APPLE
ROOTS

ASSEMBLY LANGUAGE PROGRAMMING

FOR APPLE" lle AND APPLE" lic
=

Apple® Roots:

Assembly Language Programming
For the Apple® lle & lic

Apple” Roots:

Assembly Language
Programming

For the Apple’ lle & lic

Mark Andrews

Osborne McGraw-Hill
Berkeley, California

Published by

Osborne McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors
outside of the U.S.A., please write to Osborne McGraw-Hill
at the above address.

Apple is a registered trademark of Apple Computer, Inc.
A complete list of trademarks appears on page 345.

Apple® Roots:
Assembly Language Programming
For the Apple® lle & lic

Copyright © 1986 by McGraw-Hill, Inc. All rights reserved. Printed in the United States
of America. Except as permitted under the Copyright Act of 1975, no part of this publica-
tion may be reproduced or distributed in any form or by any means, or stored in a data
base or retrieval system, without the prior written permission of the publisher, with the
exception that the program listings may be entered, stored, and executed in a computer
system, but they may not be reproduced for publication.

1234567890 DODO 898765
ISBN 0-07-881130-9

Jonathan Erickson, Acquisitions Editor
Paul Jensen, Technical Editor

Michael Fischer, Technical Reviewer
Jessica Bernard, Copy Editor

Judy Wohlfrom, Text Design

Yashi Okita, Cover Design

To Muriel

Contents

a0 N =

© 0O N O O»

10
1
12

Introduction

Breaking the Assembly Language Barrier
Number Systems

In the Chips

Writing and Assembling an Assembly-
Language Program

Running an Assembly-Language Program
The 6502B/65C02 Instruction Set
Addressing Your Apple

Looping and Branching

Single-Bit Manipulations of Binary Numbers
Assembly-Language Math

Memory Magic

Fundamentals of Apple IIc/Ile Graphics

1X

19
33

53

85
105
135
157
179
193
211
233

13

14

I o m m OO

Game Paddles, Joysticks, and the Apple
Mouse

Apple Graphics

Assembly-Language to Machine-Language
Conversion Chart

Machine-Language to Assembly-Language
Conversion Chart

The 65C02 Instruction Set

65C02 Op Code Table

65C02 Addressing Modes

The 65802/65816 Instruction Set

65816 Addressing Modes

65816 Op Code Table

The ASCII Character Set for the Apple II
Bibliography

Index

247
269

309

317
323
325
327
329
331
333
335
343
347

Introduction

If your Apple doesn’t understand you, maybe it’s because you don’t
speak its language. Now we're going to break that language barrier.

This book will teach you how to write programs in assembly
language —the fastest-running and most memory-efficient of all pro-
gramming languages. It will give you a working knowledge of machine
language, your computer’s native tongue. It will enable you to create
programs that would be impossible to write in BASIC or other less
advanced languages. It also will prove to you that programming in
assembly language is not nearly as difficult as you may think.

Many books have been written about assembly language, but this is
the first assembly-language book to deal specifically with the Apple Ilc
and the Apple Ile, the two newest computers in the Apple II line. It is
also the first book that explains how to write assembly-language pro-
grams using ProDOS, the Apple IIc/Apple Ile disk operating system
that has now replaced its predecessor, DOS 3.3. The book also covers the
advanced features of the 65C02 microprocessor, the new chip built into
the Apple Ilc that can also be installed in the Apple Ile.

In addition, this is the first assembly-language book that explains
how to use three of the most popular assemblers for the Apple Ilc and
the Apple Ile: the ProDOS Assembler Tools package from Apple, the
Merlin Pro assembler-editor system from Roger Wagner Publishing,
Inc., and the ORCA/M assembler from The Byte Works of Albu-
querque, New Mexico.

X Apple Roots

The Apple IIc and the Apple Ile offer a number of brand-new fea-
tures that are of great importance to Apple programmers and potential
Apple programmers. These features include an 80-column text display,
double high-resolution graphics, and 64K of extra memory (all built into
the Apple IIc and optional on the Apple Ile). Both the IIc and the Ile
have expanded keyboards, including new function keys (OPEN APPLE
and CLOSED APPLE keys) and new special-character keys. In addition,
the Apple IIc has a built-in set of special characters designed for use
with a mouse, and the same special characters are available on any
Apple Ile equipped with plug-in mouse cards.

Both the Apple IIc and Ile are now being shipped with ProDOS, the
new Apple II disk operating system that succeeds DOS 3.8. ProDOS is
not just another revision of DOS 3.3; it is a completely new disk operat-
ing system that was designed specifically for the Apple Ilc, the Apple
Ile, and future computers in the Apple II line. ProDOS handles disk
files and disk drives very differently from the way they were handled
under DOS 3.8.

A point-by-point comparison between DOS 3.3 and ProDOS is
beyond the scope of this introduction. However, please note that there
are so many differences between ProDOS and the systems it replaces that
most assembly-language programs written under earlier disk operating
systems will not work in a ProDOS environment. This is the first book
about writing assembly-language programs for the new ProDOS-
equipped Apple IIc and Apple IIe computers.

Both the Apple Ilc and the newest versions of the Apple Ile are now
equipped with an advanced 8-bit microprocessor called the 65C02. The
65C02, a new member of the 6502 series of microprocessors, is designed
to be programmed in standard 6502 assembly language. However, the
65C02 contains a number of new features. Along with the 56 instruc-
tions used in conventional 6502 assembly language. the 65C02 is
equipped with several additional instructions. It also recognizes a
number of addressing modes that were not available in earlier 6502-
series microprocessors.

If you know BASIC —even a little BASIC —you can learn to pro-
gram in assembly language. Once you know assembly language, vou'll
be able to

e Write programs that will run 10 to 1000 times faster than pro-
grams written in BASIC.

e Use up to 16 colors simultaneously in any Apple Ilc or Apple Ile
graphics mode —including double high-resolution graphics.

Introduction Xi

» Custom design your own screen displays, mixing text and graph-
ics in any way you like.

e Create your own customized character sets.

