

Apple® Roots:
Assembly Language Programming
For the Apple® lie & lie

Apple" Roots:
Assembly Language
Programming
For the Apple lie & lie

Mark Andrews

Osborne McGraw-Hill
Berkeley, California

Published by
Osborne McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors
outside of the U.S.A., please write to Osborne McGraw-Hill
at the above address.

Apple is a registered trademark of Apple Computer, Inc.
A complete list of trademarks appears on page 345.

Apple® Roots:
Assembly Language Programming
For the Apple® lie & lie

Copyright © 1986 by McGraw-Hill. Inc. All rights reserved. Printed in the United States
of America. Except as permitted under the Copyright Act of 1975, no part of this publica
tion may be reproduced or distributed in any form or by any means, or stored in a data
base or retrieval system, without the prior written permission of the publisher, with the
exception that the program listings may be entered, stored, and executed in a computer
system, but they may not be reproduced for publication.

1234567890 DODO 898765

ISBN 0-07-881130-9

Jonathan Erickson, Acquisitions Editor
Paul Jensen, Technical Editor
Michael Fischer, Technical Reviewer
Jessica Bernard. Copy Editor
Judy Wohlfrom, Text Design
Yashi Okita, Cover Design

To Muriel

1

2
3
4

5
6

7

8

9
10

11

12

ix
1

19
33

53
85

105
135
157
179

193
211

233

Introduction

Breaking the Assembly Language Barrier
Number Systems
In the Chips

Writing and Assembling an Assembly-
Language Program

Running an Assembly-Language Program
The 6502B/65C02 Instruction Set
Addressing Your Apple
Looping and Branching
Single-Bit Manipulations of Binary Numbers
Assembly-Language Math
Memory Magic
Fundamentals of Apple Ilc/IIe Graphics

13 Game Paddles, Joysticks, and the Apple
Mouse 247

14 Apple Graphics 269
A Assembly-Language to Machine-Language

Conversion Chart 309
B Machine-Language to Assembly-Language

Conversion Chart 317
C The 65C02 Instruction Set 323
D 65C02 Op Code Table 325
E 65C02 Addressing Modes 327
F The 65802/65816 Instruction Set 329
G 65816 Addressing Modes 331
H 65816 Op Code Table 333
I The ASCII Character Set for the Apple II 335

Bibliography 343
Index 347

Introduction

If your Apple doesn’t understand you, maybe it’s because you don’t
speak its language. Now we’re going to break that language barrier.

This book will teach you how to write programs in assembly
language—the fastest-running and most memory-efficient of all pro
gramming languages. It will give you a working knowledge of machine
language, your computer’s native tongue. It will enable you to create
programs that would be impossible to write in BASIC or other less
advanced languages. It also will prove to you that programming in
assembly language is not nearly as difficult as you may think.

Many books have been written about assembly language, but this is
the first assembly-language book to deal specifically with the Apple lie
and the Apple He, the two newest computers in the Apple II line. It is
also the first book that explains how to write assembly-language pro
grams using ProDOS, the Apple IIc/Apple lie disk operating system
that has now replaced its predecessor, DOS 3.3. The book also covers the
advanced features of the 65C02 microprocessor, the new chip built into
the Apple lie that can also be installed in the Apple He.

In addition, this is the first assembly-language book that explains
how to use three of the most popular assemblers for the Apple lie and
the Apple He: the ProDOS Assembler Tools package from Apple, the
Merlin Pro assembler-editor system from Roger Wagner Publishing,
Inc., and the ORCA/M assembler from The Byte Works of Albu
querque, New Mexico.

ix

X Apple Roots

The Apple lie and the Apple lie offer a number of brand-new fea
tures that are of great importance to Apple programmers and potential
Apple programmers. These features include an 80-column text display,
double high-resolution graphics, and 64K of extra memory (all built into
the Apple lie and optional on the Apple lie). Both the lie and the He
have expanded keyboards, including new function keys (OPEN APPLE
and CLOSED APPLE keys) and new special-character keys. In addition,
the Apple lie has a built-in set of special characters designed for use
with a mouse, and the same special characters are available on any
Apple He equipped with plug-in mouse cards.

Both the Apple lie and He are now being shipped with ProDOS, the
new Apple II disk operating system that succeeds DOS 3.3. ProDOS is
not just another revision of DOS 3.3; it is a completely new disk operat
ing system that was designed specifically for the Apple lie, the Apple
lie, and future computers in the Apple II line. ProDOS handles disk
files and disk drives very differently from the way they were handled
under DOS 3.3.

A point-by-point comparison between DOS 3.3 and ProDOS is
beyond the scope of this introduction. However, please note that there
are so many differences between ProDOS and the systems it replaces that
most assembly-language programs written under earlier disk operating
systems will not work in a ProDOS environment. This is the first book
about writing assembly-language programs for the new ProDOS-
equipped Apple lie and Apple lie computers.

Both the Apple lie and the newest versions of the Apple He are now
equipped with an advanced 8-bit microprocessor called the 65C02. The
65C02, a new member of the 6502 series of microprocessors, is designed
to be programmed in standard 6502 assembly language. However, the
65C02 contains a number of new features. Along with the 56 instruc
tions used in conventional 6502 assembly language, the 65C02 is
equipped with several additional instructions. It also recognizes a
number of addressing modes that were not available in earlier 6502-
series microprocessors.

If you know BASIC—even a little BASIC—you can learn to pro
gram in assembly language. Once you know assembly language, you’ll
be able to

• Write programs that will run 10 to 1000 times faster than pro
grams written in BASIC.

• Use up to 16 colors simultaneously in any Apple lie or Apple He
graphics mode — including double high-resolution graphics.

Introduction xi

• Custom design your own screen displays, mixing text and graph
ics in any way you like.

• Create your own customized character sets.

Knowing assembly language can also enable you to create music and
sound effects for Apple IIc/Apple He programs, write programs that
will boot from a disk and run automatically when you turn your com
puter on, and intermix BASIC and assembly language in the same pro
gram, combining the simplicity of BASIC with the speed and versatility
of assembly language.

In other words, once you learn how to program in assembly lan
guage, you will be able to start writing programs using the same tech
niques that professional programmers use. Many of those techniques
are impossible without a knowledge of assembly language.

Finally, as you learn assembly language, you will be learning what
makes computers tick. That will make you a better programmer in any
language.

While teaching you assembly language, Apple Roots will provide you
with a comprehensive collection of assembly-language routines that can
be typed and assembled and then used in user-written assembly-
language programs. It also contains a library of interactive tutorial
programs that are especially designed to take the drudgery out of learn
ing assembly language.

Chapter 1 is an easy-to-understand introduction to assembly lan
guage. The main feature of Chapter 2 is a clear explanation of binary
numbers. In addition, Chapter 2 contains a series of four type-and-run
BASIC programs that can convert numbers from one base to another.

In Chapter 3 you will learn about the 6502B/65C02 chip used in the
Apple lie and the Apple lie. In Chapter 4, you’ll start actually writing
assembly-language programs. The rest of the book presents a number of
advanced programming lessons and type-and-run assembly-language
programs.

The first thing you need in order to use this book is an Apple lie or
Apple He computer equipped with a TV set or a computer monitor
(preferably a color model) and at least one disk drive. A line printer is
highly recommended but not essential. A game controller, a mouse, or
both will also come in handy. So will a second disk drive.

The assembly-language programs in this book were written using
three assemblers: the Apple ProDOS assembler, the Merlin Pro, and
the ORCA/M. If you don’t own one of those packages, it would be a good
idea to buy one before starting this book. All of the programs in the

xii Apple Roots

book were also written under ProDOS. If your Apple He was purchased
before ProDOS was introduced, you will need to buy a ProDOS package
from your Apple dealer and learn to use it.

One prerequisite for using the assembly-language lessons in this
book is a basic understanding of ProDOS, which you can gain by read
ing a ProDOS manual. You should also have at least a fundamental
knowledge of Applesoft BASIC or some other high-level programming
language.

There are at least two other books that you should have before you
start studying assembly language. The first of these books is the user’s
manual that came with your computer. The second is a reference man
ual for your computer. (Apple publishes separate reference manuals for
the Apple lie and the Apple He.) Other useful books include Program
ming the 6502 by Rodnay Zaks, Assembly Lines: The Book by Roger
Wagner, and 6502 Assembly Language Programming by Lance A. Lev-
enthal. These books, and others that may come in handy while you’re
studying assembly language, are listed in the Bibliography.

1
Breaking the
Assembly Language
Barrier

If you want to learn assembly language, you’ve opened the right book.
With this volume and an Apple lie or Apple lie computer, you can start
programming right now in machine language. Then we’ll see how
machine language relates to assembly language. Turn on your comput
er and type HI.TEST.BAS, the BASIC program listed in Program 1-1.
Then run the program, and you’ll immediately see how it got its name.

Program 1-1
HI.TEST.BAS
The HI. TEST Program (BASIC Version)
10 REM *** H I . T E S T . B A S ***
20 DATA 1 6 9 , 2 0 0 , 3 2 , 2 3 7 , 2 5 3 , 1 6 9 , 2 0 1 , 3 2 , 2 3 7 , 2 5 3 , 9 6
30 FOR L = 32768 TO 32778: READ X: POKE L , X : NEXT L
40 CALL 32768

1

2 Apple Roots

Machine Language and Assembly Language

As you can see, Program 1-1 is written in BASIC. However, when you
type the program and execute it, your computer will run a machine-
language program.

Please note that this is machine language, not assembly language. As
you’ll see later in this chapter, machine language and assembly lan
guage are very closely related, but they are not exactly the same.
Machine language is made up of numbers—nothing but numbers. Since
“number-crunching” is what computers do best, machine language is
ideal for a computer. In fact, machine language is the only language
that a computer actually understands. No matter what language a pro
gram is originally written in, it must be converted into machine lan
guage before a computer can process it.

The main reason that assembly language is different from machine
language is that it was designed for humans, not for machines. From
the standpoint of both structure and vocabulary, assembly language is
very similar to machine language. In fact, assembly language is not
actually a programming language at all, but merely a notation system
designed to make it easier to write programs in machine language.

Despite its structural similarity to machine language, however, a
program written in assembly language looks quite different from a
program written in machine language. Whereas machine language
consists solely of numbers, assembly language uses three-letter abbrevi
ations called mnemonics. It’s therefore easier to write programs in
assembly language than in machine language.

In one respect, though, assembly language is just like any other pro
gramming language: before an assembly-language program can be
executed by a computer, it must be converted into machine language.
For this reason, programs written in assembly language are often
called source-code programs. And machine-language programs gener
ated from source-code programs are often referred to as object-code
programs.

Source-code programs are usually written with the aid of a special
kind of software package called an assembler-editor, or simply an
assembler. An assembler-editor package usually includes at least two
kinds of utility programs: an assembly-language editor, which enables
the user to write programs in assembly language, and an assembler,
which can convert (or assemble) assembly-language programs into
machine language.

Breaking the Assembly Language Barrier 3

Assembly language and machine language will be discussed in more
detail later in this chapter.

How the Hl.TEST.BAS Program Works

Now we’re ready to take a closer look at the Hl.TEST.BAS program
shown in Program 1-1. The Hl.TEST.BAS program begins with a title
line. The next line in the program, line 20, is a line of data that equates
to a series of machine-language instructions. Line 30 contains a loop
that pokes the machine-language data in line 20 into a block of RAM
(which we will define shortly) that extends from memory address 32768
to memory address 32778, or $8000 to $800A in hexadecimal notation.
(A memory address—sometimes referred to as a memory location or
memory register — is nothing but a number that can be used to pinpoint
the location of any piece of data, or byte, stored in a computer’s memory.
There are 65,535 memory addresses in an off-the-rack Apple He, and
there are 131,070 memory addresses in an Apple lie or an Apple He
equipped with an expanded 80-column card. More information on
memory addresses will be provided later in this book, primarily in
Chapter 11, which will focus specifically on the memory structure of the
Apple lie and the Apple He.) Finally, in line 40, there’s a CALL instruc
tion that executes the machine-language program that has just been
loaded into memory.

To understand what your computer does when it receives the CALL
instruction in line 40, it will help to have a basic understanding of the
architecture of microcomputers and how your Apple processes a
machine-language program.

Inside a Microcomputer

Every microcomputer can be divided into three parts:

• A central processing unit (CPU). A central processing unit, as its
name implies, is the central component in a computer system, the
component in which all computing functions take place. All of the
functions of a central processing unit are contained in a micro
processor unit (or MPU). Your Apple computer’s MPU—as well as
its CPU —is a large-scaled, integrated circuit (LSI) (a 6502B chip if
you own an Apple He, and a 65C02 chip if you own an Apple lie).

• A memory. Memory can be further divided into RAM (random-
access memory) and ROM (read-only memory). These two types of
memory are discussed in the following section.

• Some input/output (I/O) devices. Your computer’s main input
device is its keyboard. Its main output device is its video monitor.
Other devices that your Apple can be connected to—or, in comput
er jargon, can be interfaced w ith—include telephone modems,
graphics tablets, printers, and disk drives.

Figure 1-1 is a block diagram that illustrates the architecture of the
Apple lie and the Apple He. In this chapter we will not concern our
selves with the I/O. However, keyboard and screen I/O will be covered
later, beginning with Chapter 8.

Your Apple’s Memory

Figure 1-1 shows the two kinds of memory a computer has: random-
access memory (RAM) and read-only memory (ROM). The important
difference between them is that RAM can be modified, while ROM can
not. ROM is permanently etched into a bank of memory chips inside
your Apple, so it’s always there, whether the power to your computer is
off or on. Every time you turn off your Apple, everything that you’ve

4 Apple Roots

Figure 1-1. Block diagram of a microcomputer

Breaking the Assembly Language Barrier 5

stored in RAM immediately disappears. But everything in ROM
remains and will spring back into action when you turn your computer
on again.

The largest block of ROM in your Apple extends from memory
address 53248 ($D000 in hexadecimal notation) to memory address
65535 ($FFFF in hexadecimal notation). A number of important pro
grams are permanently situated in this block of ROM, including your
computer’s BASIC interpreter and its built-in machine-language
monitor.

Machine-Language Programs in RAM In introductory books about
computers, a bank of RAM is often compared to a bank of mailboxes
built into a wall in a postal station. Each memory address in a RAM
bank, like each mailbox in a tier of post office boxes, has an identifying
number. And a computer program (like an ideal employee in a post
office) can get to any of the memory addresses in a bank of RAM with
equal ease. In other words, information stored in RAM can be retrieved
at random. That’s why RAM is called random-access memory.

What happens when your computer processes a machine-language
program? Every machine-language program is made up of a series of
numbers. When a machine-language program is loaded into a comput
er’s memory, the numbers that make up the program are stored in a
series of addresses in RAM. The starting address of the memory block
in which the program is stored (known as the program’s origin address)
is usually stored in a special, predetermined memory location. Thus,
when it is time to run the program, its starting address can be easily
located.

Once a machine-language program has been loaded into RAM and
its origin address has been stored in an accessible memory location, the
program can be executed in several ways. For example, a machine-
language program stored in an Apple II computer can be executed
using a CALL instruction, a USR(X) instruction, a ProDOS dash (—)
command, or a ProDOS BRUN command. These and other methods for
running machine-language programs will be explained in Chapter 5.

Processing Executable Code When your computer goes to a memory
location that has been identified as the starting address of a program, it
should find the beginning of a block of executable code—that is, the
beginning of a machine-language program. If it finds a program, it will
carry out the first instruction in that program and then move on to the
next consecutive address in its memory.

Your computer will keep repeating this process until it either

6 Apple Roots

reaches the end of a program or encounters an instruction telling it to
jump to another address.

Your Apple’s CPU

In a microcomputer, a central processing unit (CPU) usually consists of
a single microprocessor chip. Apple lie and Apple He computers use
either the 6502B chip or the 65C02.

The 6502B chip was designed for the Apple lie and was originally
built into all Apple lie ’s. The 65C02 was designed for the Apple lie and
is the only microprocessor that has ever been used in the lie. The 65C02
is now being built into all new Apple He’s and is available as an
optional, user-installable upgrade to older lie ’s.

Both the 6502B chip and the 65C02 chip are improved and updated
versions of an earlier chip, the 6502, developed by MOS Technology, Inc.
The 6502 and chips based on it are used not only in Apple computers,
but also in personal computers manufactured by Atari, Commodore,
and several other companies.

The 6502B chip used in the Apple He is really just a faster-running
version of the original 6502. But the 65C02 that’s built into the Apple
lie and newer Apple He’s has some extra capabilities that the old 6502
didn’t have. In addition to being faster than the 6502, it uses less power,
and it recognizes a number of instructions that the 6502 didn’t under
stand. The 65C02 also has some additional addressing modes, a feature
that will be explained in a later chapter.

For most purposes, however, the similarities among the 6502B, the
65C02, and the other chips in the 6502 family are more important than
their differences. Although the model numbers of 6502-series chips may
sometimes get confusing, all of the chips in the 6502 family are
designed to be programmed using the same assembly-language dialect
generically known as 6502 assembly language. Once you learn how to
write programs in 6502/65C02 assembly language, you’ll be able to pro
gram many different kinds of personal computers in addition to your
Apple, including many manufactured by Atari and Commodore.

Even more important, the principles used in Apple assembly-
language programming are universal: they’re the same principles that
all assembly-language programmers use. no matter what kinds of com
puters they’re writing programs for. Once you learn 6502/65C02 assem
bly language, therefore, you can easily learn to program other kinds of
chips, such as the Z80 chip used in Radio Shack and CP/M-based com
puters, and even the powerful newer chips used in 16-bit and 32-bit
microcomputers such as the Apple Macintosh and the IBM PC.

Breaking the Assembly Language Barrier 7

Compilers, Interpreters, and Assemblers

Now that you have a basic understanding of what your Apple is made of
and how it works, we’re ready to take a closer look at the relationship
among the three categories of computer languages: machine language,
assembly language, and high-level languages.

High-level languages did not get their name because they’re particu
larly esoteric or profound. They’re called high-level languages merely
because they’re several levels removed from machine language, your
computer’s native tongue.

There are hundreds, perhaps thousands, of high-level languages, but
most of them have at least one feature in common: they all bear at least
a passing resemblance to English. BASIC, for example, is made up
almost completely of instructions—such as PRINT, LIST, LOAD, SAVE,
GOTO, and RETURN—that are derived from English words. Most
other high-level languages also have instruction sets based largely upon
plain-language words and phrases.

But computers can’t understand a word of English; the only lan
guage they can understand is machine language, which is composed
only of numbers. For this reason, a program written in any other lan
guage has to be translated into machine language before a computer
can understand it. As mentioned previously, people who write programs
in assembly language usually use special software products called
assemblers to convert assembly language programs to machine lan
guage. Similarly, people who program in high-level languages use spe
cial kinds of software packages called interpreters and compilers to help
them translate the programs they have written into machine language.

Interpreters and Compilers

The most important difference between interpreters and compilers is
that an interpreter is designed to convert a program into machine lan
guage every time the program is run, while a compiler is designed to
convert a program into machine language only once. When you write a
program using an interpreter, you can store the program on a disk in
its original form; your interpreter will automatically convert it into
machine code every time you run it. But when a program is written
using a compiler, it has to be converted into machine language and then
stored on a disk as a machine-language program. Then it can be run
like any other machine-language program, without any further need for
a compiler.

8 Apple Roots

Interpreters are easier to use than compilers because they’re
designed to be “transparent” to the user; that is, they are so unobtrusive
that you’re not even aware they’re there. The BASIC utility that’s built
into your Apple lie or Apple He is an interpreter, and using it will show
you how transparent a BASIC interpreter can be. When you write a
program in Applesoft BASIC, your computer’s built-in interpreter
translates every line of code that you write, as you write it, into a special
kind of language called a tokenized language. Then, each time the pro
gram is run, it is translated into machine language.

This is a very roundabout way to run a program, and it’s one factor
that makes BASIC a rather slow-running language. But the process
does work quite smoothly; if you’ve ever run an Applesoft BASIC pro
gram, you probably never even noticed the process of BASIC-to-
machine-language translation.

One advantage of interpreters over compilers is that they can check
each line of a program for obvious errors as soon as the line is written.
If they don’t check each line, they usually do spot errors as soon as the
program is run. The errors can then be fixed on the spot. Compilers are
less interactive. Most compilers can’t check a program for errors until
the program has been compiled. After an error is found and fixed, the
program must be compiled again.

Compilers do have one significant advantage over interpreters: they
produce faster-running programs. When a program is written using an
interpreter, it has to be processed through the interpreter every time
it’s run. But a compiler has to do its job just once and never has to be
used when a program is actually running.

Assemblers and Assembly Language
Assembly language, as we have seen, is neither an interpreted language
nor a compiled language. Converting an assembly-language program
into machine language requires an assembler-editor (also referred to as
an assembler).

Because of the close relationship between machine language and
assembly language, an assembler does not have nearly as difficult a task
as an interpreter or a compiler. Each time an interpreter or compiler
converts an instruction into machine language, a block—sometimes a very
large block—of machine code has to be generated. But an assembler has
to translate only one instruction at a time. The instructions used in
assembly language perform much simpler functions than the instruc
tions used in most high-level languages, so source-code programs written
in assembly language tend to be much longer than similar programs

Breaking the Assembly Language Barrier 9

written in high-level languages. However, the instruction set used in
assembly language is extremely versatile, since the mnemonics can be
combined in an almost endless variety of ways.

Assembly language is also extremely memory-efficient, because
assembly-language programs are created by human programmers, not
churned out robotically by electromechanical code-generating machines.
When a program is written in a high-level language, the result is usual
ly a series of machine-language routines that are rather mindlessly
strung together, one after another, like clothes hanging on a line. The
interpreter or compiler that translates such a program into machine
code typically repeats the same sequence of code again and again, usu
ally wasting both memory and processing time.

In contrast, a good assembly-language programmer will usually
write an important block of code just once during the course of a pro
gram. From that point on, it will be used as a subroutine, which con
serves memory and shortens processing time.

Machine Language: A Language of Numbers

To understand what happens when an assembly-language program is
assembled into a machine-language program, it helps to identify some
of the differences and similarities between machine language and
assembly language.

Machine language, in its purest form, is composed of binary
numbers— numbers written as strings of l ’s and 0’s. Program 1-2 shows
what the HI.TEST program presented at the beginning of this chapter
looks like when it's written as a pure machine-language program in
binary numbers.

Program 1-2
HI.TEST.BIN
The HI.TEST Program (Binary Code Version)
10101001
11001000
0 0 1 0 0 0 0 0
11101101
11111101
10101001
11001001
0 0 1 0 0 0 0 0
11101101
11111101
0 1 1 0 0 0 0 0

10 Apple Roots

As you can see, it wouldn’t be easy to write a program in binary
numbers. Fortunately, you’ll seldom have to. Although your computer
sees every machine-language program as a string of binary numbers,
nobody actually writes programs in binary notation. Instead, listings
of machine-language programs are usually written in a notation system
called the hexadecimal system.

In spite of appearances, hexadecimal numbers are closely related to
binary numbers. Hex numbers are written not as strings of l ’s and 0’s,
but as ordinary arabic numerals, with the letters A through F thrown
in to express some extra values. Hex numbers are written as combina
tions of letters and numbers because, unlike ordinary decimal numbers,
they aren’t based on the value 10. Instead, they’re based on the value 16,
and the letters A through F are used to represent the values 10 through
15. You’ll learn more about the hexadecimal system—and why it’s used
in assembly-language programs—beginning with Chapter 2. In the
meantime, look at Program 1-3 to see what the HI.TEST program looks
like written in hexadecimal numbers.

Program 1-3
HI.TEST.HEX
The HI.TEST Proyram (Hexadecimal Version)
A9 C8
20 ED FD
A9 C9
20 ED FD
60

The hex numbers in Program 1-3 have exactly the same values as
the binary numbers that you saw in the binary version of the program.
You may not yet understand what the instructions in the program
mean, but you can see that the hexadecimal version of the program
looks a little more comprehensible than the binary version. (It’s easier to
type into the computer, too!)

Assembly Language: A Language of Mnemonics

You now know that assembly language is very closely related to machine
language. But the relationship between assembly language and machine
language is not always obvious at first glance. Assembly language,
unlike machine language, is written using three-letter instructions
called mnemonics. To the casual observer, then, assembly language
doesn’t look a thing like machine language.

For every three-letter instruction used in assembly language, there

Breaking the Assembly Language Barrier 11

is a numeric instruction that means exactly the same thing in machine
language. In other words, there is generally a one-to-one correlation
between the mnemonics used in an assembly-language program and the
numeric instructions used in the machine-language version of the same
program.

This relationship between machine language and assembly language
makes it easy to convert a machine-language program into assembly
language or to convert an assembly-language program into machine
language. Simply change each instruction to the equivalent instruction
of the other language. Program 1-4 shows the close relationship
between machine language and assembly language.

Program 1-4
HI.TEST.ASM
The HI.TEST Program (Assembled Version)
COL. 1 COL. 2 COL. 3
LINE NO. OBJECT CODE SOURCE CODE

1
2
3
4
5

A9 C8 LDA US C8
20 ED FD JSR $ F D ED
A9 C9 LDA US C9
20 ED FD JSR $ F D ED
60 RTS

Object Code and Source Code
If you look carefully at Columns 2 and 3 of Program 1-4, you’ll see close
similarities. For reasons that will become clear later, the letters and
numbers in Column 2 are arranged slightly differently from those in
Column 3, but certain patterns are the same in both columns. In
Column 2, for example, the machine-language instruction A9 is used
twice: once in line 1 and again in line 3. In Column 3, the assembly-
language mnemonic LDA is also used twice—on the same lines and in
the same positions as the machine-language instruction A9. Apparently,
the object-code instruction A9 equates to the source-code instruction
LDA. As it turns out, that’s true.

Refer once more to the object-code listing in Column 2; you’ll see that
the machine-code instruction 20 is also used twice. In both cases, it is
the machine-code equivalent of the source-code instruction JSR.

Now you’ve had a first-hand look at how assembly language com
pares with machine language. Later in this chapter, we’ll discuss the
similarities and differences between machine language and assembly
language in greater detail. First, though, let’s examine Program 1-5, a
listing of the assembly-language version of the HI.TEST program.

12 Apple Roots

Program 1-5
HI.TEST.S
The HI.TEST Program (Source-Code Version)
LDA #200
JSR $FDED
LDA #201
JSR $FDED
RTS

What the HI.TEST.S Program Does

As you can see, HI.TEST.S is a very short and simple assembly-
language program. It contains only three mnemonics—LDA, JSR, and
RTS—and three numbers—the hexadecimal number FDED and the
decimal numbers 200 and 201. The number 200 is a screen-display code
that equates to the letter H. The number 201 is a display-code number
for the next letter in the alphabet, the letter I. And the hexadecimal
number FDED (65005 in decimal notation) is the starting address of a
handy machine-language subroutine (built into your Apple) that will
print a character on the screen.

In the HI.TEST.S program, the numbers 200 and 201 are preceded
by the symbol and the hex number FDED is preceded by the sym
bol In 6502/6502B/65C02 assembly language generally, when the
symbol precedes a number, it means that the number is to be inter
preted as a literal number, not as a memory address. In the HI.TEST.S
program, if the numbers 200 and 201 were not preceded by the symbol

they would be interpreted as addresses in your computer’s memory.
Since they do have a prefix, however, they are interpreted as actual
numbers.

The other special symbol in the HI.TEST.S program—the dollar
sign in front of the number FDED — is an assembly-language prefix for
hexadecimal numbers. If you’re familiar with hexadecimal notation, you
can probably tell by looking at the number FDED that it’s a hexadeci
mal number. But sometimes decimal numbers and hex numbers look
exactly alike. Therefore, in the HI.TEST.S program, the symbol is
used to show that the number $FDED is to be treated as a hexadecimal
number.

In Apple Ilc/IIe assembly language, it is possible to use both the
symbol and the symbol in front of the same number (as long as
the comes first). Please note, however, that the symbol is not used
in front of the number $FDED in the HI.TEST.S program because in

Breaking the Assembly Language Barrier 13

this program, $FDED should be interpreted as a memory address, not
as a literal number. In your Apple, as mentioned previously, $FDED is
the memory address of a built-in subroutine that prints a character on
the screen. That is the subroutine called in lines 2 and 4 of the
HI.TESTS program.

Before we can understand how the HI.TEST.S program works when
assembled into machine language, we need to take a closer look at your
computer’s main microprocessor: its 6502B or 65C02 chip.

The 6502B/65C02 chip is the heart—or, more accurately, the
brain —of your computer. The 6502B/65C02 is a very complex chip, but
it has only seven main components: an arithmetic logical unit, or ALU,
and six internal registers. The functions and features of all of these com
ponents will be covered in later chapters. To help you understand how
the HI.TEST.S program works, though, here’s a sneak preview of a
very special 6502B/65C02 register, called the accumulator.

The accumulator is the busiest register in the 6502B/65C02 chip.
Before any mathematical or logical operation can be performed on a
number in 6502B/65C02 assembly language, the number has to be
loaded into the accumulator. The assembly-language instruction that is
usually used to load a number into the accumulator is LDA.

Let’s look at line 1 of the HI.TEST.S program.

LDA #200

In this line, the statement “LDA #200” means “Load the accumulator
with the literal number 200.” In the world of computer programming, a
number can be used to represent many different things. In the
HI.TEST.S program, the number 200 represents the letter “H”. Here’s
why.

A special system called ASCII is often used to encode letters,
numbers, and special characters in computer programs. In the ASCII
system, each letter, number, and special symbol on the typewriter key
board has a number that can represent it in programs. Over the years,
the ASCII system has become more or less standardized in the comput
er industry. However, since Apple computers make use of inverse video,
flashing video, and other special effects, Apple uses a modified ASCII
system. In the Apple system, the number 200 is an ASCII code for the
letter “H”, displayed as a capital letter in normal video. What line 1 of
the HI.TEST.S program really means, then, is “Load the accumulator
with the modified ASCII code for an uppercase ‘H’ ”.

J SR SFDED

14 Apple Roots

In 6502B/65C02 assembly language, the mnemonic JSR means
“Jump to subroutine.” This instruction is used in much the same way as
the GOSUB instruction is used in BASIC. When the mnemonic JSR is
used in an assembly-language program, it causes the program to jump
to a subroutine that is expected to start at the memory address that
follows the JSR instruction.

In assembly language, the mnemonic JSR is usually used along with
another mnemonic, RTS, which means “Return from subroutine.”

The RTS instruction also corresponds to a BASIC instruction,
RETURN. When a JSR instruction is encountered in an assembly-
language program, the address of the very next instruction in the pro
gram is first placed in an easily accessible location in a special block of
memory called a stack. Then the program jumps to whatever address
follows the JSR instruction. This address is usually the starting address
of a subroutine.

When a subroutine is called with a JSR instruction, the subroutine
usually ends with an RTS instruction. When that RTS instruction is
reached, any address that has been placed on the stack by a JSR
instruction is retrieved. The program then returns to that address and
processing of the main body of the program resumes.

Line 2 of the HI.TESTS program should now be clear. The state
ment “JSR $FDED” means “Jump to the subroutine that begins at
memory address $FDED.” This subroutine takes whatever screen code
is stored in the accumulator and automatically displays the correspond
ing character on the screen. Then it returns control to the program in
progress—in this case, the HI.TEST program.

A number of handy I/O routines similar to this one are built into the
Apple lie and the Apple lie. We’ll be using quite a few of them in this
book.
LDA #201

In Apple Ilc/IIe assembly language, the number 201 is an Apple
ASCII code for a normal capital "I". In the HI.TESTS program, then,
the statement “LDA #201” means “Load the accumulator with the Apple
ASCII code for an uppercase ‘I’."
JSR $FDED

This statement is identical to the statement in line 2. It means
“Jump to the subroutine that starts at memory address $FDED." This
time, however, since the accumulator has been loaded with the value
201, the subroutine that starts at $FDED will cause an “I” to be dis
played on the screen.

Breaking the Assembly Language Barrier 15

RTS

When an RTS instruction is used to terminate a subroutine, it usual
ly causes a program to jump back to where it was before the subroutine
was called. In this case, however, RTS is used to terminate a whole pro
gram, not just a subroutine. When RTS is used to terminate a complete
program, it usually returns control of the computer to whatever pro
gram or system was in control before the terminated program began. If
you were to call the HI.TEST program from BASIC, then, the RTS
instruction in line 5 would transfer control to your computer’s BASIC
interpreter.

Two Additional Programs

Quite a bit of ground has been covered in this introductory chapter.
We’ve taken a look at the overall architecture of microcomputers in gen
eral, and the Apple lie and lie in particular. We’ve compared assembly
language with various high-level languages, and we’ve discussed the
ways in which assembly language and high-level languages are trans
lated into machine language. We’ve compared decimal, hexadecimal,
and binary numbers, and we’ve seen how hexadecimal numbers are
used in assembly-language programs. We’ve peeked inside your Apple’s
central microprocessor, we’ve seen how source code is assembled into
object code, and we’ve observed how your computer steps through its
memory as it processes a machine-language program. We’ve even made
a line-by-line analysis of a short assembly-language program and seen
how a machine-language program can be called from BASIC without
having to be processed through an assembler.

Now let’s take a look at another BASIC program that makes use of a
little assembly language. Program 1-6 is called FLASH.BAS. Type it
and run it, and you’ll see an interesting display on your computer
screen.

Program 1-6
FLASH.BAS
A BASIC Program for Flashing a Message on the Screen
10 REM *** FLASH.BAS ***
20 TEXT : HOME
30 PRINT : POKE 4 9 1 6 4 , 1 : POKE 4 9 1 6 6 , 1 : POKE 50, 127
40 PRINT : PRINT "FLASH! APPLE OWNER BREAKS MACHINE CODE!"
50 GOTO 50

16 Apple Roots

How FLASH.BAS Works

If you’ve done much programming in BASIC, you’ve probably seen—
and may have even written—BASIC programs that produce flashing
text displays like the one in FLASH.BAS. Nevertheless, this little
BASIC program is unusual because it doesn’t use BASIC instructions to
generate its flashing 40-column screen display. Instead, it does its job
with a series of well-placed POKE commands.

In the FLASH.BAS program, POKE commands are used to insert
numbers directly into three memory addresses that your computer uses
to generate screen displays.

In line 30, the statement POKE 49164,1 puts your Apple into its 40-
column mode. In the same line, the statement POKE 49166,1 makes
sure that your computer’s main character set is turned on and that an
alternate character set that it also has access to is turned off.

The last statement in line 30—POKE 50,127—is the statement that
turns on your computer’s flashing mode. Then your Apple is ready to
print the flashing message that appears in line 40. Finally, in line 50,
the program winds up in an endless loop that prevents anything else
from being displayed on the screen.

A Program for Displaying Mouse Icons
Before we move on to Chapter 2, here’s one more program, presented
especially for owners of Apple He’s and late model Apple He’s. It isn’t
an assembly-language program or a machine-language program, and it
doesn’t even include any machine-language instructions. But it will
probably interest you if you’re an Apple lie owner, and an assembly-
language version of the program will be presented later on in this
volume.

Here’s how the program works. The Apple Ilc/IIe has two character
sets—a standard character set and an alternate character set. But the
alternate character sets built into Apple computers vary from model to
model. If your computer is an Apple lie, or an Apple He with built-in
mouse ROMs, its built-in character set includes 32 mouse icons (special
graphics characters designed for use with the Apple lie mouse). In the
Apple lie and the current-model Apple He. mouse icons are what you
get when your computer is in uppercase and in its flashing mode. But if
you own an Apple He and haven’t had special mousetext ROM installed,
then you’ll get just what you’d ordinarily expect in an uppercase flash
ing print mode: uppercase flashing characters.

Breaking the Assembly Language Barrier 17

If your computer is an Apple lie or a fairly new Apple lie, you can
display all of your mouse icons on the screen with this BASIC program.

Type the MOUSETEXT.BAS program, run it, and enjoy!

Program 1-7
MOUSETEXT.BAS
A BASIC Program That Displays Mouse Icons
10 REM *** MOUSETEXT.BAS ***
20 PRINT CHR$ (4) ; " PR#3" : REM TURN ON ENHANCED VIDEO

FIRMWARE
30 PRINT CHR$ (27) ; C H R $ (1 7) : REM ESC/CONTROL-Q (SET

4 0 - C OL MODE)
40 PRINT CHR$ (15) : REM CONTROL-O (SET REVERSE MODE)
50 PRINT CHR$ (27) : REM ESCAPE KEY (TURN ON MOUSETEXT)
60 FOR L = 64 TO 95 : PRINT CHRS (L) ; : NEXT L: REM PRINT

MOUSE ICONS
70 PRINT CHRS (24) : REM CONTROL-X (TURN OFF MOUSETEXT)
80 PRINT CHRS (14) : REM CONTROL-N (DISPLAY NORMAL

CHARACTERS)

Number Systems

Most people are accustomed to using only decimal numbers, which are
based on the digits 1 through 10. But at some time, you may have also
encountered the roman numeral system, which uses letters to represent
numbers. There are many other numeric systems that are different
from the decimal system, such as the Chinese system, the Hebrew sys
tem, and the Sanskrit system.

In the world of computer programming, three numeric systems are
commonly used. They are as follows:

• The decimal system, which is based on the value 10 and is written
using the digits 0 through 9.

• The binary system, which is based on the value 2 and is written
using only two digits: 0 and 1.

• The hexadecimal system, which is based on the value 16 and is
written using the digits 0 through 9 plus the letters A through F.

19

20 Apple Roots

Number-Base Prefixes

When a binary number appears in an Apple lie or He assembly-
language program, the prefix “%” is used by most assemblers to distin
guish it from a decimal or hexadecimal number. When a hexadecimal
number appears in an Apple assembly-language program, the prefix

is used by most assemblers to indicate that it is a hexadecimal
number.

No special prefix is used in front of a decimal number; if a number
with no prefix appears in a program, it is presumed to be a decimal
number.

The following illustration shows how prefixes are used to distinguish
among binary, hexadecimal, and decimal numbers in assembly-language
programs.

%1101 The binary number 1101 (decimal 13)
$1101 The hexadecimal number 1101 (decimal 4353)

1101 The decimal number 1101

Using Binary Numbers

A computer can understand only one language: a language that is made
up solely of numbers and is called machine language. Machine lan
guage, at its most basic level, consists of binary numbers (l’s and 0’s).
Before data can be loaded into a computer, it must somehow be con
verted into strings of l ’s and 0’s.

In the binary notation system, the l ’s and 0’s that make up binary
numbers are known as bits. A series of four bits is called a nibble (or
nybble), a series of eight bits is called a byte, and a series of 16 bits is
usually called a irord (although there are 8-bit words too).

When the bits and bytes that make up a machine-language program
are processed by a computer, they are converted into strings of on-and-
off electrical pulses. Inside a computer, these on-and-off pulses cause the
current flowing through various electrical lines to fluctuate between
low and high levels. When the electrical current falls below a certain
predetermined level, the switch is considered off, and its state is repre
sented as a 0 in the binary notation system. When the level of the cur
rent rises above a certain level, the switch is considered on. and its state
is represented as a 1.

Number Systems 21

Now we’re going to examine a series of 8-bit binary numbers. Look
at the numbers in this list closely, and you’ll see that every binary
number that ends in 0 is twice as large as the previous number.

00000001 = 1
00000010 = 2
00000100 = 4
00001000 = 8
00010000 = 16
00100000 = 32
01000000 = 64
10000000 = 128

Now here are two more numbers that are noteworthy, but for com
pletely different reasons:

%11111111 = 255
%11111111 11111111 = 65,535

The number %11111111, or 255, is noteworthy because it’s the largest
8-bit number. And the number %1111111111111111, or 65,535, is the larg
est 16-bit number. (The space in the middle of the number %1U11111
11111111 was put there so the number would be easier to read. Spaces
are often inserted in the middle of 8-bit numbers for the same reason.
Sometimes, for example, you might see the binary number 11111111
written 1111 1111.)

The Hexadecimal Number System

Since computers “think” in binary numbers, the binary system is
obviously an excellent notational system for representing computer
data. But binary numbers have one serious shortcoming: they’re ex
tremely difficult to read. Thus the binary system is not the numeric
system that is most often used in assembly-language programming. The
numeric system that you’ll encounter most often in assembly-language
programming is the hexadecimal system.

Just as binary numbers are based on the value 2, hexadecimal
numbers are based on the value 16.

Hexadecimal numbers are often used in assembly-language pro
gramming because they can help bridge the gap between the binary

22 Apple Roots

Table 2-

and decimal systems. Since binary numbers have a base of 2 and hex
numbers have a base of 16, a series of four binary bits can always be
translated into one hexadecimal digit. So a series of eight bits (a byte)
can always be represented by a pair of hexadecimal digits, and a series
of 16 bits (a word) can always be represented by a four-digit hexadeci
mal number.

In Table 2-1, the decimal, hexadecimal, and binary numbers from 1
to 16 are compared. Examine the chart closely, and you’ll see that odd
looking letter and number combinations like “FC1C”, “5DA4”, and even
“ABCD” are perfectly good numbers in the hexadecimal system.

As you can see from Table 2-1, the decimal number 16 is written “10”
in hex and “00010000” in binary and is thus a round number in both the
binary and hexadecimal systems. The hexadecimal digit F, which
comes just before hex 10, is written 00001111 in binary.

As you become more familiar with the binary and hexadecimal sys
tems, you will begin to notice many other similarities between them.
For example, the decimal number 255 (the largest 8-bit number) is
11111111 in binary and FF in hex. The decimal number 65,535 (the
highest memory address in a 64K computer) is written F F FF in hex
and 11111111 11111111 in binary.

1. Comparing Decimal, Hexadecimal, and Binary Numbers

Decimal Hexadecimal Binary
1 1 00000001
2 2 00000010
3 3 00000011
4 4 00000100
5 5 00000101
6 6 00000110
7 7 00000111
8 8 00001000
9 9 00001001

10 A 00001010
11 B 00001011
12 C 00001100
13 D 00001101
14 E 00001110
15 F 00001111
16 10 00010000

Number Systems 23

Converting Numbers From One System to Another

Since hexadecimal numbers, decimal numbers, and binary numbers
are all used in assembly-language programming, it would obviously be
handy to have some kind of tool that could be used to convert numbers
back and forth among these three numeric systems. Fortunately, a
number of such tools are available. Here are a few.

Software-Based Converters

The machine-language monitor built into your Apple includes a decimal-
to-hexadecimal converter and a hexadecimal-to-decimal converter. So
do the Merlin Pro assembler and the Bugbyter debugging utility, which
comes with the Apple ProDOS assembler. For more details on these
utilities, see the Apple lie and He technical reference manual and the
manuals that come with the Merlin and Apple ProDOS assemblers.

Programmers’ Calculators

Texas Instruments makes an extremely useful calculator called the
Programmer, which can perform decimal-to-hexadecimal conversions in
a flash and can also add, subtract, multiply, and divide both decimal
and hexadecimal numbers. Many assembly-language program designers
use the TI Programmer or a similar calculator and wouldn’t dream of
trying to get along without it.

Charts and Tables
Many books on assembly language contain charts that you can consult
when you convert numbers from one notation system to another. You’ll
find a few such charts in this chapter, and you’ll also find something
much better: a series of BASIC programs that will automatically per
form decimal-to-hexadecimal, decimal-to-binary, and binary-to-hexa-
decimal conversions.

Let’s start with a program that will convert binary numbers to
decimal numbers.

Converting Binary Numbers
To Decimal Numbers

It isn’t difficult to convert a binary number to a decimal number. In a
binary number, as we’ve seen, the bit farthest to the right represents 2

24 Apple Roots

Table 2-2. Values of the B its in an 8-Bit B inary N um ber

Bit 0 = 2 to the 0th power = 1
Bit 1 = 2 to the 1st power = 2
Bit 2 = 2 to the 2nd power = 4
Bit 3 = 2 to the 3rd power = 8
Bit 4 = 2 to the 4th power = 16
Bit 5 = 2 to the 5th power = 32
Bit 6 = 2 to the 6th power = 64
Bit 7 = 2 to the 7th power = 128

to the power 0. The next bit to the left represents 2 to the power 1, the
next represents 2 to the power 2, and so on.

The digits in an 8-bit binary number are therefore numbered 0 to 7,
starting from the far-right digit. The far-right bit—often referred to as
bit 0—represents 2 to the 0th power, or the number 1. And the far-left
bit—often called bit 7—equals 2 to the 7th power, or 128.

Table 2-2 is a list of simple equations that illustrate what each bit in
an 8-bit binary number means.

Table 2-3 provides an easy method of converting any 8-bit binary
number into its decimal equivalent. Instead of writing the number from

Table 2-3. Converting a Binary Number Into a Decimal Number

Number Systems 25

left to right, write it instead in a vertical column, with bit 0 at the top of
the column and bit 7 at the bottom. Then multiply each bit in the
binary number by the decimal number that it represents. Add the
results of all of these multiplications, and the total will be the decimal
value of the binary number.

Suppose, for example, you wanted to convert the binary number
00101001 into a decimal number. Table 2-3 shows how the conversion
could be done.

If the calculation in Table 2-3 is correct, the binary number 00101001
should equal the decimal number 41. Look up either 00101001 or 41 on
any binary-to-decimal or decimal-to-binary conversion chart, and you’ll
see that the calculation was accurate. This conversion technique will
work with any other binary number.

Converting Decimal Numbers
To Binary Numbers

Now we’ll go in the opposite direction and convert a decimal number to
a binary number.

First, divide the number by 2. Write down both the quotient and the
remainder. Since we’re dividing by 2, the remainder will be either a 1
or a 0. We will therefore write down the quotient followed by either a 1
or a 0.

Next, we’ll take the quotient, divide it by 2, and write down the
result of that calculation. If there’s a remainder (a 1 or a 0), we’ll also
write that below the first remainder.

When we are left with no more numbers to divide, we’ll write all of
the remainders that we have, reading from the bottom to the top. Then
we’ll have a binary number—a number made up of l ’s and 0’s. That
number will be the binary equivalent of the original decimal number.

This conversion technique is illustrated in Table 2-4.
To complete the decimal-to-binary conversion illustrated in Table 2-4,

simply copy the binary digits in the right-hand column, writing them
horizontally from right to left with the top digit on the right. You’ll then
see that the binary equivalent of the decimal (not hexadecimal) number
117 is 01110101. If you have a decimal-to-binary conversion chart handy,
you can use it to confirm the accuracy of this calculation.

26 Apple Roots

Table 2-4. C onverting a Decim al N um ber Into a B inary N um ber

117/2 = 58 with a remainder of 1
58/2 = 29 with a remainder of 0
29/2 = 14 with a remainder of 1
14/2 = 7 with a remainder of 0
7/2 = 3 with a remainder of 1
3/2 = 1 with a remainder of 1
1/2 = 0 with a remainder of 1
0/2 = 0 with a remainder of 0

Converting Binary Numbers
To Hexadecimal Numbers

Here’s an even easier number-base conversion. To convert hexadecimal
numbers to their binary equivalents and vice versa, merely use the
chart in Table 2-5.

To convert a multiple-digit hex number into a binary number, all
you need do is string the letters and digits in the hex number together
and convert each one separately, as shown in Table 2-5. For example,
the binary equivalent of the hexadecimal number CO is 1100 0000. The
binary equivalent of the hex number 8F2 is 1000 1111 0010. The binary
equivalent of the hex number 7A1B is 0111 1010 0001 1011. And so on.

To convert binary numbers to hexadecimal numbers, use the chart
in reverse. The binary number 1101 0110 1110 0101. for example, is
equivalent to the hexadecimal number D6E5.

Converting Decimal Numbers
To Hexadecimal Numbers

It’s almost as simple to convert decimal numbers to hexadecimal
numbers as it is to translate binary numbers to decimal numbers.

First, take a decimal integer that you want to convert and divide it
by 16. Write down the remainder, like this:

64540/16 = 4033 with a remainder of 12

Number Systems 27

Table 2-5. H exadecim al-to-B inary Conversion C h art

Hexadecimal Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
A 1010
B 1011
C 1100
D 1101
E 1110
F m i

Divide the integer part of the quotient by 16 and write down the
result of that calculation.

4033/16 = 252 with a remainder of 1

Keep repeating this process until you have a quotient of 0. Here’s the
entire set of calculations that are needed to convert the decimal number
64540 into a hexadecimal number:

64540/16 = 4033 with a remainder of 12
4033/16 = 252 with a remainder of 1
252/16 = 15 with a remainder of 12

15/16 = 0 with a remainder of 15

When you’ve finished this series of calculations, you must convert
any remainder that’s greater than 9 into its hexadecimal equivalent. In
this problem, three remainders are greater than 9: the value 12 in the
first line, the value 12 in the third line, and the value 15 in the fourth
line. The decimal number 12 equates to the letter C in hexadecimal

28 Apple Roots

notation, and the decimal number 15 equates to the letter F. So the
remainders in the problem, converted into hex, are

C
1
C
F

Read the four numbers, starting from the bottom, and you have the
hexadecimal number FC1C, which is the number we’re looking for, the
hexadecimal equivalent of the decimal number 64540.

Doing It the Easy Way

In this chapter, we’ve compared three different number bases: the
decimal system, the hexadecimal system, and the binary system. Now
you know how to convert numbers from any of these three bases to any
other. Some of the conversion techniques are quite simple; others are
fairly complicated, and unless you have a photographic memory, you
may not remember any of them. But fortunately, you won’t have to. Just
type and save the program presented in Program 2-1, and you can let
your computer do it for you.

Program 2-1, titled “By the Numbers,” is a menu-driven BASIC
program that can convert numbers from any of the three bases dis
cussed in this chapter to any other. The program assumes that you have
an 80-column display.

In the next chapter, we’ll take a look inside your Apple’s main
microprocessor and see what makes it tick. Then we’ll be ready to start
actually writing some programs in assembly language.

