 

161
Compilers, 7-8
Complement addition, 205-207 
Computers, 8-bit, 36 
Conditional branching, 162, 166 
Converting numbers, 23 
CPU, 3, 6, 33-52
CPX, 114
CPY, 114

D

Data, 36
Data bank register, 52 
Data bus, 37-39 
DEA, 115 
DEC, 115
Decimal Mode Flag, 46 
Decimal system, 19-31 
Decrementing registers, 160 
Delete, 58 
DELETE, 59
DEX, 115
DEY. 115
Directing listings, 70 
Directives, 159 
Directives, ORCA M, 82 
Division, 202-204 
DOS 3.3, ix-x
Double-read operations, 216-217 
D Register, 52

E

Editing, 58 
Editor, 2, 58 
Editor, ORCA/M. 81 
E Flag, 49 
Emulation Flag, 49
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EOR, 115
EOR Operator, 187 
Executable code, 5 
Executing a machine-language 

program, 87

F

Fields, 61
Floating-point accumulator, 101 
Floating-point arithmetic, 101 
Floating-point numbers, 208-209

G

Game I/O, 248 
Game paddles, 247-268 
GETLN1, 175 
Graphics, 233-246 
Graphics, Apple, 269-308 
Graphics, double high-resolution, 

242, 296-307
Graphics, double low-resolution, 

240-242
Graphics, high-resolution, 238-240 
Graphics, low-resolution, 237-238 
Graphics, screen mapping, 243-245 
Graphics and text modes, 234 
Graphics screen programs, 274-292

H

Hand controllers, 247-268 
Hardware stack, 149-155 
Hexadecimal numbers, 12, 19-31 
Hexadecimal system, 10 
High-Byte, 176

I
Icons, 16
Immediate Addressing, 138 
Immediate mode, 136 
Implied Addressing, 138 
INA, 116 
INC, 116
Incrementing registers, 160 
Indexed indirect addressing, 145 
Indirect addressing, 145 
Indirect indexed addressing, 147 
Insert, 58 
INSERT, 59

Instruction set, 65C02, 323 
Instruction set, 65802/65816, 329 
Instruction set, 6502B/65C02, 

105-133
Internal registers, 13 
Interpreters, 7-8 
Interrupt Disable Flag, 46 
Interrupts, 46
INX, 116
INY, 116 
I/O, 4
I/O devices, 37 

J

JMP, 116
Joysticks, 247-268, 250-258 
JSR, 116 
Jumping, 162 
Jump instructions, 162

K

KILL2, 60 
Kilobyte (“K”), 212

L

Label field, 62 
LDA, 117
LDX, 117
LDY, 117
Line numbers, 56-58 
Line numbers, ORCA/M, 81 
LIST, 58
Listing, Merlin, 76 
Loading a machine-language 

program, 86-87 
Logical operators, 185-188 
Logical Shift Right (LSR), 182 
Long-distance branching, 166 
Looping, 157-178 
Loops, 167-171 
Low-Byte, 176 
LSI, 3 
LSR, 117

M
Machine language, 1, 9-10 
Machine language and assembly 

language, 2-3
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Machine-language monitor, 86 
Machine-language program, 85 
Machine-language programs, 5, 35 
Machine language to assembly 

language, 317-322 
Maskable interrupt, 46 
Math, 193-210 
Memory, 4-6, 211-232 
Memory, Apple, 34-40 
Memory, Apple ProDOS assembler, 

230
Memory, auxiliary, 40 
Memory, basic concepts, 212 
Memory, main, 40 
Memory, Merlin, 230 
Memory, non-switchable, 218 
Memory, ORCA/M assembler, 230 
Memory address, 3 
Memory architecture, 37-40 
Memory location, 3 
Memory map, 218-227 
Memory mapping, displays, 235 
Memory register, 3 
Memory requirements of assemblers, 