Knowing assembly language can also enable you to create music and
sound effects for Apple IIc/Apple Ile programs, write programs that
will boot from a disk and run automatically when you turn your com-
puter on, and intermix BASIC and assembly language in the same pro-
gram, combining the simplicity of BASIC with the speed and versatility
of assembly language.

In other words, once you learn how to program in assembly lan-
guage, you will be able to start writing programs using the same tech-
niques that professional programmers use. Many of those techniques
are impossible without a knowledge of assembly language.

Finally, as you learn assembly language, you will be learning what
makes computers tick. That will make you a better programmer in any
language.

While teaching you assembly language, Apple Roots will provide you
with a comprehensive collection of assembly-language routines that can
be typed and assembled and then used in user-written assembly-
language programs. It also contains a library of interactive tutorial
programs that are especially designed to take the drudgery out of learn-
ing assembly language.

Chapter 1 is an easy-to-understand introduction to assembly lan-
guage. The main feature of Chapter 2 is a clear explanation of binary
numbers. In addition, Chapter 2 contains a series of four type-and-run
BASIC programs that can convert numbers from one base to another.

In Chapter 3 you will learn about the 6502B/65C02 chip used in the
Apple IIc and the Apple Ile. In Chapter 4, you'll start actually writing
assembly-language programs. The rest of the book presents a number of
advanced programming lessons and type-and-run assembly-language
programs.

The first thing you need in order to use this book is an Apple Ilc or
Apple Ile computer equipped with a TV set or a computer monitor
(preferably a color model) and at least one disk drive. A line printer is
highly recommended but not essential. A game controller, a mouse, or
both will also come in handy. So will a second disk drive.

The assembly-language programs in this book were written using
three assemblers: the Apple ProDOS assembler, the Merlin Pro, and
the ORCA/M. If you don’t own one of those packages, it would be a good
idea to buy one before starting this book. All of the programs in the

Xii Apple Roots

book were also written under ProDOS. If your Apple Ile was purchased
before ProDOS was introduced, you will need to buy a ProDOS package
from your Apple dealer and learn to use it.

One prerequisite for using the assembly-language lessons in this
book is a basic understanding of ProDOS, which you can gain by read-
ing a ProDOS manual. You should also have at least a fundamental
knowledge of Applesoft BASIC or some other high-level programming
language.

There are at least two other books that you should have before you
start studying assembly language. The first of these books is the user’s
manual that came with your computer. The second is a reference man-
ual for your computer. (Apple publishes separate reference manuals for
the Apple IIc and the Apple Ile.) Other useful books include Program-
ming the 6502 by Rodnay Zaks, Assembly Lines: The Book by Roger
Wagner, and 6502 Assembly Language Programming by Lance A. Lev-
enthal. These books, and others that may come in handy while you’re
studying assembly language, are listed in the Bibliography.

Breaking the
Assembly Language
Barrier

If you want to learn assembly language, you've opened the right book.
With this volume and an Apple Ilc or Apple Ile computer, you can start
programming right now in machine language. Then we'll see how
machine language relates to assembly language. Turn on your comput-
er and type HI.TEST.BAS, the BASIC program listed in Program 1-1.
Then run the program, and you’ll immediately see how it got its name.

Program 1-1

HIL.TEST.BAS

The HIL.TEST Program (BASIC Version)

10 REM *x% HI.TEST.BAS **x%*

20 DATA 169,200,32,237,253,169,201,32,237,253,96
30 FOR L = 32768 TO 32778: READ X: POKE L,X: NEXT L
40 CALL 32768

2 Apple Roots

Machine Language and Assembly Language

As you can see, Program 1-1 is written in BASIC. However, when you
type the program and execute it, your computer will run a machine-
language program.

Please note that this is machine language, not assembly language. As
you'll see later in this chapter, machine language and assembly lan-
guage are very closely related, but they are not exactly the same.
Machine language is made up of numbers —nothing but numbers. Since
“number-crunching” is what computers do best, machine language is
ideal for a computer. In fact, machine language is the only language
that a computer actually understands. No matter what language a pro-
gram is originally written in, it must be converted into machine lan-
guage before a computer can process it.

The main reason that assembly language is different from machine
language is that it was designed for humans, not for machines. From
the standpoint of both structure and vocabulary, assembly language is
very similar to machine language. In fact, assembly language is not
actually a programming language at all, but merely a notation system
designed to make it easier to write programs in machine language.

Despite its structural similarity to machine language. however, a
program written in assembly language looks quite different from a
program written in machine language. Whereas machine language
consists solely of numbers, assembly language uses three-letter abbrevi-
ations called muemonics. It's therefore easier to write programs in
assembly language than in machine language.

In one respect, though, assembly language is just like any other pro-
gramming language: before an assembly-language program can be
executed by a computer, it must be converted into machine language.
For this reason, programs written in assembly language are often
called sowurce-code programs. And machine-language programs gener-
ated from source-code programs are often referred to as object-code
programs.

Source-code programs are usually written with the aid of a special
kind of software package called an assembler-editor. or simply an
assembler. An assembler-editor package usually includes at least two
kinds of utility programs: an assembly-language editor, which enables
the user to write programs in assembly language. and an assembler.,
which can convert (or assemble) assembly-language programs into
machine language.

Breaking the Assembly Language Barrier 3

Assembly language and machine language will be discussed in more
detail later in this chapter.

How the HL.TEST.BAS Program Works

Now we're ready to take a closer look at the HL.TEST.BAS program
shown in Program 1-1. The HI.TEST.BAS program begins with a title
line. The next line in the program, line 20, is a line of data that equates
to a series of machine-language instructions. Line 30 contains a loop
that pokes the machine-language data in line 20 into a block of RAM
(which we will define shortly) that extends from memory address 32768
to memory address 32778, or $8000 to $800A in hexadecimal notation.
(A memory address —sometimes referred to as a memory location or
memory register —is nothing but a number that can be used to pinpoint
the location of any piece of data, or byte, stored in a computer’s memory.
There are 65,535 memory addresses in an off-the-rack Apple Ile, and
there are 131,070 memory addresses in an Apple Ilc or an Apple Ile
equipped with an expanded 80-column card. More information on
memory addresses will be provided later in this book, primarily in
Chapter 11, which will focus specifically on the memory structure of the
Apple Ilc and the Apple Ile.) Finally, in line 40, there’s a CALL instruc-
tion that executes the machine-language program that has just been
loaded into memory.