Program 2-1
BY THE NUMBERS
(A BASIC Number-Conversion Program)
10 REM ***
20 REM ***************** BY THE NUMBERS ****************
30 REM ********* A NUMBER CONVERSION PROGRAM *********
AO REM ***
50 PRINT CHR$ (4) ; " P R # 3 "
60 DIM H E X $ (8) , B I T $ (8) , H $ (1 6) , B $ (1 6) , T E M P $ (2) , B I T (8 >
70 DATA 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , A , B , C , D , E , F
80 DATA 0 0 0 0 , 0 0 0 1 , 0 0 1 0 , 0 0 1 1 , 0 1 0 0 , 0 1 0 1 , 0 1 1 0 , 0 1 1 1
90 DATA 1 0 0 0 , 1 0 0 1 , 1 0 1 0 , 1 0 1 1 , 1 1 0 0 , 1 1 0 1 , 1 1 1 0 , 1 1 1 1
100 FOR L = 1 TO 16: READ H $ (L) : NEXT L
110 FOR L = 1 TO 16: READ B $ (L) : NEXT L

Number Systems 29

120
130

140
150
160

170
180
190
200

210
220

230
240
250
260

270
280
290

300

310
320
330
340
350
360
370
380
390
400
410
420

430
440
450
460
470
480

490

500

510
520
530
540
550
560
570

BY THE NUMBERS: A NUMBER-BASE

(B) HEXADECIMAL NUMBERS TO DECIMAL NUMBERS"
PRINT " (C) BINARY NUMBERS TO DECIMAL NUMBERS"

DECIMAL NUMBERS TO BINARY NUMBERS"
(E) HEXADECIMAL NUMBERS TO BINARY

(D)

TEXT : HOME
PRINT : PRINT "

CONVERSION PROGRAM"
PR1NT " COPYRIGHT (C) 1985, MARK ANDREWS": PRINT
PRINT : PRINT "THIS PROGRAM WILL CONVERT:"
PRINT : PRINT " (A) DECIMAL NUMBERS TO HEXADECIMAL

NUMBERS"
PRINT "
PRINT :
PRINT "
PRINT : PRINT "

NUMBERS"
PRINT " (F) BINARY NUMBERS TO HEXADECIMAL NUMBERS"
PRINT : INPUT "WHAT KIND OF CONVERSION DO YOU WANT?

(TYPE A- F) : " ; A $
IF AS = " " THEN 220
IF LEN (AS) < > 1 THEN 220
IF AS < "A" OR AS > " F " THEN 220

A = ASC (AS) - 64: REM TRANSLATE AS INTO AN INTEGER
FROM 1 (A) TO 6 (F)

ON A GOTO 2 9 0 , 4 9 0 , 6 6 0 , 8 7 0 , 1 0 4 0 , 2 1 2 0
REM * * * * * * * * * DECIMAL-HEXADECIMAL CONVERSION * * * * * * *
TEXT : HOME : PRINT "DECIMAL-TO-HEXADECIMAL CONVERSION

(RANGE: 0 TO 99999999)"
PRINT : PRINT "TYPE A POSITIVE DECIMAL INTEGER (OR ’ M'

FOR MENU): "
PRINT : INPUT "DEC: " ; A S
FOR L = 1 TO 8 : HEXS(L) = " " : NEXT L
IF AS = "M" THEN 120
FOR L = 1 TO 8 : TS = RIGHTS (A $, L)
IF ASC (TS) < 48 OR ASC (TS) > 57 THEN 310
NEXT L
IF LEN (AS) < 1 OR LEN (AS) > 8 THEN 310

N = VAL (AS)
1 = 8
TMP = N:N = INT (N / 16)
TMP = TMP - N * 16

IF t mp < 10 THEN HEXS(I) = RIGHTS (STRS (T M P) , 1) :
GOTO 440
HEXS(I) = CHR$ (TMP " 10 + ASC (" A "))

1F N < > 0 THEN 1 = 1 - 1 : GOTO 400
PRINT "HEX: " ;
FOR L = 1 T0 8: PRINT H E X $ (L) ; : NEXT L: PRINT
GOTO 310
REM * * * * * * * * * * * * * HEXADECIMAL-TO-DECIMAL CONVERSION

TEXT : HOME : PRINT :
CONVERSION (RANGE 0 TO

PRINT :
MENU)

PRINT :
IF AS =
IF LEN

PRINT "TYPE HE
PRINT
INPUT "HEX: " ;
"M" THEN 120
(AS) > 8 THEN

PRINT "HEXADECIMAL-TO-DECIMAL
F F F F F F F F) "
XADECIMAL NUMBER (OR 'M' FOR

AS

510

N = 0
FOR L = 1 T0

HEXS(L) = MID$
IF HEXS(L) <

LEN (AS)
(A $, L , 1)

0" OR HEXS(L) > " F " THEN 510

30 Apple Roots

580 IF HEX$(L) <
GOTO 620

_ i i 9" THEN N = N * 16 + VAL <HEX$(L>):

590 IF HEX$(L) < "A" THEN 510
600 IF HEX$(L) > i i p i i THEN 510
610
620

N = N * 16 +
NEXT L

ASC (HEX$(L)) - ASC ("A") + 10

630
640

PRINT "DEC:
GOTO 510

" ; N : PRINT

650 REM *******

** BINARY-TO-DECIMAL CONVERSION ****

660 TEXT : HOME : REM CLEAR SCREEN
670 PRINT : PRINT "BINARY-TO-DECIMAL CONVERSION PROGRAM"
680 PRINT : PRINT "INSTRUCTIONS: ENTER AN 8 - B I T BINARY

NUMBER (OR 'M' FOR MENU)"
690 PRINT : INPUT "BIN: " ; A $
700 IF A$ = "M" THEN 120
710 IF LEN (A$) <> 8 THEN 690
720 FOR L = 8 TO 1 STEP - 1
730 B$(L> = MID$ (A $, L , 1)
740 IF B$(L> < > " 0" AND B$(L) < > "1" THEN 680
750 NEXT L
760 FOR L = 1 TO 8
770 B I T (L) = VAL <B$(L))
780 NEXT L
790 ANS = 0
800 M = 256
810 FOR L = 1 TO 8
820 M = M / 2: ANS = ANS + B I T (L) * M
830 NEXT L
840 PRINT " DE CI MAL: " ; ANS
850 GOTO 680
860 REM ********** DECIMAL-TO-BINARY CONVERSION

870 TEXT : HOME : PRINT "DECIMAL-TO-BINARY CONVERSION
PROGRAM (RANGE 0 - 2 5 5) "

880 PRINT : PRINT "ENTER A POSITIVE INTEGER (OR * M * FOR
MENU)"

890 PRINT : INPUT "DEC: " ; A$
900 IF A$ = "M" THEN 120
910 IF VAL (A$) < 0 OR VAL (A$) > 255 THEN 890
920 NR = VAL (A$)
930 FOR L = 8 TO 1 STEP - 1
940 Q = NR / 2
950 R = Q - INT (Q)
960 IF R = 0 THEN B T $ (L) = " 0 " : GOTO 980
970 8 T $ (L) = "1"
980 NR = INT (Q)
990 NEXT L
1000 PRINT "BINARY: " ;
1010 FOR L = 1 TO 8: PRINT B T $ (L) ; : NEXT L: PRINT
1020 GOTO 880
1030 REM * * * * * * * * HEXADECIMAL-TO-BINARY CONVERSION

1040 TEXT : HOME : PRINT "HEXADECIMAL-TO-BINARY CONVERSION
PROGRAM (RANGE: 0 TO F F) "

1050 PRINT : PRINT "TYPE HEXADECIMAL NUMBER (OR 'M' FOR
MENU)"

Number Systems 31

1060 PRINT : INPUT "HEX: " ; AS
1070 IF A$ = "M" THEN 120
1080 IF LEN (A$) > 2 OR LEN (AS) < 1 THEN 1060
1090 HEX$(1) = " " : HEXS(2) _ M II

2000 FOR L = 1 TO LEN (AS)
2010 HEX$(L) = MIDS (A $, L /1)
2020 IF HEXS(L) < "0" OR HEXS(L) > "F" THEN 1060
2030 IF HEXS(L) > "9" AND HEXSS(L) < "A" THEN 1060
2040 NEXT L
2050 IF HEXS(2) = " " THEN HEXS(2) = HEXS(1) : HEXS (1) =
2060 FOR L = 1 TO 16: IF H E X S (1) = H$(L) THEN BITS (1)

B$(L)
2070 NEXT L
2080 FOR L = 1 TO 16: IF H E X S (2) = H$ (L) THEN B I T S (2)

B$(L)
2090 NEXT L
2095 PRINT " BIN: " 7
2100 PRINT B I T S (1) ; B I T $ (2) : GOTO 1060
2110 REM ************ BINARY TO HEXADECIMAL CONVERSION

2120 TEXT : HOME : PRINT "BINARY-TO-HEXADECIMAL
CONVERSION"

2130 PRINT : PRINT "TYPE AN 8- BI T BINARY NUMBER (OR *M'
FOR MENU): "

2140 PRINT : INPUT "BIN: " ; A$
2145 IF A$ = "M" THEN 120
2150 IF LEN <A$) < > 8 THEN 2140
2160 FOR L = 8 TO 1 STEP - 1
2170 B I T S (L) = MIDS (A $, L , 1)
2180 IF B I T $ (L) < > "0" AND BI T $ (L) < > "1" THEN 2140
2190 NEXT L
2200 BITS = B I T S (1) + BIT$<2) + BI TS(3) + BI T$(4) + BIT$(5)

+ B I T S (6) + B I T S (7) + BITSC8)
2210 T1S = LEFTS (B I T S , 4) : T 2 $ = RIGHTS (B I T S , 4)
2220 FOR L = 1 TO 16: IF T1S = BS(L) THEN HEXSC1) = H$(L)
2240 NEXT L
2250 FOR L = 1 TO 16: IF T2S = B$(L) THEN HEXS(2) = H$(L)
2260 NEXT L
2270 PRINT "HEX: " ; HEXS(1) ; HEXS(2)
2280 GOTO 2140

In the Chips

As discussed in Chapter 1, the brain of your computer is its central
processing unit, or CPU.

A central processing unit, as its name implies, is the central compo
nent in a computer system—the component in which all computing
functions take place. In a microcomputer, such as the Apple lie and He,
all of the functions of a central processing unit are contained in a large-
scale integrated circuit (LSI), sometimes referred to as a microprocessor
unit (MPU).

Originally, the MPUs that were used in the Apple lie and the Apple
He differed slightly. The Apple lie was originally built around a micro
processor called the 6502B. But the Apple lie, and newer Apple He’s,
are built around a slightly more advanced chip called the 65C02. Both
of these chips are members of the popular 6502 family of microproces
sors, so all Apple He’s and Apple He’s are almost 100 percent compati
ble. The 65C02 chip can run programs written for the 6502B, but pro
grams written for the 65C02 will not necessarily run on the older
6502B. (All of the programs in this book will run on both chips,
however.)

33

34 Apple Roots

In addition to the 6502B and the 65C02, two new 16-bit chips are
now available for Apple II-series computers. One of these chips, the
65802, can process data at 16-bit speeds but can address only 64K of
memory space—the same amount of memory space that can be handled
by an unimproved (64K) Apple He. The 65802 is completely pin-compatible
with a 6502, 6502B, or 65C02 chip, so it can be plugged directly into an
Apple lie or an Apple He. The 65802 can run standard 6502 software,
as well as new software that is especially written to take advantage of
its high-speed 16-bit data-handling capabilities.

The other new chip, the 65816, has a 16-bit data bus and a 24-bit
address bus. It can handle up to 16 megabytes of address space. It man
ages its memory in a more complex fashion than other 6502-series chips
do, so it is not pin-compatible with the 6502B and 65C02 chips built into
the Apple lie and the Apple lie. It will, however, run software designed
for the 6502 family of 8-bit chips, as well as specially designed 65802
and 65816 software.

The architecture of the 6502B and 65C02 chips will be discussed
later in this chapter, and the two new “superchips” will be covered in
greater detail later in this book. But before you can understand the
operation of any microcomputer chip—even the plain, no-frills 6502
chip that was used in the first Apple II —you’ll have to know something
about the operation of computer chips in general. You should also have a
general idea of what goes on inside a chip when it processes data and
how a chip accesses data that’s stored in the memory of an Apple II.

We begin by discussing how your Apple’s CPU locates data that is
stored in your computer’s memory.

Your Apple’s Memory

You know that RAM is your computer’s short-term memory, while ROM
is its long-term memory. In computer jargon. RAM is said to be volatile,
while ROM is said to be non-volatile. That means that that RAM can be
changed (or lost), while ROM cannot be.

RAM is the free memory space in your computer. When you turn
your computer on, its RAM is as blank as a sheet of white paper. You
can store anything in it that you wish, including text, data, programs, or
even pictures that can be displayed on a screen (all of which, of course,
must be represented by numbers).

When you turn your computer off, however, everything that you’ve
stored in RAM disappears. That’s what keeps computer-disk manufac-

In the Chips 35

turers in business. When you load a program that is on a disk into your
Apple’s memory, the program always gets loaded into the part of
memory that is RAM. When the power to your computer goes off, the
part of its memory that gets erased is also RAM.

We have compared the RAM banks in a microcomputer with a bank
of mailboxes built along a wall inside a post office. Inside a computer,
each of these “mailboxes” is called a memory register. And each
memory register, like each box in a bank of post office boxes, has a
unique memory address. In an Apple lie or Apple He, each memory
address can hold only one 8-bit number—that is, a number ranging
from 0 to 255. That number can represent one of only four things:

• The stored number itself

• A code representing a text character
• A machine-language instruction

• A data element (such as a part of a graphics picture).

Since a computer contains many memory registers, and since the
value stored in each memory address or location can have various mean
ings, a computer has to be told two things before it can run a program:
where the program is situated in its memory and whether the value in
each number in the program should be interpreted as a number, a text
character, a machine-language instruction, or a data element.

Running a Machine-Language Program

Before a computer can run a machine-language program, it has to know
the starting address of the program —the location at which the program
has been stored in the computer’s memory. Once the computer knows
where a program starts, it can go directly to the first instruction in the
program and carry that instruction out. The computer will then move
on to the next address in its memory where, if the program has been
properly written, it will find another instruction.

When you write an assembly-language program with any of the
three assemblers that were used in the writing of this book, you will
usually indicate the memory location where a program begins by typing
a line that looks something like this:

ORG $8000

In an assembly-language program, a line like the one above is called
an origin directive (ORG). The Apple ProDOS assembler requires the

36 Apple Roots

use of an ORG directive, but you can get by without one if you own a
Merlin assembler or an ORCA/M, since both of those assemblers will
assign a default address to a program if you don’t provide one.

When your assembler encounters an ORG line at the beginning of a
program, it will assemble the source code that follows into a machine-
language program that begins at the address given in the directive; in
this case, at hexadecimal memory address $8000 (or 32768 in decimal
notation). Once the program has been assembled at the address given in
the ORG directive—or at a default address—it can be saved on a disk
and later run using a ProDOS command as simple as

BRUN PATHNAME

where the word PATHNAME represents the actual pathname of the
program.

Using Data in an Assembly-Language Program

When an ORG line is used in an assembly-language program, it must
point to the first memory address in the program that contains execut
able code (machine code that has been generated by valid assembly-
language instructions). An ORG line should never point to a program
segment that is made up of non-executable machine code, such as a
table of data. If it does, the computer will try to interpret the data as
executable code and will attempt to run it, and the results will be
unpredictable.

This does not mean that you can’t use data tables in an assembly-
language program. You can, of course; but when a block of non
executable data is included in an assembly-language program, it is
usually stored in a separate block of memory. Then the data can be
accessed as needed from the main body of the program without its get
ting mixed up with executable code during the program’s execution.

8-Bit and 16-Bit Numbers

The Apple lie and the Apple He both belong to a class of computers
called 8-bit computers. That’s because Apple II-series computers were all
originally designed around the 6502 microprocessor, which is an 8-bit
chip. Eight-bit chips can process binary numbers up to 8 places long, but
no longer. As we saw in the previous chapter, a 6502/6502B/65C02 chip
cannot perform a calculation on a binary number larger than 255 without
breaking it down into smaller numbers. In fact, the 6502/6502B/65C02
chip can’t even perform a calculation with a result that’s greater than
255!

In the Chips 37

Obviously, this 8-bit limitation makes the manipulation of large
numbers very inconvenient. In effect, a 6502/6502B/65C02 chip is like a
calculator that can’t handle a number larger than 255.

To work with numbers larger than 255, an 8-bit computer has to
perform a rather complex series of operations. If a number is greater
than 255, an 8-bit computer has to break it down into 8-bit chunks and
perform each required calculation on each 8-bit number. Then the
computer has to patch all of these 8-bit numbers together again.

If the result of a calculation is more than 8 bits long, things get even
more complicated. That’s because the memory registers in the Apple lie
and the Apple He are also incapable of handling numbers that are
larger than 255. Each cell in your Apple’s random-access memory
(RAM), as well as in its-read-only memory (ROM), is an 8-bit memory
register. So, in order to store a number larger than 255 in your comput
er’s memory, you’ll always have to break it up into two or more 8-bit
numbers and then store each of those numbers in a separate memory
location. If you ever want to refer to the original number again, you
have to patch the 8-bit pieces back together.

The Memory Architecture
Of the 6502B/65C02 Microprocessor

We are now at a point that can be somewhat confusing. Although the
Apple lie and the Apple He cannot process numbers that are more than
eight bits long, they can handle addresses that are up to 16 bits long.
Figure 3-1, a simplified block diagram of your computer’s CPU and
components that are connected to it, may help you understand what that
means.

When you examine Figure 3-1, you’ll see that a 6502B/65C02 chip
has

• Six internal registers (labeled PC, SP or S, P, X, Y, and A)
• An arithmetic/logical unit (labeled ALU)
• An 8-bit data bus and a 16-bit address bus.

Figure 3-1 also includes a block representing your computer’s input/
output (I/O) devices, as well as a block representing your Apple’s
memory (RAM and ROM). I/O devices will be covered in Chapter 11. In
this section we’ll focus on the portions of Figure 3-1 critical to memory:
the data and address buses and the program counter.

38 Apple Roots

ADDRESS
BUS

®The Western Design Center, Inc. Used by permission.

Figure 3-1. Block diagram of the 6502B/65C02 microprocessor

Data and Address Buses
At the bottom of Figure 3-1, there’s a series of lines labeled “data bus.”
Along the left side of the drawing there’s a row of arrows labeled
“address bus.” In computer terminology, a bus is a line over which
information is transmitted inside a computer. The long bars at the top
and bottom of Figure 3-1 represent lines that are used for the transmis
sion of data and addresses inside your Apple He or Apple lie.

Here’s a very important point about the two buses illustrated in Fig
ure 3-1: the data bus at the bottom of the diagram is an 8-bit bus, and
the address bus at the left is a 16-bit bus.

An 8-bit bus is a line over which information can be transmitted
eight bits at a time. A 16-bit bus is a line over which information can be

In the Chips 39

moved 16 bits at a time. Therefore, since a 6502B/65C02 chip has an
8-bit data bus, it cannot manipulate chunks of data that are more than
eight bits long. But, since it has a 16-bit address bus, it can keep track
of memory addresses that are up to 16 bits long. Let’s see why.

The 6502B/65C02 Program Counter

In the center of Figure 3-1, there is a pair of boxes labeled PCL (for
“Program Counter-Low”) and PCH (for “Program Counter-High,r). These
two boxes represent an internal register called a program counter (PC).
In 6502-family chips, the program counter is a register that is used to
keep track of the addresses of memory registers being used by a pro
gram. When your computer is running a machine-language program,
the program counter in the CPU always holds the address of the next
byte of data to be processed. Each time a byte is processed, the program
counter is automatically incremented. It then holds the address of the
next byte to be processed.

The PCL and PCH boxes in Figure 3-1 were given separate labels
because the program counter in a 6502-family chip is actually made up
of two 8-bit registers. These registers—the PCH and the PCL—are
always used together as one 16-bit register which, as you have seen, is
called the program counter.

Now you can understand how your computer keeps track of memory
addresses up to 16 bits long: it simply uses two 8-bit registers together
as a program counter. Thus it can handle memory addresses that
extend from $0000 to $FFFF (or, in decimal notation, from 0 to 65535).
As you may recall from Chapter 2, the binary equivalent of $FFFF, or
65535, is 1111 1111 1111 1111 —the largest 16-bit number.

Now you know what people mean when they talk about 8-bit data
buses and 16-bit address buses. And you also know why most 8-bit com
puters on the market can access 64K of memory.

Bank Switching

If your computer is an Apple He with 64K of memory, that’s about all
you need to know right now about the way your computer’s CPU
accesses data in its memory.

If you own an Apple lie, or an Apple He with 128K of memory,
there’s one more point to cover: how the engineers who designed your
computer managed to fit 128K of memory into 64K of RAM.

40 Apple Roots

They did it with a design technique called bank-switching.
Bank-switching is not a very difficult concept. It involves switching

different blocks of memory into the same address space. If you own an
Apple lie or an expanded Apple lie, your computer has two 64K blocks
of memory, one called main memory and the other called auxiliary
memory. To switch back and forth between these two blocks of memory,
all you do is change the contents of a certain series of memory locations
(specifically, the locations that extend from memory address $C003 to
memory address $C016). These locations are sometimes called soft
switches because they are used just like hardware switches to turn
things off and on.

If it were not for bank-switching, your Apple lie or expanded Apple
lie would have a memory capacity of only 64K. With the help of bank
switching, an Apple lie or an expanded Apple He can hold 128K of
data, even though it isn’t a true 128K computer. It’s actually more like
two 64K computers hooked together and wired to the same keyboard.
Once you know how to use the right soft switches to bank-switch
between such a computer’s main and auxiliary memories, you can move
back and forth between these two banks of memory quite freely. But
you can never have access to both banks of memory at the same time.
(Because switching occurs very quickly, it is not usually noticeable to
the user. A programmer, however, must take it into account.)

Bank-switching techniques can also be used to switch certain seg
ments of your computer’s main memory from ROM to RAM and back to
ROM. All of these bank-switching operations will be explained in more
detail in Chapter 11, whk h is devoted to the memory organization of the
Apple lie and the Apple lie. At this point, it is sufficient to understand
that bank-switching techniques expand the memory capacity of the
Apple lie from 64K to 128K, and can boost the capacity of the Apple He
even more.

Your Apple’s CPU___________________________________

Refer again to Figure 3-1. The 6502B and 65C02 microprocessors that
came with your Apple lie or lie contain, as mentioned earlier, seven
main parts: six addressable registers and an arithmetic logical unit or
ALU. (The new 65802 and 65816 chips will be discussed in connection
with addressing at the conclusion of this chapter and in Chapter 7.)

In the Chips 41

The Arithmetic Logical Unit

Just as your computer’s command center is its central microprocessor, a
CPU’s command center is its ALU. Every time a 6502-based chip per
forms a calculation or a logical operation, the ALU is the component
inside the chip where the work is actually done.

The ALU can actually perform only two kinds of calculations: addi
tion and subtraction. Division and multiplication problems can also be
solved by the ALU, but only in the form of sequences of addition and
subtraction operations.

The ALU can compare values, too, but only by performing subtrac
tion operations. To compare two values, the ALU simply subtracts one
of them from the other. It can then determine whether one of the values
is larger than the other or whether both values are the same.

The Accumulator

In Figure 3-1 the ALU is pictured just above the accumulator. When
two numbers are to be added, subtracted, or compared, one of the
numbers is first stored in the 65C02/6502B’s accumulator. Next, the
accumulator deposits that number in the ALU through one of the ALU’s
inputs. The other number is then placed in the ALU through the ALU’s
other input. Finally, the ALU carries out the requested calculation and
the result appears at the output of the ALU. As soon as the answer
appears, it is placed in the accumulator, where it replaces the value that
was originally stored there.

Program 3-1 is a short assembly-language program that shows how
this process works. This program is called ADDNRS.

Program 3-1
THE ADDNRS PROGRAM
An Example of an ALU Operation
LDA U2
ADC #3
STA $0300

The first instruction in the ADDNRS program, LDA, means “Load
the accumulator.” When the instruction LDA is encountered in a pro
gram, the accumulator is loaded with a certain value: specifically, the
value of the operand that follows the instruction. In the ADDNRS pro
gram the effect of the instruction LDA is to load the accumulator with
the literal number 2. (The “#” sign in front of the numeral 2 means that

42 Apple Roots

the 2 in the instruction is to be interpreted as a literal number. If there
were no “#”, the 2 would be interpreted as the address of a memory
location.)

The second instruction in the ADDNRS program, ADC, means “Add
with carry.” This command results in the addition of two numbers plus
the carry bit (if the carry bit is set). In order to avoid an improper result
when adding two 8-bit numbers, you should use the CLC (CLEAR
CARRY command) prior to the ADC command. With the carry bit
cleared, all the ADC instruction does is add 2 and 3.

As soon as the line “ADC #3” appears in the ADDNRS program, the
2 that has been loaded into the accumulator is deposited into one of the
inputs of the 6502 chip’s ALU. And the number 3, along with the
instruction ADC, is placed in the ALU’s other input. The ALU then
carries out the ADC instruction that it has received: it adds 2 and 3 and
places their sum back in the accumulator.

Now we’re ready for the third and last instruction in the ADDNRS
program. The instruction in line 3, STA, means “Store the contents of
the accumulator” (in the memory address that follows). Since the
accumulator now holds the value 5 (the sum of 2 and 3), the number 5 is
about to be stored somewhere.

As you can see, the memory address that follows the instruction STA
is $0300—the hexadecimal equivalent of the decimal number 768. So it
appears that the number 5 is now going to be stored in memory location
$0300.

Now take a look at the hexadecimal number $0300 in line 3. Since
there is no “#” sign in front of the number $0300, the Apple ProDOS
assembler will not interpret it as a literal number. Instead, $0300 will
be interpreted as a memory address since it carries no other identifying
labels. (If you did want your assembler to interpret $0300 as a literal
number, you would have to write it as #$0300. When a symbol and a
dollar sign both appear before a number, that number is interpreted as
a literal hexadecimal number.)

If the third line of the program were “STA #$0300”, however, that
would be a syntax error since STA (“Store the contents of the accumula
tor in . . . ”) is an instruction that must be followed by a value that can be
interpreted as a memory address.

The X Register
The X register (abbreviated “X”) is an 8-bit register with a very special
feature. It can be incremented and decremented automatically with a

In the Chips 43

pair of convenient one-byte instructions: INX, which stands for “Incre
ment the X register,” and DEX, which means “Decrement the X regis
ter.” Since the X register can be incremented and decremented so easily,
it is often used as an index register, or counter, during loops and
read/data-type instructions in programs. When its special incrementing
and decrementing features are not being used, the X register can be
used for the temporary storage of data.

The Y Register

The Y register (abbreviated “Y”) is also an 8-bit register and can also be
incremented and decremented with a pair of special one-byte instruc
tions. The mnemonics that are used to increment and decrement the Y
register are INY and DEY. When its special incrementing and decre
menting features are not being used, the Y register can also be used for
the temporary storage of data.

The Program Counter

The program counter (PC) was described during our discussion of your
computer’s memory. You will recall that the PC is a pair of 8-bit regis
ters designed to be used together as one 16-bit register. When the
65C02/6502B is running a machine-language program, the program
counter always contains the 16-bit address of the next memory register
to be accessed by the program. When that instruction has been carried
out, the address of the next instruction is loaded into the program
counter.

We have already mentioned that the two 8-bit registers that make up
the program counter are often referred to as the Program Counter-Low
(PCL) register and the Program Counter-High (PCH) register.

The Stack Pointer

The stack pointer (abbreviated as either “S” or “SP”) is an 8-bit register
that always “points to,” or contains, the address of the top element in a
block of RAM called the hardware stack. The hardware stack (also
referred to as the stack) is a special block of memory in which data is
often stored temporarily during the execution of a program. When sub
routines are used in assembly-language programs, the 65C02/6502B
chip uses the stack as a temporary storage location for return addresses.
Beginning with Chapter 7, you will learn to use the stack for other pur
poses in assembly-language programs.

44 Apple Roots

The Processor Status Register

The processor status register (also called the status register but abbre
viated as “P” so it won’t be confused with the stack pointer register) is
an 8-bit register that keeps track of the results of operations that have
been performed by the 65C02/6502B. Let’s take a look at this very
important register.

The P register is built differently from the other registers in the
65C02/6502B, and it is used differently, too. Unlike the others, it isn’t
designed for storing or processing ordinary 8-bit numbers. Instead, the
P register’s bits are used as flags designed to keep track of several
kinds of important information.

Four of the status register’s eight bits are called status flags. These
four flags, with their abbreviations, are

• The carry flag (C)
• The overflow flag (V)
• The negative flag (.N)
• The zero flag (Z).

These flags are used to keep track of the results of operations being
carried out by the other registers inside the 65C02/6502B processor.

Since the P register is an 8-bit register, it has four additional flags.
Three of these flags are called condition flags and are used to determine
whether certain conditions exist in a program:

• The interrupt disable flag (7)
• The break flag (B)
• The decimal mode fa g (D).

The processor status register’s eighth bit is not used.

Layout of the Processor Status Register

The processor status register can be visualized as a rectangular box
containing eight square compartments. Each compartment in the box is
actually one of the P register’s eight bits. In the processor status regis
ter, each of these bits is used as a flag.

If a given bit has the binary value 1. then it is said to be set. If it has
the binary value 0, then it is said to be clear.

The bits in the 65C02/6502B status register—like the bits in all
8-bit registers—are customarily numbered from 0 to 7. By convention,
the far-right bit in an 8-bit register is generally referred to as bit 0,

In the Chips 45

Bits 7 6 5 4 3 2 1 0

Flags N V B D I Z c

Figure 3-2. The 65C02/6502B processor status register

and the far-left bit is generally referred to as bit 7. The positions of
these bits in the 6502B/65C02 status register are illustrated in Figure
3-2 above.

Here’s a complete listing and explanation of the flags in the
65C02/6502B processor status register.

Bit 0: The Carry Flag (C) The carry flag (C) is one of the busiest bits
in the 65C02/6502B processor status register. It tells whether a number
must be carried from one byte to another during an arithmetic
operation.

In an 8-bit chip like the 65C02/6502B, the carry flag has special
importance. Without a carry flag, the 65C02/6502B would not be able to
perform operations on numbers larger than 255. When the 65C02/6502B
chip has to perform an addition operation on a number greater than
255, or if the result of a calculation might turn out to be greater than
255, that number must be broken down into 8-bit segments for process
ing and then patched back together. The P register’s carry flag plays an
important role in this mathematical cutting and pasting.

If two 16-bit numbers are to be added, each number must first be
broken down into two 8-bit bytes. The low-order bytes of the two
numbers must then be added together. If this operation results in a sum
greater than 255, the carry flag will automatically be set. Then, if the
high-order bytes of the two numbers are added, the carry bit will be
added automatically to their sum.

The carry flag is set and cleared not only in addition operations, but
also in many other kinds of operations performed by the 65C02/6502B
chip. Detailed instructions covering the use of the carry flag will be
presented in Chapters 9 and 10.

46 Apple Roots

The assembly-language instruction to clear the carry flag is CLC,
which stands for “Clear carry.” The mnemonic that sets the carry bit is
SEC, which stands for “Set carry.”

Bit 1: The Zero Flag (Z) The zero flag is set when the result of an
arithmetic operation, a logical operation, or a comparison operation is 0.
When a memory location or an index register has been decremented to
0, that will also set the zero flag.

When you write routines that make use of the zero flag, remember
this 6502 convention which may seem odd to you: when the result of an
operation is zero, the zero flag is set (to 1), and when the result of an
operation is not zero, the zero flag is cleared (to 0). Don’t let this conven
tion trip you up.

There are no assembly-language instructions to clear or set the zero
flag because it’s strictly a read-only bit.

Bit 2: The Interrupt Disable Flag (I) In assembly-language terminol
ogy, an interrupt instruction brings all of a computer’s operations to a
halt so that some very important or time-critical operation can take
place. Some interrupts are called maskable interrupts because special
instructions can prevent them from taking place. Other interrupts are
called nonmaskable because there is no way that a programmer can
prevent them from occurring. Nonmaskable interrupts are not used in
Apple Ilc/IIe programming.

You can disable a maskable interrupt by clearing the interrupt dis
able bit of the processor status register. When this flag is set, maskable
interrupts cannot take place. When it is clear, they can.

The mnemonic that clears the interrupt flag is CLI. The mnemonic
that sets it is SEI.

Bit 3: The Decimal Mode Flag (D) Normally, the 65C02/6502B pro
cessor operates in what is called binary mode, using standard 8-bit
binary numbers. But your computer’s CPU can also operate in what is
known as a binary-coded decimal, or BCD mode. To make your Apple
operate in BCD mode, you have to set the decimal mode flag of the
65C02/6502B status register.

When the 65C02/6502B chip is put in BCD mode, it uses only the 10
standard decimal digits—the numbers 0 through 9. The hexadecimal
digits A through F are not used in BCD operations. Furthermore, every
digit in a BCD number is treated as an individual byte. For example, it
would require three bytes (one byte per digit) to express the decimal

In the Chips 47

number 255 as a BCD number. In your computer’s memory, the BCD
number 255 would be stored this way:

BCD number: 2 5 5
Binary equivalent: 00000010 00000101 00000101

That is quite different, of course, from the way the decimal number
255 would be expressed in conventional binary (non-BCD) notation. In
binary arithmetic, the kind you’ll probably use most often in your
assembly-language programs, the decimal number 255 would be ex
pressed as a hexadecimal number.

Decimal number: 255
Hexadecimal equivalent: FF
Binary equivalent: 11111111

As you can see, at the rate of one byte per digit, it takes much more
memory to store BCD numbers than it takes to store conventional
binary numbers. (It is possible to “pack” BCD digits into half that
amount of space with special procedures and additional processing
time, as you’ll see in a later chapter.) Another disadvantage of BCD
arithmetic is that it’s slower than binary arithmetic. But BCD math is
based on the number 10 rather than the number 8, so it is much more
accurate than hexadecimal math in terms of real-world, base-10 arith
metic problems.

Another advantage of BCD numbers is that they’re easier to convert
into decimal numbers than standard binary numbers are. BCD numbers
are therefore sometimes used in programs calling for instant number
display on a video monitor.

BCD numbers will be discussed further in a later chapter. For now,
it’s sufficient to remember that when the status register’s decimal mode
flag is set, the 65C02/6502B chip will perform all of its arithmetic using
BCD numbers. If you aren’t using BCD arithmetic in your assembly-
language programs, you must make sure that the decimal flag is clear
before your computer starts performing arithmetical operations.

The assembly-language instruction that clears the decimal flag is
CLD. The instruction that sets it is SED.

Bit 4: The Break Flag (B) The break flag is often used by pro
grammers during the debugging of assembly-language programs. It is
set by the assembly-language instruction BRK, an instruction ordinar
ily used only during the debugging of programs.

48 Apple Roots

When a programmer is writing an assembly-language program,
BRK instructions are often inserted at critical points in the program.
The break flag is set following a software BREAK instruction. When
encountered during the processing of the program, certain error
flagging operations return control of the computer to the programmer.
Thus, the BRK instruction halts program execution and causes the con
tents of the 65C02/6502B chip’s A, X, Y, P, and S registers to be
displayed on the screen. The contents of these registers can then be
examined to see what, if anything, went wrong during the processing of
the program.

Once a program has been debugged, any BRK instructions that were
placed in it for debugging purposes are usually removed. The program
will then run normally.

Bit 5: Unused The engineers who designed the 6502 chip left this bit
unused. As you will see later in this chapter, though, bit 5 of the P
register is used in the 6502’s two new 16-bit cousins, the 65802 and the
65816.

Bit 6: The Overflow Flag (V) The overflow flag is used to detect an
overflow in a binary number from bit 6 to bit 7. It is used primarily in
operations dealing with signed (plus or minus) numbers. In an ordinary,
unsigned binary number, the highest or most significant bit is bit 7. In a
signed number, however, bit 7 is used to designate the number’s sign. If
bit 7 of a signed number is clear, the number is positive. If bit 7 is set,
the number is negative.

Since bit 7 of a signed number is not used as part of the number
itself, the most significant bit of a signed number is bit 6. It is rather
difficult, then, to perform carrying and borrowing operations in arith
metic problems that deal with signed numbers, so the overflow flag is
often used to keep track of carrying and borrowing operations in signed
binary arithmetic. In an addition problem, the overflow flag is set when
bit 7 of both addends is the same value and bit 7 of the sum is the
opposite value. In a subtraction operation, the overflow flag is set when
bit 7 of the subtrahend and minuend are opposite and bit 7 of the result
has the same value as bit 7 of the subtrahend. In other words, the over
flow flag is set when there is an overflow from bit 6 to bit 7 but there is
no external carry or, conversely, when there is no overflow from bit 6 to
bit 7 but there is an external carry. A more technical way to say this is
that the overflow flag is set by performing an exclusive-OR operation on
the carry-in and carry-out of bit 7. This procedure may seem quite com
plicated, but without the help of the overflow flag it would be impossible
to write programs to handle operations involving signed numbers.

In the Chips 49

The assembly-language mnemonic that clears the overflow flag is
CLV. The V flag can be cleared, but there is no specific instruction to
set it.

Bit 7: The Negative Flag The negative flag (N) of the processor status
register is set when the result of an operation is negative and cleared
when the result of an operation is 0 or positive. The negative flag is
often used in comparison operations and in loop countdowns designed to
extend all the way down to 0.

The N bit is a read-only bit, so no instruction to set it is provided.

65802/65816 Architecture

As illustrated in Figure 3-1, the architecture of the 6502, 65C02, and
6502B chips can be represented by the same block diagram. There are
significant differences, however, between the architecture of the
65C02/6502B chip and that of the two new 16-bit chips in the 6502
family, the 65802 and the 65816.

The E (Emulation) Flag

In both the 65802 and the 65816, there is an extra status flag called the
emulation (or E) flag.This flag is not part of the 65802/65816 processor
status register but is an independent toggle switch built into the CPU
itself. However, the 65802/65816 instruction XCE can be used to change
the status of the E flag. By using an XCE instruction during an
assembly-language program, you can temporarily exchange the posi
tions of the free-floating E flag and the C (carry) flag of the processor
status register. Since the carry flag ordinarily resides in bit 0 of the P
register, the effect of the instruction XCE is to store the content of the E
register in bit 0 of the P register, while placing the carry flag tempo
rarily in the E register. Once this exchange has taken place, an
assembly-language instruction such as SEC (set carry) or CLC (clear
carry) can be used to change the status of the E flag. Another XCE
instruction can then be issued to restore the E flag and C flag back to
their normal positions. The state of the E flag will then be changed, and
the C flag can again be used normally.

When the E flag of the P register is cleared to 0, its default setting,
the 65802/65816 is a 16-bit chip. When the E flag is set to 1, however,
the 65802/65816 chip is placed in what is called a 6502 emulation mode.

When the 65802/65816 chip is in its default 16-bit mode, it can be
programmed in a language that is a superset of standard 6502 assembly

50 Apple Roots

language. When the chip is in its 6502 emulation mode, it can be used
exactly like a standard 6502 chip (or like a 65C02 or a 6502B). In its
emulation mode, the 65802/65816 can recognize and process the same
machine-language instructions as its 8-bit cousins can, so it can run
software written for the 6502, the 6502B, and the 65C02.

Additional P Register Flags

There are two additional differences between the processor status regis
ter of a 6502B/65C02 chip and the P register of the 65802 and the
65816. Bit 4 of the P register—the break (B) flag on a 6502B/65C02
chip—is known as the X flag, or index register select flag, on the
65802/65816. Bit 5 of the P register, which is not used by the
6502B/65C02, is called the M flag, or memory select flag, on the
65802/65816. Figure 3-3 shows how the bits of the 65802/65816 P regis
ter are coded when the chip is in its 16-bit mode.

The M Flag When both the E flag and the M flag of the 65802/65816
are clear, the chip’s accumulator is 16 bits long and is called the C regis
ter. When the accumulator is in its 16-bit C-register mode, its lower
eight bits are known as the A register and its higher eight bits are
known as the B register. But the names of assembly-language instruc
tions to the accumulator are not affected by these changes; the mne
monic LDA, for example, remains LDA, and STA remains STA.

There are some changes, of course, in the way that LDA, STA, and
other accumulator instructions work when the 65802/65816 is in its 16-
bit mode. When the chip is in this mode, instructions such as LDA and
STA can be used with two-byte operands. When a two-byte operand is
used in this fashion, its low byte affects the accumulator’s A register,
and its high byte affects the B register. For example, the statement

LDA #$8000

would load the literal value 00 into the A register and the literal value
80 into the B register.

However, the statement

LDA $8000

would load the A register with the value of memory register $1000 and
the B register with the value of memory register $1001.

The X Flag When both the E flag and the X flag of the 65802 65816
are clear, the chip’s X and Y registers are 16 bits long. When the X and

In the Chips 51

Figure 3-3. The 65802/65816 processor status register (when chip is in 16-bit mode)

65816 Registers 65802/65816 Registers

Data Bank Register X Register (X)

DBR XH XL

Data Bank Register Y Register (Y)

DBR YH YL

Stack Register (S)

0 0 SH SL

Accumulator (C)

B A

Program Bank Register Program Counter (PC)

PBR PCH PCL

Direct Register (D)

DH DL

Figure 3-4. Internal registers of the 65802 and 65816 microprocessors

52 Apple Roots

Y registers are in their 16-bit mode, their lower eight bits are known as
XL and YL, and their higher eight bits are known as XH and YH.

The S Register
When the E register of the 65802/65816 is clear, the chip’s stack regis
ter (S register) is 16 bits long. This expansion makes it possible to place
the 65802/65816 chip’s hardware stack anywhere in memory.

The D Register
The 65802 chip has one more internal register than its 8-bit relatives.
This extra register is called the direct page register; or D register. When
the 65816’s E register is clear, the D register can be used to enhance the
chip’s ability to handle a very useful and speedy type of addressing
called zero-page addressing in 6502 assembly-language programming.
The operation of the D register will be covered in detail in Chapter 7.

The 65816 Chip’s 24-Bit Registers
In addition to the D register, the 65816 chip has two other special regis
ters: a program bank register, or PBR, and a data bank register, or
DBR.

The program bank register is an 8-bit register that can extend the
length of the 65816’s program counter to 24 bits. When the PBR is used,
therefore, the 65816 can address up to 16 megabytes of memory.

With the help of the data bank registers, the 65816’s X and Y regis
ters can also be expanded into 24-bit registers. And that capability pro
vides the 65816 with a simple method for addressing up to 24 megabytes
of data. The addressing capabilities of the 65816 will be explained in
greater detail in Chapter 7. Meanwhile, Figure 3-4 is a block diagram
that shows the internal registers of the 65802 and 65816.

n
e
l

I

Writing and Assembling
An Assembly-Language
Program

In this chapter, you finally get a chance to write a real assembly-
language program. You can’t create and assemble an assembly-language
program, of course, unless you have a software package called a
machine-language assembler. You may recall from the Introduction to
this book that three different assemblers were used to write the pro
grams in Apple Roots. To get the maximum possible value out of this
book, you should probably own at least one of them.

• The Apple ProDOS Assembler Tools package, manufactured by
Apple.

53

54 Apple Roots

• The Merlin Pro assembler, manufactured by Roger Wagner Pub
lishing, Inc., of Santee, California.

• The ORCA/M assembler, manufactured by The Byte Works, Inc.,
of Albuquerque, New Mexico.

These three assemblers were compared fairly comprehensively in
the Introduction. Now you will start using the assembler you have
chosen.

This chapter is divided into three parts. I will explain how to type
and assemble a program first using the Apple ProDOS assembler, then
using the Merlin Pro assembler, and finally using the ORCA/M
assembler.

No matter which assembler you’re using, you should read the discus
sion of the Apple ProDOS assembler carefully, since it contains the only
line-by-line explanation of how the program works.

As you may have guessed, the term “assembler” can mean two dif
ferent things, depending upon the way in which it is used. In its more
accurate sense, an assembler is just one part of an assembler/editor
software package: the part that does the actual work of converting
assembly language into machine language. But sometimes the word
“assembler” is used to refer to a complete software development kit such
as the Apple ProDOS assembler, the ORCA/M assembler, or the Merlin
Pro. This book uses the word in both ways. The context in which the
word is used should make its meaning clear.

The Apple ProDOS Assembler

The Apple ProDOS Assembler Tools kit is made up of four different
programs:

• An editor, which can be used to create and edit assembly-language
programs and to store them on disks (and also to create and edit
ProDOS EXEC files and BASIC programs).

• An assembler, used to assemble source-code files into executable
machine-language programs.

• An assembly-language debugging utility called the Bugbyter.
which allows you to track down and correct errors in your
assembly-language programs.

• A relocating loader used to load and execute assembly-language
programs during the execution of BASIC programs.

Writing and Assembling an Assembly-Language Program 55

All of the programs in the Apple ProDOS assembler package are
stored on a single disk. This disk is not copy-protected, so you can (and
should) make at least one backup copy of it before you start using your
ProDOS assembler package to write any programs. Once you have
copied the master assembler disk, you can use your copy as a master.
Then you can put the original master disk away for safekeeping.

Once you’ve made a copy of your Assembler Tools disk, boot your
duplicate disk just as you would any other ProDOS disk. You should now
see a display that looks like this:

PRODOS BASIC 1.0
COPYRIGHT A PPLE , 1983
D

After the “]” prompt, there will be a flashing cursor. There you can now
type the line

J-EDASM. SYSTEM

After a little disk-spinning, you will see this video display:

PRODOS EDITOR-ASSEMBLER //

ENTER THE DATE AND
PRESS RETURN

DD-MMM-YY

There will be a flashing cursor over the first D in the last line of the
display. Type the date over the letters DD (for date), MMM (for month),
and YY (for year). You will then see

1
PRODOS EDITOR-ASSEMBLER //
BY JOHN ARKLEY
(C) COPYRIGHT 1982

APPLE COMPUTER INC.
3

DD-MMM-YY

(DD-MMM-YY will vary according to what you type in.)
When you see that display, you’ll know that your assembler is in its

command level mode, the mode in which you’ll be writing and editing
assembly-language programs.

56 Apple Roots

The program that you will write in this chapter is the ADDNRS
program presented in Chapter 3. As you may recall, ADDNRS is a very
short and simple program. It simply adds the numbers 2 and 3 and
stores their sum in a certain memory register (specifically, memory
register $0300).

The version of the ADDNRS program that will be written using the
Apple ProDOS assembler is called ADDNRS.SRC.

Entering the ADDNRS.SRC Program

Near the bottom of your monitor screen, just below the date, you will see
a colon followed by a flashing cursor. The prompt just behind the
cursor is the prompt you’ll always see when your assembler is in com
mand (or editing) mode—that is, when you’re using the editor module of
your Apple ProDOS Assembler Tools package.

When you see the colon prompt, type A for “Append.” You’ll then see
the number 1 appear on your screen. That 1 is a line number—the
number of the first line you’ll type when you start writing a source-code
program.

Line Numbers in Apple ProDOS Assembler Programs The number 1
appeared automatically on your screen because the Apple ProDOS
source-code editor automatically generates line numbers in source-code
programs, beginning with the number 1 and progressing in increments
of 1. It is important to note, however, that the line numbers generated
by the Apple ProDOS source-code editor are very different from the
line numbers commonly used in BASIC programs. Unlike BASIC, 6502
assembly language does not require the use of line numbers. In fact,
some 6502-family assemblers—such as the ORCA/M assembler—do not
use line numbers at all.

Line numbers are optional in assembly-language programs because
a routine is never referred to by its number in 6502 assembly language;
segments of source-code are usually accessed with the help of descrip
tive labels. A descriptive label can be assigned to the first line of any
routine in an assembly-language program and can then be used to
access that routine whenever desired.

Since line numbers are not essential to the operation of assembly-
language programs, the Apple ProDOS source-code editor generates
what are sometimes referred to as relatin' line numbers. A relative line
number is not an integral part of an assembly-language program; it is
provided only as a convenience so that programmers and program users
can find their way around more easily in assembly-language programs.

Writing and Assembling an Assembly-Language Program 57

There are advantages and disadvantages to using relative numbers.
You never have to worry about numbering or renumbering the lines in a
program. Relative line numbers are generated automatically, starting
at the number 1 and progressing consecutively in increments of one.
When the Apple ProDOS source-code editor numbers the lines of a pro
gram, it never skips a number. It will automatically renumber the lines
in a program, too; when a line is inserted or deleted, every line below it
is immediately and automatically renumbered.

It’s important to treat relative line numbers with great care when
you’re writing and editing an assembly-language program because they
can change without notice. When you’re making multiple deletions of
lines, for example, the lines that you delete first will change the
numbers of later lines, so it’s smart to delete the lines with higher
numbers first. Otherwise, you might later delete the wrong lines.

Take a close look at the number 1 on your screen, and you’ll see that
it is followed by one space and a flashing cursor. Now type one more
space, and then, without touching your RETURN key, type

ORG $1000

Line 1 of your program will read

1 ORG $1000

Now press the RETURN key. Your ProDOS editor will move down to the
next line on your screen and print a 2, thus signaling that it’s ready for
you to type line 2 of the ADDNRS.SRC program.

After the relative line number 2—but this time without an extra
space—type a semicolon. Line 2 of your program will be displayed as

2 ;

Press the RETURN key again. Your editor will advance to line 3. Then
type these two lines:

3 ; ADDNRS.SRC
4 ;

Press the carriage return again after line 4 and you will see

1 ORG $1000
2 ;
3 ; ADDNRS.SRC
A ;
5

58 Apple Roots

In a moment, you learn what those lines mean. First, though, let’s
examine a few of the important editing features of the Apple ProDOS
assembler/editor system.

Single-Character Editing Functions If you make a mistake while
you’re typing a line of source code using the ProDOS source-code editor,
there are several ways you can correct it. If you are in “append” mode,
you can change any letter in a line by typing another letter directly over
it. You can delete a character that lies directly under your cursor by
typing CONTROL-D. You can delete the character to the left of your
cursor by using the DELETE key. You can insert a character into a line
at the location of your cursor by typing CONTROL-I. If you change
your mind about correcting a line and want to restore the original ver
sion, you type CONTROL-R. (One word of caution, however: When the
ProDOS assembler is in its “edit” mode, some of its responses to editing
commands are different from the responses to the same commands in
“add” mode. In “edit” mode, for example, the d e l e t e key erases the
character under the cursor, not the character to its left.)