228-230
Merlin Pro assembler, ix, 54, 71-78, 

86, 91, 137, 169
Merlin Pro assembler commands, 

74-76
Merlin’s modules, 72-73 
M Flag, 50
Microcomputer architecture, 3-6 
Microprocessor, 6502B/65C02, 13 
Microprocessors, 33-52 
Mnemonics, 2, 10, 106 
Monitor, Apple, 88-91 
Monitor disassembly, 89 
Mouse, 16, 247-268 
Mouse, Apple, 258-268 
Mouse, operating modes, 263 
MPU, 3
Multiplication, 198-202 
Multiprecision binary division, 

202-204

N

Negative Flag, 49 
Nibble, 20

Nonmaskable interrupts, 46 
NOP, 118
Number-base prefixes, 20 
Number systems, 19-31 
Numbers, 16-bit, 196-197

O
Object code, 2, 11 
Offset, 163 
Offsets, 243 
Offset values, 164-165 
Op code, 66
Op code table, 65C02, 325 
Op-code field, 63 
Operand, 66 
Operand field, 63 
Operating system, 152 
Optional parameters, 69 
ORA, 118 
ORA operator, 186 
ORCA/M assembler, ix, 54, 78-84, 

86, 91, 137, 169 
ORCA/M commands, 80-81 
ORG, 36
Origin directive (ORG), 35 
Origin line, 64 
Overflow Flag, 48, 207

P

Packing data in memory, 188-191 
Page, 212 
PHA, 118 
PHP, 118
PHX, 118
PHY. 119 
Pixels, 237 
PLA. 119 
PLP, 119
PLX, 119
PLY, 119 
PREAD, 249
P Register Flags, 50-51 
PRINT, 58 
Printing, Merlin, 77 
Printing, ORCA/M, 83 
Printing a program, 67 
Processor status register, 44-49 
ProDOS, ix-xii
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ProDOS assembler, 137, 169 
ProDOS Assembler Tools, 86 
ProDOS assembly-language 

programming, 227-228 
ProDOS commands, 68 
ProDOS memory map, 228-229 
Program bank register, 52 
Program counter, 37, 39, 43

R
RAM, 4-5, 34, 294 
RAM, auxiliary, 214, 215 
RAM, main, 214, 215 
Registers, 52
Registers as counters, 160 
Relative addressing, 141 
Relative line numbering, 75 
Relative line numbers, 56-58 
Remarks, 65
ROL, 120
ROM, 4-5, 34 
ROR, 120
Rotate left (ROL), 184 
Rotate right (ROR), 184 
RTI, 120 
RTS, 120
Running an assembly-language 

program, 85-104

S

SAVE, 60 
Saving, Merlin, 77 
Saving, ORCA/M, 83 
Saving a program, 67 
SBC, 121
Screen display, 271-293 
Screen display program listings, 

274-280
Screen map, 270
SEC, 121
SED, 121 
SEI, 121
Self-modifying routines, 306 
Signed binary addition, 205 
Signed numbers, 204-207 
Single-bit manipulations of binary 

numbers, 179-192

Soft switch, 211 
Soft switches, 40, 217 
Source code, 2, 11 
Spacing, 60 
S Register, 52 
STA, 122
Stack, 14, 149-155, 217 
Stack pointer, 43, 149-150 
Starting address, 35 
Startup program, 94 
Status register, 44
STX, 122
STY, 122
STZ, 122
Subroutine, 14, 92-93 
Subroutines, 163 
Subtraction, 16-bit, 198 
Suppressing object code, 71 
SWAP, 60
Symbol Table, 92-93 

T

TAX, 122
Text and graphics modes, 234 
Text buffer, 171
Text display, 80-column, 235-237 
Text modes, 40-column and 

80-column, 234 
TXS, 124 
TYA, 124

U

Unconditional, 163
Unpacking data in memory, 188-191
USR(X), 97-104

W

Writing an assembly-language 
program, 53-83

X

X Flag, 50 
X register, 42-43

Y

Y register, 43
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Z

Zero Flag, 46
Zero-Page, X addressing, 145 
Zero-Page, Y addressing, 145 
Zero-Page Addressing, 140 
Zero-Page indirect addressing, 148 
Zero pages, 217
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