To understand what your computer does when it receives the CALL
instruction in line 40, it will help to have a basic understanding of the
architecture of microcomputers and how your Apple processes a
machine-language program.

Inside a Microcomputer

Every microcomputer can be divided into three parts:

e A central processing unit (CPU). A central processing unit, as its
name implies, is the central component in a computer system, the
component in which all computing functions take place. All of the
functions of a central processing unit are contained in a micro-
processor unit (or MPU). Your Apple computer’s MPU —as well as
its CPU —is a large-scaled integrated circuit (LSI) (a 6502B chip if
you own an Apple Ile, and a 65C02 chip if you own an Apple Ilc).

4 Apple Roots

e A memory. Memory can be further divided into RAM (random-
access memory) and ROM (read-only memory). These two types of
memory are discussed in the following section.

e Some input/output (I/O) devices. Your computer’s main input
device is its keyboard. Its main output device is its video monitor.
Other devices that your Apple can be connected to —or, in comput-
er jargon, can be interfaced with—include telephone modems,
graphics tablets, printers, and disk drives.

Figure 1-1 is a block diagram that illustrates the architecture of the
Apple Ilc and the Apple Ile. In this chapter we will not concern our-
selves with the I/O. However, keyboard and screen I/O will be covered
later, beginning with Chapter 8.

Your Apple’s Memory

Figure 1-1 shows the two kinds of memory a computer has: random-
access memory (RAM) and read-only memory (ROM). The important
difference between them is that RAM can be modified, while ROM can-
not. ROM is permanently etched into a bank of memory chips inside
your Apple, so it’s always there, whether the power to your computer is
off or on. Every time you turn off your Apple, everything that you've

8-Bit Data Bus

Y ‘

Memory

Input/Output CPU
(1/0) (6502B - 65C02) RAM ROM

It ft___ It if

16-Bit Address Bus

Figure 1-1. Block diagram of a microcomputer

Breaking the Assembly Language Barrier 5

stored in RAM immediately disappears. But everything in ROM
remains and will spring back into action when you turn your computer
on again.

The largest block of ROM in your Apple extends from memory
address 53248 ($D000 in hexadecimal notation) to memory address
65535 (JFFFF in hexadecimal notation). A number of important pro-
grams are permanently situated in this block of ROM, including your
computer’s BASIC interpreter and its built-in machine-language
monitor.

Machine-Language Programs in RAM In introductory books about
computers, a bank of RAM is often compared to a bank of mailboxes
built into a wall in a postal station. Each memory address in a RAM
bank, like each mailbox in a tier of post office boxes, has an identifying
number. And a computer program (like an ideal employee in a post
office) can get to any of the memory addresses in a bank of RAM with
equal ease. In other words, information stored in RAM can be retrieved
at random. That’s why RAM is called random-access memory.

What happens when your computer processes a machine-language
program? Every machine-language program is made up of a series of
numbers. When a machine-language program is loaded into a comput-
er's memory, the numbers that make up the program are stored in a
series of addresses in RAM. The starting address of the memory block
in which the program is stored (known as the program’s origin address)
is usually stored in a special, predetermined memory location. Thus,
when it is time to run the program, its starting address can be easily
located.

Once a machine-language program has been loaded into RAM and
its origin address has been stored in an accessible memory location, the
program can be executed in several ways. For example, a machine-
language program stored in an Apple II computer can be executed
using a CALL instruction, a USR(X) instruction, a ProDOS dash (—)
command, or a ProDOS BRUN command. These and other methods for
running machine-language programs will be explained in Chapter 5.

Processing Executable Code When your computer goes to a memory
location that has been identified as the starting address of a program, it
should find the beginning of a block of executable code—that is, the
beginning of a machine-language program. If it finds a program, it will
carry out the first instruction in that program and then move on to the
next consecutive address in its memory.

Your computer will keep repeating this process until it either

6 Apple Roots

reaches the end of a program or encounters an instruction telling it to
jump to another address.

Your Apple’s CPU

In a microcomputer, a central processing unit (CPU) usually consists of
a single microprocessor chip. Apple IIc and Apple Ile computers use
either the 6502B chip or the 65C02.

The 6502B chip was designed for the Apple Ile and was originally
built into all Apple IIe’s. The 65C02 was designed for the Apple IIc and
is the only microprocessor that has ever been used in the IIc. The 65C02
is now being built into all new Apple Ile’s and is available as an
optional, user-installable upgrade to older Ile’s.

Both the 6502B chip and the 65C02 chip are improved and updated
versions of an earlier chip, the 6502, developed by MOS Technology, Inc.
The 6502 and chips based on it are used not only in Apple computers,
but also in personal computers manufactured by Atari. Commodore,
and several other companies.

The 6502B chip used in the Apple Ile is really just a faster-running
version of the original 6502. But the 65C02 that’s built into the Apple
IIc and newer Apple Ile’s has some extra capabilities that the old 6502
didn’t have. In addition to being faster than the 6502, it uses less power,
and it recognizes a number of instructions that the 6502 didn’t under-
stand. The 65C02 also has some additional addressing modes, a feature
that will be explained in a later chapter.

For most purposes, however, the similarities among the 6502B, the
65C02, and the other chips in the 6502 family are more important than
their differences. Although the model numbers of 6502-series chips may
sometimes get confusing, all of the chips in the 6502 family are
designed to be programmed using the same assembly-language dialect
generically known as 6502 assembly language. Once you learn how to
write programs in 6502/65C02 assembly language, you'll be able to pro-
gram many different kinds of personal computers in addition to your
Apple, including many manufactured by Atari and Commodore.