Line-By-Line Editing Functions The Apple ProDOS source-code edi
tor is a line-oriented editor; you can move back and forth within a line
using your left and right ARROW keys, but you can’t move from line to
line using your up and down ARROW keys. When you want to exit a line,
you have to use the carriage return. And each time you type a carriage
return at the end of a line, the line that precedes the carriage return
line is automatically included in the program that you’re typing.

When you finish typing a program—or when you want to stop typing
lines to go back and do some editing—you can make your assembler
stop generating new line numbers by simply pressing the RETURN key
twice. Then your editor will stop creating new line numbers and the
prompt will be displayed on the screen.

1 4 - J UN-85

When you see that display, you can type A (for “append”), just as you
did when you began this programming session. Your assembler will
then resume numbering lines exactly where it left off. and you can con
tinue writing your program.

Two other commands that can be used after the prompt are the L
(for LIST) and P (for PRINT) commands. If you type an L command,
your entire program will be listed, complete with line numbers, on your

Writing and Assembling an Assembly-Language Program 59

computer screen. The P command will also display your program on
your screen, but without line numbers.

If you want to look at a specific line in a program, you can type the
line number that you want after either the L command or the P com
mand. If you want to display a block of lines, you can specify the first
and last line number that you want to see by using this kind of format:

L beg i n #- en d#

or

P beg i n #- en d#

The DELETE Command Another command that can follow the
prompt is D (for DELETE). To use the DELETE command, all you
have to do is type the letter D followed by the number of the line (or
lines) you want to delete. Suppose, for example, that you want to delete
lines 2 and 3 in the above listing. You can do that by entering D2-3 after
the prompt.

Still another command that can be used after the prompt is I (for
INSERT). To use the INSERT command, type the letter I after a colon
prompt, followed by the number of the line where you want your new
line inserted. Let’s insert another semicolon at line 2 in the program you
are creating. Press your RETURN key to get a colon prompt, and then
type

12

You’ll see your assembler-editor respond with the number 2.
Now type a semicolon followed by two carriage returns. The Apple

ProDOS source-code editor will display its prompt again, and you
can then type L for list. Your assembler will then list your program;
you’ll see that another line containing a semicolon has been inserted into
your program at line 2. Notice that your assembler also has automati
cally renumbered each line after the line that you’ve inserted, a process
that was explained earlier.

Now that you’ve seen your assembler’s relative line-numbering sys
tem in action, you can delete the extra semicolon that you added to your
program. Press the carriage return to get a colon prompt and type D2.
Then you can type L for LIST, to generate a listing showing you your
program again.

60 Apple Roots

1 ORG $1000
2 ;
3 ; ADDNRS.SRC
A ;

Besides the A, I, and D commands that you’ve just used, there’s also
an R command that you can use to restore a line. In addition, the Apple
ProDOS source-code editor also has commands that you can use to copy
lines, find and replace strings, and perform many other useful func
tions. Full details on how to use these editing functions and many others
are provided in the instruction manual that came with your Apple Pro
DOS assembler.

Other Features of the ProDOS Editor The Apple ProDOS editor has
many other features that won’t be covered in this chapter. For example,
there’s a SWAP command that you can use to tuck a source-code pro
gram away in a hidden block of memory in order to write or edit
another program. You can then SWAP your two programs back and
forth at will, until you’re either ready to SAVE both of them or to delete
one or both of them using another assembler command, KILL2.

Completing the ADDNRS.SRC Program

Now it’s time to finish typing the ADDNRS.SRC program. Program 4-1
is a complete source-code listing of this program, and now is a good
time to enter the rest of the listing into your computer. Before you start
typing, though, here’s a word of caution. The Apple ProDOS assembler/
editor, like most assembler/editors, is very finicky about spacing, so be
sure to type the ADDNRS.SRC program exactly as it appears in Pro
gram 4-1. In lines 2 through 5, there should be no extra spaces between
the relative line numbers generated by your assembler and the instruc
tions that follow them. (The ProDOS editor will automatically insert
one space after a line number.) There should be one extra space after
line 1, however, and there should also be one extra space after line
numbers 6 through 10. If you follow all of these rules of spacing (which
will be explained more fully later in this chapter), your own source-code
listing of the ADDNRS.SRC program should look just like Program 4-1.

Program 4-1
THE ADDNRS.SRC PROGRAM
(Apple ProDOS Assembler Version)
1 ORG $1000
2 ;
3 ; ADDNRS.SRC
A ;
5 ADDNRS CLD

Writing and Assembling an Assembly-Language Program 61

6 CLC
7 LD A U 2
8 ADC nz
9 STA $0300

10 RTS

Listing Your Program

When you’ve finished typing line 10 of your ADDNRS.SRC program,
just press your RETURN key twice. Then type either L or LIST, and the
complete program will be listed on your computer screen.

You may have noticed that the ADDNRS.SRC program that you’ve
just typed and listed is the same program that was first introduced in
Chapter 3. Later on, when you run the program, you’ll learn exactly
how it functions. You know that it adds the numbers 2 and 3 and stores
the result in memory address $0300—or in decimal notation, memory
register 768. You can see by looking at the program that the numbers
are added in lines 7 and 8, and their sum is stored in memory register
$0300 in line 9.

Spacing

Program 4-2 is an “explosion diagram” of the ADDNRS.SRC program.
It does not follow the rules of spacing that were explained a few para
graphs back, but it may give you a clearer picture of how the informa
tion contained in a source-code listing can be split up into fields, or
columns.

Program 4-2
THE ADDNRS.SRC PROGRAM, COLUMN BY COLUMN
LINE LABELS AND OP OPERAND
NO. REMARKS CODE COMMENTS

1 ORG $1000
2 /
3 ; ADDNRS.SRC
4 /
5 ADDNRS CLD
6 CLC
7 LD A #2
8 ADC nz
9 STA $0300

10 RTS

Fields in Source-Code Listings

As you can see by looking at Program 4-2, assembly-language programs
that are created with the Apple ProDOS assembler-editor can be

62 Apple Roots

divided into several columns, or fields. The fields illustrated in Pro
gram 4-2 are the label field, the op-code field, the operand field, and the
comments field. In addition, one column is used for line numbers. How
ever, since line numbers are optional in assembly-language programs,
the column used for line numbers in a source-code listing is not consid
ered a separate field.

The Label Field Labels, when they are used, always occupy the first
field in an assembly-language source-code listing. Most types of state
ments in an assembly-language program can be identified with labels,
and labels are actually required with a few types of assembly-language
commands.

Even though they are optional, labels are very im portant in
65C02/6502B assembly language, since they are used instead of line
numbers to address routines and subroutines in assembly language. In
the ADDNRS.SRC program, the abbreviation ADDNRS in line 5 is a
label, so it appears in the first field of Program 4-2.

In an assembly-language program, remarks can also start in the
label field. When a remark begins in the label field, however, it must be
preceded by some kind of identifying mark, usually an asterisk or a
semicolon (depending on the assembler). On the Apple ProDOS assem
bler, a remark can be preceded by either an asterisk or a semicolon.

When a remark starts in the label field, it may extend across other
fields. A remark, like every other line in an assembly-language pro
gram, always ends with a carriage return.

When a label is assigned to an assembly-language routine or an
assembly-language program, the program can then be saved on a disk
and used later as a subroutine or a secondary routine in a larger pro
gram. Since the ADDNRS.SRC program has been assigned a label —
the label ADDNRS, which appears in line 5—the program could be
included in a larger program and then accessed using either the
instruction JSR ADDNRS (the assembly-language equivalent to the
GOSUB instruction in BASIC) or the instruction JMP ADDNRS (which
works like BASIC’s GOTO instruction). Other jumping and branching
instructions can be used with labeled routines and subroutines; they
will all be covered in later chapters.

If ADDNRS.SRC were used as a subroutine in a longer program, the
RTS (return from subroutine) instruction in line 10 would end the sub
routine and return control to the main program. If ADDNRS.SRC were
used to label a complete program, the RTS instruction would end the
program. (The JSR and JMP instructions are discussed further in later
chapters.)

Writing and Assembling an Assembly-Language Program 63

A label can be as short as one character or as long as the length of a
statement permits. Most programmers use labels three to six characters
long. However, some labels (such as A, X, Y) are restricted, and long
labels are generally undesirable because they slow down assembly.
The Op-Code Field An operation-code (or op-code) mnemonic is
another name for an assembly-language instruction. There are 57 op
code mnemonics in the 6502B microprocessor used in the Apple He, and
there are ten additional mnemonics in the expanded instruction set that
can be used with the 65C02 chip used in the Apple lie.

Op-code mnemonics, such as CLC, CLD, LDA, ADC, STA, and RTS,
are typed in the op-code field of assembly-language source-code listings.
When you write a program using the Apple ProDOS Assembler Tools
package, each op-code mnemonic you use must start at least two spaces
after a line number or one space after a label. An op-code mnemonic
placed in the wrong field will not be flagged as an error when you type
your program, but will be flagged as an error when your program is
assembled.

The op-code field in a source-code listing is also used for directives
and pseudo-ops—words and symbols that are entered into a program
like mnemonics but that are not actually included in the 6502 instruc
tion set. The difference between an op code and a pseudo-op is that an op
code tells a computer’s microprocessor to do something, while a pseudo
op tells an assembler to do something while it is assembling a program.
Thus, although op codes and mnemonics may resemble each other, they
are actually quite different. Since op codes are part of the 6502 instruc
tion set, they never vary from assembler to assembler. But the pseudo
ops used by one assembler are often different from those used by
another assembler, although there are many nearly standard pseudo-ops.

The ORG directive in line 1 of the ADDNRS.SRC program is one
example of a pseudo-op. Almost all assemblers use an origin directive of
one kind or another, but some use an equal sign (=) instead of the
abbreviation ORG. In a 6502/65C02 assembly-language program, the
ORG directive (or its equivalent) is used to tell the assembler where the
assembly-language program will be stored in memory after it is con
verted into machine code.

The Apple ProDOS assembler recognizes a number of other pseudo
ops; a number of them will be covered in this chapter, and all of them
are discussed in detail in the ProDOS Assembler Tools instruction
manual.
The Operand Field The operand field in an Apple Ilc/IIe source-code
listing starts one space after an op-code mnemonic. When an operand is

64 Apple Roots

used, its purpose is to expand an op-code mnemonic into a complete
instruction. Some mnemonics—such as CLC, CLD, and RTS—do not
require operands. Others—such as LDA, STA, and ADC—do require
operands. You will learn more about operands in Chapter 6.

The Comments Field Although comments can start in the label field
of an assembly-language program, they can also start to the right of the
operand field, in a field of their own. Comments are used in assembly-
language programs in much the same way that remarks are used in
BASIC programs; they don’t affect a program in any way, but are used
to explain programming procedures and to provide eye-saving white
space in program listings.

The ADDNRS.SRC Program Line by Line

Now that we’ve looked at the ADDNRS.SRC program field by field, let’s
examine it line by line. When the program has been typed as shown in
Program 4-1 and then listed using the L command, it will appear on the
screen as illustrated in Program 4-3.

Program 4-3
THE ADDNRS.SRC PROGRAM
(Apple ProDOS Assembler Version)

1 ORG $1000
2 /
3 ; ADDNRS.SRC
4 /
5 ADDNRS CLD
6 CLC
7 LDA #2
8 ADC #3
9 STA $0300

10 RTS

Here is a line-by-line analysis of Program 4-3.

Line 1: The ORG Directive Line 1 of Program 4-3 is the origin line of
the ADDNRS.SRC program. When an ORG line is used in an assembly-
language program, it tells where the program will be stored in RAM
after it has been converted into object code. Not every assembler
requires an ORG directive (the directive is optional, for example, in
programs written for the Merlin Pro and ORCA/M assemblers). But the
Apple ProDOS assembler does require every program to have an origin
directive. If there is no origin line in a program written for the Apple
ProDOS assembler, the assembler will not generate any source code.

Writing and Assembling an Assembly-Language Program 65

It’s not always easy to decide where in memory a program should
start, particularly if you’re new to assembly-language programming.
Your computer has many blocks of memory that you can’t use for
assembly-language programs because they’re reserved for other uses,
such as holding your computer’s operating system, its disk operating
system, and its BASIC interpreter. Even the assemblers that were used
to write the programs in this book take up blocks of memory, and if you
accidentally overwrite the program that runs your assembler, your
assembler won’t be able to assemble your program.

Deciding where to store a program in a computer’s memory is a
tricky job, with many variables to be taken into account. This topic will
be covered in more detail in Chapter 11, which is devoted solely to
memory management. For now, it’s sufficient to remember that if you
type the programs in this book exactly as they are written, they won’t
venture into any reserved areas of your computer’s RAM.

Lines 2 Through 4: Remarks The semicolons that precede the text in
lines 2 through 4 show that these lines are made up solely of remarks.
Line 3 gives the name of the program. Lines 2 and 4 only serve to sur
round the title line with space to make it easier to read.

It’s good programming practice in assembly language—as well as in
most other programming languages—to use remarks and comments
freely. You will find many explanatory comments and remarks in the
programs in this book.

Line 5: A Label and an Op Code As you can see, the label field in this
line has been used to assign the label ADDNRS to the entire
ADDNRS.SRC program. The program would work perfectly without
any label at all but, as previously noted, a program becomes more use
ful when it does have a label, since it can then be accessed by that label
and used as part of a larger program. Therefore, it’s a good idea to give
labels to important routines and subroutines. A label not only makes a
routine easier to reference, it also serves as a reminder of what the rou
tine does (or, until your program is debugged, what it’s supposed to do).

As previously mentioned, the 65C02/6502B chip can perform arith
metical operations on two kinds of numbers: ordinary binary numbers
and binary-coded decimal (BCD) numbers. Much more information on
binary and BCD numbers will be provided in Chapter 10. It’s sufficient
now to recall that binary arithmetic is the kind most often used in
65C02/6502B programs and that the mnemonic CLD clears the decimal
flag of the 65C02/6502B microprocessor so that calculations can be

66 Apple Roots

carried out using binary numbers. (The command to set the decimal flag
is SED.) It’s not necessary to clear the decimal flag before every arith
metical operation in a program, but you should clear it before the first
addition or subtraction operation in a program. That way you’ll never
worry about whether it may have been set during a previous program.

Line 6: An Op Code Before you carry out an addition operation, clear
the carry flag (CLC). The carry bit is affected by many kinds of opera
tions and it’s best to be safe. It takes only one half millionth second and
one byte of RAM to clear the carry flag. Compared to the time and
energy that debugging can cost, that’s a bargain.

Line 7: Op Code and Operand (LDA #2) Before an addition operation
takes place, the accumulator has to be loaded with one of the numbers
that is to be added. In the ADDNRS program, LDA #2 is the statement
that loads the accumulator. In this statement, the “#” sign in front of the
number 2 means that the 2 is a literal number, not an address. If the
instruction were LDA 2, the accumulator would be loaded with the con
tents of memory address 0002 rather than with the number 2.

Line 8: Op Code and Operand (ADC #3) In this line, the statement
ADC #3 is used to add the number in the accumulator to the literal
numuer 3. The mnemonic ADC means “add with carry.” When this
instruction is used in a program, it adds the value specified in the oper
and to the value of the accumulator, plus the value of the carry bit of
the processor status register. In this case, adding the carry bit has no
effect, since the carry bit was cleared prior to our addition operation.
There is no 65C02/6502B assembly language instruction that means
“add without carry.” If you did want to add a number without a carry,
though, you could do it by clearing the status register’s carry flag and
then performing an “add with carry” operation.

Line 9: Op Code and Operand (STA $0300) This line stores the con
tents of the accumulator—in this case, the sum of 2 and 3—in memory
address $0300. Note that the symbol is not used before the operand
($0300) in this instruction, since in this case the operand is a memory
address, not a literal number.

Line 10: An Op Code (RTS) If the mnemonic RTS is used at the end
of a subroutine, it works like the RETURN instruction in BASIC: it
ends the subroutine and returns to the main body of a program, begin
ning at the line following the line in which the RTS instruction appears.
But if RTS is used at the end of the main body of a program, as it is

Writing and Assembling an Assembly-Language Program 67

here, the instruction has a different function. Instead of passing control
of the program to a different line, it terminates the whole program and
returns control of the computer to the next higher calling program that
was in control before the program began —usually a disk operating sys
tem (DOS), a keyboard-screen editor, or a machine-language monitor.

Printing Your Program

When you have finished typing your source-code listing, you can print it
on a printer in two steps. F irst you must open a channel to your printer
by typing the command PR# followed by the device number of your
printer. If your computer is an Apple lie, the device number of your
printer will always be 1 (unless the printer is hooked up to the modem
port, in which case it will be PR#2). So, if you own an Apple lie, type
PR#1. If you have an Apple lie equipped with a printer, the number
that follows the instruction PR# will always be the number of the
expansion in which your printer card is installed. (Most Apple He’s have
their printer interface installed in slot 1.) You type the slot number of
your printer card.

After you’ve opened a channel to your printer, you’ll have to activate
your printer by typing the command PTRON, which stands for “printer
on.” You can then type either LIST or PRINT (or the abbreviation L or
P) to get a hard-copy listing (or printout) of your program

Saving Your Program

Each time you write an assembly-language program using the Apple
ProDOS Assembler Tools package, the source code that you enter winds
up in an edit buffer that extends from memory address $0800 to memory
address $9BFF. That’s a 37,887-byte block of RAM, large enough for
quite a large source-code program. Unfortunately, however, that’s
almost exactly the same block of memory that the assembler module in
the ProDOS assembler-editor package has to use when it’s assembling a
program. Since two programs can’t occupy the same memory space in a
computer at the same time, any source code that’s in the Apple ProDOS
edit buffer has to be cleared from the edit buffer before the ProDOS
assembler can be loaded into RAM and the program assembled.

Since clearing a program from memory wipes it out forever, be sure
you save a source-code listing on a disk as soon as it’s written. Fortu
nately, the Apple ProDOS assembler-editor makes it difficult to wipe
out a source-code listing accidentally. The assembler-editor won’t let you
load its assembler module into memory (and thus wipe out whatever

68 Apple Roots

may be stored in the edit buffer) until you type the word NEW. It’s up
to you to save any source code that you've been working on before you
type NEW and erase the contents of the edit buffer.

Since it’s so important to save a source-code listing before assembly,
let’s save the ADDNRS.SRC program on a disk. Then we can assemble
the program.

Using ProDOS Commands

It isn’t difficult to save a program that has been created with the Apple
ProDOS Assembler Tools package, since the editor module included in
the package supports most of the commonly used ProDOS commands
(such as PREFIX, CREATE, DELETE, LOCK, UNLOCK, CAT,
LOAD, and SAVE). To invoke any supported ProDOS command while
using the ProDOS Assembler Tools package, you type the desired com
mand while your assembler-editor is in its command (edit) mode. If you
understand the principles of the ProDOS environment, it’s easy to save
a source-code program using any legal pathname. To save the
ADDNRS.SRC program that you’ve just written, for example, set up
whatever ProDOS prefix you want to use, and then type

SAVE ADDNRS.SRC

When your disk drive has stopped whirring and clicking and the light
on it has gone out, check to see if the ADDNRS.SRC program has been
saved successfully.

Type the ProDOS command

CAT

Then, if you see the ADDNRS.SRC program listed on your disk’s direc
tory, you can clear the edit buffer by typing

NEW

That operation will clear your edit buffer. Then you’re ready to assem
ble the ADDNRS.SRC program.

Assembling a Program
With the Apple ProDOS Assembler

Once you’ve cleared your text buffer by typing NEW, assembling a
source-code listing that has been saved on a disk is easy. Type a line like
this:

ASM ADDNRS.SRC

Writing and Assembling an Assembly-Language Program 69

Your Apple ProDOS assembler will then do two things. It will read
the source-code file named ADDNRS.SRC from the disk on which it is
stored, and it will also generate an object-code file from the source-code
file that it has read and store the object code on a disk. Unless requested
to do otherwise, the assembler will store its object-code file on the same
disk that the source-code file is stored on and will assign its object-code
listing a default pathname that is exactly the same as the source-code
listing of the same program, plus the suffix .0.

If you have a source-code program named ADDNRS.SRC saved on a
disk, then you can easily assemble that program into executable object
code with the Apple ProDOS assembler. Boot up your assembler-editor,
make sure its text buffer is clear, and type the line ASM ADDNRS.SRC.
Your assembler will then generate an executable object-code file
from your source-code file and will call its new object-code file
ADDNRS.SRC.O.

If you wish, try that procedure now. Next we’ll discuss some of the
finer points of using the Apple ProDOS assembler. Finally, you’ll learn
how to execute the object code that your assembler has generated from
your ADDNRS.SRC program.

Using Optional Parameters
If you wish, you can instruct your assembler to save its object code on a
different disk (or, more accurately, on a different ProDOS directory or
subdirectory). You can also instruct your assembler to give its object-
code file a name of your choosing rather than a default name.

Suppose, for example, that you had your ADDNRS.SRC program
saved on a volume called SRCVOL and wanted to save the program in
its object-code version on a different volume called OBJVOL. You can
carry out that entire procedure by invoking a couple of optional
parameters:
ASM / SRC VOL/ADDNRS. SRC, /OBJ VOL/ADDNRS.OBJ

The source-code program stored on the volume SRCVOL under the
pathname ADDNRS.SRC will then be assembled into an object-code file
on the volume OBJVOL, under the pathname ADDNRS.OBJ. In addi
tion, a listing of the assembled program will be displayed on your com
puter screen. Program 4-4 shows how the assembly listing will look on
your screen.
Program 4-4
ADDNRS.SRC
An Assembled Listing
SOURCE FILE #01 =>SRCVOL/ADDNRS. SRC

70 Apple Roots

-------- NEXT OBJECT FILE NAME IS OBJV0L/ADDNRS
1000: 1000 1 ORG $1000
1000: 2 /
1000: 3 ; ADDNRS .SRC
1000: 4 /
1 0 0 0 : D8 5 ADDNRS CLD
1001 :18 6 CLC
1 0 0 2 : A9 02 7 LD A #2
1004: 69 03 8 ADC U 3
1 0 0 6 : 8D 00 03 9 STA $0300
1009: 60 10 RTS
#71000 ADDNRS
** SUCCESSFUL ASSEMBLY := NO ERRORS
** ASSEMBLER CREATED ON 14-DEC-83 15:21
** TOTAL LINES ASSEMBLED 10
** FREE SPACE PAGE COUNT 84
#

If you examine Program 4-4 carefully, you’ll see that lines 1 through
4 of the ADDNRS program don’t generate any object code. The reason
is that they contain no op codes or operands. Line 1 contains a pseudo
op—ORG—which performs no function except to tell the ProDOS
assembler where to set its program counter when it starts assembling
object code. And lines 2 through 4 contain nothing but remarks, which
show up on the ADDNRS program’s source-code and assembly listings
but generate no object code.

Directing a Listing
To a Disk Drive or Printer

When the ProDOS assembler-editor assembles an Apple lie or Apple
lie program, an assembled listing like the one shown in Program 4-4 is
ordinarily displayed on the computer’s screen. However, the ProDOS
assembler has a PR# command that can be used to direct an assembled
listing to another output device, such as a printer or even a disk drive.
When an assembled listing is written to disk, it is saved in the form of
an ordinary ASCII text file, not as a binary file of executable object
code.

To store an assembled listing on a disk instead of displaying it on a
screen, all you have to do is type the command PR# followed by the slot
number of your disk drive, a comma, and an appropriate pathname. If
your computer is an Apple lie, the PR# command will always be fol
lowed by the number 6. If you own an Apple lie, the number that fol
lows the PR# command will be the number of the expansion slot in
which your disk-drive card is installed (usually slot 6).

This procedure is not nearly as complicated as it may seem at first
glance. Let’s assume that your disk-drive card is installed in slot 6. Let’s

Writing and Assembling an Assembly-Language Program 71

also suppose that you have a source-code program named /SRCVOL/
ADDNRS.SRC and that you want to assemble it into an object-code
program named OBJVOL/ADDNRS.OBJ. Finally, let’s suppose that you
also want to save an assembled listing of the same program under the
pathname /SRCVOL/ADDNRS.ASM. You could do all of that by typing
these two lines:

PR# 6 , /SRCVOL/ADDNRS.ASM
ASM /SRCVOL/ADDNRS.SRC,/OBJVOL/ADDNRS.OBJ

Just type those two lines into your assembler and, if you have the
necessary volumes in the right disk drives, your assembler should:

• Assemble the source-code program called /SRCVOL/ADDNRS.
SRC.

• Save the assembled listing under the pathname /SRCVOL/
ADDNRS.ASM.

• Save the object code generated by the assembler under the path
name /OBJVOL/ADDNRS.OBJ.

If you haven’t already done so, assemble and save an ADDNRS.OBJ
program. First make any ProDOS prefix adjustments that you might
have to make, and then type the line
ASM ADDNRS.SRC,ADDNRS.OBJ

Suppressing the Generation
Of Object Code

If you want to display an assembler listing on your screen or print it on
paper without generating an object-code file, it’s easy to do. To suppress
the generation of an object-code file, type a comma and the symbol
following the line containing your ASM command.

ASM ADDNRS. SRC, a

Your Apple ProDOS assembler will then print an assembly listing of
your ADDNRS.SRC program but will not generate an object-code file.

The Merlin Pro Assembler

The rest of this chapter will be devoted to discussions of the Merlin Pro
and ORCA/M assemblers. So if you’re working with an Apple ProDOS
assembler, you may want to skip the rest of this chapter and move right

72 Apple Roots

on to Chapter 5. If you own an ORCA/M assembler, you may want to go
directly to the final section of this chapter, where you will learn how to
write and assemble a program using the ORCA/M system.

There are many similarities between the Apple ProDOS assembler
and the Merlin Pro. Both assemblers use relative line numbers and
many of the same editing functions. The pseudo-op codes used by the
two assemblers are almost identical.

There are also many differences between the Merlin and Apple
assemblers. The Merlin Pro, unlike Apple’s ProDOS assembler, is
menu-driven. And Merlin is fully compatible with the instruction set of
the 16-bit 65802 and 65816 chips, as well as the instruction sets of the
Apple He’s 6502B chip and the 65C02 chip used in the Apple lie. Merlin
also has a number of other special features—for example, an excellent
linking utility and a number of additional editing commands.

The Merlin Pro also comes with an extensive library of macros —
prewritten assembly-language routines that can be inserted automati
cally into user-written programs and can save a lot of programming
(and typing) time. Another bonus that you get with Merlin is a very fine
disassembler called the Sourceror.

A disassembler is a utility for converting machine-language pro
grams back into source code. If you want to find out how a machine-
language program runs, you can use a disassembler to do a little
“reverse engineering.” The Sourceror disassembler that comes with
Merlin is one of the best disassemblers available.

In addition to the Sourceror, the Merlin Pro package includes an
even more specialized utility called the Floating Point Sourceror, or
Sourceror. FP. With the Sourceror. FP you can get a complete, 150-page,
fully labeled disassembled listing of the resident Applesoft BASIC
package that’s built into your Apple lie or lie.

Merlin’s Modules

When you buy a Merlin Pro package, you get two disks. Both disks can
be copied, so as soon as you take them out of their sleeves you should
make backup copies. One of the disks is formatted using DOS 3.3 (the
disk operating system that Apple used for its II-series computers until
ProDOS was developed). The other disk is a ProDOS disk, and that’s the
one we’ll discuss in this section. The programs on the ProDOS disk are
divided into five modules:

• An executive module
• An editor module
• An assembler module

Writing and Assembling an Assembly-Language Program 73

• A linker module
• A command interpreter module.

When Merlin is in its executive mode, a master menu is displayed on
the screen, and any of the assembler’s other modes can be selected from
the menu. If you want to create or edit an assembly-language program,
you can select Merlin’s editor module. To assemble a program, you can
use the assembler module. Use the linker module to link long programs
together. You can also invoke most of Apple’s ProDOS file functions
from Merlin’s command interpreter module.

Merlin’s Menu
Boot Merlin from a disk; the first screen display will look something
like this:

1
MERLIN-PRO 1 . 34
By Gl en Br edon
a
(OF
C : C a t a l o g
L: Load s o u r c e
S: Save s o u r c e
A : Append f i l e
D: D i s k command
E: E n t e r ED/ASM
0: Save o b j e c t code
3: Set d a t e
Q: Quit

%

All of the options on this menu are explained in detail in the instruc
tion book that comes with the Merlin Pro assembler package. For now,
you should note that Merlin can do quite a few things in executive mode,
including loading and saving source code and object code and listing the
contents of a disk (using the menu’s C command). You can read and
write text files using Merlin’s R and W menu commands. You can even
format disks, scratch files from disks, and perform numerous other disk-
management functions using the executive menu’s X command.

At the bottom of your screen you will see a “%” sign followed by a
flashing cursor. The “%” prompt always indicates that Merlin is in exec
utive mode. When the assembler is in editor mode, the prompt changes
to a colon. When it’s in monitor mode, the prompt is a dollar sign.

When you’ve located the “%” prompt, type the letter
E

74 Apple Roots

for “enter editor/assembler mode.” Then press a carriage return to acti
vate Merlin’s editor module. To let you know that it’s in edit mode, Mer
lin will print a prompt on your screen. Then type

A

for “add.” You will see the number 1 appear on your screen. That 1 is
intended to be used as the first line number in a source-code program.
Merlin automatically generates line numbers, beginning with the num
ber 1 and progressing in increments of 1. The number 1 on your screen
means that Merlin is ready to accept the first typed line of a source-code
program.

If your assembler is working properly, the 1 on your screen is fol
lowed by a space and a flashing cursor. Beginning at the cursor location,
type an asterisk—without any additional spaces in front of it. Line 1 of
your program will look like this:

1 *

Type a return and Merlin will advance automatically to line 2. Fol
lowing the numeral 2, again without any extra spacing, type

*ADDNRS. S

and press the RETURN key. When Merlin advances to line 3, type
another asterisk.

You should now see

1 *

2 * ADDNRS.S
3 *
4

There is one obvious difference between the above lines and the first
three lines of the ADDNRS program that was created using the Apple
ProDOS assembler. In the Apple ProDOS version of the program,
comments in the label field can begin with either an asterisk or a
semicolon. In the Merlin version, label-field comments always start with
asterisks. If you try to set off a Merlin comment with a semicolon, your
editor will accept it but your comment will automatically be tabbed all
the way to the comment field (the fourth field on your screen).

When you’ve finished typing line 4 of the ADDNRS.S program,
press your carriage return and you’ll see Merlin’s prompt again.
Then you can type A (for ADD) again and continue writing your pro
gram. If you prefer, you can type some other command.

Writing and Assembling an Assembly-Language Program 75

The Merlin assembler, like the Apple ProDOS assembler, will list a
program on your screen if you type an L command after the editing
prompt. The Merlin will also delete a line if you type a D. To list or
delete a series of lines using Merlin, you can type the first and last line
numbers in that series after your L or D command. Note that when
you’re using Merlin, you have to separate the two numbers that follow a
command with a comma, not with a dash. Here’s a Merlin command
that will delete Lines 2 and 3:

02 , 3

Try the command. You can then restore the lines you’ve deleted by using
the A command.

Another command that can be used after the prompt is I (for
INSERT). Type the letter I after a colon prompt, followed by the
number of the line where you want your new line inserted. For example,
to insert another asterisk at Line 2 in the ADDNRS.S program, you
could type

12

Merlin will respond with the number 2.
Now type an asterisk, followed by two carriage returns. Merlin will

display its prompt again, and you can type L for list. Merlin will list
your program, and you’ll see that another line containing an asterisk
has been inserted into your program at line 2.

The Merlin Pro assembler, like the Apple ProDOS assembler, uses
relative line numbering, so it automatically renumbers each line after
you have inserted or deleted one or more lines. Remember to insert or
delete higher-numbered lines before you make changes in lower-
numbered lines to avoid deleting the wrong lines.

You can now delete that extra asterisk that you’ve just added to your
program. Just press the carriage return to get a colon prompt and type
D2. Then you can type L for LIST; you will get a listing showing that
your program has been restored to this condition:

1 *
2 * ADDNRS.S
3 *
4

In addition to the A, I, and D commands, there’s also an R command
that you can use to replace a line when you’re using the Merlin assem
bler. And Merlin, like the Apple ProDOS assembler, also has commands

<
 <

76 Apple Roots

that you can use to copy lines, to find and replace strings, and to per
form many other useful functions. You can find details on how to use all
of these functions by reading the Merlin Pro instruction manual.

Now let’s finish typing the ADDNRS.S program. Program 4-5 shows
the program in its entirety.

Program 4-5
THE ADDNRS.S PROGRAM
(As Typed on the Merlin Pro Assembler)

1
2 ADDDNRS.S
3
4 ORG $8000
5 ADDNRS CLD
6 CLC
7 LD A #2
8 ADC #2
9 STA $02 A7

10 RTS
11

Before you’ve finished typing the ADDNRS.S program, you’ll proba
bly notice that Merlin tabulates columns automatically, dividing a pro
gram into easy-to-read fields. Merlin automatically generates a space
after each line number, so you don’t have to type one. If you do type a
space, you wind up in the third column (the one in which all of the
three-letter abbreviations appear).

You may also notice that the ORG directive is followed by the num
ber $8000 in the Merlin listing rather than by the number $1000, which
appeared after ORG in the Apple ProDOS assembler listing. The reason
is that the memory configurations of the two assemblers are quite dif
ferent. More details on this subject will be provided in Chapter 11.

Listing Your Program

When you’ve reached Line 12 in your ADDNRS.S program, just press
the RETURN key. Then you can type either L or LIST to see the com
plete program listed on your computer screen.

Closer Look
the ADDNRS Program

Program 4-6 is an explosion diagram of the ADDNRS program, as
written using a Merlin Pro assembler. In this example (just as in Pro
gram 4-2 earlier this chapter), the program is divided into four fields,
or columns. Each field has a heading that describes the kind of infor
mation it contains.

Writing and Assembling an Assembly-Language Program 77

As you examine this listing, please note that the Merlin assembler
does not ordinarily produce listings that use this kind of spacing. These
tabulations were used to give you a clear picture of the organization of
an assembly-language program.

Program 4-6
THE ADDNRS.S PROGRAM
(Merlin Pro Version)
LINE OP
NO. LABEL CODE

1 *
2 * ADDDNRS.S
3 *
4 ORG
5 ADDNRS CLD
6 CLC
7 LDA
8 ADC
9 STA

10 RTS
11

Printing Your Program

When you’ve finished typing your source-code listing using the Merlin
editor, you can print it by typing the command

PR# 1

(This command will work for an Apple lie, or an Apple He with a
printer card installed in expansion slot 1. If your printer card is
installed in another slot, use the appropriate slot number.) If you want
to print listings with page headings, you can also use the command
PRTR. For detailed instructions on using these commands, please refer
to your Merlin Pro instruction manual.

Assembling and Saving Your Program

To assemble the ADDNRS.S program using the Merlin assembler,
simply type the command ASM following the prompt. Merlin will
then ask you if you want to update your source-code file (with the cur
rent date, for example). If you don’t want to update your file, you can
type N (for “no”) and Merlin will assemble your source-code program
very rapidly.

Before we save the ADDNRS.S program on a disk, let’s take time to
compare the object code that your assembler has generated with the
source code from which the object code was derived. In Program 4-7, in

OPERAND REMARKS

$8000

#2
#2
$02 A7

78 Apple Roots

the column labeled SOURCE CODE, you’ll see your source-code listing.
In the next column you can see the machine-language version of the
program. To the right of that you’ll find the meaning of each assembly-
language/machine-language instruction.

Program 4-7
THE ADDNRS.S PROGRAM
(Source Code/Machine Code Comparison)
SOURCE CODE MACHINE CODE MEANING

CLD D8 C l e a r s t a t u s r e g i s t e r ' s d e c i m a l
mode f l a g

CLC 18 C l e a r s t a t u s r e g i s t e r ' s c a r r y
f lag

LD A M2 A9 02 Load a c c u m u l a t o r wi th the number
ADC M2 69 03 Add 2 , wi th c a r r y
STA $0300 8D 00 03 S t o r e r e s u l t i n Memory A dd r e s s

$0300
RTS 60 Re t u r n f rom s u b r o u t i n e

Now we’ll save both your source-code listing and your object-code
listing on a disk. First, type Q (for QUIT) after the prompt to put
your assembler back into executive (menu) mode. Merlin’s main menu
will reappear. You can then save your source code by selecting menu
choice S and your object code by choosing menu choice 0.

When you type an S or an O to save a source-code or object-code
listing, Merlin will ask you to name your program. When you name your
program, you don’t have to add any suffix to indicate whether it’s a
source-code listing or an object code program because Merlin will do
that automatically. If you’re saving a source-code listing, the assembler
will automatically add an S suffix to your pathname. If you’re saving a
machine-code listing, Merlin will not add a suffix to the pathname of
your object-code.

The ORCA/M Assembler

The ORCA/M assembler-editor package is manufactured by The Byte
Works, Inc., of Albuquerque. New Mexico. If you own an ORCA/M or
would like to learn about it, continue reading this chapter. If you’re
using an Apple or Merlin assembler and are anxious to run the
ADDNRS program, you should move right on to Chapter 5.

The ORCA/M (“MACRO” spelled backwards) is completely different
from the Merlin Pro, the Apple ProDOS assembler, and almost every
other microcomputer assembler. ORCA/M. although designed for small

Writing and Assembling an Assembly-Language Program 79

computers, is not a small assembler. The goal of its designers was to
create a microcomputer assembler that would work like the assemblers
used with big mainframes. They achieved that goal with admirable
success. ORCA/M is one of the finest microcomputer assemblers on the
market. And for a package that packs such power, it's remarkably easy
to operate.

ORCA/M comes on two floppy diskettes, both formatted for ProDOS.
Because both sides of each disk are used, ORCA/M is actually a four-
disk program. The ORCA program is on side one of disk one. On the flip
side of disk one there’s a set of ORCA and ProDOS utilities. On side one
of disk two, there’s a gigantic library of macros—prewritten assembly-
language routines that can be automatically inserted into user-written
programs and thus save typing and programming time. On side two of
disk two, there’s a large library of useful subroutines, some of which are
designed to work with the macros on side one.

The ORCA/M assembler is beautifully designed. Once you learn how
to use the system, it can do much of your programming work for you.
With ORCA/M, you can write long programs in the form of short, easy-
to-manage modules. When all of your modules are written, you can link
your entire program together with an elegant linking system. And
ORCA/M fully supports not only the 6502B and 65C02 chips, but also
their descendents, the new 16-bit 65802 and 65816.

The weakest link in the ORCA/M system is its instruction manual.
Even if you know a lot about assembly language, you might find the
manual difficult to follow. The following discussion is intended to help
you understand enough to get started programming with ORCA/M.

Booting the ORCA/M Assembler
Both disks in the ORCA/M package can be copied. Make copies and put
your original disks away for safekeeping. (I strongly recommend that
you equip your Apple with at least two disk drives before trying to use
the ORCA/M program. It’s a very sophisticated program and does a lot
of switching back and forth between disk and memory while it’s run
ning. A pair of disk drives—or even a hard disk drive—can save you a
lot of time when you’re using the ORCA/M program.)

Place your duplicate ORCA/M program disk in the disk drive that’s
built into your Apple lie, or in drive 1 if you own an Apple lie. Then
initialize your duplicate program disk as instructed in the System
Initialization Manual that came with your ORCA/M assembler.

When you’ve initialized your program disk, put your duplicate pro
gram disk in drive 1 and place an empty but formatted ProDOS disk in

80 Apple Roots

drive 2. Then boot your duplicate program disk as you would any other
ProDOS diskette. You will then see a title screen.

1
0RCA/H0ST 4 . 0
C o p y r i g h t (C) J a n u a r y 1985
By The Byt e Wor ks , I n c o r p o r a t e d
a)

#_

The “#” prompt that follows the title indicates that the ORCA/M
assembler is in a mode called the command processor mode. When
ORCA/M is in its command processor mode, it will accept a list of
commands called monitor commands. This is a confusing name, since
the ORCA/M monitor commands bear no relationship to your Apple’s
built-in machine-language monitor.

Descriptions of the monitor commands that can be issued to the
ORCA/M command processor can be found on pages 59 through 72 of
the ORCA/M instruction manual. In this section, we will focus on only
three of those commands: PREFIX, EDIT, and NEW.

PREFIX is a very convenient command since it can be used to
change the ProDOS volume from which ORCA/M accesses files. If you
have a two-drive system, you can instruct ORCA/M to get data from
drive 2 by typing

p r e f i x . D2

as soon as the title screen comes on. From then on, the assembler will
load and save source-code and object-code files using drive 2.

The NEW and EDIT Commands

When you’ve booted your ORCA/M disk and its title screen is displayed,
type the command NEW following the “/?” prompt on your screen. The
NEW command means that you want to get into the editor mode but
don’t have a file to load. If you want ORCA/M to load a file into memory
and then go into edit mode to edit the file, type the word EDIT after the
“#” prompt, followed by the pathname of the requested file.

E DIT PATHNAME

When you type the monitor command NEW (or an EDIT command
followed by a pathname), your disk drive will start spinning and you
will soon see a new display: a blank screen with a flashing cursor in the

Writing and Assembling an Assembly-Language Program 81

upper-right corner and, across the bottom of the screen, a status line
printed in inverse video. Examine the status line, and you should see a
line of caret (A) symbols at various intervals, plus a line of text. The text
will tell what line and column your cursor is on, the amount of memory
that you’ve used so far, and the pathname (if any) of the source-code file
that’s displayed on your screen.

Full-Screen Editor and Line Numbers

When you start typing a program using ORCA/M, you don’t have to
worry about line numbers; there aren’t any. In addition, the ORCA/M
editor is a screen editor, not a line editor, so you can use your cursor
arrow keys to move your cursor all over the screen, just as you can with
a word processor.

ORCA/M has something else in common with a word processor; it
can copy blocks of text from one part of a program to another, it can
delete them, and it can move them around. To copy, move, and delete
blocks of text, you have to use ESCAPE key sequences that are described
in detail in the ORCA/M instruction manual.

The ORCA/M editor also accepts many CONTROL key (A) commands.
For example, you can move your cursor to the top of the screen with a
AT, and to the bottom of the screen with AB. You can go to the first line
of a file with a AF and to the last line with a AL. You can insert a line
anywhere in a program by moving your cursor to the point where you
want the line to be and then pressing an ESCAPE-B key sequence. You
can delete a line with an ESCAPE-Y.

Other control and escape functions that can be used with the
ORCA/M editor are described in the instruction manual and on the
quick-reference card that comes with the ORCA/M package, so we
won’t go into any more detail about them here. You should be ready now
for some hands-on experience with the ORCA/M package. Type the list
ing in Program 4-8. It’s called ADDNRS.SC, and it’s the ORCA/M ver
sion of the ADDNRS program.

Program 4-8
THE ADDNRS.SC PROGRAM
(ORCA/M Version)

KEEP ADDNRS

ADDNRS START

CLD
CLC
LDA U 2

82 Apple Roots

ADC »3
STA $0300
RTS

END

Notice that the ORCA/M version of the ADDNRS.SC program has a
few lines that are lacking in the versions produced on the Apple
assembler and the Merlin assembler. The first line of the program,
which reads “KEEP ADDNRS”, is one such line. There’s also an extra
line that reads “ADDNRS START” and another that reads “END”.

Notice also that the ADDNRS.SC program lacks an ORG line. The
reason is that programs written on the ORCA/M assembler don’t
require origin lines. If you provide ORCA/M with an ORG line, it can
use it; but if you don’t, the assembler will automatically assign your
program a starting address of $2000, and that’s usually a good place to
start an ORCA/M program.

Let’s get back to the extra lines in the ADDNRS.SC program.

Keep, Start, and End Directives
As I’ve mentioned, the first unusual line in the ADDNRS.SC program
is the one that reads “KEEP ADDNRS”. KEEP is a pseudo-op code
that’s often used in ORCA/M programs. If a KEEP directive precedes a
program, ORCA/M will save the object code that is produced when the
program is assembled. The word used as the operand of the KEEP
directive will be the pathname under which the object code is saved. If
the KEEP directive is not used, the program’s object code will not be
saved.

START and END are two other directives often seen in ORCA/M
programs. They are used to delineate the starting and ending points of
named code segments that can later be linked together to form longer
programs. Since the START directive is used to identify a code segment
by name, it requires a label—in this case, ADDNRS. the name of the
program. The END directive requires no label.

Comments in ORCA/M Programs

The way in which ORCA/M handles comments deserves special men
tion. In an ORCA/M program, a comment line can be preceded by a
number symbol (#), a semicolon, or an exclamation point, but blank
lines in ORCA/M programs are also treated as comments. A blank line
has only one purpose, of course—to make a program easier to read by
breaking up segments and providing space. But blank spaces can be
quite effective in a program listing, as you can see in Program 4-8.

Writing and Assembling an Assembly-Language Program 83

Assembling the ADDNRS.SC Program

When you’ve typed the ADDNRS.SC program, hit a CONTROL-Q (the
CONTROL key and the Q key simultaneously), and ORCA/M should
respond with this screen display:

<R> R e t u r n t o E d i t o r
<S> Save t o t h e Same Name
<N> Save t o a New Name
<L> Load A n o t h e r F i l e
<E> E x i t W i t h o u t U p d a t i n g

E n t e r S e l e c t i o n : _

As you can see from the entries on this menu, its primary purpose is
to enable you to load and save programs. Since you’ve written a pro
gram that doesn’t yet have a name, the best way to save it would be to
select menu choice R (“Save to a New Name”). Press your computer’s N
key. The bottom line on your screen will change from “Enter Selection:”
to “File Name:”. You can then type in ADDNRS.SC, which is the path
name under which your ADDNRS source-code file will be saved.

When you’ve saved the ADDNRS.SRC program, you can put OR
CA/M back into monitor mode by typing E (for “Exit Without Updat
ing”). The ORCA/M “#” prompt will then appear on your screen. Type
the word

ASSEMBLE

following the “#” prompt. The ADDNRS.SC program will then be
assembled into machine language, and its object code will be saved to
disk automatically, under the pathname ADDNRS (the word that was
used in the program’s source-code listing as the operand of the KEEP
directive).

Printing an Assembly Listing

When you assemble an ORCA/M program, you can send its assembly
listing to a printer rather than to the screen with a statement such as

ASSEMBLE >. PRINTER

In the next chapter, you’ll learn how to run an assembled program.

Running an
Assembly-Language
Program

Once you've written and assembled an assembly-language program,
what you have is a machine-language program. There are several
methods that you can use to execute machine-language programs.

You can run a machine-language program using the ProDOS/
BASIC command BRUN, which exists solely for the purpose of loading
and running machine-language programs. There’s also another DOS
command, BLOAD, which will load a machine language into RAM but
not execute it. BLOAD is designed to load your machine code so that you
can execute it later, whenever you like and in whatever way you like.
The BRUN and BLOAD commands are quite versatile; you can use
them as direct commands or from within a BASIC program. You can
also invoke the BLOAD command from many software packages,

85

86 Apple Roots

including the Apple ProDOS assembler, and from the Merlin Pro
assembler and the Bugbyter debugging utility that comes in the Apple
ProDOS Assembler Tools package.

Once you’ve loaded a machine-language program into RAM, you can
run it using your computer’s built-in machine-language monitor. The
Apple Ilc/IIe monitor has a special command—the G command—for
running machine-language programs.

You can also execute a machine-language program using the Bug
byter debugging utility. The Bugbyter is similar to the Apple Ilc/IIe
monitor, but it has many additional functions.

You can execute a machine-language program from an Applesoft
BASIC program using the CALL command, the USR(X) function, or
the G command. (The Apple ProDOS Assembler Tools package also
contains a utility called a relocating loader that can help you run
assembly-language programs from BASIC programs. The Merlin Pro
assembler and the ORCA/M assembler can also produce relocatable
machine code that can be called from BASIC programs.)

You can even make a machine-language program load and execute
automatically as soon as a disk on which it has been stored is booted.
This procedure can be performed easily by using the ProDOS/BASIC
STARTUP command.

Loading a Machine-Language Program

Before you can run a machine-language program, you have to load it
into your computer’s memory. There are several different ways to load
the program. From either a ProDOS or a BASIC environment, for
example, you can both load and run a machine-language program by
typing

BRUN ADDNRS. OBJ

If this line were entered as a direct BASIC/ProDOS command, the
computer would check all available disk volumes for a machine-
language program with the pathname ADDNRS.OBJ on the default
drive. If the computer found such a program, it would load and execute
the program. If the computer failed to find such a program, you would
receive an error message.

The same thing would happen if your computer encountered the fol
lowing line while running a BASIC program:

Running an Assembly-Language Program 87

10 PRINT CHR$(4) ; "BRUN ADDNRS . OBJ"

(The syntax used in this line is the standard syntax for issuing Pro-
DOS commands from BASIC programs. More details on this subject
can be found in Apple’s BASIC Programming With ProDOS manual
and other instruction books on ProDOS and Applesoft programming.)

Load Now, Run Later

If you want to load a machine-language program into your computer’s
memory but don’t want to run the program immediately, you can use
the BASIC/ProDOS command BLOAD. To use BLOAD as an imme
diate command, just type

BLOAD ADDNRS.OBJ

To use the BLOAD command from a BASIC program, use the fol
lowing format:

10 PRINT CHR$(4) ; "BLOAD ADDNRS.OBJ"

The machine-language program will then be loaded into your com
puter’s memory but will not be executed.

The BLOAD command can be invoked not only from ProDOS or a
BASIC program, but also from the Apple ProDOS assembly-language
editor and the Apple Bugbyter debugging utility. More information on
these two methods of using the BLOAD command is provided later in
this chapter.

Executing a Machine-Language Program

Once you’ve loaded a machine-language program into RAM, you can
execute the program from the Apple Ilc/IIe monitor, from the Apple
Bugbyter debugging utility, or from a ProDOS or BASIC environment.
Let’s start with the Apple Ilc/IIe monitor.

The Apple Ilc/IIe Machine-Language Monitor

One of the easiest ways to execute a machine-language program is with
your Apple’s built-in monitor. The Apple monitor is an extremely useful
programming tool that has been built into Apple computers since they

88 Apple Roots

first went on the market. With this monitor you can peek into your
computer’s memory and can list—and even change—the contents of its
memory locations. The Apple monitor can translate the contents of
memory locations into assembly language and can display assembly-
language listings on your computer screen. It can also move blocks of
memory from one location to another and can compare blocks of memory
to see if they match. And—most important for our purposes at the
moment—the Apple monitor can execute machine-language programs.

The Apple monitor can be invoked easily from Applesoft BASIC. You
can also call the monitor from both the Apple ProDOS assembly-
language editor and the Merlin assembler-editor. You can transfer con
trol to your computer’s monitor with either package by typing the
command MON and pressing RETURN.

You can invoke the monitor from BASIC by typing CALL -151 or
CALL 65385 and then pressing RETURN.

Using the Apple llc/lle Monitor

Now let’s load a machine-language program into RAM and execute it
using your computer’s built-in monitor.

Turn on your computer, get its BASIC interpreter up and running,
and put the disk containing your ADDNRS.OBJ program into the disk
drive. Make any ProDOS prefix adjustments that are necessary and
then type BLOAD ADDNRS.OBJ and press RETURN. Next, type the
command CALL -151 and p ress RETURN again. You should then see the
asterisk (*) prompt that lets you know your monitor is up and running.

When you see the prompt, type 4096 and press RETURN. That
number is the decimal equivalent of the hexadecimal number $1000,
which should be the starting address of your ADDNRS.OBJ program.

When your disk drive stops spinning, you can find out whether your
ADDNRS.OBJ program has been successfully loaded or not by typing

*1000L

(The asterisk will be there already.)
The L in the monitor command 1000L stands for LIST. When you

type the command followed by a carriage return, your monitor will dis
assemble up to 20 lines of machine-language instructions beginning at
memory address $1000 and list them on your computer screen. “Disas
semble” means to translate a machine-language instruction back into
assembly language. When your monitor disassembles the program that
is now stored in the block of memory starting at $1000, you will see a
screen display that looks like the following:

Running an Assembly-Language Program 89

A MONITOR DISASSEMBLY OF THE ADDNRS PROGRAM

COLUMN 1 COLUMN 2 COLUMN 3

1 0 0 0 -

1 0 0 1 -

10 0 2
1004-
1006-
1009-

08
18

CLD
CLC

A9 02
69 03
8D 00 03
60

LOA #$02
STA #$03
STA $0300
RTS

Below the displayed addresses, you’ll see 14 lines displaying the con
tents of a series of addresses that are not part of the ADDNRS program.
Your monitor’s L command always creates a 20-line screen display, but
only six of those lines are needed to list the ADDNRS program. The
contents of the extra addresses can vary, depending upon what kinds of
programs you were running on the computer before you invoked your
monitor. The extra addresses may contain nothing but a string of 0’s,
each followed by the mnemonic BRK (an assembly-language instruction
that equates to a 0 in machine language). Alternatively, the extra ad
dresses may hold bits and pieces of a previously loaded program.
Whether the addresses used by the ADDNRS.OBJ program have been
previously occupied by another program or not, though, they’re all user-
addressable RAM, which means that they can be freely overwritten. As
long as the ADDNRS program ends with an RTS instruction (which it
does), the contents of the addresses that follow it don’t matter.

The numbers in Column 1 of the illustration are the hexadecimal
memory addresses in which the ADDNRS.OBJ program is stored. The
numbers in Column 2 are hexadecimal machine-language instructions
that are stored beginning at the addresses listed in Column 1. As you
can see, an assembly-language listing of the complete ADDNRS.OBJ
program is provided in Column 3.

Running a Program
Using the Apple llc/lle Monitor

Once you’ve called up a disassembled listing of a program and have
examined it, you know that the program has been loaded successfully
into your computer’s memory. But you won’t know whether the program
actually works until you’ve executed it.

It’s very easy to execute a program using the Apple monitor. Before
we do it, though, let’s take a look at the contents of another memory
register—the one at memory address $0300. Memory register $0300,
you may recall, is the one that is used to store the sum of 2 and 3 in the

90 Apple Roots

ADDNRS program. Let’s look into that register before we run the
ADDNRS program.

Type

 0300

Your monitor display of the contents of memory register $0300 should
look something like this:

0300- 00
�

You will know from that response that memory register $0300 con
tains a 0. If $0300 doesn’t contain a 0, you can place a 0 in it by typing
the number 0300 followed by a colon and a 0.

* 0 300: 0

You can use the colon command to place any 8-bit value in any
memory register in RAM. You may want to experiment a little now,
using the colon command to change the contents of memory address
$0300 to different values and then checking to see whether it worked.
When you’ve finished experimenting, be sure to clear register $0300
to 0.

Now we can execute the ADDNRS program using the Apple Ilc/IIe’s
monitor. Following the asterisk prompt, type the number 1000 (the
starting address of the program) and the letter G.

*1000G

Then press a carriage return. The ADDNRS program should then run.
If everything is working correctly, you won’t see much happening

when the ADDNRS program runs; all you’re likely to notice is another
asterisk prompt on your screen. If all is as it should be, though, some
thing will definitely have happened. To find out what, just type 0300
after your monitor’s asterisk prompt. You should then see

0300- 05

That line will tell you that your computer’s monitor has successfully
executed the ADDNRS.OBJ program.

This book is not really about the Apple Ilc/IIe monitor, so we only
touch on the features of the monitor in this chapter. The Apple Ilc/IIe
monitor can also change, move, and compare the contents of small or
large blocks of memory, display and change the contents of the 65C02/

Running an Assembly-Language Program 91

6502B chip’s registers, and even perform 8-bit hexadecimal arithmetic.
Details of these and other features of the Apple Ilc/IIe monitor can be
found in your computer’s Reference Manual.

The ADDNRS.SR2 Program

Let’s take a look at a couple of machine-language programs that not
only demonstrate how programs can be loaded and saved, but also show
how a program, once loaded into memory, can provide an output to the
screen. Look at Program 5-1, a new and improved version of the
ADDNRS.SRC program. It was written using the Apple ProDOS
assembler, but it will also run on the Merlin Pro and (with the minor
modifications explained in Chapters 4 and 5) can easily be made to
work on the ORCA/M. Since it’s based on the ADDNRS program, I’ve
named it ADDNRS.SR2. However, if you own a Merlin Pro assembler,
which automatically assigns the suffix “.S” to every source-code listing
it saves, you can call the program ADDNRS2.S.

Program 5-1
ADDNRS.SR2
1 ORG $1000
2 *

3 * ADDNRS.SR2
4 *
5 HOME EQU $FC58
6 PRHEX EQU $FDE3
7 *
8 ADDNRS J SR HOME
9 CLD

10 CLC
11 LDA #2
12 ADC #3
13 STA $0300
14 JSR PRHEX
15 RTS

The ADDNRS.SR2 program does everything that its predecessor
did, plus a little more. F irs t, it clears the screen, which the
ADDNRS.SRC program didn’t do. Then, like ADDNRS.SRC, it adds
the numbers 2 and 3 and stores their sum in memory register $0300.
However, the new program also has an output function that prints the
sum of 2 and 3 on the screen.

92 Apple Roots

The easiest way to type the ADDNRS.SR2 program is to load your
original ADDNRS.SRC program into the computer and then use the
editing features of your assembler to expand it into its new form. You
can then save the edited version of the program under the new path
name ADDNRS.SR2.

A Symbol Table

When you s ta r t expanding the ADDNRS.SRC program into
ADDNRS.SR2, the first two additions you’ll encounter are the ones in
lines 5 and 6. Together, these two lines make up what is known in the
world of assembly-language programming as a symbol table. Symbol
tables are used in assembly-language programs to define constants and
variables; most symbol tables also include line labels. Most assembly-
language programs have symbol tables, and you’ll find a symbol table in
every program that you’ll be working on from now on in this book.

In the ADDNRS.SR2 program, the symbol table in lines 5 and 6
defines only two values, and they are both constants. In line 5, a con
stant called HOME is defined as the hexadecimal value $FC58. In line
6, a constant called PRHEX is defined as the hex value $FDE3. The
two constants are defined with the help of a pseudo-op code that is writ
ten EQU, which stands for “equals.” (In a symbol table it isn’t necessary
to use the symbol “#” to indicate that a value is a literal number because
every value listed there is assumed to be a literal number.) But what do
the values and labels in this short symbol table mean?

You will recall a short assembly-language program called HI.TEST
that was presented in Chapter 1. HI.TEST made use of a convenient
machine-language subroutine that is built into the Apple lie and the
Apple He. That subroutine, often called COUT in assembly-language
programs, is built into ROM in both the Apple lie and the Apple He. It
starts at memory address $FDED, and it can be incorporated into any
assembly-language program with a simple JSR command.

When the COUT subroutine is called, it expects the Apple ASCII
code for a typed character to be stored in the 65C02 6502B accumula
tor. If the value of a valid character is in the accumulator, that charac
ter will be printed on the screen.

COUT is only one of a number of useful machine-language subrou
tines that are built into the Apple lie and Apple He computers. All of
these subroutines are listed and described in the Apple lie and Apple
He reference manuals. If you continue to study assembly language after
you finish this book, you should get to know all of these subroutines very
well. Many of them perform extremely useful functions, and all of them

Running an Assembly-Language Program 93

are designed to be invoked with one simple assembly-language instruc
tion: JSR. Since all of these routines are prewritten, they can save tre
mendous amounts of labor, energy, and time.

Before we continue, I suggest that you assemble the ADDNRS.SR2
program under the filename ADDNRS.OB2 and store it on a disk in
both its source-code and object-code versions. Then we can work with
the program during the rest of this chapter.

When you execute your expanded version of the ADDNRS program,
you’ll see very clearly how the built-in routines labeled HOME and
PRHEX are used. The HOME routine, which appears in Line 8, does
the same thing that the instruction sequence HOME does in Applesoft
BASIC. It clears the screen and places the cursor in the upper-left
corner of your computer’s text display.

Lines 9 through 13 of the ADDNRS. SR2 perform exactly the same
functions as lines 5 through 9 of the original ADDNRS.SRC program.
When these lines are executed, the ADDNRS.SR2 program adds the
numbers 2 and 3 and stores their sum in memory register $0300.

A Subroutine That Is Displayed
On the Screen

Line 14 is another new addition to the original ADDNRS program. In
this line, the built-in subroutine PRHEX is used to display the sum of 2
and 3 on the screen. If you consult the list of built-in subroutines in your
computer’s reference manual, you’ll discover that PRHEX actually dis
plays one hexadecimal digit on the screen. But, since the digit 5 (the
sum of 2 and 3) happens to be written the same way in the hex and
decimal systems, it doesn’t matter in this case that the output of the
PRHEX routine is actually a hexadecimal number.

In line 15, the ADDNRS.SR2 program ends the same way its prede
cessor did, with the traditional RTS instruction.

The BRUN Command
Once you’ve typed and assembled a program, the easiest way to run it is
with the ProDOS/BASIC BRUN command. To run the ADDNRS.OB2
program using the BRUN command, store the program on a startup
disk (one with both ProDOS and a BASIC.SYSTEM file recorded on it).
Then boot the disk and type the command
BRUN ADDNRS.0B2

As soon as your startup disk boots, you will see the number 5 displayed
in the upper-left corner of your screen.

94 Apple Roots

Creating a Startup Program

If your ADDNRS.SR2 program runs well with the BRUN command,
you can easily fix it so that it will boot and run automatically whenever
you tu rn your com puter on. W ith the disk th a t contains the
ADDNRS.SR2 program still in your disk drive, just type

RENAME ADDNRS.SR2,STARTUP

Then turn your computer off without changing disks, and after waiting
30 seconds, turn it on again. Your ADDNRS.SR2 program, now
renamed STARTUP, should now load itself and run automatically. If
you reboot the disk with the ADDNRS.SR2 right now, and if everything
works the way it should, your disk drive will whir and click the way it
always does when it’s loading a program, and then you’ll see the number
5 displayed at the top of your computer screen.

Devising a Better Startup Program

You probably won’t find many uses for a startup program that loads
itself and then prints the sum of 2 and 3 in the upper-left corner of a
computer screen. But the same principles that we used to turn the
ADDNRS program into a startup program can be employed to create
more useful kinds of startup routines. Program 5-2, for example, is an
assembly-language program that will boot a disk and print a short
greeting on your video monitor.

Program 5-2
AN ASSEMBLY-LANGUAGE HELLO PROGRAM

1 *

2 * HELLO.SRC
3 *
4 0R6 $1000
5 *
6 COUT EQU $FDED ; SCREEN-PRI NT ING ROUTINE
7 HOME EQU SFC58 ;R0UTINE TO CLEAR SCREEN
8 *

9 HELLO JSR HOME ; CLEAR SCREEN
10 LOA #$C8 ; LOAD THE LETTER ' H'
11 JSR COUT ; PR I NT IT
12 L D A #$C9 ; LOAD THE LETTER ' I '
13 JSR COUT ; PRINT IT
14 LDA #$A 1 ; LOAD EXCLAMATION POINT
15 JSR COUT ; PRINT IT
16 RTS ; END OF PROGRAM

Notice that Program 5-2 is a slightly improved and expanded ver
sion of the program called HI.TEST.SRC that was presented in Chapter

Running an Assembly-Language Program 95

1. With what you now know about assembly language, you shouldn’t
have much trouble understanding it. It uses machine-language routines
that are built into your Apple to clear the screen and type the message
“HI!” It ends, as most good assembly-language programs do, with an
RTS instruction.

Type the program, assemble it (as HI.TEST.OBJ) and execute it; it
will clear your screen and place the cursor in home position. Then it
will display the word

HI!

on your computer screen.
That message isn’t very long, but we’re not yet ready to display

longer messages on a screen, since we haven’t discussed how text strings
are handled in assembly language. Short as it is, though, the greeting
“HI!” does make some sense, which is more than can be said for the
cryptic 5 produced by the ADDNRS program. So perhaps we should
give the ADDNRS.OBJ program its original name back and turn
HELLO.OBJ into a startup program.

To restore ADDNRS.OB2’s original name, type

RENAME STARTUP,ADDNRS.0B2

Then you can type

RENAME HELLO. OBJ , STARTUP

Once you’ve done that, you’ll see a nice warm “HI!” in place of a
mysterious 5 each time you boot your startup disk. Later on, when we
discuss text strings, you’ll learn how to display longer startup messages
on your screen.

Running an Assembly-Language
Program From BASIC

Now that you know how to create an assembly-language startup disk,
we’re ready to move on to a new subject: mixing BASIC and assembly
language.

We know that an assembly-language program can be loaded and
executed from a BASIC program by using a line like

10 PRINT C H R * (4) ; ” BRUN PATHNAME"

96 Apple Roots

This method, however, is not commonly used for running a machine-
language program from a BASIC program because it doesn’t offer
much in the way of versatility. When you use the BRUN command in a
BASIC program, the machine-language program that it calls is always
executed as soon as it is loaded. This process is not always desirable,
since it relinquishes control immediately to whatever machine-language
program has just been loaded. A more common technique is to load a
machine-language program during the initialization phase of a BASIC
program and to execute it later. Fortunately, there is a BASIC com
mand, BLOAD, that will load a machine-language program into
memory without running it. Once a program has been loaded into
RAM, it can be executed at any time with the help of two other BASIC
instructions: the CALL command and the USR(X) function.

To load a machine-language command using the BLOAD function,
you type a line using this format:

10 PRINT CHR$(4) ; "BLOAD PATHNAME"

When you put that kind of line in a BASIC program, your computer
will look on whatever disk it is using (or on any volume you designate)
for a machine-language program that has the requested filename. If it
finds such a program, it will load it into RAM but will not run it. Once
the machine-language program has been loaded, you can run it when
ever you like during the course of your BASIC program, with either a
CALL command or a USR(X) function.

Using the CALL Command

It’s easy to use Applesoft BASIC’s CALL command. All you have to do is
load a machine-language program into RAM and then type the word
CALL, followed by the decimal address of the machine-language pro
gram. CALL can be used either as a direct command or from within a
BASIC program. When it is invoked from a BASIC program, this is the
syntax that is used:

20 CALL 4096

If this line were included in a BASIC program and a machine-language
program were stored in memory beginning at decimal address 4096
(hexadecimal address $1000), control would be transferred to the
machine-language program beginning at $1000.

Let’s try that now, using the STARTUP program (formerly the
HELLO.OBJ program) that you stored on a startup disk. Make sure

Running an Assembly-Language Program 97

that the startup disk is in your disk drive, and then type this two-line
BASIC program:

10 PRINT C H R $ (4) ; " B L 0 A D STARTUP"
20 CALL 4096

Then type the word RUN. Your STARTUP program —which begins
at decimal address 4096 (or hex address $1000)—should now run. It
should print “HI!” on your screen, and then, since it ends with an RTS
instruction, it should pass control of your computer back to BASIC.

Before we move on to the USR(X) function, there is one special fea
ture of the CALL function that is worth mentioning. In Applesoft
BASIC, a CALL statement can be expressed as either a positive number
or a negative number. If a CALL statement is expressed as a negative
number, Applesoft BASIC will automatically add 65536 to it to obtain
an equivalent positive address. This unusual feature of Applesoft
BASIC can come in handy, since negative CALL addresses are often
shorter and easier to remember than their positive counterparts. For
example, you can access the Apple Ilc/IIe monitor by typing either
CALL 65385 or CALL —151. The second statement is much easier to
remember, so it is the one most often used. On the other hand, the nega
tive counterpart of the number 4096 (hexadecimal $1000) is the un
wieldy negative number —61440, so you probably wouldn’t want to use it.

The USR(X) Function

The USR(X) function is a little more complicated than the CALL
command—and much more powerful. USR stands for “user-supplied
routine,” and the purpose of the USR function is to give expert BASIC
programmers a method for running high-speed machine-language rou
tines from within BASIC programs. When you know how to program in
both BASIC and assembly language, you can use the USR(X) function
to perform mathematical computations that would run too slowly if they
were programmed in BASIC—or computations that BASIC might not
be able to handle at all. Suppose, for example, that you had access to a
series of assembly-language routines for performing complex character-
animation sequences in high-resolution graphics. You could use the
USR(X) function to call those sequences and run them —at machine-
language speeds—from within BASIC programs!

When you use USR(X), you can substitute any value you like for the X
that appears between the parentheses in the function. Then, when you
invoke the USR(X) function, three things will happen.

98 Apple Roots

First, the value that you have assigned to X will be stored automati
cally in a specific series of addresses in your computer’s memory.

Second, the BASIC program that is in progress will be temporarily
interrupted and control of your computer will be turned over to a
machine-language program—usually a user-written machine-language
program —that has been selected in advance.

Finally, once this preselected machine-language routine takes over,
it can retrieve the value that has been passed to it via the USR(X) func
tion and can perform any desired computation using that value. The
result of that computation can then be stored in the same series of
memory registers that the original value came from. Control can then
be passed back to BASIC. Note that once a machine-language computa
tion has been performed on the X variable in the USR(X) function, that
variable will have a new value when control is passed back to BASIC.

To clarify this procedure, we will examine a couple of illustrative
programs. These two programs —one written in BASIC and one writ
ten in assembly language—have been interfaced with the USR(X) func
tion. Program 5-3, which I’ve called DECHEX.BA2, is a BASIC pro
gram that uses the USR(X) function to call a machine-language
program. Program 5-4, which I’ve named DECHEX.SR2, is the source-
code listing of the machine-code program that the BASIC program
calls.

Before we start analyzing these two programs, you might want to
type and save the DECHEX.BA2 program and type, assemble, and save
the DECHEX.SR2 program. When you save the object-code version of
the DECHEX.SR2 program, I suggest that you follow the same conven
tion that we’ve followed up to now and assign it the pathname
DECHEX.OB2.

When used together, Programs 5*3 and 5-4 will convert any signed
16-bit decimal number into a hexadecimal number and will print the
hex numbers on your computer screen. As you may notice, these two
programs, even when they are combined, are considerably shorter than
the BASIC program for converting decimal numbers to hexadecimal
numbers that was presented in Chapter 2. In addition, these programs
are capable of handling signed numbers, while the DECHEX program
in Chapter 2 could handle only positive numbers. There are also other
differences between the program in Chapter 2 and Programs 5*3 and
5-4. Before we examine these differences, let’s take a close look at these
two new programs.

Running an Assembly-Language Program 99

Program 5-3
USING THE USR(X) FUNCTION TO CALL
A MACHINE-LANGUAGE PROGRAM
10 REM *** DECHEX.BA2 ***
20 REM
30 POKE 1 0 , 7 6 : REM POKE JUMP INSTRUCTION ($ 4 0 INTO

MEMORY REGISTER 10 ($0A)
40 REM NOW POKE DECHEX.0B2 ADDRESS INTO REGISTERS 11

AND 12 (SOB AND $0C>
50 HI = INT (4096 / 2 5 6) : L 0 = 4096 - HI * 256: POKE 1 1 , LO:

POKE 1 2 , HI
60 PRINT CHR$ (4) ;"BLOAD DECHEX.0B2"
70 TEXT : HOME : PRINT " DECIMAL-TO-HEXADECIMAL CONVERTER"
80 PRINT : PRINT "TYPE A DECIMAL NUMBER"
90 PRINT "BETWEEN - 32767 AND 3 2 7 6 7 : " : PRINT
100 INPUT NR1 $: IF VAL (NR1$) < -32767 OR VAL (NR1$) >

32767 THEN 80
110 X = VAL (NR1 $)
120 PRINT "HEX: " ;
130 Y = INT (USR (X))
140 PRINT : GOTO 80

Program 5-4
A SOURCE-CODE PROGRAM CALLED BY THE USR(X) FUNCTION

1 *

2 * DECHEX.SR2
3 *
4 ORG $1000
5 *
6 PRNTAX EQU $F941 ;ROUTINE TO PRINT A AND X IN HEX ON

SCREEN
7 FLPINT EQU $E10C ; FLPT/INT CONVERSION ROUTINE
8 *

9 DECHEX JSR FLPINT ;CONVERT VALUE IN FLT PT ACCUM TO
INTEGER

10 LDA $ A1 ; LOW BYTE OF RESULT
11 TAX ; PRNTAX GETS LOW BYTE FROM X REG
12 LDA $ AO ; HIGH BYTE OF RESULT
13 JSR PRNTAX ; PRNT AX GETS HI BYTE FROM ACCUMULATOR
14 RTS

The DECHEX.BA2 Program Line by Line Let’s examine Program 5-4,
DECHEX.BA2, line by line. We’ll start with lines 30 through 50.
30 POKE 1 0 , 7 6 : REM POKE JUMP INSTRUCTION ($ 4 0 INTO

MEMORY REGISTER 10 ($0A)
40 REM NOW POKE DECHEX.0B2 ADDRESS INTO REGISTERS 11

AND 12 ($0B AND $0C)
50 HI = INT (4096 / 2 5 6) :L0 = 4096 - HI * 256: POKE 1 1 , LO

POKE 1 2 , HI

100 Apple Roots

These three lines carry out an operation that must always be per
formed before the USR(X) function is invoked. When the USR(X) func
tion is used, it first looks in memory registers 10, 11, and 12 ($0A
through $0C in hex notation). If it finds a set of machine-language
instructions in those three registers, it will carry them out. If it finds no
machine-language instructions in $0A through $0C, it will either return
an error message or produce unpredictable and potentially disastrous
results. So, before you invoke the USR(X) function, you always have to
store three executable machine-language instructions in memory regis
ters $0A through $0C.

In line 30 of the DECHEX.BA2 program, the machine-language op
code $4C (76 in decimal notation) is stored in memory register $0A. $4C
is a machine-language equivalent of the assembly-language mnemonic
JMR JMP, as you may remember, is similar to the BASIC instruction
GOTO. When JMP is used in an assembly-language program, it is
always followed by either a memory address or a label that equates to
an address. When the JMP instruction is encountered in a program, it
causes the program to jump to the specified memory address.

In lines 40 and 50 of the DECHEX.BA2 program, a 16-bit value is
stored in memory locations $0B and $0C (11 and 12 in decimal notation).
As you can see, the number stored in those two registers is $1000 (or
4096 in decimal notation). (Take a look at Program 5-4, and you’ll see
what the value $1000 means when it follows a JMP instruction; it’s the
starting address of the assembly-language program in the DE-
CHEX.SR2 program.)

Now you can see what lines 30 through 50 of the DECHEX.BA2
program do: they set things up so that when the USR(X) function is
called later on in the DECHEX.BA2 program, it will transfer control of
your computer to the DECHEX.SR2 program.

Next, let’s look at lines 60 through 130 of the DECHEX.BA2
program.

60 PRINT CHR$ (4) ; "BL0AD DECHEX.0B2"
70 TEXT : HOME : PRINT "DECIMAL-TO-HEXADECIMAL CONVERTER"
80 PRINT : PRINT "TYPE A DECIMAL NUMBER"
90 PRINT "BETWEEN - 32767 AND 3 2 7 6 7 : " : PRINT
100 INPUT NR1$: IF VAL (NR1$) < - 32767 OR VAL (NR1$)

> 32767 THEN 80
110 X = VAL (NR1$)
120 PRINT "HEX: " ;

Line 60 loads a program called DECHEX.OB2. (If you’ve assembled
and saved the DECHEX.SR2 program in the way that I’ve suggested,

Running an Assembly-Language Program 101

DECHEX.OB2 will be the filename of the object-code version of
DECHEX.SR2.)

In lines 70 through 90 of the DECHEX.BA2 program, a title and
two lines of instructions are displayed on the screen. The instructions
request that a number be typed in and state that the number must be
between —32767 and 32767. Note that the original DECHEX program,
presented in Chapter 2, was capable of handling only positive numbers,
but the DECHEX.BA2 program can convert both positive and negative
numbers into hexadecimal notation.

When you use the DECHEX.BA2 program, however, you must pay a
certain price for this extra capability. As you may remember, the origi
nal DECHEX program could convert any positive decimal number up
to 65,535 into hexadecimal notation. The DECHEX.BA2 program can
handle positive numbers only half that large; that is, up to 32767. Since
it can also handle negative numbers down to —32768, the total number
of values that the two programs can translate into hexadecimal
numbers is the same. (We’ll learn more about negative numbers in
Chapter 10, which is about assembly-language math.)

In line 100 of the DECHEX.BA2 program, an INPUT command is
used to accept a typed number as a string. If the number is less than
—32767 or more than 32767, the program refuses to accept it and calls
for another input. Once a legal number has been entered, it is converted
into a numeric value and is then defined as the value of the X variable
in the USR(X) function. In line 120, the message “HEX: ” is printed on
the screen.

Using the USR(X) Function When the USR(X) function is finally
invoked in line 130, it first deposits the value of X in a special set of
memory registers called a floating-point accumulator. A floating-point
accumulator is a block of memory that is used for storing numbers dur
ing operations that involve a procedure called floating-point arithmetic.
In the Apple lie and the Apple He, the floating-point accumulator is
situated in memory registers $9D to $A3.

In Chapter 10, which deals specifically with 6502B/65C02 math,
floating-point arithmetic will be discussed in more detail. Now we’re
going to make use of two more of the machine-language subroutines
that are built into every Apple lie and Apple He. One of these subrou
tines, which I call FLPINT, is designed to convert floating-point
numbers to 16-bit binary numbers. The other subroutine, which I’ve
named INTFLP, works the other way around: it converts 16-bit binary
numbers to floating-point numbers. Here are brief explanations of these
two subroutines.

102 Apple Roots

The FLPINT subroutine, which begins at memory address $E10C,
will take whatever value is the floating-point accumulator and convert
it into a floating-point number, depositing the high-order byte of the
floating point number in memory register $A0 and the low-order byte
in memory register $A1. To use this subroutine, you use the assembly-
language instruction JSR to jump to the subroutine at memory address
$E10C. The contents of the floating-point accumulator will then be con
verted into a two-byte binary number and can be retrieved from
memory registers $A0 and $A1.

(Please note that on page 174 of the 1982 edition of the Apple He
Applesoft BASIC Programmer’s Reference Manual, the address of the
FLPINT routine is given as $E01C. That address is incorrect; if you use
it, the FLPINT routine won’t work. The correct address is the one given
above: $E10C.)

To use the INTFLP routine, you have to place a two-byte binary in
teger into the accumulator and the Y register of your computer’s
6502B/65C02 microprocessor. The low byte of your two-byte number
should be in the accumulator and the high byte should be in the Y regis
ter. Then just do a JSR to jump to the INTFLP subroutine at memory
address $E2F2. Upon return from that subroutine, the floating-point
equivalent of the number that you stored in the A and Y registers will
be in your computer’s floating-point accumulator.

Analyzing the DECHEX.SR2 Program Now we’re ready to examine
line 130 of the DECHEX.BA2 program.

130 Y = INT (USER (X))

This line invokes the USR(X) function. As we have seen, the USR(X)
function first deposits the value of X in your computer’s floating-point
accumulator. Then it transfers control to whatever machine-language
program starts at the address that has been loaded into memory loca
tions $0B and $0C. Since the address of the DECHEX.SR2 program is
now stored in those locations (it was placed there in line 50 of the
DECHEX.BA2 program), the machine-language program that the
USR(X) function now jumps to is the DECHEX.SR2 program.

Now we’ll take a line-by-line look at the DECHEX.SR2 program,
beginning with lines 6 and 7.

6 PRNTAX EQU $F941 ;R0UTINE TO PRINT A AND X IN HEX ON
SCREEN

7 FLPINT EQU SE10C ; FLPT/INT CONVERSION ROUTINE

Running an Assembly-Language Program 103

Here we have another symbol table, a table that assigns labels to the
starting addresses of important routines. In the two-line symbol table
that appears in lines 6 and 7 of the DECHEX.SR2 program, only two
addresses are listed. In line 6, the address of a routine called PRNTAX
is defined as $F941. Then, in line 7, there’s an address for the FLPINT
routine, which converts floating-point numbers into hexadecimal num
bers. Since we’ve already discussed the FLPTINT subroutine, we can
now direct our attention to the PRNTAX subroutine in the DECHEX
.SR2 symbol table.

PRNTAX, like FLPINT, is built into the Apple lie and the Apple
He. PRNTAX is an important routine in a program like DECHEX.SR2,
since it can automatically display hexadecimal numbers on your comput
er’s screen. To use PRNTAX, you have to place a 16-bit hexadecimal
number in your 6502B/65C02 microprocessor’s A and X registers, with
the high-order byte in the accumulator and the low-order byte in the X
register. Then you can do a JSR to memory address $F941, and the
number stored in the A and X registers will be displayed on your com
puter screen.

Running the DECHEX.SR2 Program Before we start discussing the
rest of the DECHEX.SR2 program, it’s important to remember what
has happened up to now: a number has been typed in on your compu
ter’s keyboard and has been stored in its floating-point accumulator.
Then, with the help of the USR(X) function, control of your computer
has been transferred to DECHEX.SR2.

9 DECHEX JSR FLPINT ;C0NVERT VALUE IN FLT PT ACCUM TO
INTEGER

10 LDA $A1 ; LOW BYTE OF RESULT
11 TAX ; PRNTAX GETS LOW BYTE FROM X REG
12 LDA $A0 ;HIGH BYTE OF RESULT
13 JSR PRNTAX ; PRNTAX GETS HI BYTE FROM ACCUMULATOR
14 RTS

Now we’re ready to proceed. The FLPINT subroutine is called in
line 9 of the DECHEX program, and the value in the floating-point
accumulator—that is, the value that has been typed in—is converted
into a two-byte integer. FLPINT stores the low byte of that integer in
$A1 and stores the high byte in $A0. Then the FLPINT subroutine ends
and transfers control back to the DECHEX.SR2 program.

In line 9 of the DECHEX.SR2 program, the accumulator is loaded
with the value in $A1 (that is, the low byte of the two-byte integer
returned by FLPINT). Then, in line 10, there’s an assembly-language

104 Apple Roots

mnemonic that we haven’t encountered before: TAX, which stands for
“transfer the value in the accumulator to the X register.” In line 10, the
TAX mnemonic does just what you’d expect it to do. It moves the value
that has just been loaded into the accumulator into the X register. When
that operation has been carried out, the low byte of the value returned
by FLPINT is in the X register.

There are now only three more lines in the DECHEX.SR2 program.
In line 10, the accumulator is loaded with the value stored in memory
register $A0 (that is, the low byte of the value returned by FLPINT).
Then in line 13 there’s a jump to the PRNTAX routine, which combines
the value in the accumulator and the value in the X register and then
displays the values as a four-digit hexadecimal number on the screen.

The USR(X) Function as a Programming Tool

The USR(X) function is one of the most complicated functions available
in BASIC, but it is also one of the most powerful. Once you know how to
use it, you can compile whole libraries of machine-language functions
and use them at will in BASIC programs. As you now know, it is much
easier to program in BASIC than in assembly language. Unfortunately,
however, BASIC operates so slowly that it is simply incapable of han
dling many kinds of routines, especially those involving the use of high-
resolution graphics. The USR(X) function is powerful because it allows
you, as a programmer, to move back and forth between BASIC and
assembly language. If you know how to use the USR(X) function, you
can take advantage of the best features of BASIC and assembly lan
guage. You can use BASIC for writing the kinds of routines for which
BASIC is best suited, and any time you like, you can also use the
USR(X) function to call up high-speed, high-performance assembly-
language routines.

The 6502B/65C02
Instruction Set

Up to now, we’ve mainly discussed the syntax and the grammar of
6502B/65C02 assembly language, and we’ll be covering those topics in
more detail in later chapters. But this chapter is important because it is
about the vocabulary of Apple lie/Apple lie assembly language—the
6502B/65C02 instruction set.

The chapter was not designed to be read in one sitting; it’s a refer
ence chapter, so you should probably browse through it to get an idea of
what kind of material the chapter contains. Then you can refer to it
when necessary.

Most of this chapter is devoted to an alphabetical listing of the
6502B/65C02 instruction set. The listing includes all 56 assembly-
language instructions that are used by the 6502B microprocessor, plus
eight additional instructions that can be used with the 65C02 processor.
Each of these 65C02-specific instructions is marked with an asterisk.
All of the addressing modes used by the 6502B and the 65C02 are also
listed, and those that are applicable only to the 65C02 chip are
identified.

106 Apple Roots

Instructions for the 65802 and the 65816—the two 16-bit chips that
are now members of the 6502 family—are not included in the listing in
this chapter. However, a complete listing of the 65802/65816 instruction
set can be found in the Appendices.

Under each mnemonic listed, you’ll find a brief explanation of how
that mnemonic is used in Apple lie and Apple He assembly-language
programs. In addition, the flags and registers affected by each mne
monic are listed.

At the end of this chapter, following the alphabetical listing of the
6502B/65C02 instruction set, you’ll find a special bonus: a BASIC pro
gram called “The Byte Simulator” that will help you understand how
your computer’s microprocessor processes the instruction set. The pro
gram is written in BASIC, so you can type and execute it without using
an assembler. When you run it, you’ll see how it got its name.

Abbreviations Used in This Chapter

The following section contains a complete listing of the 6502B/65C02
microprocessor instruction set and includes all of the instruction mne
monics used in Apple lie and Apple He assembly-language program
ming. Of course, the list does not include pseudo-operations (also called
pseudo-ops or directives), which vary from assembler to assembler. It
does include addressing modes, which will be covered in Chapter 7. For
a listing of the pseudo-ops used by your assembler, you should consult
your assembler’s instruction manual.

Tables 6-1 through 6-3 define the abbreviations used in the instruc
tion set.

Table 6-1. Processor Status (P) Register Flags

N Negative (sign) flag
V Overflow flag
B Break flag
D Decimal flag
I Interrupt flag
Z Zero flag
C Carry flag

The 6502B/65C02 Instruction Set 107

Table 6-2. 6502B/65C02 Memory Registers

A Accumulator
X X register
Y Y register
M Memory register

Table 6-3. 6502B/65C02 Addressing Modes

A Absolute addressing
AC Accumulator addressing
AI Absolute indexed indirect addressing (JMP instruction, 65C02 only)
Z Zero-page addressing (65C02 only)
IMM Immediate addressing
IND Absolute indirect addressing
IMP Implied addressing
AX Absolute,X (X-indexed) addressing
AY Absolute,Y (Y-indexed) addressing
IX Indexed indirect (Indirect,X) addressing
IY Indirect indexed (Indirect,Y) addressing
R Relative addressing
ZPG Zero-page indirect addressing

ZX Zero-page X-indexed (Zero-page,X) addressing
ZY Zero-page Y-indexed (Zero-page,Y) addressing

The Instruction Set

ADC (Add with carry) Adds the contents of the accumulator to the
contents of a specified memory location or literal value. If the P regis
ter’s carry flag is set, a carry is also added. The result of the addition
operation is then stored in the accumulator.

108 Apple Roots

Flags affected:
Registers affected:
Addressing modes:

N, V, Z, C
A
A, Z, IMM, AX, AY, IX, IY, ZX, ZPG*

AND (Logical AND) Performs a binary logical AND operation on the
contents of the accumulator and the contents of a specified memory
location or an immediate value. The result of the operation is stored in
the accumulator.

Flags affected:
Registers affected:
Addressing modes:

N, Z
A
A, Z, IMM, AX, AY, IX, IY, ZX, ZPG*

ASL (Arithmetic shift left) Moves each bit in the accumulator or a
specified memory location one position to the left. A 0 is deposited into
bit 0 position, and bit 7 is forced into the carry bit of the P register. The
result of the operation is left in the accumulator or the affected memory
register.

Flags affected:
Registers affected:
Addressing modes:

N, Z, C
A, M
AC, A, Z, AX, ZX

BCC (Branch if carry clear) Executes a branch if the carry flag of the
P register is clear. Results in no operation if the carry flag is set. The
destination of the branch is calculated by adding a signed displacement,
ranging from —128 to +127, to the address of the first instruction that
follows the BCC instruction. This calculation results in an effective dis
placement of +129 bytes to —126 bytes from the branch instruction. An
attempt to use a BCC instruction for a longer branch will result in an
“out of range” error.

Flags affected: None
Registers affected: None
Addressing modes: R

BCS (Branch if carry set) Executes a branch if the carry flag of the P
register is set. Results in no operation if the carry flag is clear. The
destination of the branch is calculated by adding a signed displacement,
ranging from —128 to +127, to the address of the first instruction that
follows the BCS instruction. This results in an effective displacement of
+ 129 bytes to —126 bytes from the branch instruction. An attempt to use

The 6502B/65C02 Instruction Set 109

a BCS instruction for a longer branch will result in an “out of range”
error.

Flags affected: None
Registers affected: None
Addressing modes: R

BEQ (Branch If equal) Executes a branch if the 0 flag of the P regis
ter is set. Results in no operation if the 0 flag is clear. Can be used to
jump to cause a branch if the result of a calculation is 0 or if two
numbers are equal. The destination of the branch is calculated by
adding a signed displacement, ranging from —128 to +127, to the
address of the first instruction that follows the BEQ instruction. This
calculation results in an effective displacement of +129 bytes to —126
bytes from the branch instruction. An attempt to use a BEQ instruction
for a longer branch will result in an “out of range” error.

Flags affected: None
Registers affected: None
Addressing modes: R

BIT (Compare bits in accumulator with bits in a specified memory regis
ter) Performs a binary logical AND operation on the contents of the
accumulator and the contents of a specified memory address. The con
tents of the accumulator are not affected, but three flags in the P regis
ter are.

If any bits that are set in the accumulator match any bits that are set
in the value being tested, the Z flag is cleared. If there are no set bits in
the accumulator that match any set bits in the value being tested, the Z
flag is set. Therefore, by using a BIT instruction followed by a BNE or
BEQ instruction, you can determine whether any set bits in the accum
ulator and the tested value match. If there is a match, a BIT/BNE test
will succeed. If there is no match, a BIT/BEQ test will succeed.

The BIT instruction also has another effect: bits 6 and 7 of the value
in memory being tested are transferred directly into the V and N bits of
the status register. This feature provides a handy method for testing bit
6 and bit 7 of any desired value in a single operation, and the BIT
instruction is therefore used frequently in arithmetic operations involv
ing signed numbers.

Flags affected: N, V, Z
Registers affected: None

HO Apple Roots

Addressing modes: A, Z, IMM*, AX*. ZX*

BMI (Branch on minus) Executes a branch if the N flag of the P
register is set. Results in no operation if the N flag is clear. The destina
tion of the branch is calculated by adding a signed displacement, rang
ing from —128 to +127, to the address of the first instruction that follows
the BMI instruction. This results in an effective displacement of +129
bytes to —126 bytes from the branch instruction. An attempt to use a
BMI instruction for a longer branch will result in an “out of range”
error.

Flags affected: None
Registers affected: None
Addressing modes: R

BNE (Branch if not equal) Executes a branch if the 0 flag of the P
register is clear (that is, if the result of an operation is non-0). Results in
no operation if the 0 flag is set. Can be used to jump to cause a branch if
the result of a calculation is not 0 or if two numbers are not equal. The
destination of the branch is calculated by adding a signed displacement,
ranging from —128 to +127, to the address of the first instruction that
follows the BNE instruction. This calculation results in an effective dis
placement of +129 bytes to —126 bytes from the branch instruction. An
attempt to use a BNE instruction for a longer branch will result in an
“out of range” error.

Flags affected: None
Registers affected: None
Addressing modes: R

BPL (Branch on plus) Executes a branch if the N flag is clear (that
is, if the result of a calculation is positive). Results in no operation if the
N flag is set. The destination of the branch is calculated by adding a
signed displacement, ranging from —128 to +127, to the address of the
first instruction that follows the BPL instruction. This results in an
effective displacement of +129 bytes to —126 bytes from the branch
instruction. An attempt to use a BPL instruction for a longer branch
will result in an “out of range” error.

Flags affected: None
Registers affected: None
Addressing modes: R

The 6502B/65C02 Instruction Set f f l

* BRA (Branch always) Executes a branch to a specified memory
address. The destination of the branch is calculated by adding a signed
displacement, ranging from -128 to +127, to the address of the first
instruction that follows the BRA instruction. This calculation results in
an effective displacement of +129 bytes to -126 bytes from the branch
instruction. An attempt to use a BRA instruction for a longer branch
will result in an “out of range” error.

Flags affected: None
Registers affected: None
Addressing modes: R

BRK (Break) The BRK instruction is a software-controlled interrupt
that is often used to halt a program at a desired spot during debugging
operations. When a BRK instruction is encountered in a program, the
program counter is incremented by two and the break (B) flag of the P
register is set. Next, the program counter is pushed onto the stack, high
byte first. Then the contents of the P register, with the B flag set, are
also pushed onto the stack.

When these operations are done, the interrupt flag (I) is set, disabling
interrupts. Then a 16-bit address stored in a special 16-bit pointer is
placed in the program counter. In the Apple lie and the Apple He, this
pointer is contained in memory addresses $3F0 and $3F1, a pair of reg
isters designed to be used only with the BRK instruction. In older 6502-
based computers, the pointer is contained in memory addresses $FFFE
and $ F F F F —the same addresses that are used as a vector by other
types of interrupt instructions.

When a BRK instruction is issued, the BRK pointers used by the
Apple lie and the Apple He will usually halt whatever program is being
executed and will pass control of the computer to its built-in machine-
language monitor.

When control of the Apple Ile/IIc has been returned to the monitor,
the contents of memory registers and microprocessor registers can be
examined, and debugging of the program being executed can proceed.
However, because the BRK instruction causes such a complex series of
operations to take place, use of the instruction can sometimes have
unforeseen results. To prevent unpleasant surprises from taking place
when the BRK instruction is invoked, the Apple lie is equipped with a
built-in interrupt handler that can handle BRK instructions in various
ways, depending upon whether the computer is in 80-column mode and
whether auxiliary memory and bank-switched memory are being used.

112 Apple Roots

By changing the contents of the BRK vector at memory addresses $3F0
and $3F1, Apple lie owners can write their own BRK-handling routines
if they wish. But for most debugging operations, there is probably no
reason to try to override the BRK-handler that is built into the Apple
l i e .

Flags affected: B
Registers affected: Stack pointer
Addressing modes: IMP

BVC (Branch if overflow clear) Executes a branch if the P register’s
overflow (V) flag is clear. Results in no operation if the overflow flag is
set. The destination of the branch is calculated by adding a signed dis
placement, ranging from —128 to +127, to the address of the first
instruction that follows the BVC instruction. This calculation results in
an effective displacement of +129 bytes to —126 bytes from the branch
instruction. An attempt to use a BVC instruction for a longer branch
will result in an “out of range” error. This instruction is used primarily
in operations involving signed numbers.

Flags affected: None
Registers affected: None
Addressing modes: R

BVS (Branch If overflow set) Executes a branch if the P register’s
overflow (V) flag is set. Results in no operation if the overflow flag is
clear. The destination of the branch is calculated by adding a signed
displacement, ranging from —128 to +127, to the address of the first
instruction that follows the BVC instruction. This calculation results in
an effective displacement of +129 bytes to —126 bytes from the branch
instruction. An attempt to use a BVC instruction for a longer branch
will result in an “out of range” error. This instruction is used primarily
in operations involving signed numbers. However, it also provides an
easy way to test bit 6 of any value.

Flags affected: None
Registers affected: None
Addressing modes: R

CLC (Clear carry) Clears the carry bit of the processor status
register.

The 6502B/65C02 Instruction Set 113

CLD (Clear decimal flag) Clears the decimal flag of the P register,
putting the Apple Ilc/IIe into binary mode (its default mode) rather
than into an alternate mode called BCD (or decimal mode). When the
Apple lie is in binary mode, it can carry out ordinary binary operations
on ordinary binary numbers. When the computer is in BCD mode, it is
capable of working with a special kind of numbers, called BCD
numbers, which are more accurate than ordinary binary numbers but
are more difficult to use. BCD numbers (covered in more detail in
Chapters 2 and 10) are often used in business-related programs in
which a high degree of accuracy in arithmetic is important. In most
other kinds of 6502B/65C02 programs, the decimal flag is usually left
clear and ordinary binary numbers are generally used.

Flags affected: D
Registers affected: None
Addressing modes: IMP

CLI (Clear interrupt mask) Clears the interrupt flag of the P register,
enabling interrupts to take place. Until the advent of the Apple lie,
interrupts were not supported by Apple II-series computers and there
fore were not used in Apple programs. However, the Apple He does sup
port interrupts, and the Apple lie even has an extremely sophisticated
built-in interrupt handler. Interrupts are a bit beyond the scope of this
book, but they are becoming increasingly important, particularly in
programs designed to be used with sophisticated peripherals such as
the Apple mouse. Details on how interrupts are used in Apple Ilc/IIe
programs can be found in the Apple lie and Apple He reference manu
als and in manuals covering the operations of peripherals such as the
Apple mouse.

Flags affected: I
Registers affected: None
Addressing modes: IMP

CLV (Clear overflow flag) Clears the P register’s overflow flag by set
ting it to 0. This instruction is used primarily in operations involving
signed numbers. However, it can also be used to clear bit 6 of any value.

Flags affected: C
Registers affected: None
Addressing modes: IMP

114 Apple Roots

CMP (Compare with accumulator) Compares a specified literal num
ber, or the contents of a specified memory location, with the contents of
the accumulator. The N, Z, and C flags of the status register are
affected by this operation, and a branch instruction usually follows it.
The branch instruction that follows the CMP instruction can cause a
program to branch to a given routine under certain conditions. For
example, a branch might take place if the value in the accumulator is
less than, equal to, or more than the value being tested. The CMP
instruction, and the branching instructions that are used with it, are
covered in more detail in Chapter 8.

Flags affected: N, Z, C
Registers affected: None
Addressing modes: A, Z, IMM, AX, AY, IX, IY, ZX, ZPG*

CPX (Compare with X register) Compares a specified literal number,
or the contents of a specified memory location, with the contents of the
X register. The N, Z, and C flags of the status register are affected by
this operation, and a branch instruction usually follows. The branch
instruction that follows the CPX instruction can, under certain condi
tions, cause a program to branch to a given routine. For example, a
branch might take place if the value in the X register is less than, equal
to, or more than the value being tested.

Flags affected: N, Z, C
Registers affected: None
Addressing modes: A, IMM, Z

CPY (Compare with Y register) Compares a specified literal number,
or the contents of a specified memory location, with the contents of the
Y register. The N, Z, and C flags of the status register are affected by
this operation, and a branch instruction usually follows. The branch
instruction that follows the CPY instruction can cause a program to
branch to a given routine under certain conditions; for example, a
branch might take place if the value in the Y register is less than, equal
to, or more than the value being tested.

Flags affected: V
Registers affected: None
Addressing modes: IMP

Flags affected: N, Z, C

Registers affected: None
Addressing modes: A, IMM, Z

The 6502B/65C02 Instruction Set 115

DEA or DEC A (Decrement accumulator) Decrements the contents of
the accumulator by one. If the value of the accumulator is $00, the result
of a DEA operation will be $FF, since there is no carry.

Flags affected: N, Z
Registers affected: A
Addressing modes: AC

DEC (Decrement a memory location) Decrements the contents of a
specified memory location by one. If the value in the location is $00, the
result of a DEC operation will be $FF, since there is no carry.

Flags affected: N, Z
Registers affected: M
Addressing modes: ACC*, A, Z, AX, ZX

DEX (Decrement X register) Decrements the X register by one. If the
value in the location is $00, the result of the DEX operation will be $FF,
since there is no carry.

Flags affected: N, Z
Registers affected: X
Addressing modes: IMP

DEY (Decrement Y register) Decrements the Y register by one. If the
value in the location is $00, the result of the DEY operation will be $FF,
since there is no carry.

Flags affected: N, Z
Registers affected: Y
Addressing modes: IMP

EOR (Exclusive-OR with accumulator) Performs an Exclusive-OR
operation on the contents of the accumulator and a specified literal
value or memory location. The N and Z flags are conditioned in accor
dance with the result of the operation, and the result is stored in the
accumulator.

Flags affected: N, Z
Registers affected: A

116 Apple Roots

Addressing modes: A, Z, I, AX, AY, IX, IY, ZX, ZPG*

INA or INC A (Increment accumulator) The content of the accumulator
is incremented by one. If the content of the accumulator is $FF, the
result of the INA operation will be $00, since there is no carry.

Flags affected: N, Z
Registers affected: A
Addressing modes: AC

INC (Increment memory) The contents of a specified memory location
are incremented by one. If the value in the location is $FF, the result of
the INC operation will be $00, since there is no carry.

Flags affected: N, Z
Registers affected: M
Addressing modes: ACC*, A, Z, AX, ZX

INX (Increment X register) The contents of the X register are incre
mented by one. If the value of the X register is $FF, the result of the
INX operation will be $00, since there is no carry.