Even more important, the principles used in Apple assembly-
language programming are universal; they’re the same principles that
all assembly-language programmers use, no matter what kinds of com-
puters they're writing programs for. Once you learn 6502/65C02 assem-
bly language, therefore, you can easily learn to program other kinds of
chips, such as the Z80 chip used in Radio Shack and CP/M-based com-
puters, and even the powerful newer chips used in 16-bit and 32-bit
microcomputers such as the Apple Macintosh and the IBM PC.

Breaking the Assembly Language Barrier 7

Compilers, Interpreters, and Assemblers

Now that you have a basic understanding of what your Apple is made of
and how it works, we're ready to take a closer look at the relationship
among the three categories of computer languages: machine language,
assembly language, and high-level languages.

High-level languages did not get their name because they’re particu-
larly esoteric or profound. They’re called high-level languages merely
because they’re several levels removed from machine language, your
computer’s native tongue.

There are hundreds, perhaps thousands, of high-level languages, but
most of them have at least one feature in common: they all bear at least
a passing resemblance to English. BASIC, for example, is made up
almost completely of instructions—such as PRINT, LIST, LOAD, SAVE,
GOTO, and RETURN—that are derived from English words. Most
other high-level languages also have instruction sets based largely upon
plain-language words and phrases.

But computers can’t understand a word of English; the only lan-
guage they can understand is machine language, which is composed
only of numbers. For this reason, a program written in any other lan-
guage has to be translated into machine language before a computer
can understand it. As mentioned previously, people who write programs
in assembly language usually use special software products called
assemblers to convert assembly language programs to machine lan-
guage. Similarly, people who program in high-level languages use spe-
cial kinds of software packages called interpreters and compilers to help
them translate the programs they have written into machine language.

Interpreters and Compilers

The most important difference between interpreters and compilers is
that an interpreter is designed to convert a program into machine lan-
guage every time the program is run, while a compiler is designed to
convert a program into machine language only once. When you write a
program using an interpreter, you can store the program on a disk in
its original form; your interpreter will automatically convert it into
machine code every time you run it. But when a program is written
using a compiler, it has to be converted into machine language and then
stored on a disk as a machine-language program. Then it can be run
like any other machine-language program, without any further need for
a compiler.

8 Apple Roots

Interpreters are easier to use than compilers because they're
designed to be “transparent” to the user; that is, they are so unobtrusive
that you're not even aware they’re there. The BASIC utility that’s built
into your Apple Ilc or Apple Ile is an interpreter, and using it will show
you how transparent a BASIC interpreter can be. When you write a
program in Applesoft BASIC, your computer’s built-in interpreter
translates every line of code that you write, as you write it, into a special
kind of language called a tokenized language. Then, each time the pro-
gram is run, it is translated into machine language.

This is a very roundabout way to run a program, and it’s one factor
that makes BASIC a rather slow-running language. But the process
does work quite smoothly; if you've ever run an Applesoft BASIC pro-
gram, you probably never even noticed the process of BASIC-to-
machine-language translation.

One advantage of interpreters over compilers is that they can check
each line of a program for obvious errors as soon as the line is written.
If they don’t check each line, they usually do spot errors as soon as the
program is run. The errors can then be fixed on the spot. Compilers are
less interactive. Most compilers can’t check a program for errors until
the program has been compiled. After an error is found and fixed, the
program must be compiled again.

Compilers do have one significant advantage over interpreters: they
produce faster-running programs. When a program is written using an
interpreter, it has to be processed through the interpreter every time
it’s run. But a compiler has to do its job just once and never has to be
used when a program is actually running.

Assemblers and Assembly Language

Assembly language, as we have seen, is neither an interpreted language
nor a compiled language. Converting an assembly-language program
into machine language requires an assembler-editor (also referred to as
an assembler).

Because of the close relationship between machine language and
assembly language, an assembler does not have nearly as difficult a task
as an interpreter or a compiler. Each time an interpreter or compiler
converts an instruction into machine language, a block—sometimes a very
large block—of machine code has to be generated. But an assembler has
to translate only one instruction at a time. The instructions used in
assembly language perform much simpler functions than the instrue-
tions used in most high-level languages, so source-code programs written
in assembly language tend to be much longer than similar programs

Breaking the Assembly Language Barrier 9

written in high-level languages. However, the instruction set used in
assembly language is extremely versatile, since the mnemonics can be
combined in an almost endless variety of ways.

Assembly language is also extremely memory-efficient, because
assembly-language programs are created by human programmers, not
churned out robotically by electromechanical code-generating machines.
When a program is written in a high-level language, the result is usual-
ly a series of machine-language routines that are rather mindlessly
strung together, one after another, like clothes hanging on a line. The
interpreter or compiler that translates such a program into machine
code typically repeats the same sequence of code again and again, usu-
ally wasting both memory and processing time.

In contrast, a good assembly-language programmer will usually
write an important block of code just once during the course of a pro-
gram. From that point on, it will be used as a subroutine, which con-
serves memory and shortens processing time.

Machine Language: A Language of Numbers

To understand what happens when an assembly-language program is
assembled into a machine-language program, it helps to identify some
of the differences and similarities between machine language and
assembly language.

Machine language, in its purest form, is composed of binary
numbers —numbers written as strings of 1's and 0’s. Program 1-2 shows
what the HI.TEST program presented at the beginning of this chapter
looks like when it’s written as a pure machine-language program in
binary numbers.

Program 1-2
HI.TEST.BIN
The HIL.TEST Program (Binary Code Version)

10101001
11001000
00100000
11101101
11111101
10101001
11001001
00100000
11101101
11111101
01100000

10 Apple Roots

As you can see, it wouldn’t be easy to write a program in binary
numbers. Fortunately, you’ll seldom have to. Although your computer
sees every machine-language program as a string of binary numbers,
nobody actually writes programs in binary notation. Instead, listings
of machine-language programs are usually written in a notation system
called the hexadecimal system.

In spite of appearances, hexadecimal numbers are closely related to
binary numbers. Hex numbers are written not as strings of 1’s and 0’s,
but as ordinary arabic numerals, with the letters A through F thrown
In to express some extra values. Hex numbers are written as combina-
tions of letters and numbers because, unlike ordinary decimal numbers,
they aren’t based on the value 10. Instead, they’re based on the value 16,
and the letters A through F are used to represent the values 10 through
15. You'll learn more about the hexadecimal system —and why it’s used
in assembly-language programs—beginning with Chapter 2. In the
meantime, look at Program 1-3 to see what the HL.TEST program looks
like written in hexadecimal numbers.

Program 1-3
HI.TESTHEX
The HL.TEST Program (Heradecimal Version)

A9 c8
20 ED FD
A9 C9
20 ED FD

The hex numbers in Program 1-3 have exactly the same values as
the binary numbers that you saw in the binary version of the program.
You may not yet understand what the instructions in the program
mean, but you can see that the hexadecimal version of the program
looks a little more comprehensible than the binary version. (It's easier to
type into the computer. too!)

Assembly Language: A Language of Mnemonics

You now know that assembly language is very closely related to machine
language. But the relationship between assembly language and machine
language is not always obvious at first glance. Assembly language,
unlike machine language, is written using three-letter instructions
called muemonics. To the casual observer, then, assembly language
doesn't look a thing like machine language.

For every three-letter instruction used in assembly language, there

et

Breaking the Assembly Language Barrier 11

1s a numeric instruction that means exactly the same thing in machine
language. In other words, there is generally a one-to-one correlation
between the mnemonics used in an assembly-language program and the
numeric instructions used in the machine-language version of the same
program.

This relationship between machine language and assembly language
makes it easy to convert a machine-language program into assembly
language or to convert an assembly-language program into machine
language. Simply change each instruction to the equivalent instruction
of the other language. Program 1-4 shows the close relationship
between machine language and assembly language.

Program 1-4

HI.TEST.ASM

The HIL.TEST Program (Assembled Version)
coL. 1 CoL. 2 cCoL. 3

LINE NO. OBJECT CODE SOURCE CODE
1 A9 C8 LDA #3$C8
2 20 ED FD JSR $FDED
3 A9 C9 LDA #3C9
4 20 ED FD JSR $FDED
5 60 RTS

Object Code and Source Code

If you look carefully at Columns 2 and 3 of Program 1-4, you'll see close
similarities. For reasons that will become clear later, the letters and
numbers in Column 2 are arranged slightly differently from those in
Column 3, but certain patterns are the same in both columns. In
Column 2, for example, the machine-language instruction A9 is used
twice: once in line 1 and again in line 8. In Column 3, the assembly-
language mnemonic LDA is also used twice —on the same lines and in
the same positions as the machine-language instruction A9. Apparently,
the object-code instruction A9 equates to the source-code instruction
LDA. As it turns out, that’s true.

Refer once more to the object-code listing in Column 2; you’ll see that
the machine-code instruction 20 is also used twice. In both cases, it is
the machine-code equivalent of the source-code instruction JSR.

Now you’ve had a first-hand look at how assembly language com-
pares with machine language. Later in this chapter, we’ll discuss the
similarities and differences between machine language and assembly
language in greater detail. First, though, let’s examine Program 1-5, a
listing of the assembly-language version of the HL.TEST program.

12 Apple Roots

Program 1-5

HI.TEST.S

The HI.TEST Program (Source-Code Version)
LDA #200

JSR $FDED

LDA #201

JSR $FDED

RTS

What the HL.TEST.S Program Does

As you can see, HIL.TEST.S is a very short and simple assembly-
language program. It contains only three mnemonics —LDA, JSR, and
RTS —and three numbers —the hexadecimal number FDED and the
decimal numbers 200 and 201. The number 200 is a screen-display code
that equates to the letter H. The number 201 is a display-code number
for the next letter in the alphabet, the letter I. And the hexadecimal
number FDED (65005 in decimal notation) is the starting address of a
handy machine-language subroutine (built into your Apple) that will
print a character on the screen.

In the HI.TEST.S program, the numbers 200 and 201 are preceded
by the symbol “#”, and the hex number FDED is preceded by the sym-
bol “$”. In 6502/6502B/65C02 assembly language generally, when the
symbol “#” precedes a number, it means that the number is to be inter-
preted as a literal number, not as a memory address. In the HL.TEST.S
program, if the numbers 200 and 201 were not preceded by the symbol
“4” they would be interpreted as addresses in your computer’s memory.
Since they do have a “#” prefix, however, they are interpreted as actual
numbers.

The other special symbol in the HL.TEST.S program —the dollar
sign in front of the number FDED —is an assembly-language prefix for
hexadecimal numbers. If you're familiar with hexadecimal notation. you
can probably tell by looking at the number FDED that it’s a hexadeci-
mal number. But sometimes decimal numbers and hex numbers look
exactly alike. Therefore, in the HL.TEST.S program. the “§" symbol is
used to show that the number $FDED is to be treated as a hexadecimal
number.

In Apple Ilc/Ile assembly language. it is possible to use both the
symbol “#” and the symbol “$” in front of the same number (as long as
the “#” comes first). Please note, however, that the symbol “=" is not used
in front of the number $FDED in the H.TEST.S program because in

Breaking the Assembly Language Barrier 13

this program, $FDED should be interpreted as a memory address, not
as a literal number. In your Apple, as mentioned previously, $FDED is
the memory address of a built-in subroutine that prints a character on
the screen. That is the subroutine called in lines 2 and 4 of the
HI.TEST.S program.

Before we can understand how the HI.TEST.S program works when
assembled into machine language, we need to take a closer look at your
computer’s main microprocessor: its 6502B or 65C02 chip.

The 6502B/65C02 chip is the heart—or, more accurately, the
brain —of your computer. The 6502B/65C02 is a very complex chip, but
it has only seven main components: an arithmetic logical unit, or ALU,
and six internal registers. The functions and features of all of these com-
ponents will be covered in later chapters. To help you understand how
the HI.TEST.S program works, though, here’s a sneak preview of a
very special 6502B/65C02 register, called the accumulator.