Flags affected: N, Z
Registers affected: X
Addressing modes: IMP

INY (Increment Y register) The contents of the Y register are incre
mented by one. If the value of the Y register is $FF, the result of the
INY operation will be $00, since there is no carry.

Flags affected: N, Z
Registers affected: Y
Addressing modes: IMP

JMP (Jump to address) Causes program execution to jump to a speci
fied address.

Flags affected: None
Registers affected: None
Addressing modes: A, IX*, IND

JSR (Jump to subroutine) Causes program execution to jump to the
address that follows the instruction. That address should be the starting

The 6502B/65C02 Instruction Set 117

address of a subroutine that ends with the instruction RTS. When the
program reaches that RTS instruction, execution of the program
returns to the next instruction after the JSR instruction that caused the
jump to the subroutine.

Flags affected: None
Registers affected: Stack pointer
Addressing modes: A

LDA (Load the accumulator) Loads the accumulator with either a
specified value or the contents of a specified memory location. The N
flag is conditioned if a value with the high bit set is loaded into the
accumulator, and the Z flag is set if the value loaded into the accumula
tor is 0.

Flags affected: N, Z
Registers affected: A
Addressing modes: A, Z, IMM, AX, AY, IX, IY, ZX, ZPG*

LDX (Load the X register) Loads the X register with either a speci
fied value or the contents of a specified memory location. The N flag is
conditioned if a value with the high bit set is loaded into the X register,
and the Z flag is set if the value loaded into the X register is 0.

Flags affected: N, Z
Registers affected: X
Addressing modes: A, Z, IMM, AY, ZY

LDY (Load the Y register) Loads the Y register with either a specified
value or the contents of a specified memory location. The N flag is con
ditioned if a value with the high bit set is loaded into the Y register, and
if the Z flag is set, the value loaded into the Y register is 0.

Flags affected: N, Z
Registers affected: Y
Addressing modes: A, Z, IMM, AX, ZX

LSR (Logical shift right) Each bit in the accumulator is moved one
position to the right. A 0 is deposited into the bit 7 position, and bit 0 is
deposited into the carry. The result is left in the accumulator or in the
affected memory register.

Flags affected: N, Z, C

118 Apple Roots

Registers affected: A, M
Addressing modes: AC, A, Z, AX, ZX

NOP (No operation) Causes the computer to do nothing for two clock
cycles. Used in delay loops and to synchronize the timing of computer
operations.

Flags affected: None
Registers affected: None
Addressing modes: IMP

ORA (lnclu$ive-OR with the accumulator) Performs a binary inclusive-
OR operation on the value in the accumulator and a literal value or the
contents of a specified memory location. The N and Z flags are condi
tioned in accordance with the result of the operation, and the result of
the operation is deposited in the accumulator.

Flags affected: N, Z
Registers affected: A, M
Addressing modes: A, Z, IMM, AX, AY, IX, IY, ZX, ZPG*

PHA (Push accumulator) The contents of the accumulator are pushed
on the stack. The accmulator and the P register are left unchanged.

Flags affected: None
Registers affected: Stack pointer
Addressing modes: IMP

PHP (Push processor status) The contents of the P register are
pushed on the stack. The P register itself is left unchanged and no other
registers are affected.

Flags affected: None
Registers affected: Stack pointer
Addressing modes: IMP

* PHX (Push X register on the stack) The contents of the X register
are pushed on the stack. The X register and the P register are left
unchanged.

Flags affected: None
Registers affected: Stack pointer
Addressing modes: IMP

The 6502B/65C02 Instruction Set 119

* PHY (Push Y register on the stack) The contents of the Y register
are pushed on the stack. The Y register and the P register are left
unchanged.

Flags affected: None
Registers affected: Stack pointer
Addressing modes: IMP

PLA (Pull accumulator) One byte is removed from the stack and de
posited in the accumulator. The N and Z flags are conditioned, just as if
an LDA operation had been carried out.

Flags affected: N, Z
Registers affected: A, Stack pointer
Addressing modes: IMP

PLP (Pull processor status) One byte is removed from the stack and
deposited in the P register. This instruction is used to retrieve the status
of the P register after it has been saved by pushing it onto the stack. All
of the flags are thus conditioned to reflect the original status of the P
register.

Flags affected: N, V, B, D, I, Z, C
Registers affected: Stack pointer
Addressing modes: IMP

* PLX (Pull X register) One byte is removed from the stack and depos
ited in the X register. The N and Z flags are conditioned, just as if an
LDX operation had been carried out.

Flags affected: N, Z
Registers affected: X, Stack pointer
Addressing modes: IMP *

* PLY (Pull Y register) One byte is removed from the stack and depos
ited in the Y register. The N and Z flags are conditioned, just as if an
LDY operation had been carried out.

Flags affected: N, Z
Registers affected: Y, Stack pointer
Addressing modes: IMP

120 Apple Roots

ROL (Rotate left) Each bit in the accumulator or a specified memory
location is moved one position to the left. The carry bit is deposited into
the bit 0 location and is replaced by bit 7 of the accumulator or the
affected memory register. The N and Z flags are conditioned in accor
dance with the result of the rotation operation.

Flags affected: N, Z, C
Registers affected: A, M
Addressing modes: AC, A, Z, AX, ZX

ROR (Rotate right) Each bit in the accumulator or a specified
memory location is moved one position to the right. The carry bit is
deposited into the bit 7 location and is replaced by bit 0 of the accumula
tor or the affected memory register. The N and Z flags are conditioned
in accordance with the result of the rotation operation.

Flags affected: N, Z, C
Registers affected: A, M
Addressing modes: AC, A, Z, AX, ZX

RTI (Return from interrupt) The RTI instruction is used to end an
interrupt in much the same way that an RTS instruction is used to end
a subroutine. When an RTI instruction is issued, the program counter
and the P register are pulled from the stack, and the stack pointer is
adjusted to reflect the new state of the stack. Then the interrupt ends,
and the program jumps back to where it left off before the interrupt
began (that is, to the instruction following the instruction that began
the interrupt). When using the RTI instruction, it is important to
remember that although RTI restores the P register to its original state,
RTI does not restore the original states of the X, Y, and A registers. That
job is left to the programmer.

Flags affected: N, V, B, D, I, Z, C
Registers affected: PC, Stack pointer
Addressing modes: IMP

RTS (Return from subroutine) The RTS instruction serves two func
tions. When used at the end of a machine-language program, it termi
nates the program and passes control of the Apple Ilc/IIe to whatever
system program was running when the machine-language program
began; usually, this results in a return either to BASIC or to the Apple
Ilc/IIe monitor.

The 6502B/65C02 Instruction Set 121

When RTS is used at the end of a subroutine, it has a completely
different function; it pulls a 16-byte address from the top of the stack
and loads that address into the 6502B/65C02 program counter. This
operation ends the subroutine, and the program in progress then jumps
back to where it was before the subroutine began (that is, to the instruc
tion following the instruction that called the subroutine).

Flags affected: None
Registers affected: Stack pointer
Addressing modes: IMP

SBC (Subtract with carry) Subtracts a literal value or the contents of
a specified memory location from the contents of the accumulator. The
opposite of the carry is also subtracted—in other words, there is a bor
row. The N, V, Z, and C flags are all conditioned by this operation, and
the result of the operation is deposited in the accumulator.

Flags affected: N, V, Z, C
Registers affected: A
Addressing modes: A, Z, IMM, AX, AY, IX, IY, ZX, ZPG*

SEC (Set carry) The carry flag is set. This instruction usually pre
cedes an SBC instruction. Its primary purpose is to set the carry flag so
that there can be a borrow.

Flags affected: C
Registers affected: None
Addressing modes: IMP

SED (Set decimal mode) Prepares the computer for operations using
BCD (binary coded decimal) numbers. BCD arithmetic is more accu
rate than binary arithmetic (the usual type of 6502B/65C02 arithmetic)
but is slower and more difficult to use and consumes more memory.
BCD arithmetic is usually used in accounting and bookkeeping pro
grams and in floating-point arithmetic operations.

Flags affected: D
Registers affected: None
Addressing modes: IMP

SEI (Set interrupt disable) Sets the interrupt (I) flag of the P register,
disabling all maskable interrupts (IRQs). Setting the interrupt flag does

122 Apple Roots

not disable non-maskable interrupts (NMIs), which are essential to the
operation of the Apple IIc/Apple He.

Flags affected: I
Registers affected: None
Addressing modes: IMP

STA (Store accumulator) Stores the contents of the accumulator in a
specified memory location. The contents of the accumulator are not
affected.

Flags affected: None
Registers affected: M
Addressing modes: A, Z, AX, AY, IX, IY, ZX, ZPG*

STX (Store X register) Stores the contents of the X register in a speci
fied memory location. The contents of the X register are not affected.

Flags affected: None
Registers affected: M
Addressing modes: A, Z, ZY

STY (Store Y register) Stores the contents of the Y register in a speci
fied memory location. The contents of the Y register are not affected.

Flags affected: None
Registers affected: M
Addressing modes: A, Z, ZX

* STZ (Store 0 in memory) Stores a 0 in a specified memory location.

Flags affected: None
Registers affected: None
Addressing modes: A, Z, AX, ZX

TAX (Transfer accumulator to X register) The value in the accumula
tor is deposited in the X register. The N and Z flags are conditioned in
accordance with the result of this operation. The contents of the accum
ulator are not changed.

Flags affected: N, Z
Registers affected: X
Addressing modes: IMP

The 6502B/65C02 Instruction Set 123

TAY (Transfer accumulator to Y register) The value in the accumula
tor is deposited in the Y register. The N and Z flags are conditioned in
accordance with the result of this operation. The contents of the accum
ulator are not changed.

Flags affected: N, Z
Registers affected: Y
Addressing modes: IMP

* TRB (Test and reset bits) A logical AND operation is performed on
a memory location and the inverse of the accumulator value. The result
is stored in the memory location; the Z flag is conditioned.

Flags affected: D, Z, C, N
Registers affected: M
Addressing modes: A, Z

* TSB (Test and set bits) A logical OR operation is performed on a
memory location and the value of the accumulator. The result is
stored in the memory location and the Z flag is conditioned.

Flags affected: D, Z, C, N
Registers affected: M
Addressing modes: A, Z

TSX (Transfer stack to X register) The value in the stack pointer is
deposited in the X register. The N and Z flags are conditioned in accor
dance with the result of this operation. The value of the stack pointer is
not changed.

Flags affected: N, Z
Registers affected: X
Addressing modes: IMP

TXA (Transfer X register to accumulator) The value in the X register
is deposited in the accumulator. The N and Z flags are conditioned in
accordance with the result of this operation. The value of the X register
is not changed.

Flags affected: N, Z
Registers affected: A
Addressing modes: IMP

124 Apple Roots

TXS (Transfer X register to stack) The value in the X register is de
posited in the stack pointer. No flags are conditioned by this operation.
The value of the X register is not changed.

Flags affected: None
Registers affected: Stack pointer
Addressing modes: IMP

TYA (Transfer Y register to accumulator) The value in the Y register
is deposited in the accumulator. The N and Z flags are conditioned by
this operation. The value of the Y register is not changed.

Flags affected: N, Z
Registers affected: A
Addressing modes: IMP

The Byte Simulator

Program 6-1 is a printout of “The Byte Simulator,” a program that will
give you an inside look at what your computer’s microprocessor does
when it processes the above instructions.

The Byte Simulator is not a real assembler, so you won’t be able to
assemble and run programs with it. It has some other limitations, too;
for example, it doesn’t allow the use of labels or indirect addressing (a
topic that will be covered in detail in a later chapter). And, since it was
designed to be compatible with all Apple He computers as well as the
Apple lie, it won’t accept the eight instructions that are unique to the
65C02 microprocessor.

One important feature of The Byte Simulator is that it can’t freeze
your computer system, making everything you’re doing come to a crash
ing halt. The reason is that The Byte Simulator will not actually poke
values into your computer’s memory registers; it can read the contents
of any memory register in your computer, but it can’t write to registers
in RAM. So, although you can use the program to check the contents of
any memory register in your computer, you won’t be courting disaster
every time you key in an assembly-language instruction.

After you’ve typed and saved The Byte Simulator, you can see how it
works by using it to type any of the programs presented so far in this
book. Once you know how it works, you can use it to test any Apple He
or Apple lie assembly-language program.

The 6502B/65C02 Instruction Set 125

When you load the program, you will first see a status line across the
top of your screen. This line will show you the current status of the four
most important registers inside the 65C02/6502B chip: the processor
status register, the accumulator, and the X and Y registers. Beneath
this status line, you’ll see a cursor. Starting at the cursor location, you
can type an assembly-language program and see exactly how each
instruction in the program would affect each register in your Apple’s
main microprocessor if the program were actually running. Each time
you type a line of assembly language using The Byte Simulator, it will
show you how that line would affect your CPU’s internal registers and
keep a running update of the contents of your CPU’s A, X and Y regis
ters. The information will be displayed in both hex and binary notation.

As you continue to learn 6502B/65C02 assembly language, The Byte
Simulator should be very helpful. Every instruction in 6502 assembly
language has some effect on the registers inside your Apple’s CPU, and
you can use The Byte Simulator to get an inside look at those effects.

Program 6-1
THE BYTE SIMULATOR
100 REM * * * * * * * * * * * * * * * * * * * THE BYTE SIMULATOR * * * * * * * * * *

* * * * * * * * * * *
110 DATA A S L , B R K , C L C , C L D , C L I , C L V , D E X , D E Y , I N X , I N Y , L S R , N O P ,

PHA, PHP , PLA
120 DATA P L P , R O L , R O R , R T I , R T S , S E C , S E D , S E I , T A X , T A Y , T S X , T X A ,

TXS, TYA
130 DATA A D C , A N D , C M P , C P X , C P Y , E 0 R , L D A , L D X , L D Y , 0 R A , S B C
1A0 DATA A D C , A N D , A S L , B C C , B C S , B E Q , B I T , B M I , B N E , B P L , B V C , B V S ,

CMP, CPX, CPY
150 DATA D E C , E O R , I N C , J M P , J S R , L D A , L D X , LDY, L S R, ORA , ROL , ROR,

S B C , S T A , S T X
160 DATA S T Y , A S L , L S R , R O L , R O R
170 DATA 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , A , B , C , D , E , F
180 DATA 0 0 0 0 , 0 0 0 1 , 0 0 1 0 , 0 0 1 1 , 0 1 0 0 , 0 1 0 1 , 0 1 1 0 , 0 1 1 1
190 DATA 1 0 0 0 , 1 0 0 1 , 1 0 1 0 , 1 0 1 1 , 1 1 0 0 , 1 1 0 1 , 1 1 1 0 , 1 1 1 1
200 DIM H E X $ (8) , B I T $ (8) , H $ (1 6) , B $ (1 6) , T E M P $ (2) , B I T (8) , N $ (7 5)
210 AH$ = " 0 0 " : XH$ = " 0 0 " : Y H S = " 0 0 " : Z $ = " 0" : AD = 0: SC =

0 : YD = 0
220 AB$ = " 0 0 0 0 0 0 0 0 " : XB$ = " 00000000" : YB$
230 N = 0 : V = 0 : B = 0:D = 0 : 1 = 0 : Z = 0: C
240 IF RIGHTS (A S , 1) = " " THEN 300
250 FOR L = 1 TO 75: READ N S (L) : NEXT L
260 FOR L = 1 TO 16: READ H S (L) : NEXT L:

READ B $ (L) : NEXT L
270 PRINT CHRS (4 >; " PR#3" : TEXT : REM

PROGRAM
280 PRINT "NV-BDIZC A: " ; A H S ; " X:

; YHS
290 PRINT N ; V ; " - " ; B ; D ; I ; Z ; C ; " " ; A B $; "

PRINT : GOTO 310
PRINT CHRS (7) : REM RING BELL

= " 0 0 0 0 0 0 0 0 "

= 0

FOR L = 1 TO 16:

CLEAR SCREEN, START

; X H S ; " Y:

" ; X B S ; " " ; YBS

300

126 Apple Roots

310 B = 0: A$ = INPUT " '’ ; A $: REM TYPE SPACE BETWEEN
LAST PAIR OF QUOTES

320 IF LEN (A$> < 3 OR LEN (A$) > 10 THEN 300
330 IF LEN (A$) = 3 THEN 420: REM GOTO ONE-BYTE MNEMONIC

ROUTINES
340 IF MIDS (A S , 4 , 1) < > CHR$ (32) THEN 300
350 IF RIGHTS (A S , 1) = CHRS (32) THEN 300
360 GOTO 450: REM GO TO MULTIPLE-BYTE MNEMONIC ROUTINES
370 REM *** ROUTINE TO CONVERT OPS & AOS TO BINARY

NUMBERS ******
380 ODS = OPS: GOSUB 1130: FOR L = 1 TO 8 : B I T S (L) = ZS:

NEXT L
390 FOR L = 1 TO 8 : B 1 S (L) = MIDS (0 B S , L , 1) : NEXT L
400 FOR L = 1 TO 8 : B 2 S (L) = MIDS (A B S , L , 1) : NEXT L: RETURN
410 REM ************** IMPLIED ADDRESSING *****************

420 FOR L = 1 TO 29: IF AS = NS(L) THEN OCS = AS:OC = L:

GOTO 1350

430 NEXT L: GOTO 300
440 REM ** * IMMEDIATE, ABSOLUTE & ACCUMULATOR ADDRESSING

450 oc$ = LEFTS (A S , 3) : 0 P $ = MIDS (AS , 5)
460 IF LEFTS (0 P S , 1) = AND MIDS (O P S , 2 , 1) = "S" THEN

FLAGS = ” AH": GOTO 530
470 IF LEFTS (0 P S , 1) = THEN FLAGS = " AD" : GOTO 620
480 IF LEFTS (0 P S , 1) = " S " THEN FLAGS _ mI Hm. GOTO 690
490 IF OPS = "A" THEN 790
500 IF LEFTS (0 P $, 1) < "0" AND LEFTS (0PS, 1) > "9" THEN

300 : REM TRY AGAIN
510 FLAGS = " I D ” : GOTO 840
520 REM * * * * * * * * * HEX OPERAND, ABSOLUTE ADDRESSING ******

530 OPS = MIDS (0 P S , 3) : BAS = " H" : REM HEX ADDRESS
540 FOR L = 30 TO 40: IF OCS = N$(L) THEN OC = L: GOTO 560
550 NEXT L: GOTO 300
560 IF LEN (OPS) > 2 THEN 300
570 FOR L = 1 TO LEN (OP S) : X$ = MIDS (0 P S , L , 1) : IF XS <

ZS OR XS > " F " THEN 300
580 IF XS > "9" AND XS < "A" THEN 300
590 IF LEN (OPS) = 1 THEN OPS = ZS + OPS
600 OHS = OPS: GOSUB 1030: 0PS = ODS: GOTO 670
610 REM * * * * * * * * * DECIMAL OPERAND, ABSOLUTE ADDRESSING **

620 OPS = MIDS (O P S , 2) :BA$ = " D" : REM DECIMAL ADDRESS
630 FOR L = 30 TO 40: IF OCS = N$(L) THEN OC = L: GOTO 650
640 NEXT L: GOTO 300
650 IF VAL (OPS) > 255 THEN 300
660 FOR L = 1 TO LEN (OPS) : XS = MIDS (0 P $, L , 1) : IF ASC

(XS) < 48 OR ASC
(XS) > 57 THEN 420
670 OC = OC - 29: GOTO 1420
680 REM * * * * * * * * * HEX OPERAND, IMMEDIATE ADDRESSING *****

* * * * * * * * * * *
690 OPS = MIDS (O P S , 2) : BAS = "H" : REM HEX ADDRESS
700 FOR L = 41 TO 71: IF OCS = NS(L) THEN OC = L: GOTO 720
710 NEXT L: GOTO 300
720 IF LEN (OPS) > < THEN 300

The 6502B/65C02 Instruction Set 127

730 FOR L = 1 TO LEN (OP$) : X$ = MIDS (0 P S , L , 1) : IF XS <
Z$ OR X$ > MF" THEN 300

740 IF X$ > " 9" AND X$ < "A" THEN 300
750 NEXT L
760 OHS = OPS: 60SUB 1030: 0PS = OD$:OP$ = STRS (PEEK (VAL

(OPS)))
770 BAS = " D " : OC = OC - 40: GOTO 1430
780 REM *************** ACCUMULATOR ADDRESSING *********

790 OPS = " A " : REM ACCUMULATOR ADDRESSING
800 FOR L = 72 TO 75: IF OCS = NS(L) THEN OC = L - 71: GOTO

820
810 NEXT L: GOTO 300
820 ON OC GOTO 1 5 1 0 , 1 7 6 0 , 1 7 9 0 , 1 8 1 0
830 REM *********** DECIMAL OPERAND, IMMEDIATE ADDRESSING

DECIMAL ADDRESS
> 65535 THEN 300
LEN (OPS) : XS = MIDS (0 P $, L , 1)
ASC

IF ASC

840 BAS = "D" : REM
850 IF VAL (OPS)
860 FOR L = 1 TO

(XS) < 48 OR
(XS) > 57 THEN 300
870 FOR L = 41 TO 71:
880 NEXT L: GOTO 300
890 OPS = STRS (PEEK (VAL (OPS)))
900 OC = OC - 40: GOTO 1430
910 REM ************ DECIMAL-TO-HEXADECIMAL CONVERSION **

IF OCS = NS(L) THEN OC = L: GOTO 890

920 FOR L = 1 TO 4 : HEXS(L) = NEXT L
930 FOR L = 1 TO 5 : TS = RIGHTS (O D S , L) : NEXT L
940 NR = VAL (O D S) : X = 4
950 TMP = NR: NR = INT (NR / 16) : TMP = TMP - NR * 16
960 IF TMP < 10 THEN HEXS(X) = RIGHTS (STRS (T M P) , 1) : GOTO 980
970 HEXS(X) = CHRS (TMP - 10 + ASC (" A "))
980 IF NR < > 0 THEN X = X - 1: GOTO 950
990 OHS = HEXS(1) + HEXS(2) + HEXS(3) + HEX$(4)
1000 IF LEN (OHS) = 1 THEN OHS = ZS + OHS
1010 RETURN
1020 REM ********** HEXADECIMAL-TO-DECIMAL CONVERSION ***

1030 NR = 0: FOR L = 1 TO LEN (OHS) : HEXS(L) = MIDS

(0 H S , L , 1)
1040 IF HEXS(L) < = " 9 M THEN NR = NR * 16 + VAL (H E X S (L)) :

GOTO 1060
1050 NR = NR * 16 + ASC (HE X S (L)) - ASC (" A") + 10
1060 NEXT L : ODS = STRS (NR): RETURN
1070 REM ************** BINARY-TO-DECIMAL CONVERSION ****

1080 FOR L = 8 TO 1 STEP - 1 : B S (L) = MIDS (0 B S , L , 1) :

NEXT L
1090 FOR L = 1 TO 8 : B I T (L) = VAL (B$ (L >) : NEXT L:OD =

0 : M = 256
1100 FOR L = 1 TO 8 : M = M / 2:0D = OD + B I T (L) * M: NEXT L
1110 ODS = STRS (OD): RETURN
1120 REM ********** DECIMAL-TO-BINARY CONVERSION ********

1130 OD = VAL (OPS) : FOR L = 8 TO 1 STEP - 1 : Q = 0 0 / 2:R

= Q - INT (Q)

128 Apple Roots

1140 IF R = 0 THEN BT$(L) = Z$: GOTO 1160
1150 BT$(L) = " 1"
1160 OD = INT <Q): NEXT L
1170 0B$ = B T $ (1) + B T S (2) + BT$C3) + BT$(4) + BT$(5) +

B T $ (6) + B T $ (7) + B T $ (8) : RETURN
1180 REM ******** HEXADECIMAL-TO-BINARY CONVERSION ******

1190 HEXS(1) = : HEXS(2) = FOR L = 1 TO LEN (OHS):

HEXS(L) = MIDS (0 H $, L , 1)
1200 NEXT L: IF HEX$(2) = "" THEN HEX$(2) = HEXS(1) : HEXS(1)

_ H Q . .

1210 FOR L = 1 TO 16: IF HEXS(1) = HS(L) THEN B I T S (1) =
BS(L)

1220 NEXT L

1230 FOR L = 1 TO 16: IF HEXS(2) = H$(L) THEN BI T $ (2) =
BS (L)

1240 NEXT L
1250 OBS = B I T S O) + BI TS<2) : PRINT : RETURN
1260 REM ************ BINARY TO HEXADECIMAL CONVERSION **

1270 FOR L = 1 TO 8 : B I T S (L) = MIDS (0 B S , L , 1) : NEXT L
1280 BITS = B I T S (1) + BI T S (2) + BI T S (3) + BI T S (4) + BITS(5)

+ B I T S (6) + BI T S (7) + BI T S(8)
1290 T1S = LEFTS (B I T S , 4) : T 2 S = RIGHTS (B I T S , 4) : FOR L =

1 TO 16
1300 IF T1S = BS(L) THEN HEXS(1) = HS(L>
1310 NEXT L: FOR L = 1 TO 16: IF T2S = BS(L) THEN HEXS(2> =

HS (L)
1320 NEXT L: IF HEX$(1) = "" THEN HEXS(1) = ZS: IF HEX$(2)

= "" THEN H E X S (2) = ZS
1330 OHS = HEXS(1) + HE X$ (2) : RETURN
1340 REM ****************** ON/GOTO DATA **************

1350 ON OC GOTO 1 5 1 0 , 1 5 6 0 , 1 5 7 0 , 1 5 8 0 , 1 5 9 0 , 1 6 0 0 , 1 6 1 0 , 1 6 5 0 ,

1690, 1730
1360 NR = OC - 10
1370 ON NR GOTO 1 7 6 0 , 1 7 8 0 , 1 7 8 0 , 1 7 8 0 , 1 7 8 0 , 1 7 8 0 , 1 7 9 0 , 1 8 1 0 ,

1830. 1840
1380 NR = NR - 10
1390 ON NR GOTO 1 8 5 0 , 1 8 6 0 , 1 8 7 0 , 1 8 8 0 , 1 9 0 0 , 1 9 2 0 , 1 9 3 0 , 1 9 4 0 ,

1950. 1840
1400 NR = NR - 10
1410 ON NR GOTO 1 8 5 0 , 1 8 6 0 , 1 8 7 0 , 1 8 8 0 , 1 9 0 0 , 1 9 2 0 , 1 9 3 0 , 1 9 4 0 ,

1950 , 1950
1420 ON OC GOTO 1 9 7 0 , 2 1 0 0 , 2 1 7 0 , 2 2 5 0 , 2 3 2 0 , 2 3 9 0 , 2 4 5 0 , 2 5 5 0 ,

2 6 5 0 , 2 7 5 0 , 2 8 1 0
1430 ON OC GOTO 1 9 7 0 , 2 3 5 0 , 3 2 5 0 , 1 7 8 0 , 1 7 8 0 , 1 7 8 0 , 3 2 0 0 , 1 7 8 0 ,

1780. 1780
1440 NR = OC - 10
1450 ON NR GOTO 1 7 8 0 , 1 7 8 0 , 3 2 5 0 , 2 2 5 0 , 2 3 2 0 , 3 2 6 0 , 2 3 9 0 , 3 2 9 0 ,

1780 . 1780
1460 NR = NR - 10
1470 ON NR GOTO 2 4 5 0 , 2 5 5 0 , 2 6 5 0 , 3 3 2 0 , 2 7 5 0 , 3 3 4 0 , 3 3 6 0 , 2 8 1 0 ,

1780 . 1780
1480 NR = NR - 10
1490 ON NR GOTO 1780 , 3390
1500 REM *********** OP-CODE ROUTINES START HERE ********

The 6502B/65C02 Instruction Set 129

1520

1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630

1640
1650
1660
1670

1680
1690
1700

1710
1720
1730
1740
1750
1760

1770
1780
1790

1800
1810

REM
1820
1830

1840
1850
1860
1870
1880

1890
1900

1910
1920

1510 C = VAL (LEFTS (A B $, 1)) : A B $ = MIDS (A B S , 2) + Z$:
REM *** ASL ***
OB$ = ABS: GOSUB 1270:AH$ = 0H$:0P$ = OHS: GOSUB 1030:N
= 0 : Z = 0

IF LEFTS (0 B S , 1) = " 1" THEN N = 1
IF VAL (ODS) = 0 THEN Z = 1
GOTO 3390

B = 1: GOTO 3390 : REM * * BRK ***
C = 0: GOTO 3390 : REM CLCL ***
D = 0: GOTO 3390 : REM * CLD
I = 0: GOTO 3390 : REM *** CLI ***
V = 0: GOTO 3390 : REM CLV ***
OHS = XHS: GOSUB 1030: XD = VAL (ODS):
XD := XD - 1 : IF XD < 0 THEN XD = 255
ODS = STRS (XD) : GOSUB 920 : XHS = OHS:
= OBS
TMP = XD: GOSUB 3410: GOTO 280
OHS = YHS: GOSUB 1030: YD = VAL (ODS):
YD = YD - 1 : IF YD < 0 THEN YD = 255
ODS = STRS (YD) : GOSUB 920 : YHS = OHS:
= OBS
TMP = YD: GOSUB 3410: GOTO 280
OHS = XHS: GOSUB 1030: XD = VAL (ODS):
ODS = STRS (XD) : GOSUB 920:XHS = OHS:
OBS
XD = XD + 1: IF XD > 255 THEN XD = 0

REM *** DEX ***

GOSUB 1 1 9 0 : XBS

REM *** DEY ***

GOSUB 1 1 9 0 : YBS

REM *** INX ***
GOSUB 1190: XBS =

GOTO 1630
OHS = YHS: GOSUB 1030:YD = VAL (ODS): REM *** INY ***
YD = YD + 1: IF YD > 255 THEN YD = 0

GOTO 1670
C = VAL (RIGHTS (A B $, 1)) : A B S = Z$ + LEFTS (A B S , 7) :
REM *** LSR ***

GOTO 1520
GOTO 3390: REM *** NOP, PHA, PHP, PLA AND PLP ***

TMP = C : C = VAL (LEFTS (A B $, 1)) : A B S = MIDS (A B S , 2) +
STRS (TMP): REM

ROL ***
GOTO 1520

TMP = C : C = VAL (RIGHTS (A B S , 1)) : A B S = STRS (TMP) +
LEFTS (A B S , 7) :
*** ROR ***

GOTO 1520
N = 0 : V = U : B = 0:D = 0 : 1 = 0 : Z = 0: C = 0: GOTO 280:
REM *** RTI ***

GOTO 3390: REM *** RTS ***
C = 1: GOTO 3390: REM * * * SEC **
D = 1: GOTO 3390: REM *** SED ***
1 = 1 : GOTO 3390: REM *** SEI ***
XHS = AHS: XBS = ABS:OP$ = AHS: GOSUB 1030:TMP = VAL
(ODS): REM

TAX ***
GOSUB 3410: GOTO 3390

YHS = AHS: YBS = ABS:OPS = AHS: GOSUB 1030:TMP = VAL
(ODS) : REM *** TAY

GOSUB 3410: GOTO 3390
XHS = " 0 0 " : XBS = " 0 0 0 0 0 0 0 0 " : GOSUB 3410: GOTO 3390: REM
*** JSX ***

130 Apple Roots

1930
1940
1950
1960

1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070

2080
2090
2100
2110
2120

2130
2140

2150
2160

2170

2180
2190
2200
2210
2220
2230
2240
2250

2260
2270
2280
2290
2300
2310
2320

2330
2340
2350
2360
2370
2380
2390
2400
2410

AH$ = XH$: AB$ = XB$: GOTO 1520: REM *** TXA ***
GOTO 3390: REM *** TXS ***

AHS = YH$: AB$ = YB$: GOTO 1520: REM *** TYA ***
REM ************** ABSOLUTE-ADDRESS OPERANDS *******

IF D THEN 2950: REM *** ADC ***

OP = VAL (OPS) :TMPS = AB$
GOSUB 1130: PLUSS = 0B$

OHS = AHS: GOSUB 1030:ADS = OD$:AD = VAL (AD$):TMP = AD
AD = AD + OP + C : C = 0: IF AD > 255 THEN GOSUB 2090
ADS = STRS (AD) :ODS = ADS: GOSUB 9 2 0 : AHS = OHS

GOSUB 1 1 9 0 : ABS = OBS
N = 0: IF AD > 127 THEN N = 1
Z = 0: IF AD = 0 THEN Z = 1
V = 0

(T MP S , 1) = LEFTS (P L U S S , 1) AND
> LEFTS (A B S , 1) THEN V = 1

GOSUB 1 0 3 0 : AHS = OHS: GOTO 280
AD - 256: RETURN

REM *** AND ***
TO 8 : B I T S (L) = " 0 " : NEXT L
TO 8: IF B1S(L> = B2S(L) THEN

IF LEFTS
(T MP S , 1) <
ODS = ADS:
C = 1 : AD =

GOSUB 380
FOR L = 1
FOR L = 1

B1S(L)
NEXT L

ABS = B I T S (1) + B I T S (2) + B I T S (3)
B I T S (6) + B I T S (7) + BI T S(8)
OBS = ABS: GOSUB 1270:AHS = OHS

GOSUB 1 0 3 0 : TMP = VAL (ODS): GOSUB
GOTO 280
OHS = AHS: GOSUB 1030:ADS = ODS:AD =
VAL (OPS) : REM *** CMP ***

IF AD = OP THEN Z = 1: GOTO 2200
Z = 0

LEFTS

B I T S (L)

+ B I T S (4) + B I T S (5) +

3410: PRINT

VAL (A D S) : OP =

IF OP > AD THEN N = 1: GOTO 2220
N = 0

IF AD > OP OR AD = OP THEN C = 1: GOTO 2240
C = 0

GOTO 3390
OHS = XHS: GOSUB 1030:XD$ = ODS:XD = VAL (XD$):OP =
VAL (OPS) : REM CPX

IF XD = OP THEN Z = 1: GOTO 2280
Z = 0

IF OP > XD THEN N = 1: GOTO 2300
N = 0

IF XD > OP OR XD = OP THEN C = 1: GOTO 2320
C = 0: GOTO 3380
OHS = YHS: GOSUB 1030:YDS = ODS:YD = VAL (YDS) :OP =
VAL (OPS) : REM *** CPY ***

IF YD = OP THEN Z = 1: GOTO 2350
Z = 0

IF OP > YD THEN N = 1: GOTO 2370
N = 0

IF YD > OP OR YD = OP THEN C = 1: GOTO 3110
C = 0: GOTO 3380

GOSUB 400: REM *** EOR ***
FOR L = 1 TO 8 : B I T S (L) = " 0 " : NEXT L: FOR L = 1 TO 8
IF B1S(L) = "1" OR B2S(L) = " 1" THEN 2440

The 6502B/65C02 Instruction Set 131

2420 IF B1$ (L) = B 2 $ (L) THEN 2440
2430 B I T S (L) = "1"
2440 NEXT L: GOTO 2140
2450 IF D = 1 THEN 2480: REM *** LD A ***
2460 ODS = OPS: GOSUB 920:AHS = OHS: GOSUB 1190:ABS = OBS
2470 TMP = VAL (OPS) : GOSUB 3410: GOTO 280
2480 IF FLAGS = "AD" AND VAL (OPS) > 99 THEN 300
2490 IF FLAGS < > "AD" THEN ODS = OPS: GOSUB 920:AHS =

OHS: GOTO 2530
2500 IF LEN (OPS) = 1 THEN OPS = ZS + OPS
2510 AHS = OPS: OHS = AHS: GOTO 2530
2520 ODS = OPS: GOSUB 920:AHS = OHS
2530 GOSUB 1190: ABS = OBS
2540 TMP = VAL (O P S) : GOSUB 3410: GOTO 2470
2550 IF D = 1 THEN 2580: REM *** LDX ***
2560 ODS = OPS: GOSUB 920:XHS = OHS: GOSUB 1190:XBS = OBS
2570 TMP = VAL (OPS) : GOSUB 3410: GOTO 280
2580 IF FLAGS = "AD" AND VAL (OPS) > 99 THEN 300
2590 IF FLAGS < > "AD" THEN ODS = OPS: GOSUB 920:XHS =

OHS: GOTO 2630
2600 IF LEN (OPS) = 1 THEN OPS = ZS + OPS
2610 XHS = OPS: OHS = XHS: GOTO 2630
2620 ODS = OPS: GOSUB 920:XHS = OHS
2630 GOSUB 1190:XBS = OBS
2640 TMP = VAL (ODS) : GOSUB 3410: GOTO 2570
2650 IF D = 1 THEN 2680: REM *** LDY ***
2660 ODS = OPS: GOSUB 920: YHS = OHS: GOSUB 1190:YBS = OBS
2670 TMP = VAL (OPS) : GOSUB 3410: GOTO 280
2680 IF FLAGS = "AD" AND VAL (OPS) > 99 THEN 300
2690 IF FLAGS < > "AD" THEN ODS = OPS: GOSUB 920:YHS =

OHS: GOTO 2730
2700 IF LEN (OPS) = 1 THEN OPS = ZS + OPS
2710 YHS = OPS: OHS = YHS: GOTO 2730
2720 ODS = OPS: GOSUB 920: YHS = OHS
2730 GOSUB 1 1 9 0 : YBS = OBS
2740 TMP = VAL (ODS) : GOSUB 3410: GOTO 2670
2750 GOSUB 380: REM *** ORA ***
2760 FOR L = 1 TO 8: IF B1S(L) = "1" OR B2S(L) = "1" THEN

B I T S (L) = "1"
2770 NEXT L
2780 ABS = " " : FOR L = 1 TO 8:ABS = ABS + B I T S (L) : NEXT L
2790 OBS = ABS: GOSUB 1270:AHS = OHS
2800 GOSUB 1 0 3 0 : TMP = VAL (ODS) : GOSUB 3410: GOTO 3390
2810 IF D THEN 3060: REM *** SBC ***
2820 OP = VAL (O P S) : TMPS = ABS
2830 GOSUB 1 1 3 0 : MIS = OBS
2840 OHS = AHS: GOSUB 1030:ADS = ODS:AD = VAL (ADS):TMP = AD
2850 AD = AD - OP: IF C = 0 THEN AD = AD - 1
2860 IF AD < 0 THEN AD = 256 + AD:C = 0
2870 ADS = STRS (AD):OD$ = ADS: GOSUB 920:AH$ = OHS
2880 GOSUB 1 1 9 0 : ABS = OBS
2890 N = 0 : IF AD > 127 THEN N = 1
2900 Z = 0 : IF AD = 0 THEN Z = 1
2910 V = 0 : IF LEFTS (T M P S , 1) = LEFTS (M I $, 1) THEN 2930
2920 IF LEFTS (ABS, 1) = LEFTS (T M P S , 1) THEN V = 1
2930 0D$ = ADS: GOSUB 1 0 3 0 : AHS = OHS: GOTO 280
2940 REM ***** BCD ADDITION ROUTINE *****

132 Apple Roots

2950 IF FLAGS < > "AD" THEN 1980
2960 IF LEFTS (A H S , 1) > "9" OR RIGHTS (AHS, 1) > " 9" THEN

3030
2970 AD = VAL (AHS)
2980 OP = VAL (OPS) : AD = AD + OP + C:C = 0
2990 GOSUB 1 0 3 0 : TMP = VAL (O D S) : GOSUB 3410: GOTO 3390
3000 IF AD > 99 THEN GOSUB 3040
3010 AHS = STRS (AD) : IF LEN (AHS) = 1 THEN AHS = ZS + AHS
3020 OHS = AHS: GOSUB 1190:ABS = OBS: GOTO 280
3030 OHS = AHS: GOSUB 1030:AD$ = ODS:AD = VAL (ADS) : GOTO

2980
3040 C = 1 : AD = AD - 100: RETURN
3050 REM ******* BCD SUBTRACTION ROUTINE ****************

3060 IF FLAGS < > "AD" THEN 2820
3070 IF LEFTS (AHS, 1) > " 9" OR RIGHTS (AHS, 1) > "9" THEN

3120
3080 AD = VAL (AHS)
3090 OP = VAL (O P S) : AD = AD - OP: IF C = 0 THEN AD = AD - 1
3100 IF AD < 0 THEN GOSUB 3130
3110 GOTO 3010
3120 OHS = AHS: GOSUB 1030:ADS = ODS:AD = VAL (ADS): GOTO

3090
3130 C = 0 : AD = 100 + AD: RETURN
3140 REM ******** IMMEDIATE ADDRESS OPERANDS ************

3150 ODS = OPS: GOSUB 920: GOSUB 1190: REM ASL
3160 C = VAL (LEFTS (0 B S , 1)) : 0 B S = MIDS (O B S , 2) + ZS
3170 GOSUB 1270: GOSUB 1030:X = VAL (O D S) : IF X < 0 THEN N
3180 IF X = 0 THEN Z = 1
3190 GOTO 280
3200 GOSUB 1 0 3 0 : AD = VAL (O D S) : REM *** B I T ***
3210 GOSUB 1 1 3 0 : N = VAL (LEFTS (0 B S , 1)) : V = VAL (MIDS

(0 8 5 , 2 , 1))
3220 GOSUB 400: Z = 1: FOR L = 1 TO 8
3230 IF B1S(L) = " 1" AND B2S(L) = "1" THEN Z = 0
3240 NEXT L: GOTO 3390
3250 GOTO 2170
3260 OP = VAL (OPS) : 0P = OP - 1 : IF OP < 0 THEN N: REM DEC
3270 IF OP = 0 THEN Z = 1
3280 GOTO 3390
3290 OP = VAL (OP S) : 0 P = OP + 1 : IF OP < 0 THEN N: REM INC
3300 IF OP = Z THEN Z
3310 GOTO 3390
3320 ODS = OPS: GOSUB 920: GOSUB 1190
3330 C = VAL (RIGHTS (0 B $, 1)) : OBS = ZS + LEFTS (O B S , 7) :

GOTO 3170
3340 ODS = OPS: GOSUB 920: GOSUB 1190: REM ROL
3350 TMP = C:C = VAL (LEFTS (0 B S , 1)) : 0 B S = MIDS (OBS, 2) +

STRS (T M P) : GOTO 3170
3360 ODS = OPS: GOSUB 920: GOSUB 1190: REM ROR
3370 TMP = C:C = VAL (RIGHTS (0 B S , 1)) : 0 B S = STRS (TMP) +

LEFTS (O B S , 7) : GOTO 3170
3380 REM ********** p r i n t LINE SPACE & GET ANOTHER LINE
3390 PRINT : GOTO 280
3400 REM *** *** *** SET Z AND N FLAGS

The 6502B/65C02 Instruction Set 133

3410 N = 0: I F TMP > 127 THEN N = 1
3420 Z = 0: I F TMP = 0 THEN Z = 1
3430 RETURN
3440 IF FLAG* = "AH" AND (LEFT* (A H * , 1)) < "A" AND (MID*

(A H * , 2 , 1)) < "A" THEN 2480

Addressing Your
Apple

In Chapter 1 ,1 mentioned that there is a one-to-one correlation between
assembly language and machine language: for every mnemonic in an
assembly-language program, there’s a numeric machine-language in
struction that means exactly the same thing.

Actually, there are many assembly-language mnemonics that have
more than one equivalent instruction in machine language. For exam
ple, when you see the mnemonic ADC in an assembly-language pro
gram, there are eight different numeric instructions that it can be con
verted into when it is assembled into machine language. To understand
why this is true, it is necessary to know something about how address
ing modes are used in 6502B/65C02 assembly language.

An addressing mode is a technique for locating and using informa
tion stored in a computer’s memory. The 6502 chip has 13 addressing
modes, the 65C02 has 15. So your Apple lie or lie has either 13 or 15
addressing modes, depending on which chip is installed. In this chapter,
we’ll examine all fifteen 6502/65C02 addressing modes.

136 Apple Roots

First let’s look at Table 7-1, which shows that there are nine address
ing modes that can be used with the mnemonic ADC.

If you examine Columns 2 and 3 in Table 7-1, you may notice a cur
ious relationship between the assembly-language statements in Column
2 and their machine-language equivalents in Column 3. In Column 2,
labeled “Assembly-Language Statements,” each addressing mode uses
the same mnemonic but a different operand. In Column 3, labeled
“Machine-Code Equivalents,’’each statement has the same operand but
a different op code.

This relationship illustrates an important difference between assem
bly language and machine language. When you look at a program writ
ten in 6502B/65C02 assembly language, the address mode that is used
in each statement in the program is determined by the statement’s oper
and. When a 6502B/65C02 program is translated into machine lan
guage, however, the address mode that is used for each statement can be
determined by looking at the statement’s op code.

Now let’s look at Table 7-2, which illustrates the addressing modes
that can be used with either the 65C02 or the 6502B chip.

Of the 15 addressing modes illustrated in this table, only two have
been used so far in this book: the immediate mode (such as LDA #2) and
the absolute mode (such as LDA $0207). As you may recall from Chapter
2, the operand of a statement written in the immediate addressing mode

Table 7-1. Differences in Assembly-Language and Machine-Language Addressing Modes

COLUMN 1: COLUMN 2: COLUMN 3: COLUMN 4:
ADDRESSING ASSEMBLY- MACHINE-CODE NO. OF

MODE LANGUAGE
STATEMENTS

EQUIVALENTS BYTES

Immediate ADC #$03 69 03 2
Zero Page ADC #$03 65 03 2
Zero Page,X ADC $03,X 75 03 2
Absolute ADC $0300 6D 00 03 3
Absolute Indexed,X ADC $0300,X 7D 00 03 3
Absolute Indexed,Y ADC $0300,Y 79 00 03 3
Indexed Indirect ADC ($03,X) 61 03 2
Indirect Indexed ADC ($03),Y 71 03 2
Zero-Page Indirect* ADC ($03) 72 03 2

65C02 only

Addressing Your Apple 137

Table 7-2. The Addressing Modes of the 65C02/6502B Microprocessor

ADDRESSING MODE FORMAT
1. Implicit (Implied) RTS
2. Accumulator ASL A
3. Immediate LDA #2
4. Absolute LDA $02A 7
5. Zero Page STA $33
6. Relative BCC LABEL
7. Absolute Indexed,X LDA $9000,X
8. Absolute Indexed, Y LDA $9000, Y
9. Zero Page,X LDA $33,X

10. Zero Page,Y STX $33, Y
11. Indexed Indirect LDA ($33,X)
12. Indirect Indexed LDA ($33), Y
13. Absolute Indirect JMP ($089A)
14. Zero-Page Indirect* ADC ($0A)
15. Absolute Indexed Indirect* JMP ($089A,X)

*65C02 only

is always a literal value, while the operand of a statement written in the
absolute mode is always a memory address. If the immediate-mode
statement LDA #2 were encountered during the running of an assembly-
language rogram, the literal value 2 would be loaded into the
6502B/65C02 accumulator. However, if the absolute-mode statement
LDA $0207 were encountered during the course of a program, the value
stored in memory register $0207 would be loaded into the accumulator.

Another Look at the ADDRS Program

Program 7-1 is a printout of ADDNRS.SRC, an assembly-language pro
gram we have already used in this book. The program is repeated here
because it not only contains several addressing modes, it also illustrates
how those modes are used in 6502B/65C02 assembly language. This ver
sion of the ADDNRS.SRC program was written using the Merlin Pro
assembler-editor system; however, if you own an Apple ProDOS assem
bler or an ORCA/M assembler, you should be able by now to alter the
program to meet your assembler’s requirements without too many prob
lems, since the major differences in the formats used by these assemblers
were described in previous chapters.

138 Apple Roots

Program 7-1
THE ADDNRS PROGRAM

1
2 * ADDNRS.SR2
3 *
4 ORG $8000
5 *
6 ADDNRS CLD
7 CLC ; Imp L i ed ad d r e s s i n g
8 LD A U2 ; Immed i at e a d d r e s s i n g
9 ADC M ; I mmedi at e a d d r e s s i n g

10 STA $0300 ; A b s o l u t e a d d r e s s i n g
11 RTS

Three address modes are used in the ADDNRS. SRC program, and
all three are identified in the comments column of Program 7-1. We’ll
now examine each of the three address modes used in the ADDNRS
routine. (An asterisk indicates modes recognized by 65C02 only.)

Implied (Implicit) Addressing
The implied addressing mode is a mode that does not require—or
perm it—an operand. When you use implied addressing, all you have to
type is a three-letter mnemonic. You never have to specify an operand
since an implied operand is contained within each mnemonic used in
the implied addressing mode.

From a memory-management point of view, it’s a good idea to use as
many implied address mnemonics as you can. Since an implied address
mnemonic uses no operand, it requires only one byte of memory, rather
than the two or three bytes that are consumed by statements written
using other types of addressing.

Examples of implied addressing are

CLC ; (CLEAR THE CARRY B I T OF THE P REGISTER)
DEX ; (DECREMENT THE X REGISTER)
INY ; (INCREMENT THE Y REGISTER)

Op-code mnemonics that can be used in the implicit addressing mode
are BRK, CLC, CLD, CLI, CLV, DEX, DEY, INX. INY NOP, PHA,
PHP, PHX*, PHY*, PLA, PLP, PLX* PLY*, RTI. RTS, SEC, SED,
SEI, TAX, TAY, TSX, TXA, TXS. and TYA.

Immediate Addressing
The immediate addressing mode always requires an operand, and that
operand is always a literal number. In a statement that uses immediate
addressing, then, a “#” sign—the symbol for a literal number—always
appears in front of the operand.

Addressing Your Apple 139

When an immediate address is used in an assembly-language state
ment, the assembler does not have to peek into a memory location to find
a value. Instead, the value itself is placed directly into the accumulator.
Then whatever operation the statement calls for can be performed
immediately.

A statement written in the immediate addressing mode always
requires two bytes of memory: one byte for the op code and one byte for
the operand. An immediate mode statement never uses a two-byte oper
and, since the 6502B/65C02 chip cannot handle any literal number
larger than one byte.

Here are some examples of immediate addressing.

LDA #2
ADC #$33
SBC #253

Instructions that can be used in the immediate address mode are ADC,
AND, BIT*, CMP, CPX, CPY, EOR, LDA, LDX, LDY, ORA, and SBC.