The accumulator is the busiest register in the 6502B/65C02 chip.
Before any mathematical or logical operation can be performed on a
number in 6502B/65C02 assembly language, the number has to be
loaded into the accumulator. The assembly-language instruction that is
usually used to load a number into the accumulator is LDA.

Let’s look at line 1 of the HI.TEST.S program.

LDA #200

In this line, the statement “LDA #200” means “Load the accumulator
with the literal number 200.” In the world of computer programming, a
number can be used to represent many different things. In the
HI.TEST.S program, the number 200 represents the letter “H”. Here’s
why.

A special system called ASCII is often used to encode letters,
numbers, and special characters in computer programs. In the ASCII
system, each letter, number, and special symbol on the typewriter key-
board has a number that can represent it in programs. Over the years,
the ASCII system has become more or less standardized in the comput-
er industry. However, since Apple computers make use of inverse video,
flashing video, and other special effects, Apple uses a modified ASCII
system. In the Apple system, the number 200 is an ASCII code for the
letter “H”, displayed as a capital letter in normal video. What line 1 of
the HI.TEST.S program really means, then, is “Load the accumulator
with the modified ASCII code for an uppercase ‘H’ ”.

JSR S$FDED

14 Apple Roots

In 6502B/65C02 assembly language, the mnemonic JSR means
“Jump to subroutine.” This instruction is used in much the same way as
the GOSUB instruction is used in BASIC. When the mnemonic JSR is
used in an assembly-language program, it causes the program to jump
to a subroutine that is expected to start at the memory address that
follows the JSR instruction.

In assembly language, the mnemonic JSR is usually used along with
another mnemonie, RTS, which means “Return from subroutine.”

The RTS instruction also corresponds to a BASIC instruction,
RETURN. When a JSR instruction is encountered in an assembly-
language program, the address of the very next instruction in the pro-
gram is first placed in an easily accessible location in a special block of
memory called a stack. Then the program jumps to whatever address
follows the JSR instruction. This address is usually the starting address
of a subroutine.

When a subroutine is called with a JSR instruction, the subroutine
usually ends with an RTS instruction. When that RTS instruction is
reached, any address that has been placed on the stack by a JSR
instruction is retrieved. The program then returns to that address and
processing of the main body of the program resumes.

Line 2 of the HI.TEST.S program should now be clear. The state-
ment “JSR $FDED” means “Jump to the subroutine that begins at
memory address $FDED.” This subroutine takes whatever screen code
is stored in the accumulator and automatically displays the correspond-
ing character on the screen. Then it returns control to the program in
progress —in this case, the HL.L.TEST program.

A number of handy I/O routines similar to this one are built into the
Apple IIc and the Apple Ile. We'll be using quite a few of them in this
book.

LDA #201

In Apple Ilc/Ile assembly language. the number 201 is an Apple
ASCII code for a normal capital “I". In the HI. TEST.S program, then,
the statement “LDA #201" means “Load the accumulator with the Apple
ASCII code for an uppercase ‘I"."

JSR $FDED

This statement is identical to the statement in line 2. It means
“Jump to the subroutine that starts at memory address RFDED.” This
time, however, since the accumulator has been loaded with the value
201, the subroutine that starts at $FDED will cause an “I" to be dis-
played on the screen.

Breaking the Assembly Language Barrier 15

RTS

When an RTS instruction is used to terminate a subroutine, it usual-
ly causes a program to jump back to where it was before the subroutine
was called. In this case, however, RTS is used to terminate a whole pro-
gram, not just a subroutine. When RTS is used to terminate a complete
program, it usually returns control of the computer to whatever pro-
gram or system was in control before the terminated program began. If
you were to call the HI.TEST program from BASIC, then, the RTS
instruction in line 5 would transfer control to your computer’s BASIC
interpreter.

Two Additional Programs

Quite a bit of ground has been covered in this introductory chapter.
We've taken a look at the overall architecture of microcomputers in gen-
eral, and the Apple Ilc and Ile in particular. We've compared assembly
language with various high-level languages, and we've discussed the
ways in which assembly language and high-level languages are trans-
lated into machine language. We've compared decimal, hexadecimal,
and binary numbers, and we've seen how hexadecimal numbers are
used in assembly-language programs. We've peeked inside your Apple’s
central microprocessor, we've seen how source code is assembled into
object code, and we've observed how your computer steps through its
memory as it processes a machine-language program. We've even made
a line-by-line analysis of a short assembly-language program and seen
how a machine-language program can be called from BASIC without
having to be processed through an assembler.

Now let’s take a look at another BASIC program that makes use of a
little assembly language. Program 1-6 is called FLASH.BAS. Type it
and run it, and you'll see an interesting display on your computer

screen.

Program 1-6

FLASH.BAS _

A BASIC Program for Flashing a Message on the Screen
10 REM **xk* FLASH.BAS *x*xx

20 TEXT : HOME
30 PRINT : POKE 49164,1: POKE 49166,1: POKE 50,127
40 PRINT : PRINT "FLASH! APPLE OWNER BREAKS MACHINE CODE!"

50 G60TO 50

16 Apple Roots

How FLASH.BAS Works

If you've done much programming in BASIC, you’ve probably seen—
and may have even written —BASIC programs that produce flashing
text displays like the one in FLASH.BAS. Nevertheless, this little
BASIC program is unusual because it doesn’t use BASIC instructions to
generate its flashing 40-column screen display. Instead, it does its job
with a series of well-placed POKE commands.

In the FLASH.BAS program, POKE commands are used to insert
numbers directly into three memory addresses that your computer uses
to generate screen displays.

In line 30, the statement POKE 49164,1 puts your Apple into its 40-
column mode. In the same line, the statement POKE 49166,1 makes
sure that your computer’s main character set is turned on and that an
alternate character set that it also has access to is turned off.