Absolute Addressing

Absolute addressing is another addressing mode that you’ve encountered
in this book. In a statement that uses absolute addressing, the operand
is a memory location, not a literal number. The mnemonic in an abso
lute address statement, then, always calls for an operation to be per
formed on a value stored in a specified memory location, not on the
operand itself.

When a statement is written in the absolute addressing mode, the
operand, being a memory address, always requires two bytes of
memory. Since your Apple computer can handle addresses up to 16 bits
long, two bytes are always reserved for operands that are used in the
absolute addressing mode.

Here are some examples of assembly-language statements written in
the absolute addressing mode.

LDA $0300
STA 768
CMP $ F F DO

Mnemonics that can be used in the absolute addressing mode are ADC,
AND, ASL, BIT, CMP, CPX, CPY, DEC, EOR, INC, JMP, JSR, LDA,
LDX, LDY, LSR, ORA, ROL, ROR, SBC, STA, STX, STY, STZ* TSB*,
and TRB*.

140 Apple Roots

Zero-Page Addressing

Zero-page addressing is very similar to absolute addressing. When a
statement is written using a zero-page address, a value is retrieved
from a specified memory address, and that is the value on which the
operand does its work. There is one important difference, though,
between an absolute address and a zero-page address. When a state
ment is written in the absolute address mode, the address that is
accessed by the statement can lie in any part of available RAM. When a
statement is written using page-zero addressing, however, the address
that it accesses must lie in a special area of memory called, logically
enough, Page Zero.

Specifically, the memory block in your computer known as Page
Zero occupies the 256 memory registers that extend from memory
address $00 through memory address $FF. You could also say that Page
Zero extends $0000 to $00FF, but it isn’t really necessary to use those
extra pairs of 0’s when you want to refer to a zero-page address. Usu
ally, when you follow an assembly-language instruction with a one-byte
address—or with a four-digit hex number that begins with two 0’s —
your assembler will automatically interpret the address you’ve specified
as a Page Zero address.

Since it only takes one byte to specify a Page Zero address, a state
ment that uses zero-page addressing requires only two bytes of memory:
one for the op code and one for the operand. Unfortunately, however,
there often isn’t much free memory space on Page Zero, so it isn’t usual
ly possible to use a lot of zero-page addressing in assembly-language
programs.

In Chapter 11, which is devoted to memory management, there will
be more information on Page Zero space and how it’s used. For now.
here are a few examples of what zero-page addressing looks like in
assembly-language programs.

If your computer is equipped with a 6502B chip, the instructions
that you can use in the zero-page addressing mode are ADC, AND,
ASL, BIT, CMP, CPX, CPY, DEC, EOR, INC. LDA, LDX, LDY, LSR,
ORA, ROL, ROR, SBC, STA, STX, and STY. If your Apple has a 65C02
chip, you can also use zero-page addressing for several new instruc
tions: STZ (“store a zero in memory”), TRB (“test and reset memory
bits with accumulator”), and TSB (“test and set memory bits with
accumulator”).

Addressing Your Apple 141

Accumulator Addressing

The accumulator addressing mode can be used with several mnemonics
that perform operations on values stored in the 6502B/65C02 accumula
tor. The command ASL A, for example, is used to shift each bit in the
accumulator by one bit position, with a 0 taking the place of the far-
right bit, and with the far-left bit (bit 7) dropping into the carry bit of
the processor status (P) register.

If your computer is equipped with a 6502B chip, other instructions
that can be used in the accumulator addressing mode are LSR, ROL,
and ROR. If your Apple has a 65C02 chip, the accumulator addressing
mode can also be used with the mnemonics INA or INC A (“increment
accumulator”) and DEA (“decrement accumulator”).

If you own an ORCA/M assembler, you must use the letter A as an
operand when you use the accumulator addressing mode. The Apple
ProDOS assembler and the Merlin Pro assembler, however, will accept
accumulator addressing mnemonics without their A operands.

Relative Addressing

Relative addressing is used with a programming technique called condi
tional branching. Conditional branching instructions are similar to IF
. . . GOTO instructions in BASIC; they are used to make programs
jump from one sequence of instructions to another when certain specific
conditions are fulfilled.

There are eight conditional branching instructions that can be used
with the 6502B chip, and there is one additional instruction that can be
used with the 65C02. All nine branching instructions begin with B,
which stands for “branch to.” The extra instruction that can be used
with the 65C02 is BRA, which stands for “branch always.” As its name
implies, the mnemonic BRA will cause a jump to another segment in a
program under any condition.

The other eight conditional branching instructions that use relative
addressing are BCC (branch to a specified address if the carry flag is
clear), BCS (branch if the carry flag is set), BEQ (branch if the result of
an operation is equal to 0), BNE (branch if the result of an operation is
not equal to 0), BMI (branch if the result of an operation is minus), BPL
(branch if the result of an operation is plus), BVC (branch if the over
flow flag is clear), and BVS (branch if the overflow flag is set).

142 Apple Roots

How Branching Instructions Are Used The nine conditional branch
ing instructions in 6502B/65C02 assembly language are most often used
with threother instructions called comparison instructions. Typically, a
comparison instruction is used to compare two values with each other,
and the conditional branch instruction is then used to determine what
should be done if the comparison turns out a certain way.

Usually, a branch instruction causes a program to jump to a speci
fied address if certain conditions are met or not met. A branch might
be made, for example, if one number is larger than another, if the two
numbers are equal, or if a certain operation results in a positive, nega
tive, or 0 value.

Conditional branching can also be based on the results of arithmetic
or logical operations or can be invoked after various kinds of tests on
bits, bytes, and other numerical values.

The three comparison instructions in 6502B/65C02 assembly lan
guage are

• CMP (“compare the number in the accumulator with . . . ”)
• CPX (“compare the value in the X register with . . . ”)
• CPY (“compare the value in the Y register with . . . ”).

An Example of Conditional Branching Program 7-2, titled ADDCHK,
is an example of an assembly-language routine that uses conditional
branching. (The routine was typed using a Merlin Pro assembler but
can be adapted easily to suit the Apple ProDOS assembler or the
ORCA/M.)

Program 7-2
ADDCHK
An Addition Program with Error-Checking

1 *
2 * ADDCHK
3 *
4 ORG $8000
5 *
6 ADDCHK LDA ttO
7 STA $9000
8 *
9 CLD

10 CLC
11 LDA $0300
12 ADC $0301
13 BCS ERROR
14 RTS
15 *
16 ERROR LDA #1
17 STA $9000
18 RTS

Addressing Your Apple 143

The ADDCHK program is an 8-bit addition routine with a simple
error-checking utility built in. It adds two 8-bit values, using absolute
addressing. If this calculation results in a 16-bit value (a number larger
than 255), there will be an overflow error in addition and the carry bit
of the processor status register will be set.

Here’s how the ADDCHK program works. In the two-line sequence
labeled ADDCHK, a 0 is loaded into memory register $9000. Then the
carry and decimal flags are cleared and the value in memory register
$0300 is added to the value in memory register $0301. If this addition
operation results in a carry, the carry bit of the processor status register
will be set automatically.

After the addition operation is carried out, a BCS (branch if carry
set) instruction is used to test the carry bit of the P register. If the test
succeeds, the carry bit is set and the program branches to a routine
labeled ERROR. If the carry bit is not set, the program ends.

In the routine labeled error, a flag—the number 1—is loaded into
memory register $9000. Then the program ends.

Absolute Indexed Addressing

An indexed address, like a relative address, is calculated by using an
offset. In an indexed address, however, the offset is determined by the
current contents of the 6502B/65C02’s X register or Y register.

A statement containing an indexed address can be written using
either of these formats:

LDA $02A7, X
LDA $02A7, Y

How Absolute Indexed Addressing Works When indexed addressing
is used in an assembly-language statement, the contents of either the X
register or the Y register (depending upon which index register is
being used) are added to the address given in the instruction to deter
mine the final address.

Program 7-3, entitled PRINTIT, is an illustration of a program that
makes use of indexed addressing. The program moves byte by byte
through a string of ASCII characters, using a built-in Apple routine
called COUT to display each character in the string on the screen.
When the complete string has been displayed, the program ends.

The starting address of COUT, plus the ASCII code number for a
carriage return, are defined in a symbol table that precedes the
program.

More details on how programs like this one work will be provided in

144 Apple Roots

Chapter 8. The primary purpose of this example is to present an illus
tration of indirect addressing.

Program 7-3
PRINTIT
A Screen-Printing Program
1 *

2 * PRINTIT
3 *
4 COUT EQU $FDED
5 EOL EQU 13
6 *
7 0R6 $8000
8 *

9 JMP PRINTIT
10 *

11 TEXT DB 1 9 8 , 2 0 4 , 1 9 3 , 2 1 1 , 2 0 0 , 1 6 0 , 1 7 3 , 1 7 3 , 1 6 0 , 1 9 3 , 2 0 8 , 2 0 8 ,
2 0 4 , 1 9 7 , 1 6 0

12 DB 2 0 7 , 2 1 5 , 2 0 6 , 1 9 7 , 2 1 0 , 1 6 0 , 1 9 4 , 2 1 0 , 1 9 7 , 1 9 3 , 2 0 3 , 2 1 1 , 1 6 0
13 DB 2 0 5 , 1 9 3 , 1 9 5 , 2 0 0 , 2 0 1 , 2 0 6 , 1 9 7 , 1 6 0 , 1 9 5 , 2 0 7 , 1 9 6 , 1 9 7 ,

161, 13
14 *
15 PRINTIT LDX #0
16 LOOP LDA TEXT, X
17 J SR COUT
18 CMP #EOL
19 BEQ FINI
20 INX
21 JMP LOOP
22 FINI RTS
23 END

Testing for a Carriage Return When Program 7-3 begins, we know
that the string ends with a carriage return (ASCII $0D), as strings
often do in Apple programs.

As the program proceeds through the string, it tests each character
to see whether it is a carriage return. If the character is not a carriage
return, the program moves on to the next character. If the character is
a carriage return, that means there are no more characters in the
string, and the routine ends.

Absolute indexed addressing can be used with these 6502B/65C02
instructions: ADC, AND, ASL (X only), CMP, DEC (X only), EOR, INC
(X only), LDA, LDX (Y only), LDY (X only), LSR (X only), ORA. ROL
(X only), ROR (X only), SBC. and STA. If your computer is equipped
with a 65C02 chip, you can use two additional mnemonics—BIT and
STZ (store 0)—in the absolute indexed (X only) addressing mode.

Addressing Your Apple 145

Zero-Page, X Addressing

Zero-Page,X addressing is used just like Absolute Indexed,X address
ing. However, the address used in the Zero-Page, X addressing mode
must be located on Page Zero. Therefore, this form of addressing uses
only one byte of memory as an operand when it is assembled into
machine language.

Instructions that can be used in the Zero-Page, X addressing mode
are ADC, AND, ASL, CMP, DEC, EOR, INC, LDA, LDY, LSR, ORA,
ROL, ROR, SBC, STA, and STY. If your computer has a 65C02 chip, you
can also use the mnemonics BIT and STZ (store 0) in the Zero-Page,X
addressing mode.

Zero-Page, Y Addressing

Zero-Page, Y addressing works just like Zero-Page,X addressing but can
be used with only two mnemonics: LDX and STX. If it weren’t for the
Zero Page,Y addressing mode, it wouldn’t be possible to use absolute
indexed addressing with the instructions LDX and STX.

Indirect Addressing

Indirect addressing can be divided into two subcategories: indexed
indirect addressing and indirect indexed addressing. Those names can
be confusing, but there’s a trick that you can use to differentiate them.
Indexed indirect addressing—which has an X in the first word of its
name—is an addressing mode that makes use of the 6502B/65C02
chip’s X register. Indirect indexed addressing—which doesn’t have an
X in the first word of its name—uses the 6502B/65C02’s Y register.

Both indexed indirect addressing and indirect indexed addressing
are used primarily to look up data stored in tables.

Indexed Indirect Addressing Three things happen when a program
uses indexed indirect addressing. First, the contents of the X register
are added to a zero-page address—not to the contents of the address,
but to the address itself. Next, the result of this calculation is inter
preted as another zero-page address. Finally, when this second address
has been calculated, the value that it contains, as well as the contents of
the next address, are combined to form a third address. That third
address is the address that will finally be interpreted as the operand of
the statement in question.

Here is an example that might help clarify this process. Suppose that
memory address $A0 in your computer holds the number $00, that

146 Apple Roots

memory address $A1 holds the number $80, and that the X register
holds the number 00.

Here is a short chart illustrating those values.

$AO = #$00
$A1 = #$80

X = #$00

Now let’s suppose you are running a program that contains the
indexed indirect instruction LDA ($A0,X).

If all of those conditions exist when your computer encounters the
instruction LDA ($A0,X), the computer will add the contents of the X
register (a 0) to the number $A0. The sum of $A0 and 0 is, of course,
$A0. Your computer will then go to memory addresses $A0 and $A1. It
will find the number $00 in memory address $A0 and the number $80
in address $A1.

Since 6502B/65C02-based computers store 16-bit numbers in reverse
order—low byte first—your computer will interpret the number found
in $A0 and $A1 as $8000. So it will load the accumulator with whatever
number it finds stored in address $8000.

Now let’s imagine that when your computer encounters the state
ment LDA ($A0,X), its 6502B/65C02 X register holds the number 04
instead of the number 00.

Here is a chart illustrating those values, plus a few more equivalents
that we’ll be using shortly.

$ A 0 = #$00
$A1 = #$80
$A2 = #$0D
$A3 = #$ F F
$ A4 = #$ F C
$A5 = #$1C

X = #$04

If these conditions exist when your computer encounters the instruc
tion LDA ($A0,X), your computer will add the number $04 (the value in
the X register) to the number $A0 and then go to memory addresses
$A4 and $A5. In those two addresses, it will find the final address (low
byte first, of course) of the data it is looking for—in this case, $1CFC.

Indexed indirect addressing is a rare addressing mode not used in
many assembly-language programs. When it is used, its purpose is to
locate a 16-bit address in a table of addresses that is stored on Page
Zero. Space on Page Zero is hard to find, though, so you probably won’t
be able to store many address tables there. It’s not too likely, then, that
you’ll find much use for this addressing mode.

Addressing Your Apple 147

Indirect Indexed Addressing Indirect indexed addressing is used
much more often than indexed indirect addressing in 6502B/65C02
assembly language.

Indirect indexed addressing uses the Y register (never the X regis
ter) as an offset to calculate the final address of the start of a table. The
starting (or base) address of the table has to be stored on Page Zero but
the table itself does not.

When an assembler encounters an indirect indexed address in a
program, it first looks into the Page Zero address that is enclosed in the
parentheses preceding the Y. The 16-bit value stored in that address
and the following address are then added to the contents of the Y regis
ter. The value that results is a 16-bit address—the address the state
ment is looking for.

Here’s an example of indirect indexed addressing. If your computer
is running a program and comes to the instruction ADC ($A0),Y. The
computer will then look into memory addresses $A0 and $A1. Suppose
that it finds the number $00 in memory register $A0 and the number
$50 in $A1. Suppose also that the Y register contains a 4.

Here is a list that illustrates those conditions.

$A0 = #$00
$A1 = #$50

r = #$04

If these conditions exist when your computer encounters the instruc
tion ADC ($A0),Y, the computer will combine the numbers $00 and $50
and will find (low bit first) the address $5000. It will then add the con
tents of the Y register (4 in this case) to the number $5000 to arrive at a
total of $5004.

The number $5004 is the final value of the operand ($A0,Y). There
fore, the contents of the accumulator will be added to whatever number
is stored in memory address $5004.

Once you understand indirect indexed addressing, it can be a very
valuable tool in assembly-language programming. Only one address —
the starting address of a table—has to be stored on Page Zero, where
space is always scarce. Yet that address, added to the contents of the Y
register, can be used as a pointer to locate any other address in your
computer’s memory.

Absolute Indirect Addressing There is only one instruction—JM P—
that you can use in the absolute indirect addressing mode. When abso
lute indirect addressing is used, a 16-bit number is placed inside a pair
of parentheses that follow the JMP instruction, as shown here.

148 Apple Roots

JMP ($ 0 9 0 0)

This number serves as a pointer to a pair of memory registers which,
taken together, contain the address to which the desired jump will be
made. Let’s suppose, for example, that the memory address $02A7 con
tains the value $00 and that the address $02A8 holds the value $06.
Let’s also suppose that the statement JMP ($02A7) is included in an
Apple assembly-language program. In this case, the program being
executed will jump to the address $0600—not to the address $02A7, as
it would if the jump instruction were simply JMP $02A7.

Absolute Indexed Indirect Addressing Absolute indexed indirect ad
dressing is an address mode that can be used only with the JMP
instruction, and only on a computer equipped with a 65C02 chip. This is
the format for writing a statement using absolute indexed indirect
addressing:

JMP ($ 8 0 0 0 , X)

When absolute indexed indirect addressing is used in an assembly-
language program, the contents of the address that follows the instruc
tion are added to the X register. The sum of this operation points to a
memory address containing the lower byte of the effective address. The
next memory location will contain the high byte of the effective address.

Zero-Page Indirect Addressing Zero-page indirect addressing is a new
address mode that can be used only on a computer equipped with a
65C02 chip. This is the format for using zero-page indirect addressing
mode:

LDA ($0A)

When the zero-page indirect addressing mode is used in an assembly-
language program, the byte that follows the instruction is interpreted
as zero-page address. This byte contains the low-order byte of the effec
tive address, and the next address on Page Zero contains the high-order
byte of the affected address.

In a 65C02-equipped Apple lie or Apple lie, zero-page addressing
can be used with the following instructions: ADC. AND, CMP. EOR,
LDA, ORA, SBC, and STA.

Addressing Your Apple 149

A Pseudo-Address: The Stack

While we’re on the subject of 6502B/65C02 addressing modes, let’s take
a look at a programming tool that’s related very closely to address
ing: the hardware stack.

The hardware stack—often referred to simply as the stack —
occupies the 256 bytes of memory from $0100 to $01FF in RAM.

The stack is what programmers sometimes call a LIFO (last-in,
first-out) block of memory. It is often compared to a spring-loaded stack
of plates in a diner; when you put a number in the memory location on
top of the stack, it covers up the number that was previously on top. The
number on top of the stack must then be removed before the number
under it can be accessed.

Although the plate-stack illustration is a useful technique for de
scribing how the stack works, it is not completely accurate; actually, the
stack is nothing but a block of RAM. Let’s see what really happens
when you place a number on your Apple’s hardware stack.

The block of memory in your computer’s hardware stack (extending
from memory register $0100 to memory register $01FF) is used from
high memory down: the first number that is stored on the stack will be
in register $01FF, the next number will be placed in register $01FE,
and so on. Because of this storage system, the last stack address that
can be used is memory register $0100.

Your Apple’s 6502B or 65C02 chip keeps track of stack manipula
tions with the help of a special register called the stack pointer (de
scribed briefly in Chapter 3). When there is nothing stored on the stack,
the value of the stack pointer is $FF. If you add $100 to that number,
you get $01FF —the highest memory address on the stack. This is the
address that will be used for the next (or in this case, the first) value
that is stored on the stack.

As soon as a value is stored on the stack, your computer’s 6502B or
65C02 chip will automatically decrement the stack pointer by one. Each
time another value is stored on the stack, the stack pointer will be
decremented again. Therefore, the stack pointer will always point to the
address of the next value that will be stored on the stack.

Let’s suppose that several numbers have been stored on the stack and
that we now want to retrieve one of those values. When a number that
has been stored on the stack is retrieved, the value of the stack pointer

150 Apple Roots

Bottom of Stack Stack Addresses

$01FF

$01FE

$01FD

$01FD

Figure 7*1. How the stack pointer works

is incremented by one. That effectively removes one value from the
stack, since it means that the next value stored on the stack will have
the same position on the stack as the one that was removed. If you exam
ine Figure 7-1, you’ll get an idea of how this process works. Figure 7-1
shows an empty stack, with the stack pointer pointing to the first avail
able address on the stack: $01FF.

In Figure 7-2, a number (whose value is arbitrary) has been placed
on the stack. Notice that the value of the stack pointer has been decre
mented. The number we have placed on the stack is now stored at the
highest address in the stack, memory register $01FF.

In Figure 7-3, another number (also with an arbitrary value) has
been placed on the stack. As you can see, the stack pointer has been
decremented again and a second number is now on the stack.

In Figure 7-4 we’ll remove one number from the stack. Stack
address $01FE still holds the value $33, but the value of the stack point
er has been decremented and now points to memory address $01FE.
The next number that is placed on the stack, then, will be stored at

Addressing Your Apple 151

Bottom of Stack Stack Addresses

$4F $01FF

Stack Pointer

$FE ------► $01FE

$01FD

$01FD

Figure 7-2. Placing a number on the stack

Bottom of Stack Stack Addresses

$01FF

$01FE

$01FD

$01FD

Figure 7-3. Placing another number on the stack

$4F

$33

Stack Pointer

$FD

152 Apple Roots

Bottom of Stack Stack Addresses

$4F $01FF

Stack Pointer

$FE $33 $01FE

$01FD

$01FD

Figure 7-4. Pulling a num ber off the stack

Bottom of Stack Stack Addresses

$4F $01FF

$17 $01FE

Stack Pointer

$FD $01FD

$01FD

Figure 7-5. One last stack manipulation

Addressing Your Apple 153

memory address $01FE. When that number is stored, the number pre
viously stored in that stack position—$33—will be erased.

Let’s store one more number on the stack. This time the value of the
number placed on the stack will be $17, as shown in Figure 7-5.
Memory register $01FE now holds the value $17. The value of the stack
pointer has been decremented, the value $33 has been erased by the
value $17, and the next number placed on the stack will be stored in
memory register $01FD.

How Your Operating System
Uses the Stack

The 6502B/65C02 processor often uses the stack for temporary data
storage during the operation of a program. When a program jumps to a
subroutine, for example, the 6502B/65C02 chip takes the memory
address that the program will later have to return to and pushes that
address to the top of the stack. Then, when the subroutine ends with an
RTS instruction, the return address is pulled from the top of the stack
and loaded into the 6502B/65C02’s program counter. The program can
then return to the proper address and normal processing can resume.

The stack is also used quite often in user-written programs. Here is
an example of a routine that makes use of the stack. You may recognize
it as a variation on the 8-bit addition program that we’ve been using
throughout this book.

A Two-Part Program
In Program 7-4, we’ll put two 8-bit numbers on the stack. In Program
7-5, we’ll take the numbers off the stack and add them. Program 7-4
should be typed first but, before the program is assembled and exe
cuted, Program 7-5 should be appended to Program 7-4.

Program 7-4
STACKADD, PART 1
(Putting two number on the stack)
1 *
2 *STACKADD
3 *
4 ORG $8000
5 *
6 LDA #35 ; (OR ANY OTHER 8 - B I T NUMBER)
7 PHA
8 LOA #49 ; (OR ANY OTHER 8 - B I T NUMBER)
9 PHA

154 Apple Roots

Now add Program 7-5 to the end of Program 7-4.

Program 7-5
STACK ADD, PART 2
(Taking two numbers off the stack and adding them)

1 *

2 *WHEN THIS PROGRAM BEGINS, TWO
3 *NUMBERS ARE ON THE STACK
4 CLD
5 CLC
6 PLA
7 STA $ FD
8 PLA
9 ADC $ FD

10 STA $FE
11 RTS

When you add Program 7-5 to Program 7-4, you get a straightforward
8-bit addition routine that shows how convenient it can be to use the
stack in assembly-language programs. First, a value is pulled from the
stack and stored in the accumulator; then the value is stored in memory
address $FD.

Next, another value is pulled from the stack and added to the value
now stored in $FD. The result of this calculation is then stored in $FE
and the routine ends.

As you can see, the stack can be a very convenient temporary storage
area for data. The stack is very memory-efficient, too, since it doesn’t
require the use of dedicated storage registers. It can also save time,
since it takes only one instruction to push a value onto the stack and
only one instruction to retrieve a value that has been stored there.

An Important Warning

You must be very careful when using the hardware stack in an
assembly-language routine. When the routine ends, it’s extremely
important to leave the stack exactly as you found it. If you’ve placed a
value on the stack during the course of a routine, it must be removed
from the stack before the routine ends and normal processing resumes.
Failure to remove the value could result in program crashes, memory
wipeouts, and other programming disasters. Nevertheless, if you take
care to manage the stack properly, it can be a very powerful program
ming tool.

Mnemonics that make use of the stack are PHA (“push the contents
of the accumulator onto the stack”). PLA (“pull the top value off the
stack and deposit it in the accumulator”), PHP (“push the contents of
the P register onto the stack”), and PLP (“pull the top value off the

Addressing Your Apple 155

stack and deposit it into the P register”). The instructions JSR and RTS
and the 65C02 instructions PHX, PHY, PLX, and PLY also make use of
the stack.

The PHP and PLP operations are often included in assembly-
language subroutines so that the contents of the P register won’t be
deleted during subroutines. When you jump to a subroutine that might
change the status of the P register, you should start the subroutine by
pushing the contents of the P register onto the stack. Then, just before
the subroutine ends, you can restore the P register’s previous state with
a PHP instruction. If you follow this procedure, the contents of the P
register won’t be destroyed during the course of the subroutine.

Looping and
Branching

Now that you’re familiar with the 6502B/65C02 instruction set and
addressing modes, we can start doing some actual programming in
Apple Ilc/IIe assembly language. In this chapter, you’ll learn how to
display messages on the screen, encode and decode ASCII characters,
and perform a number of other useful procedures in assembly lan
guage, including:

• Incrementing and decrementing the X and Y registers.
• Using comparison and branching instructions together.
• Looping and branching.
• Using Apple assembler directives DFB (“define byte”), DB (which

means the same thing), and DC (“define constant,” a directive used
with the ORCA/M assembler package). DFB, DB, and DC are all
used to reserve memory space for data in assembly-language pro
grams.

158 Apple Roots

In this chapter we again use the COUT routine that's built into the
Apple lie and the Apple lie beginning at call address $FDED. We used
the COUT routine in Chapter 1 to display the word “HI” on your com
puter screen in the HI.TEST program.

A New Program

Program 8-1, entitled BULLETIN, is the longest type-and-run program
that has been presented in this book. It was written using the Merlin
Pro assembler, but it will also run on the Apple ProDOS assembler. An
ORCA/M version of the program is provided in Program 8-2.

Program 8-1
THE BULLETIN PROGRAM
(Merlin Pro assembler version)

1 *

2 * BULLETIN
3 *
4 ORG $8000
5 *
6 BUFLEN EQU 29
7 COUT EQU $ FDED
8 *

9 JMP BEGIN
10 TEXT DB 1 9 5 , 1 9 7 , 2 0 4 , 1 9 7 , 2 1 1 , 2 1 2 , 2 0 1 , 1 9 3 , 2 0 4 , 1 6 0
11 DB 1 9 3 , 1 9 5 , 1 9 5 , 2 0 1 , 1 9 6 , 1 9 7 , 2 0 6 , 2 1 2 , 1 6 0
12 DB 2 1 0 , 1 9 7 , 2 0 8 , 2 0 7 , 2 1 0 , 2 1 2 , 1 9 7 , 1 9 6 , 1 7 3 , 1 7 3
13 *
14 BEGIN LDX #0
15 *
16 LOOP LDA TEXT , X
17 J SR COUT

18 INX
19 CPX 0BUFLEN
20 BNE LOOP
21 RTS

When you’ve typed, assembled, and executed the BULLETIN pro
gram, you’ll see half of a cryptic message on your computer screen. The
other half of the message will be presented later in this chapter, in a
program called BULLETIN.B.

Saving the BULLETIN Program

Once your BULLETIN program is running properly, save it on a disk
in both its source-code and object-code versions. Then we can take a look
at how the program works.

Looping and Branching 159

Let’s start with an explanation of the assembly-language directive
DB, which means “define byte.” It appears in lines 10 through 12 of the
Merlin/Apple assembler version of the program. (In the ORCA/M list
ing, a slightly different directive, DC, for “define constant,” is used.
We’ll discuss that directive in a moment.)

Directives like DB and DC are pseudo-operation codes (pseudo-ops)
because they appear in the op-code column of assembly-language
source-code listing but are not actually included in the standard
6502B/65C02 assembly-language instruction set. As mentioned in Chap
ter 4, the main difference between an op code and a pseudo-op is that an
op code tells a microprocessor what to do, while a pseudo-op tells an
assembler what to do. When a program is run through an assembler,
each op code that program contains is translated into machine language,
while each pseudo-op is used as an instruction by the assembler. When
an assembler encounters the directive DB, for example, it interprets the
numbers that follow the directive as literal numbers that are to be de
posited into a consecutive series of registers in a computer’s memory.
You’ll learn about many other kinds of pseudo-ops in later chapters.

Now let’s look at the directive DC, which is used in place of DB in the
ORCA/M version of the BULLETIN program.

Program 8-2
THE BULLETIN PROGRAM
(ORCA/M Version)

KEEP BULLETIN
MAIN START

BUFLEN EQU 29
COUT EQU $FDED

JMP BEGIN

TEXT DC 1 1 • 1 9 5 , 1 9 7 , 2 0 4 , 1 9 7 , 2 1 1 , 2 1 2 , 2 0 1 , 1 9 3 , 2 0 4 , 1 6 0 *
DC 1 1 * 1 9 3 , 1 9 5 , 1 9 5 , 2 0 1 , 1 9 6 , 1 9 7 , 2 0 6 , 2 1 2 , 1 6 0 *
DC 1 1 ' 2 1 0 , 1 9 7 , 2 0 8 , 2 0 7 , 2 1 0 , 2 1 2 , 1 9 7 , 1 9 6 , 1 7 3 , 1 7 3 *

BEGIN LDX no

LOOP LD A TEXT, X
J SR COUT
IN X
CPX 0BUFLEN
BNE LOOP
RTS

END

160 Apple Roots

The directive DC, unlike DB, has to be told how to interpret any string
of values that follows it. In the ORCA/M listing of the BULLETIN pro
gram, the letter I that follows each DC directive stands for “integer,”
and the numeral 1 that follows each I means that each value that fol
lows is to be interpreted as a one-byte integer.

Notice that in the ORCA/M program, the numbers following the DC
directives are enclosed in single quotes. This procedure is necessary
because ORCA/M’s DC directive always expects subsequent numbers to
be enclosed in delimiters.

Using the X and Y Registers as Counters

As pointed out in Chapter 3, the X and Y registers in the 6502B/65C02
chip can be progressively incremented and decremented during loops in
a program. In the BULLETIN program, the X register is incremented
from 0 to 29 during a loop to keep track of a string of text characters
being displayed on a screen. The characters are expressed as ASCII
code numbers, and those code numbers are the values following the DB
and DC directives in the BULLETIN program.

It isn’t difficult to see how the X-register loop in this program
works. First, the statement LDX #0 is used to load the X register with a
0. Then the loop begins. The first statement in the loop is “LDA
TEXT,X”. This instruction uses indexed addressing to load the accumu
lator with an ASCII code for a text character. The COUT routine is
then used to display each character on the screen. By the time the loop
ends, all 29 of the characters that follow the DB or DC directive have
been displayed on the screen.

(Incidentally, there’s no need for symbols in front of the numbers
that follow directives like DB and DC, since they are automatically inter
preted as literal numbers by the assemblers that they’re designed for.)

Incrementing and Decrementing the X and Y Registers

In line 18 of the BULLETIN program, the mnemonic INX means
“increment the X register.”

The first time the program progresses through the loop that starts at
line 16, the X register will hold a 0. As soon as the COUT routine has
displayed its first character on the screen, though, the INX instruction
in line 18 will increment that 0 to a 1.

In line 19 we see the instruction CPX #BUFLEN. If you look back at
line 6, you’ll see that BUFLEN is a constant that has been equated to
the number 29. The instruction CPX tfBUFLEN, then, means “compare
the value in the X register to the literal number 29.”

Looping and Branching 161

This comparison determines whether all 29 characters have been
displayed on the screen. Once you've displayed all 29 characters in the
text string, press a carriage return to end the program.

Comparing Values in Assembly Language

There are three comparison instructions in 6502B/65C02 assembly lan
guage: CMP, CPX, and CPY.

CMP means “compare to a value in the accumulator.” When the
instruction CMP is used, followed by an operand, the value expressed by
the operand is subtracted from the value in the accumulator. This sub
traction operation is not performed to determine the exact difference
between these two values, but merely to see whether they are equal, and
if they are not equal, which is the larger.

If the value in the accumulator is equal to the tested value, the zero
(Z) flag of the processor status (P) register will be set to 1. If the value
in the accumulator is not equal to the tested value, the Z flag will be left
in a cleared state.

If the value in the accumulator is less than the tested value, the
carry (C) flag of the P register will be left in a cleared state. If the value
in the accumulator is greater than the tested value, the carry flag will
be set.

CPX and CPY work exactly like CMP, except that they are used to
compare values with the contents of the X and Y registers. They have
the same effects as CMP on the status flags of the P register.

Using Comparison and Branching Instructions Together

The three comparison instructions in Apple assembly language are usu
ally used in conjunction with eight other assembly language instructions
—the conditional branching instructions that I mentioned in Chapter 6.

The sample program called BULLETIN contains a conditional
branching instruction in line 20. That instruction is BNE LOOP, which
means “branch to the statement labeled loop if the zero flag (of the pro
cessor status register) is not set.” Remember that in the 6502B/65C02
processor status register, the zero flag is set (equals 1) if the result of an
operation that has just been performed is 0, and the zero flag is cleared
(equals 0) if the result of an operation that has just been performed is
not 0.

When your computer encounters the BNE LOOP instruction in line
20, it will keep branching back to line 16 (labeled LOOP) as long as the
value of the X register has not yet been decremented to 0.

Once the value of the X register has been decremented to 0, the

162 Apple Roots

statement “BNE LOOP” in line 210 will be ignored and the program
will move on to the next line. That line contains an RTS instruction that
terminates the program.

Conditional Branching Instructions

We know that there are eight conditional branching instructions in
6502B/65C02 assembly language. They all begin with the letter B, and
they’re also called relative addressing or branching instructions. Table
8*1 shows these eight instructions and their meanings.

How Branching Differs From Jumping

There is another category of 6502/6502B/65C02 instructions, called
jump instructions. There are some important differences between jump
instructions and branching instructions.

There are two jump instructions in 6502 assembly language: JMP
and JSR. The JMP mnemonic is used much like the GOTO instruction
in BASIC; when a JMP instruction is encountered in an assembly-
language program, the program jumps to whatever memory address is
specified by the operand that follows the JMP instruction.

The assembly-language instruction JSR is used much like BASIC’s
GOSUB instruction. When a JSR instruction is encountered in an
assembly-language program, the memory address of the next instruc-

Table 8-1. Conditional Branching Instructions

BCC—Branch if the carry (C) flag of the processor status (P) register is clear. (If the carry
flag is set, the operation will have no effect.)

BCS—Branch if the carry (C) flag is set. (If the carry flag is clear, the operation will have
no effect.)

BEQ—Branch if the result of an operation is zero (if the zero [Z] flag is set).
BMI—Branch on minus (if an operation results in a set N [negative] flag).
BNE—Branch if not equal to zero (if the zero [Z] flag isn’t set).
BPL—Branch on plus (if an operation results in a cleared negative [N] flag).
BVC —Branch if the overflow (V) flag is clear.
BVS —Branch if overflow (V) flag is set.

Looping and Branching 163

tion in the program is stored on the hardware stack. Then the program
jumps to whatever memory address is specified by the operand follow
ing the JSR instruction.

The mnemonic JSR is designed primarily for use with subroutines.
In 6502/6502B/65C02 assembly language, subroutines almost always
end with RTS instructions.

In assembly language, RTS is the exact opposite of JSR. When an
RTS instruction is encountered in a program, a memory address is
removed from the stack and processing immediately jumps to that
address. If the RTS instruction has been used to end a subroutine, the
address pulled from the stack will usually be the one that was deposited
there by the JSR instruction used to invoke the subroutine. Therefore,
the processing of the program will resume at the line following the JSR
instruction that was used to invoke the subroutine.

We have learned that branching instructions are conditional; jump
instructions, however, are unconditional. When a jump instruction is
encountered in a program, it will always be carried out. When a
branching instruction is encountered in a program, it will be carried
out only if certain specific conditions are fulfilled.

There is another important difference between a jump instruction
and a branching instruction. In machine language, the operand that fol
lows a jump instruction is always expressed as a 2-byte value and is al
ways interpreted as the actual starting address of the destination of the
jump instruction. However, when a branching instruction is assembled
into machine language, the operand that follows the branching instruc
tion is always converted to a signed 1-byte number. Then, when the
program is executed, this signed 1-byte number is interpreted as an
offset that points to the starting address of the destination of the branch
instruction.

Let’s look at a sample statement containing a jump instruction.

JMP $cooo

If this statement were assembled into machine language and then exe
cuted, the result would be quite straightforward: the value $C000
would be loaded into your computer’s program counter and a jump to
memory address $C000 would then occur.

Unfortunately, branching instructions are a little more complicated
than jump instructions. Program 8-3 is a sample program that uses the
branching instruction BCC, which means “branch if carry set.” The
program is called BRANCHIT.S.

164 Apple Roots

Program 8-3
THE BRANCHIT.S PROGRAM (SOURCE-CODE VERSION)

1 ORG $8000
2 *

3 WHAZIS EQU $0300
4 *

5 LDA #5
6 CLC
7 ADC WHAZIS
8 BCS RETURN
9 TAX

10 RETURN RTS

Program 8-3 is a very straightforward subroutine. In line 5, the
literal number 5 is loaded into the accumulator. Then the 6502B/65C02
carry flag is cleared, and the value stored in memory address $0300
(which has been labeled WHAZIS) is added to the value stored in the
accumulator (now 5). Next, in line 8, a branching instruction is invoked.
If adding 5 to the value of WHAZIS has resulted in a carry (if the sum
of 5 and WHAZIS is greater than 255), the routine will branch to line
10 and will end. However, if the sum of 5 and WHAZIS does not result
in a carry—that is, if the sum is less than 255—the sum will be trans
ferred to the X register before the routine ends.

Assembling the BRANCHIT.S Routine

Now take a look at an assembled listing of the BRANCHIT.S program
as shown in Table 8-2. Lines 8 through 10 of Table 8-2 show how the
branching instruction in the BRANCHIT.S program works. In line 8, to
the left of the line number, you see

8 0 0 6 : B0 01

The first figure in this line, $8006, is the memory address in which
the instruction BCS will be stored when it has been assembled into
machine language. The second figure in the line, $B0, is the actual
machine-language equivalent of the BCS instruction. The third number,
$01, is an offset value that must be computed by your computer’s 6502B
or 65C02 chip before it can carry out the BCS instruction.

Offset Values
In a 6502B/65C02 branching instruction, an offset value is a signed
number that must be added to a given memory address in order to com-

Looping and Branching 165

Table 8-2. The BRANCHIT.S Program (Assembled Version)

8000:
8000:

1
2 *

ORG $8000

8000:
8000:

3 WHAZIS
4 *

EQU $0300

8000:A 9 05 5 LDA #5
8002:18 6 CLC
8003:6D A7 02 7 ADC WHAZIS
8006:B0 01 8 BCS RETURN
8008:AA 9 TAX
8009:60 10 RETURN RTS

pute the destination address of the branching instruction. The address
to which it must be added is always the address that follows the state
ment containing the branching instruction. Therefore, the offset in line
8 of the BRANCHIT.S program is 1. When that 1 is added to the
address of the instruction following the branching instruction—$8008
—the sum is $8009. That number is the address of the RTS instruction
that ends the BRANCHIT.S program.

When you write a branching instruction in assembly language, you
can follow it with either a literal address or a label that equates to an
address. When your program is assembled into machine language, your
assembler will convert that literal address or label into an offset value.
From then on, each time your 6502B or 65C02 chip encounters a
branching instruction during the execution of the assembled program,
it will automatically use the offset that follows each branching instruc
tion to compute the destination address of the branch.

Remember that an offset that follows a branching instruction can
never be longer than one byte. Since this one byte is always interpreted
by the 6502B/65C02 chip as a signed number, a branching offset can be
no smaller than —128 and no larger than +127. Also, since this dis
placement is always added to the address of the first instruction that
follows a branching instruction, the effective displacement of a branch
ing instruction can range only between —126 and +129. Thus, branches
that occur as the result of branching instructions are subject to certain

166 Apple Roots

length limitations: the destination address of a branching instruction
cannot be more than 126 bytes lower or more than 129 bytes higher than
the address of the first instruction that follows the branching instruction.

What if you want to write an instruction that will branch to an
address that does not fall within these limitations? If you want to exceed
the distance limitations of a branching instruction, you simply use the
instruction to branch to a jump instruction that has no such restrictions.
Program 8-4 is an example of how that can be done.

Program 8-4
THE BRANCHIT.S PROGRAM (WITH A JUMP INSTRUCTION ADDED)

1 ORG $8000
2 *

3 WHAZIS EQU $0300
A *
5 LDA #5
6 CLC
7 ADC WHAZIS
8 BCC CONT
9 JMP FARJ MP ; (CAN BE ANYWHERE IN MEMORY)

10 CONT TAX
1 1 RTS

Long-Distance Branching

In the version of the BRANCHIT.S program shown in Program 8-4, the
BCS instruction that appeared in the original program has been
replaced by a BCC instruction. A new line, containing a JMP instruc
tion that can jump to any address in memory, has been inserted follow
ing the line containing the BCC instruction. In this version of the pro
gram, if the addition of 5 to the value of WHAZIS results in a carry, the
program will jump to an address labeled FARJMP that can be situated
anywhere. Otherwise, the program jumps to line 10, labeled CONT (for
“continue”), and proceeds as before.

How Conditional Branching Instructions Are Used

You have seen that the usual way to use a conditional branching instruc
tion in 6502B/65C02 assembly language is to load the X or Y register
with a 0 or some other value and then to load the A register (or a
memory register) with a value to be used for a comparison. Next you
use a conditional branching instruction to tell the computer what P reg
ister flags to test and what to do if these tests succeed or fail.

Once you understand the general concept of conditional branching,
you can use a simple table, such as Table 8-3, for writing conditional
branching instructions.

Looping and Branching 167

Table 8-3. Uses of Conditional Branching Instructions

TO TEST FOR: DO THIS: AND THEN THIS:
A = VALUE CMP #VALUE BEQ
A < > VALUE CMP #VALUE BNE
A >= VALUE CMP #VALUE BCS
A > VALUE CMP #VALUE BEQ and then BCS
A < VALUE CMP #VALUE BCC
A = (ADDR) CMP $ADDR BEQ
A < > (ADDR) CMP $ADDR BNE
A >= (ADDR) CMP $ADDR BCS
A > (ADDR) CMP $ADDR BEQ and then BCS
A < (ADDR) CMP $ADDR BCC
X = VALUE CPX #VALUE BEQ
X <> VALUE CPX #VALUE BNE
X >= VALUE CPX #VALUE BCS
X > VALUE CPX #VALUE BEQ and then BCS
X < VALUE CPX #VALUE BCC
X = (ADDR) CPX $ADDR BEQ
X < > (ADDR) CPX $ADDR BNE
X >= (ADDR) CPX $ADDR BCS
X > (ADDR) CPX $ADDR BEQ and then BCS
X < (ADDR) CPX $ADDR BCC
Y = VALUE CPY #VALUE BEQ
Y < > VALUE CPY #VALUE BNE
Y >= VALUE CPY #VALUE BCS
Y > VALUE CPY #VALUE BEQ and then BCS

Assembly-Language Loops

In 6502B/65C02 assembly language, comparison instructions and condi
tional branch instructions are usually used together. In the sample pro
gram called BULLETIN, the comparison instruction CPX and the
branch instruction BNE are used together in a loop controlled by the
incrementation of a value in the X register.

Each time the loop in the program goes through a cycle, the value in
the X register is progressively incremented or decremented. Each time
the program comes to the line containing the instruction INX, the value
in the X register is compared to the literal number 29. When that
number is reached, the loop ends.

The program will therefore keep looping back to the line containing
the statement JSR COUT until 29 characters have been printed on the
screen.

168 Apple Roots

The BULLETIN.B Program

Now we’re ready to take a look at a new program entitled BULLE
TIN.B. Program 8-5 will provide you with the second half of the cryptic
message that was presented in the original BULLETIN program. It
also contains some improvements that make it more versatile than its
predecessor—and easier to understand.

Program 8-5
BULLETIN.B
(Merlin Pro Assembler Version)

1 *

2 * BULLETIN. B
3 *
4 ORG $8000
5 *
6 EOL EQU 13
7 BUFLEN EQU 40
8 FILLCH EQU $20
9 C0UT EQU $FDED

10 *

11 JMP START
12 *

13 TEXT ASC "A DOGMA GOT HIT BY A KARMA"
14 DB EOL
15 *
16 * CLEAR TEXT BUFFER
17 *
18 START LD A FILLCH
19 LDX 0BUFLEN
20 STUFF DEX
21 STA TXTBUF,X
22 BNE STUFF
23 *
24 * STORE MESSAGE IN BUFFER
25 *
26 LDX #0
27 L00P1 LDA TEXT , X
28 STA TXTBUF,X
29 CMP #EOL
30 BEQ PRINT
31 INX
32 CPX #BUFLEN
33 BCC L00P1
34 *
35 * PRINT MESSAGE
36 *
37 PRINT LDX M0
38 L00P2 LDA TXTBUF,X
39 PHA
40 JSR COUT
41 PLA

Looping and Branching 169

42 CMP //EOL
43 BN E NEXT
44 JMP FINI
45 NEXT IN X
46 CPX //BUFLEN
47 BCC L00P2
48
49 FINI RTS
50
51 TXTBUF DS BUFLEN

Program 8-5 was created on a Merlin Pro assembler but with minor
modifications will also work on an Apple ProDOS assembler system.
Program 8-6 is the same program typed on an ORCA/M system.

Program 8-6
BULLETIN.B
(ORCA/M Assembler Version)

KEEP BULLETIN

MAIN START

EOL EQU 13
BUFLEN EQU 40
FILLCH EQU $20
COUT EQU $ F D E D

LD A 0FILLCH
LDX //BUFLEN

STUFF DEX
STA TXTBUF, X
BNE STUFF

LDX #0
L00P1 LD A TE XT,X

STA TXTBUF,X
CMP #EOL
BEQ
INX

PRINT

CPX //BUFLEN
BCC L00P1

PRINT LDX no
L00P2 LD A

PHA
TXTBUF, X

JSR
PLA

COUT

CMP //EOL
BNE NEXT
JMP FINI

NEXT INX
CPX //BUFLEN
BCC L00P2

FINI RTS

170 Apple Roots

TEXT DC C 1A DOGMA GOT HIT BY A KARMA
DC H ' OD '

TXTBUF DS 40

END

As you can see, the BULLETIN.B program is quite similar to the
original program. After you’ve typed, assembled, and run the BULLE
TIN.B program, you’ll see that it performs essentially the same kind of
operation as BULLETIN, but in a slightly more elegant way. The most
obvious difference between the two programs is the way they handle
text strings. The original BULLETIN program made use of a text
string composed of ASCII codes. You’ll see when you type BULLE
TIN.B that there’s usually no need to convert text strings into ASCII
code numbers in order to use them in assembly-language programs. All
three of the assemblers that were used to create the programs in this
book are equipped with features that will do that job automatically.

Another important difference between BULLETIN.B and its prede
cessor is the way the loop that reads the characters is written. In BUL
LETIN, the loop counted the number of characters that had been
printed on the screen and ended when the count reached 29. That’s a
perfectly good system for printing text strings that are 29 characters
long. It won’t display strings of other lengths, however, so it isn’t a very
versatile routine for displaying characters on a screen.

Testing for a Carriage Return

BULLETIN.B is more versatile than BULLETIN because it can dis
play strings of almost any length on a screen. The BULLETIN.B pro
gram doesn’t keep track of the number of characters it has printed by
maintaining a running count of how many letters have been displayed.
Rather, when the program encounters a character, it tests the character
to see if its value is $0D— the ASCII code for a carriage return or end-
of-line (EOL) character. If the character is not an EOL, the computer
displays it and goes on to the next character in the string. If the charac
ter is an EOL character, the computer displays a carriage return on the
screen and the routine ends.

Another difference between BULLETIN and BULLETIN.B is that
the latter program doesn’t read characters and display them in the
same step. Instead, the characters are first placed in a buffer, and then
the contents of the buffer are printed on the screen.

Text buffers are often used in assembly-language programs because
they are both versatile and easy to use. Text can be loaded into a buffer

Looping and Branching 171

from a keyboard, for example, or from a telephone modem, or even
directly from a computer’s memory. Conversely, once a string is in a
buffer, it can be removed from the buffer in just as many different
ways—no matter how the characters got into the buffer in the first
place, and no matter what characters they are. Thus, once a few subrou
tines have been written to fill a buffer and then to process it in some
manner, those subroutines can be used for many different purposes. A
buffer can therefore serve as a central repository for text strings, mak
ing them easily accessible.

Clearing a Text Buffer
Before you use a text buffer, it’s always a good idea to clear it of leftover
characters, so a buffer-clearing routine has been written into the BUL-
LETIN.B program. It’s a short and simple routine that will clear a text
buffer—or any other block of memory that doesn’t exceed its length
limitations—and will fill the buffer with spaces, 0’s, or any other value
you choose. In the BULLETIN.B program, the routine fills the buffer
with a string of spaces; they will appear as blank spaces on your screen.

As you continue to work with assembly language, you’ll find that
memory-clearing routines such as this one are useful in many kinds of
programs. Word processors, telecommunications programs, and many
other kinds of software packages make extensive use of routines that can
clear values from blocks of memory and replace them with other values.

The memory-clearing routine in the BULLETIN.B program uses
indexed (direct) addressing and an X register countdown. It will fill
each memory address in a text buffer (TXTBUF) with a designated “fill
character” (FILLCH). Then the routine ends.

The buffer-clearing routine in BULLETIN.B will work with any 8-
bit fill character and with any buffer length (BUFLEN) up to 255
characters. Later on in this book, you’ll find some 16-bit routines that
can fill longer blocks of RAM with values.