The last statement in line 30 —POKE 50,127 —is the statement that
turns on your computer’s flashing mode. Then your Apple is ready to
print the flashing message that appears in line 40. Finally, in line 50,
the program winds up in an endless loop that prevents anything else
from being displayed on the screen.

A Program for Displaying Mouse Icons

Before we move on to Chapter 2, here’s one more program, presented
especially for owners of Apple Ilc’s and late model Apple Ile’s. It isn’t
an assembly-language program or a machine-language program, and it
doesn’t even include any machine-language instructions. But it will
probably interest you if you're an Apple Ilc owner. and an assembly-
language version of the program will be presented later on in this
volume.

Here’s how the program works. The Apple IIc/Ile has two character
sets —a standard character set and an alternate character set. But the
alternate character sets built into Apple computers vary from model to
model. If your computer is an Apple Ilc, or an Apple Ile with built-in
mouse ROMs, its built-in character set includes 32 mouse icons (special
graphics characters designed for use with the Apple Ilc mouse). In the
Apple Ilc and the current-model Apple Ile. mouse icons are what you
get when your computer is in uppercase and in its flashing mode. But if
you own an Apple Ile and haven’t had special mousetext ROM installed,
then you’ll get just what you’d ordinarily expect in an uppercase flash-
ing print mode: uppercase flashing characters.

Breaking the Assembly Language Barrier 17

If your computer is an Apple Ilc or a fairly new Apple Ile, you can
display all of your mouse icons on the screen with this BASIC program.
Type the MOUSETEXT.BAS program, run it, and enjoy!

Program 1-7

MOUSETEXT.BAS

A BASIC Program That Displays Mouse Icons

10 REM *%k*x MOUSETEXT.BAS *x%x

20 PRINT CHR$ (4);"PR#3": REM TURN ON ENHANCED VIDEO
FIRMWARE

30 PRINT CHR$ (27); CHR$ (17): REM ESC/CONTROL-Q (SET
40-COL MODE)

40 PRINT CHR$ (15): REM CONTROL-0 (SET REVERSE MODE)

50 PRINT CHR$ (27): REM ESCAPE KEY (TURN ON MOUSETEXT)

60 FOR L = 64 TO 95: PRINT CHR$ (L);: NEXT L: REM PRINT
MOUSE ICONS

70 PRINT CHRS$ (24): REM CONTROL-X (TURN OFF MOUSETEXT)

80 PRINT CHR$ (14): REM CONTROL-N (DISPLAY NORMAL
CHARACTERS)

Number Systems

Most people are accustomed to using only decimal numbers, which are
based on the digits 1 through 10. But at some time, you may have also
encountered the roman numeral system, which uses letters to represent
numbers. There are many other numeric systems that are different
from the decimal system, such as the Chinese system, the Hebrew sys-
tem, and the Sanskrit system.

In the world of computer programming, three numeric systems are

commonly used. They are as follows:
e The decimal system, which is based on the value 10 and is written
using the digits 0 through 9.

e The binary system, which is based on the value 2 and is written
using only two digits: 0 and 1.

e The hexadecimal system, which is based on the value 16 and is
written using the digits 0 through 9 plus the letters A through F.

19

20

Apple Roots

Number-Base Prefixes

When a binary number appears in an Apple Ilc or Ile assembly-
language program, the prefix “%” is used by most assemblers to distin-
guish it from a decimal or hexadecimal number. When a hexadecimal
number appears in an Apple assembly-language program, the prefix
“$” is used by most assemblers to indicate that it is a hexadecimal
number.

No special prefix is used in front of a decimal number; if a number
with no prefix appears in a program, it is presumed to be a decimal
number.

The following illustration shows how prefixes are used to distinguish
among binary, hexadecimal, and decimal numbers in assembly-language
programs.

%1101 The binary number 1101 (decimal 13)
$1101 The hexadecimal number 1101 (decimal 4353)
1101 The decimal number 1101

Using Binary Numbers

A computer can understand only one language: a language that is made
up solely of numbers and is called machine language. Machine lan-
guage, at its most basic level, consists of binary numbers (1's and 0's).
Before data can be loaded into a computer, it must somehow be con-
verted into strings of 1’s and 0’s.

In the binary notation system, the 1's and 0's that make up binary
numbers are known as bits. A series of four bits is called a nibble (or
nybble), a series of eight bits is called a byte. and a series of 16 bits is
usually called a word (although there are *-bit words too).

When the bits and bytes that make up a machine-language program
are processed by a computer, they are converted into strings of on-and-
off electrical pulses. Inside a computer, these on-and-off pulses cause the
current flowing through various electrical lines to fluctuate between
low and high levels. When the electrical current falls below a certain
predetermined level, the switch is considered off, and its state is repre-
sented as a 0 in the binary notation system. When the level of the cur-
rent rises above a certain level, the switch is considered on. and its state
is represented as a 1.

Number Systems 21

Now we’re going to examine a series of 8-bit binary numbers. Look
at the numbers in this list closely, and you'll see that every binary
number that ends in 0 is twice as large as the previous number.

00000001 = 1
00000010 = 2
00000100 = 4
00001000 = 8

00010000 = 16
00100000 = 32
01000000 = 64
10000000 = 128

Now here are two more numbers that are noteworthy, but for com-
pletely different reasons:

%11111111 = 255
%11111111 11111111 = 65,535

The number %11111111, or 255, is noteworthy because it’s the largest
8-bit number. And the number %11111111 11111111, or 65,535, is the larg-
est 16-bit number. (The space in the middle of the number %11111111
11111111 was put there so the number would be easier to read. Spaces
are often inserted in the middle of 8-bit numbers for the same reason.
Sometimes, for example, you might see the binary number 11111111
written 1111 1111.)

The Hexadecimal Number System

Since computers “think” in binary numbers, the binary system is
obviously an excellent notational system for representing computer
data. But binary numbers have one serious shortcoming: they're ex-
tremely difficult to read. Thus the binary system is not the numeric
system that is most often used in assembly-language programming. The
numeric system that you’ll encounter most often in assembly-language
programming is the hexadecimal system.

Just as binary numbers are based on the value 2, hexadecimal
numbers are based on the value 16.

Hexadecimal numbers are often used in assembly-language pro-
gramming because they can help bridge the gap between the binary

22 Apple Roots

Table 2-1.

and decimal systems. Since binary numbers have a base of 2 and hex
numbers have a base of 16, a series of four binary bits can always be
translated into one hexadecimal digit. So a series of eight bits (a byte)
can always be represented by a pair of hexadecimal digits, and a series
of 16 bits (a word) can always be represented by a four-digit hexadeci-
mal number.

In Table 2-1, the decimal, hexadecimal, and binary numbers from 1
to 16 are compared. Examine the chart closely, and you’ll see that odd-
looking letter and number combinations like “FC1C”, “6DA4”, and even
“ABCD?” are perfectly good numbers in the hexadecimal system.

As you can see from Table 2-1, the decimal number 16 is written “10”
in hex and “00010000” in binary and is thus a round number in both the
binary and hexadecimal systems. The hexadecimal digit F, which
comes just before hex 10, is written 00001111 in binary.

As you become more familiar with the binary and hexadecimal sys-
tems, you will begin to notice many other similarities between them.
For example, the decimal number 255 (the largest 8-bit number) is
11111111 in binary and FF in hex. The decimal number 65,535 (the
highest memory address in a 64K computer) is written FFFF in hex
and 11111111 11111111 in binary.

Comparing Decimal, Hexadecimal, and Binary Numbers

Decimal Hexadecimal Binary

00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111
00010000

[u—y

© 00 0 O O > W N

P R O el el
S e WD — O
ST EH O QWP © o090 ok WD

Number Systems 23

Converting Numbers From One System to Another

Since hexadecimal numbers, decimal numbers, and binary numbers
are all used in assembly-language programming, it would obviously be
handy to have some kind of tool that could be used to convert numbers
back and forth among these three numeric systems. Fortunately, a
number of such tools are available. Here are a few.

Software-Based Converters

The machine-language monitor built into your Apple includes a decimal-
to-hexadecimal converter and a hexadecimal-to-decimal converter. So
do the Merlin Pro assembler and the Bugbyter debugging utility, which
comes with the Apple ProDOS assembler. For more details on these
utilities, see the Apple IIc and Ile technical reference manual and the
manuals that come with the Merlin and Apple ProDOS assemblers.

Programmers’ Calculators

Texas Instruments makes an extremely useful calculator called the
Programmer, which can perform decimal-to-hexadecimal conversions in
a flash and can also add, subtract, multiply, and divide both decimal
and hexadecimal numbers. Many assembly-language program designers
use the TI Programmer or a similar calculator and wouldn’t dream of
trying to get along without it.

Charts and Tables

Many books on assembly language contain charts that you can consult
when you convert numbers from one notation system to another. You'll
find a few such charts in this chapter, and you’ll also find something
much better: a series of BASIC programs that will automatically per-
form decimal-to-hexadecimal, decimal-to-binary, and binary-to-hexa-
decimal conversions.

Let’s start with a program that will convert binary numbers to
decimal numbers.

Converting Binary Numbers
To Decimal Numbers

It isn’t difficult to convert a binary number to a decimal number. In a
binary number, as we've seen, the bit farthest to the right represents 2

24 Apple Roots

Table 2-2. Values of the Bits in an 8-Bit Binary Number

Bit 0 = 2 to the Oth power = 1
Bit 1 = 2 to the 1st power= 2
Bit 2 = 2 to the 2nd power = 4
Bit 3 = 2 to the 3rd power = 8
Bit 4 = 2 to the 4th power = 16
Bit 5 = 2 to the 5th power = 32
Bit 6 = 2 to the 6th power = 64
Bit 7 = 2 to the 7th power = 128

to the power 0. The next bit to the left represents 2 to the power 1, the
next represents 2 to the power 2, and so on.

The digits in an 8-bit binary number are therefore numbered 0 to 7,
starting from the far-right digit. The far-right bit—often referred to as
bit 0—represents 2 to the Oth power, or the number 1. And the far-left
bit—often called bit 7—equals 2 to the 7th power, or 128.

Table 2-2 is a list of simple equations that illustrate what each bit in
an 8-bit binary number means.

Table 2-3 provides an easy method of converting any 8-bit binary
number into its decimal equivalent. Instead of writing the number from

Table 2-3. Converting a Binary Number Into a Decimal Number

1xX 1=1
0X 2= 0
0X 4= 0
1X 8= 8
0X 16= 0
1x 32=32
0X 64= 0
0X128= 0

Total = 41

Number Systems 25

left to right, write it instead in a vertical column, with bit 0 at the top of
the column and bit 7 at the bottom. Then multiply each bit in the
binary number by the decimal number that it represents. Add the
results of all of these multiplications, and the total will be the decimal
value of the binary number.

Suppose, for example, you wanted to convert the binary number
00101001 into a decimal number. Table 2-3 shows how the conversion
could be done.

If the calculation in Table 2-3 is correct, the binary number 00101001
should equal the decimal number 41. Look up either 00101001 or 41 on
any binary-to-decimal or decimal-to-binary conversion chart, and you’ll
see that the calculation was accurate. This conversion technique will
work with any other binary number.

Converting Decimal Numbers
To Binary Numbers

Now we’ll go in the opposite direction and convert a decimal number to
a binary number.

First, divide the number by 2. Write down both the quotient and the
remainder. Since we're dividing by 2, the remainder will be either a 1
or a 0. We will therefore write down the quotient followed by either a 1
or a (.

Next, we'll take the quotient, divide it by 2, and write down the
result of that calculation. If there’s a remainder (a 1 or a 0), we'll also
write that below the first remainder.

When we are left with no more numbers to divide, we’ll write all of
the remainders that we have, reading from the bottom to the top. Then
we’ll have a binary number—a number made up of 1's and 0’s. That
number will be the binary equivalent of the original decimal nu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>