One More Program: THE NAME GAME_______________

The final program in this chapter will make use of many of the pro
gramming techniques we’ve learned so far. Program 8-7 is called THE
NAME GAME. It was written on an Apple lie using a Merlin Pro
assembler. With minor modifications, you can also type, assemble, and
run it with an Apple ProDOS assembler. If you own an ORCA/M system,

172 Apple Roots

you should be able by now to make the modifications needed to type and
assemble the program using the ORCA/M.

Program 8-7
THE NAME GAME

1 *

2 * THE NAME GAME
3 *
A ORG $8000
5 *
6 EOL EQU SOD ; RETURN KEY
7 EOF EQU $03
8 FILLCHR EQU $20 ;SPACE KEY
9 BUFLEN EQU 40

10 GETLN1 EQU $ F D6 F ;R0UTINE TO GET A LINE OF TEXT FROM
KEYBOARD

11 COUT EQU $FDED ;R0UTINE TO PRINT A CHARACTER ON THE
SCREEN

12 TEMPTR EQU $ FB
13 OSBUF EQU $200
14 *
15 JMP BEGIN
16 *
17 COUNT DS 1
18 INPBUF DS 80
19 *
20 TITLE ASC "THE NAME GAME"
21 HEX OD
22 HELLO ASC " HELLO, "
23 HEX 03
24 QUERY ASC "WHAT IS YOUR NAME?"
25 HEX OD
26 NAME ASC "GEORGE"
27 HEX OD
28 REBUFF ASC "GO AWAY, "
29 HEX 03
30 DEMAND ASC "BRING ME GEORGE!"
31 HEX OD
32 GREET ASC " H I , GEORGE!"
33 HEX OD
34 *
35 * CLEAR TEXT BUFFER
36 *
37 F I LL LDA 0FILLCHR
38 LDX 0BUFLEN
39 FILLOOP DEX
40 STA INPBUF,X
41 BN E FILLOOP
42 RTS
43 *
44 PRINT LDY #0
45 SHOW LDA (TEMPTR) , Y
46 CMP #EOF
47 BEQ DONE

Looping and Branching 173

48 PHA
49 JSR COUT
50 PLA
51 CMP # EOL
52 BNE NEXT
53 JMP DONE
54 NEXT INY
55 CPY #BU FLEN
56 BCC SHOW
57 DONE RTS
58 *
59 BEGIN LDA #0
60 STA $C00A ; TURN ON 80-COLUMN FIRMWARE
61 J SR SC300 ; TRANSFER CONTROL TO 80-C0L CARD
62 STA SCOOD ; TURN ON 80-COLUMN DISPLAY
63 JSR $ F C 58 ; CLEAR SCREEN & HOME CURSOR
64 *
65 * PRINT 'THE NAME GAME'
66 *

67 LDA #EOL
68 JSR COUT
69 LDA /KTI TLE
70 STA TEMPTR
71 LDA #>TITLE
72 STA TEMPTR+1
73 JSR PRINT
74 LDA 0EOL
75 JSR COUT
76 *
77 * PRINT ' HELLO . . . '
78 *
79 LDA #<HELLO
80 STA TEMPTR
81 LDA #>HELLO
82 STA TEMPTR+1
83 JSR PRINT
84 *
85 * PRINT 'WHAT IS YOUR NAME?'
86 *

87 ASK LDA (IKQUERY
88 STA TEMPTR
89 LDA #>QUERY
90 STA TEMPTR+1
91 JSR PRINT
92 LDA #EOL
93 JSR COUT
94 *
95 * INPUT A TYPED LINE
96 *
97 JSR GETLN1
98 STX COUNT
99 LDY #0

100 PRLOOP LDA OSBUF/ Y
101 STA INPBUF, Y
102 INY
103 DEX

174 Apple Roots

104 BNE PRL00P
105 *
106 * CHECK TO SEE IF NAME IS GEORGE
107 *
108 LDX COUNT
109 CPX #6
110 BNE NOGOOD
111 DEX
112 CHECK LDA INPBUF,X
113 CMP NAME,X
114 BNE NOGOOD
115 DEX
116 BNE CHECK
117 JMP DUNIT
118 *
119 * NO; PRINT 'GO AWAY . .
120 *

121 NOGOOD LDA #EOL
122 J SR COUT
123 LDA #<REBUFF
124 STA TEMPTR
125 LDA #>REBUF F
126 STA TEMPTR+1
127 JSR PRINT
128 *
129 * PRINT PLAYER' S NAME
130 *
131 LDA #<INPBUF
132 STA TEMPTR
133 LDA U>INPBU F
134 STA TEMPTR+1
135 JSR PRINT
136 LDA #EOL
137 JSR COUT
138 *
139 * PRINT 'BRING ME GEORGE!*
140 *
141 LDA #<DEMAND
142 STA TEMPTR
143 LDA #>DEMAND
144 STA TEMPTR+1
145 JSR PRINT
146 LDA #EOL
147 JSR COUT
148 JMP ASK
149 *
150 * YES; PRINT GREETING
151 *
152 DUNIT JSR $ FBDD ;SOUND A BEEP
153 LDA #EOL
154 JSR COUT
155 LDA #<GREET
156 STA TEMPTR
157 LDA #>GREET
158 STA TEMPTR+1
159 JSR PRINT
160 RTS

Looping and Branching 175

If you’ve typed, assembled, and executed the programs called BUL
LETIN and BULLETIN.B, you shouldn’t have much trouble under
standing how THE NAME GAME works. Using several fairly simple
subroutines, it displays a short message on your screen and then waits
for you to type a response. If the program considers your response
incorrect, it prompts you to try again. When you finally enter the line
the program is looking for, you get a “reward” message and the pro
gram ends.

The GETLN1 Routine

In addition to the kernel routine COUT, which was used in the BUL
LETIN and BULLETIN.B programs to display characters on the
screen, THE NAME GAME makes use of a built-in routine called
GETLN1 that can read lines of text that have been entered on your
Apple’s keyboard. The call address of the GETLN1 routine is $FD6F, as
you can see in line 10 of THE NAME GAME program. To use the
GETLN1 routine in an assembly-language program, you list the routine’s
address in the program’s symbol table, and then write a statement like

J SR GETLN1

If you look at line 97 of THE NAME GAME program, you’ll see that
statement. When you run THE NAME GAME, that line is where your
computer will stop and wait for you to type a name. As soon as you type
a name, plus a carriage return, your Apple will store the line you’ve
typed in a special buffer that begins at memory address 200. The
number of characters in the line that you’ve typed will be left in the X
register of your computer’s 6502B/65C02 microprocessor.

In THE NAME GAME’S symbol table, the buffer that starts at
memory register 200 is called OSBUF. The contents of this buffer can
change very quickly. Therefore, as soon as the buffer is used in THE
NAME GAME program, its contents are copied into another buffer
called INPBUF. (This procedure is carried out in lines 98 through 104.)

In lines 108 through 117, a check is made to see whether the name
typed into OSBUF is George. If it isn’t, the program will jump to a
routine that demands to see George. If the name typed in turns out to be
George, the computer will respond with a beep and a greeting.

Using Your Apple’s 80-Column Display

Lines 59 and 60 of THE NAME GAME initialize the 80-column firm
ware that enables the Apple lie and the Apple He to generate an 80-

176 Apple Roots

column screen. In line 61, control is transferred to the 80-column firm
ware with the assembly-language statement JSR $C300, which accom
plishes the same task as the BASIC statement PR#3. In line 62, your
computer’s 80-column display is actually turned on with the statement
STA $C00D. Finally, in line 63, the program calls a built-in routine that
starts at $FC58. This routine clears the screen display and places a cur
sor in the upper-left corner of the screen.

Full details of how these routines work can be found in the Apple lie
reference manual and the Apple He reference manual. If, however, you
just want to know how to use your computer’s 80-column capabilities in
an assembly-language program, lines 59 through 63 of THE NAME
GAME contain everything you need to know.

Low-Byte and High-Byte Symbols

The technique used in THE NAME GAME for storing 16-bit numbers
in high-order and low-order 8-bit memory locations is worth special
mention. The technique first appears in lines 69 through 72.

69 LDA #<TITLE
70 STA TEMPTR
71 LDA #>TITLE
72 ST A . TEMPTR + 1

You can probably see what that sequence does. In source code recog
nized by most assemblers, the string “#<HELLO” means “the low byte
of the address labeled ‘HELLO’”, and the string “#>HELLO” means
“the high byte of the address labeled ‘HELLO’”. (This string refers not
to the contents of the address, by the way, but to the address itself since,
in 6502/6510/8502 assembly language, the symbol “#” is used to identify
a literal number.)

The above sequence of code first stores the low-order byte of the
16-bit address of the string “HELLO” into the memory location labeled
“TEMPTR” (which, as you can see by looking at the program’s symbol
table, is memory address $FB). Then it stores the high-order byte of
the address of the string labeled “HELLO” into memory location
TEMPTR+1, or $FC.

Playing THE NAME GAME

When THE NAME GAME has called your Apple’s 80-column firmware
into action, the program will continue by displaying its title on the
screen. The next two routines display the line “Hello, what is your
name?”

Looping and Branching 177

Then the program clears the text buffer and waits for you to type a
response. As you type your answer, each character you enter will be
placed in the text buffer. That process will continue until you stop typ
ing characters and press a carriage return.

Next the program will examine the characters that you’ve entered to
see whether they spell the name George. If they don’t, the program will
demand: “BRING ME GEORGE!” When you finally type the name
George, your computer will reward you with a beep and proclaim: “HI,
GEORGE!”

You will find that the principles used to create the input and output
routines for THE NAME GAME are used in many assembly-language
programs. So, if you know how THE NAME GAME works, you’ve
learned quite a b it—by George!

Single-Bit
Manipulations of
Binary Numbers

There are 65,536 bytes of memory in an unexpanded Apple He comput
er and 131,072 bytes of memory in an Apple lie or a fully expanded He.
Since there are eight bits in every byte, there are 524,288 bits in a no
frills Apple He and 1,048,576 bits in a 128K Apple He or an off-the-rack
Apple lie. What does that mean to an assembly-language programmer?
If you know how to perform single-bit operations on binary numbers,
you can control every binary bit in your Apple automatically. That’s a
tremendous amount of control to have over a computer.

In the first chapter of this book, you learned how to control one of the
most important bits in your Apple’s central microprocessor: the carry
bit of the 6502B/65C02 processor status register. Manipulating the P
register’s carry bit is one of the most important bit-manipulation tech
niques in 6502B/65C02 assembly language. You’ve also had considerable

179

180 Apple Roots

experience in using the carry bit in addition programs.
In this chapter, you’ll have an opportunity to learn some new tech

niques using the carry bit of the P register.

Using the Carry Bit
In Bit-Shifting Operations

You know that your Apple’s 6502B/65C02 microprocessor is an 8-bit
chip; it cannot perform operations on numbers larger than 255 without
going through a number of steps.

The 6502B/65C02 must split a larger number into 8-bit chunks and
then perform the requested operations on each part of the number. The
number must then be made whole again.

Once you’re familiar with this process, it isn’t nearly as difficult as it
sounds. In fact, the “scissors” that are used for this electronic cutting
and pasting are actually contained in one tiny b it—the carry bit of the
6502B/65C02’s P register.

Bit-Shifting Instructions

You’ve seen how how carry operations work in several programs in this
book. In order to get a clearer look at how the carry works in
6502B/65C02 arithmetic, though, it would be useful to examine four
very specialized machine-language instructions: ASL (arithmetic shift
left), LSR (logical shift right), ROL (rotate left), and ROR (rotate right).
These four instructions are used very extensively in 6502B/65C02
assembly language.

ASL (Arithmetic Shift Left)
As you will recall from Chapter 2 (the chapter on binary arithmetic),
every number that ends in 0 in binary notation is double the preceding
binary number that ends in 0. For example, 1000 0000 ($80) is double
the number 0100 0000 ($40), which is double the number 0010 0000
($20), which is double the number 0001 0000 ($10).

Therefore, it is extremely easy to multiply a binary number by 2.
You just shift every bit in the number one space to the left and place a 0
in the bit that has been emptied by this shift (bit 0, or the far-right bit
of the number). If bit 7 (the far-left bit) of the number to be doubled is a
1, then provision must be made for a carry.

Single-Bit Manipulations of Binary Numbers 181

Figure 9-1. The ASL instruction

The entire operation we just described—shifting a byte left, with a
carry—can be performed by a single instruction in 6502B/65C02
assembly language. That instruction is ASL, which stands for “arith
metic shift left.” As illustrated in Figure 9-1, the instruction ASL
moves each bit in an 8-bit number one space to the left—each bit, that
is, except bit 7. That bit drops into the carry bit of the processor status
(P) register.

The ASL instruction has many uses in 6502B/65C02 assembly lan
guage. For instance, it is an easy way of multiplying numbers by 2.
Program 9-1 is a number-doubling routine as it might look in a pro
gram created using a Merlin Pro or Apple ProDOS assembler.

Program 9-1
DOUBLING A NUMBER WITH THE ASL INSTRUCTION
1 *

2 0R6 $8000
3 *
4 LDA #$40 ; REM 0100 0000
5 ASL A ; SHI FT VALUE IN ACCUMULATOR TO LEFT
6 STA $ FB
7 RTS

If you run Program 9-1 and then use the machine-language monitor
to examine the contents of memory address $FB, you’ll see that the
number $40 (0100 0000) has been doubled to $80 (1000 0000) before
being stored in memory address $FB.

Another use for the ASL instruction is to pack data, which increases
a computer’s effective memory capacity. Later in this chapter, there will
be an example of how to pack data using the ASL instruction.

182 Apple Roots

B I T S

Figure 9-2. The LSR instruction

LSR (Logical Shift Right)

As shown in Figure 9*2, the instruction LSR (logical shift right) is the
exact opposite of the instruction ASL.

How the LSR Instruction Works LSR, like ASL, works on whatever
binary number is in the 6502B/65C02’s accumulator. However, it will
shift each bit in the number one position to the right. Bit 7 of the new
number (left empty by the LSR instruction) will be filled with a 0, and
the LSR will be dumped into the carry flag of the P register.

As illustrated in Program 9*2, the LSR instruction can be used to
divide any even 8-bit number by 2.

Program 9-2
DIVIDING A NUMBER BY 2 WITH THE LSR INSTRUCTION

1 *

2 * LSRDIV
3 *
4 VALUE 1 EQU $ FB
5 VALUE2 EQU $ F C
6 *
7 0R6 $8000
8 *

9 LDA #6 ; OR ANY OTHER 8 - B I T NUMBER
10 STA VALUE1
11 *

12 *N0W WE'LL DIVIDE BY 2
13 *
14 LDA VALUE1
15 LSR A
16 STA VALUE2
17 RTS

Single-Bit Manipulations of Binary Numbers 183

In this program, the number stored in VALUE 1 is divided by 2 and
the result is stored in VALUE2. This division routine will also tell you
whether the number it has divided is odd or even. It leaves that piece of
information in the carry bit of the 6502B/65C02 P register; if the rou
tine leaves the carry bit clear, the number that was just divided is even.
If the carry bit is set, the value is odd.

Later in this chapter, we will learn how to use LSR to unpack data.

Another Test for Odd or Even Program 9-3 is another routine that
can determine whether a number is even or odd. In lines 12 and 13 of
the ODDTEST routine, a memory register called FLGADR (for “flag
address”) is cleared to 0. Then the contents of the memory register
called VALUE 1 are shifted to the right one position and stored in a
third register, VALUE2. If the value being shifted is even, the shift
operation does not set the carry bit, and the subroutine ends. If the
value being shifted is odd, the operation does set the carry bit, the pro
gram jumps to line 220, and the set carry bit is rotated into the
FLGADR register using an instruction called ROL. (You’ll learn more
about ROL in a moment.) Thus, if the routine leaves a 0 in FLGADR,
the number that was divided is even; if the routine ends with a 1 stored
in FLGADR, the number that was divided is odd.

Program 9-3
THE ODDTEST ROUTINE
1 *
2 * ODDTEST
3 *
4 VALUE1 EQU $FB
5 VALUE2 EQU $FC
6 FLGADR EQU $FD
7 *
8 ORG $8000
9 *

10 LDA #7 ; (ODD)
11 STA VALUE1

12 LDA
13 STA
14 *
15 LDA
16 LSR
17 STA
18 *
19 BCS
20 RTS
21 *

22 FLAG
24 ROL
25 RTS

#0
FLGADR ; CLEARING FLGADR

VALUE1
A ; PERFORM THE DIVISION
VALUE2 ; DONE

FLAG
; END ROUTINE IF CARRY CLEAR . . .

FLGADR
AND END THE PROGRAM/ •

184 Apple Roots

The use of LSR to unpack data that has been packed using ASL will
be discussed later in this chapter.

ROL (Rotate Left) and ROR (Rotate Right)

The instructions ROL (rotate left) and ROR (rotate right) are also used
to shift bits in binary numbers, but they use the carry bit differently
from ASL and LSR. Figure 9-3 illustrates how the ROL instruction
works.

ROL, like ASL, can be used to shift the contents of the accumulator
or a memory register one place to the left. Unlike ASL, however, ROL
does not place a 0 in the bit 0 position of the number being shifted into
the carry bit. Instead, it rotates the carry bit into bit 0 of the register
being shifted and then moves every other bit in that register one place
to the left, rotating bit 7 back into the carry bit. If the carry bit is set
when that happens, a 1 is placed in the bit 0 position of the byte being
shifted. If the carry bit is clear, a 0 goes into the bit 0 position of the
shifted register.

Figure 9*4 illustrates the use of the ROR instruction. ROR works
just like ROL, but in the opposite direction. It moves each bit of the byte
being shifted one position to the right and rotates the carry bit into the
bit 7 position of the shifted byte. Bit 0 of the shifted byte is moved into
the carry bit of the P register.

ROL and ROR are often used in 6502B/65C02 multiplication and
division routines, as well as in other routines in which bits are shifted
and tested.

Figure 9-3. The ROL (rotate left) instruction

Single-Bit Manipulations of Binary Numbers 185

Figure 9-4. The ROR (rotate right) instruction

The Logical Operators

Let’s look at four important assembly-language mnemonics called logi
cal operators. These instructions are AND (and), ORA (or), EOR (exclu
sive or), and BIT (bit).

The four 6502B/65C02 logical operators AND, ORA, EOR, and BIT
are all used to compare values. They work differently, however, from
the comparison operators CMP, CPX, and CPY. The instructions CMP,
CPX, and CPY yield very general results. They can determine only
whether two values are equal and, if the values aren’t equal, which one
is larger.

AND, ORA, EOR, and BIT are much more specific instructions.
They are used to compare single bits of numbers and thus have many
uses in writing assembly-language programs for the Apple Ile/IIc.

Boolean Logic
The four logical operators in assembly language use principles of
mathematical science called Boolean logic. In Boolean logic, the binary
numbers 0 and 1 are used not to express values, but to indicate whether
a statement is true or false. If a statement is true, its value in Boolean
logic is said to be 1. If the statement is false, its value is said to be 0.

In 6502B/65C02 assembly language, the operator AND has the same
meaning that the word “and” has in English.

186 Apple Roots

Table 9-1. Truth Table for AND

0 0 1 1
AND 0 AND 1 AND 0 AND 1

0 0 0 1

If one bit AND another bit have a value of 1 (and are thus “true”),
then the AND operator also yields a value of 1. However, if any other
condition exists—if one bit is true and the other is false, or if both bits
are false—then the AND operator returns a result of 0, or false.

The results of logical operators are often illustrated with diagrams
called truth tables. Table 9-1 is a truth table for the AND operator.

In 6502B/65C02 assembly language, the AND instruction is often
used in an operation called bit masking. The purpose of bit masking is to
clear or set specific bits of a number. The AND operator can be used,
for example, to clear any number of bits by placing a 0 in each bit that
is to be cleared:

100 LDA # AA ;BINARY 1010 1010
110 AND #F0 ; BINARY 1111 0000

If your computer encounters this sequence in a program, it will perform
the following AND operation:

1010 1010 (contents of accumulator)
AND 1111 0000

1010 0000 (new value in accumulator)

In this example, the AND instruction clears the low nybble of $AA
to $0 (with a result of $A0). The same technique would work with any
other 8-bit number. No matter what number is being passed through
the mask 1111 0000, its lower nybble will always be cleared to $00, and
its upper nybble will always emerge from the AND operation unchanged.

The ORA Operator
When the instruction ORA (or) is used to compare a pair of bits, the
result of the comparison is 1 (true) if the value of either bit is 1. Table
9-2 is the truth table for ORA.

Single-Bit Manipulations of Binary Numbers 187

Table 9-2. Truth Table for ORA

0
ORA 0

0
ORA 1

1
ORA 0

1
ORA 1

0 1 1 1

ORA is also used in bit-masking operations. Here is an example of a
masking routine using ORA.

LDA VALUE
ORA #$0F
STA DEST

If the number in VALUE were $22 (binary 0010 0010), the following
masking operation would then take place.

0010 0010 (i n a c c u m u l a t o r)
ORA 0000 1111 (#$0F)

0010 1111 (new v a l u e i n a c c u m u l a t o r)

The EOR Operator

The instruction EOR (exclusive or) will return a true value (1) if one—
and only one—of the bits in the pair being tested is a 1. Table 9-3 is the
truth table for the EOR operator.

The EOR instruction is often used for comparing bytes to determine
if they are identical. If any bit in two bytes being compared is different,
the result of the comparison will be non-0:

In Example 1, the bytes being compared are identical, so the result
of the comparison is 0. In Example 2, one bit is different, so the result of
the comparison is non-0.

The EOR operator is also used to complement values. If an 8-bit value

1011 0110
EOR 1011 0110 BUT:

Exam ple 1 Example 2
1011 0110

EOR 1011 0111

0000 0000 0000 0001

188 Apple Roots

Table 9-3. Truth Table for EOR

0 0 1 1
EOR 0 EOR 1 EOR 0 EOR 1

0 1 1 0

is EOR’d with $FF, every bit in the value that is a 1 will be comple
mented to a 0, and every bit that is a 0 will be complemented to a 1:

1110 0101 (in accumulator)
EOR 1111 1111

0001 1010 (new value in accumulator)

Still another useful characteristic of the EOR instruction is that
when it is performed twice on a number using the same operand, the
number will first be changed to another number and then be restored to
its original value:

1110 0101 (in accumulator)
EOR 0101 0011

1011 0110 (new value accumulator)
EOR 0101 0011 (same operand as above)

1110 0101 (original value in accumulator restored)

This capability of the EOR instruction is often used in high-
resolution graphics to place one image over another without destroying
the one underneath.

Packing and Unpacking Data in Memory

Now we’re ready to discuss the packing and unpacking of data using
bit-shifting and bit-testing instructions. First, let’s talk about how you
can pack data to conserve space in your computer’s memory.

To get an idea of how data-packing works, suppose that you had a
series of 4-bit values stored in a block of memory in your computer.

Single-Bit Manipulations of Binary Numbers 189

These values could be ASCII characters, BCD numbers (more about
those later), or any other kind of 4-bit values.

Using the ASL instruction, you can pack two such values into every
byte of the block of memory in which they were stored. You can thus
store the values in half the memory space that they had occupied in
their unpacked form.

Program 9-4 is a routine you can use in a loop to pack each byte of
data.

Program 9-4
PACKING DATA USING THE ASL INSTRUCTION

1
2 PACKDATA
3
4 ORG $8000
5 *
6 NYB1 EQU $ FB
7 NYB2 EQU $ F C
8 PKDBYT EQU $ FD
9 *

10 LD A #$04 ; OR ANY
11 STA NYB1
12 LD A #$06 ; OR ANY
13 STA NYB2
14
15 CLC
16 LD A NYB1
17 ASL A
18 ASL A
19 ASL A
20 ASL A
21 ORA NYB2
22 STA PKDBYT
23 RTS

4 - B I T VALUE

4 - B I T VALUE

How It Works

The routine in Program 9-4 will load a 4-bit value into the accumulator,
shift that value to the high nybble in the accumulator, and then (using
the ORA logical operator) place another 4-bit value in the low nybble of
the accumulator. The accumulator will thus be packed with two four-bit
values—and those two values will then be stored in “PKDBYT”, a sin
gle 8-byte memory register.

Testing the Results

Type the program into the computer and execute it using your
assembler’s machine-language monitor. After you’ve run the program,
you can peek into your computer’s memory to see what has been done by

190 Apple Roots

using your Apple’s built-in monitor. Just call up the machine-language
monitor and type the command

FB. FD

followed by a carriage return. Your computer will then respond with the
following line:

00FB- 04 06 46

This line tells you that the number $04 has been stored in memory
address $FB and that the number $06 has been stored in memory
address $FC. Both of these values have then been packed into memory
address $FC.

You can see from this example how data-packing can increase a com
puter’s effective memory capacity. Suppose you had a long document
made up of pure ASCII characters, which can be stored in memory in
the form of 4-bit numbers. Packing this text would cut in half the
amount of memory the text occupied, since two characters could be
stored in each 8-bit register of your computer’s memory.

Unpacking Data
It wouldn’t do any good to pack data, of course, if it couldn’t be
unpacked later. Data packed using ASL can be unpacked using the
complimentary instruction LSR (logical shift right), together with the
logical operator AND. Program 9-5 is a routine that shows how data
can be unpacked using the LSR instruction.

Program 9*5
UNPACKING DATA USING THE LSR INSTRUCTION
10 *

20 * UNPACKIT
30 *
40 PKDBYT EQU $FB
50 LOWBYT EQU $FC
60 HIBYT EQU $ FD
70 *
80 ORG $8000
90 *
100 LDA #255 ;0R ANY OTHER 8 - B I T VALUE
110 STA PKDBYT
120 LDA #0 ; CLEAR LOWBYT AND HIBYT
130 STA LOWBYT
140 STA HIBYT
150 *
160 LDA PKDBYT
170 AND #$0F ;BINARY 0000 1111
180 STA LOWBYT

Single-Bit Manipulations of Binary Numbers 191

190 LD A PKDBYT
200 LSR A
210 LSR A
220 LSR A
230 LSR A
240 STA HIBYT
250 RTS

The routine illustrated in Program 9-5 works much like Program
9*4—but in reverse. In Program 9-5, the accumulator is loaded with an
8-bit byte into which two 4-bit values have been packed. The upper four
bits of this packed byte are then zeroed out using the logical operator
AND. Then the lower nybble of the byte is stored in a memory register
called LOWBYT.

Next, the accumulator is loaded for a second time with the packed
byte. This time the byte is shifted four places to the right using the
instruction LSR. This maneuver results in a 4-bit value that is finally
stored in a memory register called HIBYT. The packed value in
PKDBYT has thus been split, or unpacked, into two 4-bit values—one
stored in LOBYT and the other in HIBYT. Each of those 4-bit numbers
(which may represent an ASCII character or any other 4-bit value) can
now be processed as a separate entity.

The BIT Operator

The BIT operator is an instruction that’s a little more complicated than
AND, ORA, or EOR.

The BIT instruction is used to determine whether the value stored in
a memory register matches a value stored in the accumulator. The
instruction can be used only with absolute or zero-page addressing
Here are two examples of correct formats for the BIT instruction.

BIT $ 0 2 A7

BIT $ FB

When the BIT instruction is used in either of these formats, a logical
AND operation is performed on the byte being tested. The opposite of
the result of this operation is then stored in the zero flag of the proces
sor status register. In other words, if any set bits in the accumulator
happen to match any set bits that are stored in the same positions in the
value being tested, the Z flag will be cleared. If there are no set bits that
match, the Z flag will be set.

Program 9-6 illustrates how the BIT instruction can be used.

192 Apple Roots

Program 9*6
USING THE BIT INSTRUCTION
1 LDA #01
2 BIT $02A7
3 BNE MATCH
4 JMP NOGOOD
5 MATCH RTS

A check is made to determine whether BIT is set in the value stored in
memory register $02A7. If the bit is set, the flag of the P register will
be cleared and the program will branch to the line labeled MATCH. If
there is no match, the Z flag will be set, and the program will jump to
whatever routine has been labeled NOGOOD.

The BIT mnemonic also performs a couple of other functions. When
the BIT instruction is used, bits 6 and 7 of the value being tested are
always deposited directly into bits 6 and 7 of the P register. That infor
mation is very useful because bit 6 and bit 7 are very important flags in
the 6502B/65C02 chip’s processor status register. Bit 6 is the P regis
ter’s overflow (V) flag, and bit 7 is its negative (N) flag. Therefore, the
BIT instruction can also be used as a quick method of checking either
bit 6 or bit 7 of any 8-bit value. If bit 6 of the value being tested is set,
the P register’s V flag will also be set, and a BVC or BVS instruction
can then be used to determine what will happen next in the program. If
bit 7 of the tested value is set, then the P register’s N flag will be set,
and a BPL or BMI instruction can be used to determine the outcome of
the routine.

It’s important to note that after all of these actions take place, the
value in the accumulator and the memory location being tested always
remain unchanged. Therefore, if you ever want to perform a logical
AND operation without disturbing the value of the accumulator or the
memory register you want to check, the BIT mnemonic may be the best
instruction to use.

10
Assembly-Language
Math

In this chapter, you’ll learn how your Apple adds, subtracts, multiplies,
and divides. The Apple lie or Apple He can handle many kinds of num
bers—including binary, decimal, hexadecimal, signed, and unsigned
numbers, as well as binary-coded decimal numbers and floating-point
decimal numbers. In this chapter, we’re going to look at each of these
types of numbers.

To understand how your computer works with numbers, it is essen
tial to have a fairly good understanding of the busiest flag in the
6502B/65C02 microprocessor chip: the carry flag of the 6502B/65C02’s
processor status register, discussed briefly in Chapter 3.

A Close Look at the Carry Bit

The best way to get a close-up view of how the carry bit works is to
examine it through an “electronic microscope”—that is, at the bit level.

193

194 Apple Roots

HEXADECIMAL BINARY
$04 0100

+ $01 + 0001

$05 0101

$08 1000
+ $03 + 0011

$0B 1011

Figure 10-1. Adding without a carry in the hex and binary systems

Figure 10-1 compares two 4-bit addition problems, one carried out
using hexadecimal numbers and the other done with binary numbers.
You can see that neither addition operation results in a carry; no carry
is generated in either binary or hexadecimal notation.

Figure 10-2 illustrates two more addition problems, using larger (8-
bit) numbers. The first of these two problems doesn’t generate a carry,
but the second one does. Note that the sum in the second problem is a
9-bit number — 1 1000 1100 in binary, or 18C in hexadecimal notation.

HEXADECIMAL BINARY
$8E 1000 1110

+ $23 + 0010 0011

$B1 1011 0001

$8D 1000 1101
$FF m i m i

$018C (1) 1000 1100

Figure 10-2. Two more addition problems in hex and binary

Assembly-Language Math 195

Program 10-1 is an assembly-language program that will perform
the second addition problem in Figure 10*2.

Program 10-1
ADDNCARRY
8-Bit Addition With a Carry
1 *
2 * ADDNCARRY
3 *
4 ORGS8000
5 *
6 CLD
7 CLC
8 LDA #$8D
9 ADC #$FF

10 STA $ FB
11 RTS

Type Program 10-1, assemble it, and then run it using your Apple’s
machine-language monitor. Then use your monitor to take a look at the
contents of memory location $FB: just type the address FB, and you
will see a line something like this:

00FB- 8 C

That line will show you that memory address $FB now holds the
number $8C. That isn’t the sum of the numbers $8D and $FF, but it’s
close. In hexadecimal arithmetic, the sum of $8D and $FF is $18C —
exactly the sum we got, plus a carry. But where is the carry? The miss
ing carry must be tucked away in the carry bit of your computer’s pro
cessor status register.

Looking for a Bit in a Haystack_______________________

Looking for a carry bit inside an Apple may seem like looking for a
needle in a haystack, but finding a carry bit really isn’t too hard once
you know where to look. One way to locate the carry that’s missing from
the ADDNCARRY program listed above, for example, is by the inser
tion of a few additional lines into the ADDNCARRY program. Program
10-2 is an expanded version of the program, with those extra lines
inserted.

196 Apple Roots

Program 10-2
ADDNCARRY2
Addition With a Carry (Improved Version)

1 *
2 * ADDNCARRY2
3 *
4 ORG $8000
5 *
6 CLD
7 CLC
8 LDA #$8D
9 ADC #$ F F

10 STA $ FB
11 LDA #0
12 ROL A
13 STA $ FC
14 RTS

In the lines that are added to the ADDNCARRY program in Pro
gram 10-2, the accumulator is cleared and the bit-shifting operator
ROL is then used to rotate the P register’s carry bit into the accumula
tor. Next the contents of the accumulator are deposited into memory
register $FC using an ordinary STA instruction. If this routine works,
it means that we’ve found our missing carry bit.

To see whether the program works, you should now type it, assemble
it, and run it. Then you can peek into memory addresses $FB and $FC
using your machine-language monitor to see whether the calculation in
the ADDNCARRY program resulted in a carry. Here, in Apple II moni
tor format, is what those two registers should contain:

0 0 FB- 8 C 01

When the line shown appears on your monitor screen, it tells you that
memory address $FB once again holds the number $8C (the result of
our ADDNCARRY calculation, without its carry) and that the carry
resulting from the calculation now resides in memory register $00FC.

A 16-Bit Addition Program

Program 10-3, entitled ADD 16, will add two 16-bit numbers. The same
principles used in this program can also be used to write programs that
will add numbers having 24 bits, 32 bits, and more.

Assembly-Language Math 197

Program 10-3
ADD 16
A 16-Bit Addition Program

1 *
2 *ADD16
3 *
4 *THIS PROGRAM ADOS A 16- BI T NUMBER IN $ FB AND $FC
5 *T0 A 1 6 - B I T NUMBER IN $ FD AND $FE
6 *AND DEPOSITS THE RESULTS IN $0300 AND $0301
7 *
8 ORG $8000
9 *

10 CLD
11 CLC
12 LDA $ FB;REM LOW HALF OF 1 6 - BI T NUMBER IN $ FB AND $FC
13 ADC $FD;REM LOW HALF OF 16- BI T NUMBER IN $ FD AND $FE
14 STA $0300 ; LOW BYTE OF SUM
15 LDA $ FC ; REM HIGH HALF OF 16- BI T NUMBER IN $FB AND $FC
16 ADC $ FE ; REM HIGH HALF OF 16- BI T NUMBER IN $ FD AND $ FE
17 STA $0301 ; HIGH BYTE OF SUM
18 RTS

When you look at this program, remember that your Apple computer
stores 16-bit numbers with the low-order byte first and the high-order
byte second—the reverse of what you might expect. Once you under
stand this characteristic of all 6502/6502B/65C02-based computers, 16-
bit binary addition isn’t hard to understand.

In this program, we first clear the carry flag of the P register. Next
we add the low byte of a 16-bit number in $FB and $FC to the low byte
of a 16-bit number in $FD and $FE.

The result of this half of our calculation is then placed in memory
address $0300. If there is a carry, the P register’s carry bit will be set
automatically.

In the second half of the program, the high byte of the number in
$FB and $FC is added to the high byte of the number in $FD and $FE.
If the P register’s carry bit has been set as a result of the preceding
addition operation, a carry will also be added to the high bytes of the
two numbers. If the carry bit is clear, there will be no carry.

When this half of our calculation has been completed, its result is
deposited into memory address $0301. Finally, the results of our com
pleted addition problem are stored (low byte first) in memory addresses
$0300 and $0301.

198 Apple Roots

16-Bit Subtraction

Program 10*4 illustrates a 16-bit subtraction program.

Program 10-4
SUB 16
A 16-Bit Subtraction Program

1 *

2 *SUB16
3 *
4 *THIS PROGRAM SUBTRACTS A 1 6 - B I T NUMBER IN $FB AND $FC
5 *FR0M A 1 6 - BI T NUMBER IN $FD AND $ FE
6 *AND DEPOSITS THE RESULTS IN $0300 AND $0301
7 *
8 ORG $8000
9 *

10 CLD
11 SEC ; REM SET CARRY
12 LDA $FD;REM LOW HALF OF 1 6 - BI T NUMBER IN $ FD AND $ FE
13 SBC $FB;REM LOW HALF OF 1 6 - BI T NUMBER IN $ FB AND $FC
14 STA $0300 ; LOW BYTE OF THE ANSWER
15 LDA $FE ; REM HIGH HALF OF 1 6 - B I T NUMBER IN $ FD AND $ FE
16 SBC $ FC ; REM HIGH HALF OF 1 6 - B I T NUMBER IN $ FB AND $FC
17 STA $0301 ; HIGH BYTE OF THE ANSWER
18 RTS

Since subtraction is the exact opposite of addition, the carry flag is set,
rather than cleared, before a subtraction operation is performed in
6502B/65C02 binary arithmetic. In subtraction, the carry flag is
treated as a borrow, not a carry, and it must therefore be set—rather
than cleared—so that if a borrow is necessary, there will be a value to
borrow from.

After the carry bit is set, a 6502B/65C02 subtraction problem is
quite straightforward. In our sample problem, the 16-bit number in
$FB and $FC is subtracted, low byte first, from the 16-bit number in
$FD and $FE. The result of the problem—including, if necessary, a
borrow from the high byte—is then stored in memory addresses $0300
and $0301, low byte first.

Binary Multiplication

Binary numbers are multiplied the same way as decimal numbers.
Figure 10-3 is an example of binary multiplication. Unfortunately,
there are no 6502B/65C02 assembly-language instructions for multipli
cation or division. To multiply a pair of numbers using 6502B/65C02

Assembly-Language Math 199

0110 ($06)
x 0101 ($05)

0110
0000

0110
0000

0011110 ($1E)

Figure 10-3. An example of binary multiplication

assembly language, you have to perform a series of addition operations.
To divide numbers, you have to perform subtraction sequences.

If you look closely at the multiplication problem in Figure 10-3, you
will see that it isn’t difficult to split a multiplication problem into a
series of addition problems. In the example, the binary number 0110 is
first multiplied by 1. Then the result of this operation—also 0110, of
course—is written down.

Next, 0110 is multiplied by 0. The result of that operation—a string
of 0’s —is also shifted one space to the left and written down. Then 0110
is multiplied by 1 again and the result is again shifted left and written
down. Finally, another multiplication by 0 results in another string of
0’s, which are also shifted left and noted.

Finally, all the partial products of our problem are added up, just as
they would be in a conventional multiplication problem. The result of
this addition, as you can see, is the final product $1E.

This multiplication technique works well, but it’s really an arbitrary
method. Why, for example, did we shift each partial product in this
problem to the left before writing it down? We could have accomplished
the same result by shifting the partial product above it to the right
before adding.

In 6502B/65C02 multiplication, that’s exactly what’s often done;
instead of shifting each partial product to the left before storing it in
memory, many 6502B/65C02 multiplication algorithms shift the pre
ceding partial product to the right before adding it to the new one.

Program 10*5 is a program that shows you this method.

200 Apple Roots

Program 10-5
MULT16
A 16-Bit Multiplication Program

1 *
2 *MULT16
3 *
4 MPR EQU $ FD M U L T I P L I E R
5 MPD1 EQU $ FE MU L T I P L I C A N D
6 MPD2 EQU $0300 MEW MULTIPLICAND AFTER 8 SHIFTS
7 PRODL EQU $0301 ;L0W BYTE OF PRODUCT
8 PRODH EQU $0302 ;HIGH BYTE OF PRODUCT
9 *

10 ORG $8000
11 *
12 *THESE ARE THE NUMBERS WE WILL MULTIPLY
13 *
14 LDA #250
15 STA MPR
16 LDA #2
17 STA MPD1
18 *
19 MULT CLD
20 CLC
21 LDA #0 ; CLEAR ACCUMULATOR
22 STA MPD2 ;CLEAR ADDRESS FOR SHIFTED MULTIPLICAND
23 STA PRODH ; CLEAR HIGH BYTE OF PRODUCT ADDRESS
24 STA PRODL ; CLEAR LOW BYTE OF PRODUCT. ADDRESS
25 LDX #8 ; WE WILL USE THE X REGISTER AS A COUNTER
26 LOOP LSR MPR ; S H I F T MULTIPLIER RIGHT; LSB DROPS INTO

CARRY BIT
27 BCC NOADD ; TEST CARRY B I T ; IF ZERO, BRANCH TO NOADD
28 LDA PRODH
29 CLC
30 ADC MPD1 ; AD D HIGH BYTE OF PRODUCT TO MULTIPLICAND
31 STA PRODH ; RESULT IS NEW HIGH BYTE OF PRODUCT
32 LDA PRODL ; LOAD ACCUMULATOR WITH LOW BYTE OF PRODUCT
33 ADC MPD2 ; ADD HIGH PART OF MULTIPLICAND
34 STA PRODL ; RESULT IS NEW LOW BYTE OF PRODUCT
35 NOADD ASL MPD1 ; S H I F T MULTIPLICAND LE F T ; BIT 7 DROPS

INTO CARRY
36 ROL MPD2 ; ROT ATE CARRY BIT INTO BIT 7 OF MPD1
37 DEX ; DECREMENT CONTENTS OF X REGISTER
38 BNE LOOP ; I F RESULT I S N ' T ZERO, JUMP BACK TO LOOP
39 RTS

As you can see, 8-bit binary multiplication isn’t exactly a snap.
There’s a lot of left and right bit-shifting involved, and it’s hard to keep
track of. In Program 10-5, the most difficult manipulation to follow is
probably the one involving the multiplicand (MPD1 and MPD2). The
multiplicand is only an 8-bit value, but it’s treated as a 16-bit value
because it keeps getting shifted to the left; and while it is moving, it
takes a 16-bit address (actually two 8-bit addresses) to hold it.

Assembly-Language Math 201

To see for yourself how the program works, type it on your keyboard
and assemble it. Then use the G command of your monitor to execute it.
While you’re still in the monitor mode, you can look at the contents of
memory addresses $0301 and $0302. These two registers should now
hold the number $01F4 (low byte first). That’s the hex equivalent of the
decimal number 500, which is, of course, the product of the decimal
numbers 2 and 250—the problem that our program was supposed to
multiply.

An Improved Multiplication Program

Although Program 10-5 works well, it isn’t the only 16-bit multiplica
tion program available; in fact, it isn’t even a very good one. There are
many algorithms for binary multiplication, and some of them are short
er and more efficient than the one we just executed. Program 10-6, for
example, is considerably shorter and therefore is both more memory-
efficient and faster-running. One of the best features of this improved
multiplication program is that it uses the 6502B/65C02’s accumulator,
rather than a memory address, for temporary storage of the problem’s
results.

Program 10-6
MULT16B
An Improved 16-Bit Multiplication Program
1 *
2 * MULT16B
3 * (AN IMPROVED 1 6 - B I T MULTIPLICATION PROGRAM)
4 *
5 PRODL EQU $ FD
6 PRODH EQU $FE
7 MPR EQU $0300
8 MPD EQU $0301
9 *

10 ORG $8000
11 *

12 VALUES LDA #10
13 STA MPR
14 LDA #10
15 STA MPD
16 *
17 LDA #0
18 STA PRODH
19 LDX #8
20 LOOP LSR MPR
21 BCC NOADD
22 CLC
23 ADC MPD

202 Apple Roots

24 NOADD ROR A
25 ROR PRODH
26 DEX
27 BN E LOOP
28 STA PRODL
29 RTS

You may want to test out the improved multiplication capabilities of
Program 10-6 the same way that we tested Program 10*5: execute it
using your machine-language monitor, and then use your monitor to
look at the results.

You can experiment with these two multiplication problems as much
as you like, trying out different values and seeing how those values are
processed in each program.

However, the best way to become intimately familiar with how binary
multiplication works is to do a few problems by hand, using pencil and
paper. If you work enough binary multiplication problems on paper,
you’ll soon understand the principles of 6502B/65C02 multiplication.

Multiprecision Binary Division

Earlier in this chapter, we demonstrated that subtraction is reverse
addition. Similarly, division is nothing but reverse multiplication. We
also know that the 6502B/65C02 chip, which has no specific instructions
for multiplying numbers, also has no instructions for dividing numbers.

Still, it is possible to perform division—even multiple-precision long
division—using instructions that are available to the 6502B/65C02
microprocessor. The 6502B/65C02 chip can multiply numbers if the
multiplication problems presented to it are broken down into sequences
of addition problems. In the same way, the 6502B/65C02 chip can divide
numbers, as long as the division problems presented to it are broken
down into sequences of subtraction problems.

Program 10-7, for example, is a routine designed to divide one
number by another number by breaking the division process down into
a series of subtraction routines. During the execution of Program 10-7.
the high part of the dividend will be stored in the accumulator and the
low part of the dividend will be stored in a variable called DVDL.

The program contains a lot of shifting, rotating, subtracting, and
decrementing of the X register. When the main body of the program
ends, the quotient will be stored in a variable labeled QUOT, and the
quotient’s remainder will be in the accumulator. Then, in line 38, the

Assembly-Language Math 203

remainder will be moved out of the accumulator and into a variable
called RMDR. An RTS instruction will end the program.

Program 10-7
DIV8.16
A Binary Long-Division Program

1
2 * DI V8. 16
3 *
4 0RG $8000
5
6 DVDH EQU $ F D ; LOW PART OF DIVIDEND
7 DVDL EQU $ F E ; HIGH PART OF DIVIDEND
8 QU0T EQU $0300 ; QUOTI ENT
9 DIVS EQU $0301 ; DI VI S0R

10 RMDR EQU $0302 REMAINDER
11
12 LDA #$1C ; J UST A SAMPLE VALUE
13 STA DVDL
14 LDA #$02 ; TH E DIVIDEND IS NOW $021C
15 STA DVDH
16 LDA #$05 ; ANOTHER SAMPLE VALUE
17 STA DIVS ; WE' RE DIVIDING BY 5
18
19 LDA DVDH ; ACCUMULATOR WILL HOLD DVDH
20 LDX #08 ; FOR AN 8 - B I T DIVISOR
21 SEC
22 SBC DIVS
23 DL00P PHP ; SAVE P REGISTER (ROL & ASL
24 ROL QUOT
25 ASL DVDL
26 ROL A
27 PLP ; RESTORE P REGISTER
28 BCC ADDIT
29 SBC DIVS
30 JMP NEXT
31 ADDIT ADC DIVS
32 NEXT DEX
33 BN E DLOOP
34 BCS FINI
35 ADC DIVS
36 CLC
37 F IN I ROL QUOT
38 STA RMDR
39 RTS

Running the Program

Program 10*7 can be used to divide any unsigned 16-bit number by any
unsigned 8-bit number. As written, it divides the hexadecimal number
$021C (540 in decimal notation) by 5. The quotient is stored in memory

204 Apple Roots

register $0300, and the remainder, if any, is stored in memory register
$0302.

Type the program, assemble it, and run it, and then use your moni
tor to inspect the contents of memory addresses $0300 and $0302.
Address $0300 should now hold the hexadecimal number $6C (108 in
decimal notation), and there should be a 0 in address $0302, since the
quotient of 540 divided by 5 is 108, with no remainder.

Not the Ultimate Division Program

As you can see, it’s even more difficult to write a division routine for an
Apple than it is to write an Apple multiplication program. In fact, writ
ing just about any kind of multiple-precision math program for an 8-bit
computer is usually more trouble than it’s worth. When you have to
write a program in which just a few calculations have to be made, you
can sometimes use short, simple routines such as the ones presented in
this chapter.

However, assembly language is usually not the best language to use
for writing long, complex programs that contain a lot of multiple-
precision math. If you ever have to write such a program, you might
find it worthwhile to write part of the program in assembly language
and the other p a rt—the part with all the m ath—in BASIC. That way,
you can take advantage of the excellent floating-point math package
that’s built into the BASIC interpreter in your Apple. If you can’t do
that, it might still be better to write the program in BASIC, Pascal,
COBOL, Logo, or almost any other high-level programming language
than in assembly language.

If, despite this warning, you still want to write complex math rou
tines in 6502B/65C02 assembly language, there are a few books that
may provide you with some help. One text that contains a number of
fairly complex math routines you can type is 6502 Assembly Language
Subroutines, written by Lance A. Leventhal and Winthrop Saville and
published by Osborne/McGraw-Hill. There are also quite a few type-
and-run math routines in some of the other manuals and texts listed in
this book’s bibliography.

Signed Numbers

To represent a signed number in binary arithmetic, all you have to do is
let the far-left bit (bit 7) represent a positive or negative sign. In signed
binary arithmetic, if bit 7 of a number is 0, the number is positive; if bit
7 is a 1, the number is negative.

Assembly-Language Math 205

Obviously, if you use one bit of an 8-bit number to represent its sign,
you no longer have an 8-bit number. What you then have is a 7-bit
num ber—or, if you want to express it another way, you have a signed
number that can represent values from —128 to +127 instead of from 0
to 255.

Signed Binary Addition
It takes more than the redesignation of a bit to turn unsigned binary
arithmetic operations into signed binary arithmetic operations. Con
sider, for example, what we would get if we tried to add the numbers +5
and —4 by doing nothing more than using bit 7 as a sign.

0000 0101 (+5)
+ 1000 0100 (-4)

1000 1001 (-9)

The answer is wrong. The answer should be +1.
The reason we got the wrong answer is that we tried to solve the

problem without using a concept that is fundamental to the use of
signed binary arithmetic: the concept of complements.

Complements are used in signed binary arithmetic because negative
numbers are complements of positive numbers, and complements of
numbers are very easy to calculate in binary arithmetic. In binary
math, the complement of a 0 is a 1, and the complement of a 1 is a 0.

One’s and Two’s Complement Addition
It is reasonable to assume that the negative complement of a positive
binary number could be arrived at by complementing each 0 in the
number to a 1 and each 1 to a 0 (except for bit 7, of course, which must
be used to represent the number’s sign). This technique of calculating
the complement of a number by flipping its bits from 0 to 1 and from 1
to 0 has a name in assembly-language circles. It’s called one’s complement

To see if the one’s complement technique works, let’s try using it to
add two signed numbers, say +8 and —5.

0000 1000 (+ 8)
+ 1111 1010 (—5) (one’s complement)

0000 0010 (+2) (plus carry)

That’s wrong, too! The answer should be +3. That takes us back to the
drawing board. One’s complement arithmetic doesn’t work.

Fortunately, there’s another technique that does work. It’s called

206 Apple Roots

two’s complement. To use this technique, first calculate the one’s com
plement of a positive number. Then simply add one. That will give you
the two’s complement—the true complement—of the number. Then you
can use the conventional rules of binary math on signed numbers.

Here are two examples of two’s complement addition.

0000 0101 (+5)
+ 1111 1000 (-8) (two’s complement)

1111 1101 (-3)

1111 1011 (—5) (two’s complement)
+ 0000 1000 (+8)

0000 0011 (+3) (plus carry)

A Few Examples

It isn’t easy to explain why the two’s complement method works, but
when you’ve worked with signed binary numbers for a while, you begin
to get a feel for them. It helps to remember that the highest bit of a
binary number is always interpreted as a sign in two’s complement
notation, so a binary number with the highest bit set is always inter
preted as a negative number. Therefore, the hexadecimal number $7F,
which equates to the decimal number 127, is the highest positive
number that can be expressed in 8-bit two’s complement notation.

If you increment the hex number $7F, you’ll see why this is true. In
binary notation, $7F is written %0111 1111 (a binary number in which
the high bit is not set). If you increment $7F, though, you’ll get $80, or
%1000 0000, a number that has its high bit set and will therefore be
interpreted in 8-bit two’s complement notation as —128, not +128. Thus,
the largest positive number that can be expressed in 8-bit two’s com
plement notation is 127.

Now let’s take a look at some negative binary numbers. In two’s
complement arithmetic, negative numbers start at — 1 and work back
ward, just as negative numbers do in ordinary arithmetic. In conven
tional arithmetic, though, there’s no such number as —0, so when you
decrement a 0, what you get is not minus 0, but — 1. If you decrement
— 1 you get —2, which may look like a larger number but is really a
smaller one. (If, for example, you decrement —2, you will get —3.)

Two’s complement arithmetic works in a similar fashion. If you
decrement 0 using 8-bit two’s complement arithmetic, you’ll get $FF,
which equates to —1 in decimal notation. Decrement $FF in two’s com

Assembly-Language Math 207

plement, and you get $FE, the 8-bit signed-binary equivalent of -2 . The
decimal number - 3 is written $FD in 8-bit two’s complement notation,
and the decimal number —4 is written $FC. Keep working backward,
and you’ll eventually discover that the smallest negative number that
can be expressed in 8-bit two’s complement notation is the hexadecimal
number $80, which equates to —128 in conventional decimal numbers.

If you ever start writing programs that make use of signed binary
numbers, you’ll actually need instructions much more detailed than the
ones provided here. In this chapter, my intention is merely to introduce
you to some of the techniques that are used in programs containing
signed binary numbers.

Using the Overflow Flag
In signed binary arithmetic, when you carry out calculations using
signed numbers, the overflow (V) flag of the processor status register —
not the carry flag of the processor status register—is used to carry
numbers from one byte to another. The reason is that the carry flag of
the P register is set when there’s an overflow from bit 7 of a binary
number; but when the number is a signed number, bit 7 is the sign bit,
not part of the number. Therefore, the carry flag cannot be used to
detect a carry in an operation that involves signed numbers.

You can, however, use the overflow bit of the processor status regis
ter. The overflow bit is set when there is an overflow from bit 6, rather
than bit 7. Thus it can be used as a carry bit in arithmetic operations on
signed numbers.

As you may recall from high school algebra, the rules of adding,
subtracting, multiplying, and dividing signed numbers are rather com
plex; they vary according to the signs of the numbers that are involved
in the calculations and according to what kinds of calculations are being
performed. It should come as no surprise, then, that the rules for using
the overflow flag in calculations involving signed binary numbers are
also a little complicated. You can find them in textbooks on advanced
assembly-language programming, but they are well beyond the scope of
this chapter.

BCD (Binary-Coded Decimal) Numbers

In BCD notation, the digits 0 through 9 are expressed just as they are in
conventional binary notation, but the hexadecimal digits $A through $F
(%1010 through %1111 in binary) are not used. Long numbers, therefore,

208 Apple Roots

must be represented differently in BCD notation than they are in con
ventional binary notation.

The decimal number 1258, for example, would be written in BCD
notation as

1 2 5 8
0000 0001 0000 0002 0000 0101 0000 1000

In conventional binary notation, the same number would be written
as

$0 $4 $E $A
0000 0100 1110 1010

which equates to $04EA, or the hexadecimal equivalent of 1258.
BCD notation is often used in bookkeeping and accounting programs

because BCD arithmetic, unlike straight binary arithmetic, always
yields results that are 100% accurate. BCD numbers are also sometimes
used when it is desirable to display them instantly, digit by digit, as
they are being used (for example, when numbers are being used for
onscreen scorekeeping in a game program).

The main disadvantage of BCD numbers is that they tend to be dif
ficult to work with. When you use BCD numbers, you must be
extremely careful with signs, decimal points, and carry operations. You
must also decide whether you want to use an 8-bit byte for each digit
(which wastes memory, since it really only takes four bits to encode a
BCD digit) or whether to pack two digits into each byte, which saves
memory but consumes processing time.

Floating-Point Numbers

Floating-point numbers, as you may know, are numbers that enable com
puters and calculators to perform mathematical calculations on decimal
values and fractions. Most calculators use floating-point numbers to
perform mathematical calculations, and so does the BASIC interpreter
that’s built into your Apple. In the Apple’s floating-point package, num
bers are broken into three parts—an exponent, a mantissa, and a sign.
These parts are stored in a block of memory called a floating-point accu
mulator, which resides in memory registers $61 to $66. There’s another
floating-point accumulator in memory registers $69 through $6E.

Unfortunately for assembly-language programmers, it’s extremely
difficult to understand how floating-point routines work, and it’s even

Assembly-Language Math 209

more difficult to write them. It’s nice to know, then, that there’s a very
good floating-point package built right into your Apple. To use the
Apple floating-point package in an assembly-language program, all you
have to do is write the program partly in assembly language and partly
in BASIC and then intermix the BASIC and assembly-language sec
tions of your program using the USR(X) function that was explained in
Chapter 5. When you write a program in this fashion, you can use
assembly language for the portions of the program that require high
speed or high performance—and for portions of the program that
require high-precision math, you can use BASIC to access your comput
er’s built-in floating-point package. (You can also access the built-in
floating-point routines from assembly-language programs, provided you
know how to convert a floating-point number to a binary number, and
vice versa, but that process is a bit beyond the scope of this chapter.)

Since the floating-point package exists and is easy to use, you may
never need to know most of the programming techniques described in
this chapter. An understanding of how they work, however, will defi
nitely make you a better Apple assembly-language programmer.

Furthermore, you have to know at least the fundamentals of
6502B/65C02 arithmetic if you want to become a good Apple assembly-
language programmer. After all, mathematical processing, in one form
or another, really is what computer programming is all about. Since
your Apple adds, subtracts, compares, and bit-shifts its way through
every program it processes, it would be difficult to write Apple pro
grams for any length of time without knowing at least something about
binary addition, subtraction, multiplication, and division. So even
though you may never have to write an assembly-language routine that
will perform long division on signed numbers, accurate to 17 decimal
places, chances are pretty good that you’ll eventually have to use some
arithmetic operations in at least some of the programs that you write.
So before you move on to the next chapter, make sure that you under
stand this one fairly well. You’ll be glad you did.

Memory Magic

11
The engineers who designed the Apple lie and the Apple He accom
plished quite a feat. They crammed more than 128K of memory into a
pair of 64K machines. The secret behind this remarkable operation can
be summed up in one hyphenated word: bank-switching.

Bank-switching, you will recall from Chapter 3, is based on the con
cept that two blocks of memory can share the same address space, as
long as they do not try to occupy that space at the same time. This is the
same concept families use when they share a vacation condominium but
use it at different times.When bank-switching capabilities are built into
a computer, various blocks of RAM and ROM are assigned identical
addresses, and special switching facilities are then provided so that
these blocks of memory can be switched into and out of the address
space they share. Program designers can then move specific blocks of
memory in and out of the address space that is available, in accordance
with the changing needs of their programs.

In Apple computers, bank-switching is usually accomplished with
the aid of special electronic circuits called soft switches. A soft switch,
as its name implies, is a microcomputer circuit that can be used just

211

212 Apple Roots

like a switch. When a computer is designed to use bank-switching for
memory management, soft switches are built into the machine and can
be used in programs to determine which blocks of bank-switched
memory will occupy specific addresses. Soft switches can also be used to
protect certain blocks of memory by making it possible to read those
blocks of memory but impossible to write to them.

Memory: Some Basic Concepts

In order to understand how bank-switching works, it helps to have in
mind a few basic concepts of memory management. Here are some of
the principles of microcomputer memory mapping.

The Difference a “K” Makes

The letter K, an abbreviation of the word kilobyte, stands for the
decimal number 1024. The decimal number 1024 equates to the hexa
decimal number $400. A kilobyte derives its name from the fact that it
is very close to the decimal value 1000, which has long been abbreviated
kilo (and sometimes “K”). A 64K computer, then, is one that can address
65,536 (1024 X 64) bytes of memory. A 128K computer has twice that
memory capacity: 131,072 (1024 X 128) bytes of memory.

The “Page” Concept

In the world of 8-bit microcomputers, a block of 256 memory addresses
(usually numbered from 0 to 255) is called a page. A page is a very
convenient unit of measurement to use when you are dealing with
microcomputers, since the decimal numbers 0 to 255 equate to the hexa
decimal numbers $00 to $FF and can therefore be expressed as the first
two digits of a four-digit hexadecimal address. In an Apple lie or He
computer, Page Zero consists of memory addresses $00 through $FF,
Page One includes memory addresses $0100 through $01FF, and so on.
The highest memory page in an Apple II-series computer is Page $FF,
which includes memory addresses $FF00 through $FFFF.

In Apple graphics (and text), the word page can also refer to a seg
ment of memory that is used for a screen display. This is a completely
different meaning of the word page from the one we’re considering now.
The context in which the word is used will usually make its meaning
clear.

Memory Magic 213

Bank-Switching

Figure 11-1 is a memory map that shows how bank-switching works in
the Apple lie. An Apple lie equipped with an expanded 80-column text
card uses exactly the same memory map. In Figure 11-1, there are two

$FFFF

Main
Memory

Mam
Bank-

Switched
RAM

$E000

$D000

$C100
$COOO

$D000
Bank 1

$FFFF

Auxiliary
Memory

$D000
Bank 2

Auxiliary
Bank-

Switched
RAM

$D000
Bank 1

$FFFF

$F800

Bank-Switched
ROM

$D000
Bank 2

M on ito r

Firmware

Applesoft
BASIC

Interpreter

ROM Addresses

Hardware Addresses

Main
RAM

$0200

$0100

$0000

Stack

Page 0

$0200

$0100

$0000

Auxiliary
RAM

Aux. Stack

Aux. Page 0

Figure 11-1. Bank-switching the Apple lie and the fully expanded Apple He

214 Apple Roots

long ribbons, one labeled “Main RAM” and the other labeled “Auxiliary
RAM.” These two ribbons represent the 128 kilobytes of memory that
are built into the Apple lie and are also available in a fully expanded
Apple He.

Examine the memory addresses that are printed alongside the
“Main Memory” and “Auxiliary Memory” columns in Figure 11-1, and
you will see that both columns use the same series of addresses: the 64K
of address space that extends from $0000 to $FFFF (or from 0 to 65,535
in decimal notation). To the right of these two columns there is a shorter
column, labeled “Bank-Switched ROM,” that extends from memory
address $C100 through memory address $FFFF.

With the help of the soft switches built into the Apple lie and the
Apple lie, it is possible to write assembly-language programs that use
both the main and auxiliary banks that are available in an Apple lie or
an expanded Apple He. With the help of these soft switches, almost all
of the 128K of memory space on the Apple Ilc/IIe memory map can be
used as RAM. Alternatively, in programs that make use of Applesoft
BASIC or the built-in Apple Ilc/IIe monitor, ROM can be switched into
the address space ranging from $D000 to $FFFF, and both Applesoft
BASIC and the built-in Apple monitor can then be used in programs.

Main and Auxiliary RAM

The 48K block of memory that extends from $0000 to $BFFF can be
used as either main RAM or auxiliary RAM. Furthermore, it is possible
to write assembly-language programs that can read from one of these
data banks and write to the other. Therefore, a program that is stored
in one memory space can read and write data that is stored in the other.

There are two soft switches that can be used to switch back and
forth between the main and auxiliary memory banks in assembly-
language programs. One of these switches, labeled RAMRD, is used to
select main or auxiliary memory for reading. The other switch, labeled
RAMWRT, selects main or auxiliary memory for writing.

The RAMRD switch occupies three memory registers: $C002, $C003,
and $C013. The RAMWRT switch also occupies three memory regis
ters: $C004, $C005, and $C014.

Storing any value in the RAMRD soft switch at $C002 turns the
RAMRD switch off and selects main memory for reading. Storing any
value in the RAMRD soft switch at $C003 turns the switch on and
selects auxiliary memory for reading.

Memory Magic 215

Placing any value in the RAMWRT soft switch at $C004 turns the
RAMWRT switch off and selects main memory for writing. Placing any
value in the RAMWRT soft switch at $C005 turns the switch on and
selects auxiliary memory for writing.

By reading the values of memory registers $C013 and $C014, a pro
grammer can check on the status of either the RAMRD switch or the
RAMWRT switch. If register $C013 has its high bit set, then the
RAMRD switch is on and auxiliary memory has been selected for read
ing. If register $C014 has its high bit set, then the RAMWRT switch is
on and auxiliary memory has been selected for writing.

The functions of the RAMRD and RAMWRT switches—along with
the functions of several other soft switches—are listed in Table 11-3.

Main and Auxiliary Bank-Switched
Memory

Another block of memory that can be controlled by bank-switching is the
segment that extends from $D000 to $FFFF. By setting and clearing
soft switches in various combinations, a programmer can use this
memory bank as main memory, auxiliary memory, or ROM. Further
more, the block of memory that extends from $D000 to $DFFF can be
subdivided into a pair of memory blocks. These blocks are labeled
“$D000 Bank 1” and “$D000 Bank 2” in Figure 11-1. The $D000-to-
$DFFF memory block can thus be used in five different ways: as Main
Memory Bank 1, Main Memory Bank 2, Auxiliary Memory Bank 1,
Auxiliary Memory Bank 2, and ROM.

The entire block of memory that extends from $D000 to $FFFF can
be controlled with a series of soft switches located at memory addresses
$C080 to $C08F. With the help of these switches, it is possible to write
assembly-language programs that will read from the ROM that extends
from $D000 to $FFFF while writing to the RAM (either the main RAM
or the auxiliary RAM) that resides in the same block of memory. The
same series of soft switches also controls whether $D000 Bank 1 or
$D000 Bank 2 is selected for reading and/or writing.

Table 11-1 illustrates how the soft switches at $C080 to $C08F are
used. To use the soft switches listed in Table 11-1, it is not necessary to
write any values into them; as strange as it may seem, a programmer
has only to read the switch to turn it on. When the switch is read,
nothing has to be done with the value that is obtained, since the very act
of reading the switch sets it.

216 Apple Roots

Table 11-1. Bank-Select Soft Switches

Address Double-Read
of Switch Operation? Function

$C080
Bank 2.

N Read from RAM; no writing; use $D000

$C081
Bank 2.

Y Read from ROM; write to RAM; use $D000

$C082
Bank 2.

N Read from ROM; no writing; use $D000

$C083
Bank 2.

Y Read from and write to RAM; use $D000

$C088
Bank 1.

N Read from RAM; no writing; use $D000

$C089
Bank 1.

Y Read from ROM; write to RAM; use $D000

$C08A
Bank 1.

N Read from ROM; no writing; use $D000.
f

$C08B
Bank 1.

Y Read from and write to RAM; use $D000

Here is an example of how the switch at $C080 can be set using a
read operation:

LDA $C080

The mnemonic LDA is, of course, a “read” instruction. Under ordi
nary conditions, the instruction LDA has no effect at all on the contents
of the memory register that follows it. In the Apple Ilc/IIe, however,
memory address $C080 is one of the soft switches that are affected by
“read” instructions such as LDA. Thus, when the instruction

LDA $C080

is encountered in an Apple Ilc/IIe assembly-language program, the soft
switch at memory address $C080 will be set, and the instructions listed
for $C080 in Table 11-1 will be followed.

Double-Read Operations
When a switch is so sensitive that it can be set using what is ordinarily
a read-only command, unfortunate—even disastrous—accidents can
occur. So the engineers who designed the Apple lie and the Apple He

Memory Magic 217

built extra protection into some of the more critical soft switches at
memory locations $C080 through $C08F. To set these switches, it is
necessary to read them twice—in other words, to carry out two consec
utive “read” operations. For example, to set the switch at memory loca
tion $C083, you have to carry out a pair of operations:
LDA $C083
LOA $ C083

Other Soft Switches

In addition to the soft switches listed in Table 11-1, two other switches
are sometimes used in Apple Ilc/IIe bank-switching operations.

• A soft switch labeled RDBNK2, and located at memory address
$C011, can be read to determine whether $D000 Bank 1 or $D000
Bank 2 is in use. If bit 7 of RDBNK2 is set, Bank 2 is being used.
If bit 7 of RDBNK2 is clear, Bank 1 is being used.

• A soft switch labeled RDLCRAM, located at memory address
$C012, can be read to determine whether RAM or ROM is being
read. If bit 7 of RDLCRAM is set, RAM is being read. If bit 7 of
RDLCRAM is clear, ROM is being read.

Two Stacks and Two Zero Pages
If you look at the bottom of Figure 11-1, in memory locations $0000 to
$01FF, you will see that there are two stacks and two Zero Pages—one
pair residing in main memory and the other situated in auxiliary
memory. When the soft switches RAMRD and RAMWRT are used to
determine whether main or auxiliary memory is to be used in a pro
gram, the stack and the Zero Page that reside in the appropriate
memory bank are automatically selected. However, if you don’t want to
accept this automatic selection process, there is a soft switch that you
can use to make a manual selection of the stack and Zero Page that you
want to use in a program. This soft switch, labeled ALTZP, is made up
of three memory registers: $C008, $C009, and $C016.

Storing any value in $C008 turns the ALTZP switch off and selects
the main-memory stack and Zero Page for both reading and writing.
Storing any value in $C009 turns the switch on and selects the
auxiliary-memory stack and Zero Page for both reading and writing.

The soft switch at memory register $C016 can be used to check the
status of the ALTZP switch. If the high bit of $C016 is set, then ALTZP
is on and the alternate-memory stack and Zero Page are selected. If the
high bit of $C016 is clear, then ALTZP is off and the main-memory

218 Apple Roots

stack and Zero Page are selected.
If you use the ALTZP soft switch, you have to be careful. When the

ALTZP switch is used to change the location of Page Zero, it also
changes the location of your computer’s hardware stack—and that
change, if sloppily carried out, can wreak havoc on the program you are
running. Another potential problem is that the ALTZP switch can be
overridden by the RAMRD and the RAMWRT switches, since these two
switches automatically select which stack and Zero Page will be used in
a program. Still another possible source of trouble is your Apple’s inter
rupt handler, which can turn off the ALTZP switch without warning.

Before you can use the ALTZP switch safely, then, you need a thor
ough understanding of interrupts, stack operations, the RAMRD and
RAMWRT switches, and a few other techniques that are touched upon
only briefly in this book. If you’re a beginning-level assembly-language
programmer, you should consider not using the ALTZP switch very
often right now.

Non-Switchable Memory

The blocks of memory that extend from $C000 to $CFFF are reserved
for use by the Apple Ilc/IIe operating system and are not subject to
control by bank-switching. The contents of these blocks of memory will
be covered in greater detail in the following section.

A More Detailed Memory Map

The first section of this chapter was a very brief introduction to Apple
IIc/Apple He memory management. Now we will explore the same
topic in a little more detail by using the map that appears in Figure
11- 2.

In exploring the memory map in Figure 11-2, we’ll start at the
bottom—or, in computer jargon, in low memory—and work our way up
to the top of the Apple He/Apple He memory map. Along the way. we’ll
pause at a number of locations and take a close look at the contents of
some of the more important segments of your Apple’s memory.

Addresses $00 to $FF (Page Zero)

As pointed out earlier in this chapter, memory addresses $00 to $FF are
known collectively as the Zero Page, or Page Zero. When Page Zero is
used in a computer program, it can speed up the operation of the pro
gram. When a machine-language operand can be expressed as a Zero-

Memory Magic 219

Page address, only one byte of memory is required, rather than the two
bytes of memory required by a non-Zero-Page address. The program
can thus be written in fewer bytes and will therefore run faster.

More important, there are some addressing modes—specifically,
indirect addressing modes—that require the use of Zero-Page addresses.

$FFFF

$E000

$D000

$C100
$C000

$6000

$4000

$2000

$0C00

$0800

$0400

$0200

$0100

$0000

Main
RAM

Auxiliary
RAM

Bank-Switched
ROM

Main
Bank-

Switched
RAM

$D000
Bank 1

$FFFF

$D000
Bank 2

Auxiliary
Bank-

Switched
RAM

$D000
Bank 1

$FFFF

$F800

$D000
Bank 2

Monitor
Firmware

Applesoft
BASIC

Interpreter

ROM

Hardware Addresses

Main
RAM

HRP2*

HRP1*

Main
RAM

TLP2*

TLP1*

O.S. Addresses

Stack

Page 0

$6000

$4000

$2000

$0C00

$0800

$0400

$0200

$0100

$0000

Auxiliary
RAM

HRP2X*

HRP1X*

Auxiliary
RAM

TLP2X*

TLPlX*

Aux. Stack

Aux. Page 0 ♦For explanations of abbreviations,
see text.

Figure 11-2. Memory map of the Apple lie and the fully expanded Apple He

220 Apple Roots

Since indirect addressing modes are very powerful, most assembly-
language programs make extensive use of Page Zero.

Unfortunately, it is not always easy to find free space on Page Zero
for user-written programs. That’s because Page Zero is so useful that
the engineers who designed your computer have claimed most of it for
themselves.

• Applesoft BASIC uses Zero-Page registers $00 through $05, $0A
through $18, and most of the memory registers from $50 through
$ F 8 .

• The Apple Ilc/IIe machine-language monitor uses Zero-Page reg
isters $00 through $19 and $1E through $25.

• The ProDOS disk operating system uses Zero-Page registers $0A
through $1E. However, the ProDOS system saves the information
in registers $10 through $1E before it uses them, and it restores
the contents of those registers after they are used. In effect, then,
the only registers that ProDOS claims for its exclusive use are
$0A through $0F.

Since most of Page Zero is used by BASIC, the Apple monitor, and
ProDOS, there are only a few small blocks of Page-Zero space that are
completely free for use in user-written programs written under Pro
DOS. Table 11-2 is a list of all such Zero-Page locations.

If you use only the Zero-Page locations in Table 11*2 in your
assembly-language programs, you won’t interfere with the operation of
Applesoft BASIC, ProDOS, or your computer’s machine-language moni
tor. However, if you ever need to use more Zero-Page locations than the
ones listed in Table 11-2, you have several options:

• Make sure that your program doesn’t require the use of Applesoft
BASIC. If you write a program that is completely independent of
BASIC, it can make free use of addresses $56 through $FF—and
that’s most of Page Zero.

• Disable interrupts with an SEI instruction, and then save the con
tents of part of Page Zero in another segment of memory. You can
then use the part of Page Zero that has been saved. After you have
finished using that part of Page Zero, you can restore its original
contents with another block move. You can restore interrupts with
a CLI instruction to resume normal O.S. operations.

• With the help of the RAMRD and RAMWRT soft switches (and
other soft switches that will be mentioned later in this book), you
can write your program so that it resides in auxiliary memory.

Memory Magic 221

Table 11-2. Zero-Page Locations Available to User-Written Programs

Then you won’t have to worry about any of the main-memory Zero-
Page registers that are claimed by Applesoft, ProDOS, or your
computer’s machine-language monitor. Alternatively, you can use
the ALTZP soft switch to select the Zero Page that is located in
auxiliary memory. If you choose that procedure, please heed the
warnings about the ALTZP switch provided earlier in this chapter.

Addresses $0100 to $01FF
(Page 1: the Stack)

The stack is located in Page $01 of your computer’s memory —that is, in
memory addresses $0100 through $01FF. (A detailed explanation of the
hardware stack was presented in Chapter 5.)

In the sections of this chapter that dealt with soft and Zero-Page
addresses, we learned that there are actually two stacks in an Apple lie
and expanded Apple H e—one residing in main memory and the other
situated in aux iliary memory. Three soft switches —RAMRD,
RAMWRT and ALTZP—can be used to switch back and forth between
these two stacks during assembly-language programs. However, great
caution should be exercised when these switches are used to change the
location of the stack, since moving the stack without taking the proper
precautions can crash an assembly-language program.

Addresses $0200 to $02FF
(Page 2: the Input Buffer)

Both Applesoft BASIC and the Apple Ilc/IIe monitor use memory ad
dresses $0200 through $02FF as a keyboard-input buffer. This buffer is
used by both Applesoft BASIC and the GETLN routine that is built into
the Apple lie and the Apple lie. Since this buffer occupies a full page of

222 Apple Roots

memory—specifically, Page 2—it is 256 bytes long. In assembly-
language programs that do not require the use of input strings, this
segment of memory can be used for other purposes. If input strings are
required but will never reach a length of 256 bytes, then the upper part
of Page 2 can be used in assembly-language programs. In auxiliary
memory, the $0200-to-$02FF memory block can be used as free RAM.

Addresses $0300 to $03FF
(Page 3: Vectors and Link Addresses)

The ProDOS disk operating system and the Apple Ilc/IIe monitor use
the address space from $03F0 through $03FF for certain link addresses
and vectors. The addresses from $0300 to $03EF are generally available
to user-written assembly-language programs. In auxiliary memory, the
$0300-to-$03FF memory block can be used as free RAM.

Addresses $0400 to $07FF:
Text and Low-Resolution Page 1

The segment of memory that extends from $0400 to $07FF is the pri
mary screen display area in the Apple lie and the Apple He. When your
Apple is in 40-column text mode, the memory registers that extend
from $0400 to $07FF are used to hold the text characters that appear
on your monitor screen. When the $0400-to-$7FFF memory block is not
needed to generate screen displays, it can be used as ordinary free
RAM in assembly-language programs.

Since the $0400-to-$07FF memory bank is the main screen display
area in the Apple Ilc/IIe, it is sometimes known as Text and Low-
Resolution Page 1, or TLPl. (The word page, in this case, refers to a
display screen.)

To create an 80-column text display, the Apple Ilc/IIe ordinarily
uses two screen display areas, usually TLPl and TLP1X. Alternatively,
display areas TLP2 (Text and Low-Resolution Page 2) and TLP2X may
be used. When the Apple Ilc/IIe is in 80-column mode, it creates an
80-column screen display by interleaving whatever main-memory screen
buffer is being used with the corresponding screen buffer in auxiliary
memory. When this technique is used, every other character on the
screen comes from the main-memory screen buffer, and the characters
in between come from the auxiliary-memory screen buffer. A more
detailed explanation of how this process works will be provided in later
chapters that deal specifically with Apple graphics and video screen
displays.

Memory Magic 223

Addresses $0800 to $0BFF:
Text and Low-Resolution Page 2

As we have seen, Text and Low-Resolution Page 2 (TLP2) is an alternate
screen buffer that can be used to generate a 40-column text display.
This screen buffer is sometimes used together with TLP1 so that pro
grams can “flip” back and forth instantly between different screen dis
plays. If the $0800-to-$0BFF memory block is not needed in a program,
it can be used as free RAM.

In auxiliary memory, the screen display area that corresponds to
TLP2 is known as TLP2X. TLP2X, like TPL2, can be used as free RAM
when it is not needed for screen displays.

In addition to the text and low-resolution screen buffers described
above, four high-resolution screen buffers are also available in the Apple
lie and the expanded Apple He. Locations and descriptions of these
high-resolution screen-memory areas will be listed later in this section.

In the Apple lie and the Apple He, soft switches are used to deter
mine which area or areas of memory will be used to generate screen
displays. This set of soft switches is described in Table 11-3.

Table 11-3. How Soft Switches Are Used to Select Buffers for Screen Displays

Name
of Switch

Location
of Switch How Switch Is Used

RAMRD $C002 Writing any value to $C002 turns RAMRD off and
selects main memory for reading.

RAMRD $C003 Writing any value to $C003 turns RAMRD on and
selects auxiliary memory for reading.

RAMWRT $C004 Writing any value to $C004 turns RAMWRT off and
selects main memory for writing.

RAMWRT $C005 Writing any value to $C005 turns RAMWRT on and
selects auxiliary memory for writing.

HIRES $C056 Writing any value to $C056 turns HIRES off. When
HIRES is off, a text and low-resolution page (TLP) is
displayed, and PAGE2 switches between TLP1 and TLP2.

HIRES $C057 Writing any value to $C057 turns HIRES on. When
HIRES is on, a high-resolution page is displayed and
PAGE2 switches between HRP1 and HRP2.

80STORE $C000 Writing any value to $C000 turns 80STORE off. When
80STORE is off, RAMRD and RAMWRT will deter
mine whether the display space in main or auxiliary
memory will be used for reading and writing. PAGE2
will select pages for display, but not for reading and
writing.

224 Apple Roots

Table 11-3. How Soft Switches Are Used to Select Buffers for Screen Displays
(continued)

Name Location
of Switch of Switch How Switch Is Used
80STORE $C001 Writing any value to $C001 turns 80STORE on. When

80STORE is on, PAGE2 will switch between TLP1 and
TLP1X (if HIRES is off) or between HRP1 and HRP1X
(if HIRES is on). Also, RAMRD and RAMWRT will be
overridden with respect to screen displays, and pages
selected by HIRES and PAGE2 will be displayed.

PAGE 2 $C054 Writing any value to $C054 turns PAGE2 off When
PAGE2 is off and HIRES is off, TLP1 will be selected.
When PAGE2 is off and HIRES is on, HRP1 will be
selected. If 80STORE is off, RAMRD and RAMWRT
will determine whether the display space in main or
auxiliary memory will be used for reading and writ
ing, and PAGE2 will select pages for display, but not
for reading and writing. If 80STORE is on, then
RAMRD and RAMWRT will be overridden with
respect to screen displays, and pages selected by
HIRES and PAGE2 will be displayed.

PAGE2 $C055 Writing any value to $C055 turns PAGE2 on. When
PAGE2 is on and HIRES is off, TLP2 will be selected.
When PAGE2 is on and HIRES is on, HRP2 will be
selected. If 80STORE is off, RAMRD and RAMWRT
will determine whether the display space in main or
auxiliary memory will be used for reading and writ
ing, and PAGE2 will select pages for display, but not
for reading and writing. If 80STORE is on, then
RAMRD and RAMWRT will be overridden with
respect to screen displays, and pages selected by
HIRES and PAGE2 will be displayed.

RDRAM RD $C013 Bit 7 of $C013 can be read to determine whether main
(0) or auxiliary (1) memory is in use for reading.

RDRAMWRT $C014 Bit 7 of $C014 can be read to determine whether main
(0) or auxiliary (1) memory is in use for writing.

RDHIRES $C01D Bit 7 or $C01D can be read to determine whether
HIRES is on (1) or off (0).

RD80STORE $C018 Bit 7 or $C018 can be read to determine whether
80STORE is on (D or off (0).

RDPAGE2 $C01C Bit 7 or $C01C can be read to determine whether
PAGE2 is on (1) or off (0).

Memory Magic 225

Addresses $0C00 to $1FFF:
Free RAM

The memory registers that extend from $0C00 to $1FFF are free RAM
and can be used for any purpose in user-written programs. Since it is
considered good programming practice to separate the memory areas
that are used for programs from memory areas that are used for data,
the $0C00-to-$lFFF (memory block) is often used for data tables in
Apple Ilc/IIe programs. The larger block of free RAM that extends
from $6000 to $BFFF (or from $2000 or $4000 to $BFFF, if high-
resolution screen graphics are not needed) can then be used for storing
executable-code portions of machine-language programs.

In auxiliary memory, just as in main memory, the $0C00-to-$lFFF
memory bank is available for use as free RAM.

Addresses $2000 to $5FFF:
High-Resolution Pages 1 and 2

Memory block HRP1, which extends from $2000 to $3FFF, is the
screen-memory buffer that is used most often to create high-resolution
graphics displays. Many high-resolution graphics programs also make
use of screen memory area HRP2, which extends from $4000 to $5FFF.
When these blocks of memory are not needed to generate screen dis
plays, they can be used as free RAM.

In auxiliary memory, the memory block that extends from $2000 to
$3FFF is called HRP1X, and the memory block that extends from
$4000 to $5FFF is called HRP2X. These memory banks can also be
used as free RAM when they are not needed to generate screen displays.

The Apple Ilc/IIe can generate double high-resolution color graphics
by interleaving the high-resolution screen buffers in main memory with
their corresponding buffers in auxiliary memory. More about double
high-resolution graphics will be provided in the graphics chapters of
this book.

Addresses $6000 to $BFFF:
Free RAM

As mentioned earlier in this chapter, the memory bank that extends
from $6000 to $BFFF in main memory is called main RAM, and the
48K bank that extends from $6000 to $BFFF in auxiliary memory is

226 Apple Roots

called auxiliary RAM. These are the primary RAM banks in the Apple
lie and the Apple He. Both banks are available for use in user-written
programs.

Addresses $C000 to $C0FF:
Hardware Addresses

The memory registers that extend from $C000 to $C0FF are used for
five different types of hardware functions:

• The data input can be read to determine whether a key on the
keyboard has been pressed and what key that is.

• A set of flag inputs can be used to read hand controllers, the OPEN-
APPLE and CLOSED-APPLE keys on the Apple Ilc/IIe keyboard, and
the button switch on the Apple mouse.

• A pair of strobe outputs can determine whether a key has been
pressed and what key that is; they can also read game paddles.

• A toggle switch operates the small loudspeaker in the Apple Ilc/IIe.
• A series of soft switches, some of which have been mentioned in

this chapter. Other soft switches that reside in the $C000-to-
$C0FF block of memory will be described in chapters 12 and 13.

Addresses $C100 to $CFFF:
ROM Addresses

The block of memory that extends from $C100 to $CFFF is dedicated
solely to ROM. The ROM addresses that reside in this block of memory
include:

• Entry points for accessing Serial Port 1 and Serial Port 2 on the
lie.

• Entry points for accessing video output, enhanced video output,
and miscellaneous I/O.

• In an Apple lie or a mouse-equipped He, entry points for accessing
Mouse firmware.

• Entry points for disk I/O.

RAM Addresses $D000 to $FFFF
When addresses $D000 to $FFFF are used as RAM. the block of
memory that extends from $D000 to $DFFF can be used in four differ
ent ways: as Main Memory $D000 Bank 1, Main Memory $D000 Bank
2, Auxiliary Memory $D()0() Bank 1, and Auxiliary Memory Bank
$D000 Bank 2. Switching back and forth among these four memory

Memory Magic 227

banks is controlled by means of soft switches, using the techniques de
scribed earlier in this chapter.

The block of memory that extends from $E000 to $FFFF can be
used in two different ways: as main bank-switched RAM or as auxiliary
bank-switched RAM. Switching back and forth between this pair of
memory banks is also controlled by means of soft switches. The soft
switches that are available for this purpose and the techniques for using
them are listed in Table 11-1.

ROM Addresses $D000 to $F7FF:
The BASIC Interpreter

An Applesoft BASIC interpreter is built into both the Apple lie and the
Apple He. This interpreter resides in the block of memory that extends
from $D000 to $F800. It can only be used when ROM is switched into
this block of memory. The soft switches listed in Table 11-1 can be used
to place ROM in the $D000-to-$F800 block of memory.

ROM Addresses $F800 to $FFFF:
The Monitor

When ROM is switched into the $F800-to-$FFFF memory block, that is
where the Apple Ilc/IIe monitor resides. Since the monitor is a handy
utility to have around when assembly-language programs are being
written and debugged, it’s usually a good idea to avoid placing user-
written code into this segment of memory.

Under ProDOS Assembly-Language
Programming

With the introduction of the Apple lie, a new operating system called
ProDOS replaced Apple’s old II-series disk operating system, DOS 3.3.
Most professional software for the Apple lie and the Apple lie is now
written under ProDOS, so it would probably make sense for you to
write your assembly-language programs under ProDOS, too.

ProDOS is not just a disk operating system. It is a complete operat
ing system that allows an assembly-language programmer to manage
many of the resources provided by the Apple lie and the Apple lie.
ProDOS functions primarily as a disk operating system, but it also
handles interrupts. In addition, ProDOS has a built-in memory-
management tool called a Machine Language Interface, or MLI. This
Machine Language Interface is the portion of the operating system that

228 Apple Roots

receives, validates, and issues operating-system commands.
In Apple Ilc/IIe assembly language, MLI commands are used in

much the same way that DOS commands are used in BASIC. In Apple
Ilc/IIe assembly-language programs, MLI calls can be used to open
files, close files, create files, delete files, and perform many other disk-
related functions. (In fact, virtually all ProDOS commands available in
BASIC—and some that are not—are available through MLI.)

A complete discussion of ProDOS and the ProDOS Machine Lan
guage Interface is beyond the scope of this chapter. If you want to learn
more about ProDOS, there are several books on the subject that you
should read, including the ProDOS User’s Manual, BASIC Program
ming With ProDOS, and of course, the ProDOS Technical Reference
Manual. The main purpose of this section is to tell you where ProDOS
resides when it’s loaded into your computer’s memory so you won’t
overwrite ProDOS when writing programs to be run on a ProDOS-
equipped Apple lie or Apple lie.

A ProDOS Memory Map

When ProDOS is loaded into the memory of an Apple lie or an Apple
He, it takes up varying amounts of RAM, depending upon the configura
tion of the computer. If ProDOS is used with an Apple lie, or with an
Apple He equipped with an expanded 80-column card, some of the
space consumed by ProDOS is situated in main memory and some is
located in auxiliary memory. ProDOS is usually loaded into memory
along with a file called BASIC.SYSTEM, which enables ProDOS to
process BASIC commands. When ProDOS and BASIC.SYSTEM are
loaded simultaneously, additional memory space is consumed, since the
BASIC.SYSTEM file on a ProDOS startup disk includes a ProDOS
command interpreter.

Figure 11-3 is a map that shows what blocks of memory are con
sumed by the ProDOS and BASIC.SYSTEM files on a ProDOS startup
disk when ProDOS is loaded into memory. Assembly-language pro
grams that are designed to be run under ProDOS control should not
encroach upon the shaded areas in Figure 11-3.

Memory Requirements of Assemblers

When you write an assembly-language program, you should be aware of
where your assembler-editor system resides in your computer’s memory.

Memory Magic 229

Main Memory Auxiliary Memory

ROM Language Card Area

$4F
Shared safe

$3A

$D F FF

$D3FF
$D100

$BFFF

$BF00

$DFFF

SD3FF
$D100

$400

$200

$FF
$30

Figure 11-3. ProDOS and BASIC memory map

230 Apple Roots

Then you can avoid the danger of writing a program that damages your
assembler while it’s editing or assembling your program.

Merlin’s Memory

The Merlin Pro assembler is a complex piece of software, and it con
sumes quite a bit of RAM, in both main and auxiliary memory. But
Merlin provides a linking feature that can be used to link long
programs together by assembling them directly on a disk. Details on how
to use this linker can be found in the Merlin instruction manual.

Mapping the Apple ProDOS Assembler

Figure 11-4 is a memory map of the Apple ProDOS assembler-editor.
The Apple package consumes less memory space than Merlin does, and
all the space it occupies is in main memory. Thus the Apple ProDOS
assembler leaves all 64K of auxiliary memory free for use by user-
written programs.

One noteworthy feature of the Apple ProDOS package is that its edi
tor and assembler do not reside in memory at the same time. Therefore,
when you write a source-code program using the Apple assembler, you
have to save it on a disk before you can assemble it. That process takes
time, but it saves memory.

Memory Requirements
Of the ORCA/M Assembler

When the ORCA/M assembler is used to edit and assemble a program,
it performs even more disk-swapping than does the Apple assembler-
editor system. Because of all this disk-swapping—and because of the
elegant way in which ORCA/M is designed—it is possible for the user
of an ORCA/M system to write very long assembly-language programs
and place them almost anywhere in memory. According to The Byte
Works of Albuquerque, New Mexico, which manufactures ORCA/M,
the following list presents virtually all of the memory constraints on the
user of an ORCA/M assembler:

• The ORCA/M assembler-editor runs under the control of a pro
gram that is called ORCA.HOST. This program, which occupies
addresses $0800 through $1FFF, must remain in memory at all
times when ORCA/M is running. Therefore, it must never be
overwritten by a user-written program.

• On Page Zero, memory locations $00 through $7F are available for
use in user-written programs, but addresses $80 through $FF
should be avoided, since they are used by the ORCA/M system.

Memory Magic 231

Language
Card
Area

r $FFFF

$E000

Reset
Vectors-
ProDOS

O.S.

Editor Assembler
Code Tables

^ $D000

$DFFF

$D000

$BFFF

$B100

$9C00

$0800

$0400

$03F0

$0300

$0200

$0100

$0000

Assembler
Overlay

$B0FF

$7A00

Screen Display Page 1

Monitor Interrupt Vectors

Unused Memory

Editor Input Buffer Area

Editor/Assembler Stack Area

Editor Zero Page

Figure 11-4. Apple ProDOS assembler memory map

232 Apple Roots

• The ProDOS line buffer uses memory registers $200 through
$2FF, and ORCA/M uses the ProDOS line buffer when the
assembler is in command mode. Until a program is debugged and
ready to run, it is a good idea to avoid using these memory
addresses.

• Non-standard clock cards sometimes use memory registers $300 to
$3FF, so assembly-language programs that make use of these reg
isters could interfere with the operation of such cards. (This re
striction applies to programs written using any assembler, not just
ORCA/M.)

Conclusion

Once you’re familiar with the memory requirements (and the memory
limitations) of your computer, operating system, and assembler-editor
system, you have all the information you need to use memory safely and
efficiently in assembly-language programs.

Fundamentals
Of Apple llc/lle
Graphics

Unless you spend most of your free time with other programmers,
you’ve probably noticed that most people aren’t too impressed with ele
gant algorithms or long listings of assembly-language code. Fortu
nately, though, if you know how to write graphics programs—especially
the kind of fast-action, razzle-dazzle programs that can be created only
in assembly language—then you really can amaze your friends with
your knowledge of assembly language. If that prospect intrigues you,
don’t stop now, because the rest of this book is about assembly-language
graphics programs.

In this chapter, you’ll learn how the Apple lie and the Apple lie gen
erate their text and graphics displays. In Chapter 13, you’ll have a chance
to type and run programs that demonstrate your computer’s low-resolu
tion graphics mode; you’ll also see how game paddles, joysticks, and the

233

234 Apple Roots

Apple mouse can be used in assembly-language programs. Chapter 14
will show you how to customize a character set, how to display standard-
size and headline-size characters on a high-resolution screen, and how
to write programs using double high-resolution graphics.

Text and Graphics Modes

If you own an Apple lie, or a late-model Apple He with an expanded
memory 80-column card installed, your computer can be used in six
primary text and graphics modes:

• Forty-column text
• Eighty-column text
• Low-resolution graphics
• Double low-resolution graphics
• High-resolution graphics
• Double high-resolution graphics.

All six of these display modes will be discussed at least briefly in
this chapter. However, we will focus most of our attention on the two
most commonly used display modes in Apple Ilc/IIe graphics pro
gramming: the standard low-resolution graphics mode and the stan
dard high-resolution graphics mode.

40-Column and 80-Column Text Modes

A standard Apple He, without an 80-column text card or an AppleColor
Adaptor card installed, has only one text mode: a 40-column mode that
generates a 40-column by 24-line text display. An Apple lie, or an Apple
lie equipped with an 80-column card, can generate either a 40-column
by 24-line text display or an 80-column by 24-line text display.

As you may recall from Chapter 11, the Apple lie and the Apple He
are equipped with soft switches that can be used to determine whether
a 40-column or an 80-column display will be used in an assembly lan
guage program. Soft switches can also be used to switch back and forth
between text and graphics displays and to place a four-line, 40-column
or 80-column “text window” at the bottom of a low-resolution or high-
resolution graphics screen.

Fundamentals of Apple Ilc/IIe Graphics 235

Memory Mapping

Your Apple lie or Apple He uses a technique called memory mapping to
create its text and graphics displays. This means that, by storing spe
cific values in a certain block of your computer’s memory, you can con
trol its screen display. When your Apple is in one of its text modes, for
example, you can store ASCII (American Standard Code for Informa
tion Interchange) codes (modified for Apple computers) in a specific
block of RAM. Once you have done that, your computer’s operating sys
tem will convert each code number that you have used into a letter,
number, or special character. Then it will display each character in a
screen position that is determined by the specific byte in RAM in which
the code number for the character has been stored.

Ordinarily, the Apple ASCII codes that generate a 40-column text
display are stored in the area of RAM called Text and Low-Resolution
Display Page 1, extending from memory address $400 to memory
address $7FF. Alternatively, these codes can be stored in the block of
RAM known as Text and Low-Resolution Display Page 2, which ranges
from $800 to $BFF.

If you own an Apple lie, or an Apple lie equipped with an expanded
80-column card, there are two other areas of RAM that can be used as
screen memory for a 40-column text display. These blocks of RAM,
called Text and Low-Resolution Display Pages IX and 2X, extend from
$400 to $7FF and from $800 to $BFF in auxiliary memory.

In both the Apple lie and the Apple He, soft switches can be used to
determine what areas of main and auxiliary memory will be used for
screen memory. The functions and memory addresses of most of these
soft switches were listed in Chapter 11. Memory maps showing the
segments of RAM that can be used for storing text and graphics infor
mation were also presented in Chapter 11.

Figure 12-1 is a memory map of Display Page 1, the area of memory
most often used for an Apple Ilc/IIe 40-column text display.

Creating an 80-Column Text Display

An Apple lie, or an Apple lie equipped with an 80-column text or color
card, is also capable of generating an 80-column by 24-line text display.
When an Apple lie or He is in 80-column text mode, the ASCII codes
for characters in even-numbered screen columns (with the first column

236 Apple Roots

oo
GO

H N « T f (C ^
o o o o o o
GO- GO GO GO GO

t - o o o i < ! W o D H t o o o o o S o o o
g o g o g o g o g o g o v o g o g o g o

X Offsets

-H N c c m

5 o g o * o * o $
1

6

$1
7 X

GO
2 < o c
03- X - VO GO VO

H f c O ^ M
H H N N C'i
0 0 GO GO GO- GO •VO

cu
VO

LO <X> t -
N N W
GO GO VO

$400
$480
$500
$580
$600
$680 |
$700
$780
$428
$4A8

<8
en $528
U
'V

$5 A 8
T3
< $628
>< $6 A 8

$728
$7A8
$450
$4D0
$550
$5D0
$650
$6D0
$750
$7D0 j

Figure 12-1. 40-column text screen display map

on the screen numbered Column 0) are stored on Display Page 1 in
main memory. The codes for the characters in odd-numbered screen
columns (with the second column on the screen numbered Column 0)
are stored on Display Page IX in auxiliary memory. When the charac
ters from these two blocks of memory are displayed on an 80-column
screen, they are automatically interleaved as illustrated in Figure 12-2.

Fortunately, you may never have to worry about this interleaving
process when you write text programs for your Apple lie or He. This
process will ordinarily be taken care of by your computer’s operating
system.

Fundamentals of Apple Ilc/IIe Graphics 237

M AIN
MEMORY

AUXILIARY
MEMORY

$400 1024

$480 1152

$500 1280

$580 1408

$600 1536

$680 1664

$700 1792

$780 1920

$428 1064

$4A8 1192

$528 1320

$5 A 8 1448

$628 1576

$6A8 1704

$728 1832

$7A8 I960

$450 1104

$4D0 1232

$550 1360

$5D0 1488

$650 1616

$6D0 1744

$750 1872

$7D0 2000

$0
0

$fl
c

0

0

$0
1

$c

1

>1

$0
2

$0
2

2

2 $03 $04 $05 $06 $49 $4 A $4B $4C $4 D $4E S4 F
3 4 5 6 73 74 75 76 77 78 79

$03 $04 $05 $06 $07 $49 $4A $4B $4C $4D $4E $4F
3 4 5 6 7 73 74 75 76 77 78 79

-s y-

■s V-

■y v

■s y-

-s V

 ̂ v

-S V
j

-S V
;

v

■s V

"S V

V v

■s y-

~S V

-S V

rS V

V

-s y-
_L t 1n r — 1

"S V"
c 1 1

Figure 12-2. 80-column text screen display map

Low-Resolution Graphics

The memory-mapping system that is used for low-resolution graphics is
very similar to the system used for a 40-column text display. An Apple
Ilc/IIe low-resolution graphics screen is made up of a grid of colored
rectangles called picture elements, or pixels. This matrix of colored
blocks measures 40 pixels wide by 48 pixels deep—in other words, 40
columns by 48 rows.

To put your computer into low-resolution graphics mode, you simply
set a soft switch situated at memory address $C056, as explained in
Chapter 11.

238 Apple Roots

Once your computer is in low-resolution graphics mode, you can
create a low-resolution display by storing data in Display Pages 1, 2,
IX, and 2X (the same areas of memory that store the Apple ASCII
codes used for 40-column text displays). When your computer is in low-
resolution graphics mode, however, it will not interpret the data stored
in these areas as codes for text characters. Instead, it will interpret
them as colors and will display those colors on the screen.

In low-resolution graphics mode, the Apple Ilc/IIe can display 16
colors, including black and white. These colors, along with the codes
that are used to generate them in low-resolution graphics, are listed in
Table 12-1.

Figure 12-3 shows how Display Page 1 is laid out when it is used to
display a low-resolution graphics screen. Each byte stored in screen
memory is used to generate two colored pixels, one sitting on top of the
other. Thus there are twice as many elements on a low-resolution
graphics screen as there are on a 40-column text screen; a low-
resolution graphics screen measures 40 columns by 48 rows, while a
40-column text screen measures 40 columns by 24 rows.

High-Resolution Graphics

In high-resolution (or high-res) graphics mode, your computer can dis
play a grid of screen dots measuring 280 dots wide by 192 dots deep in
monochrome; the effective resolution is 140 dots wide by 192 dots deep
when colors are used. In color high-resolution graphics, the color of

Table 12-1. Color Codes Used in Low-Resolution Graphics

HEX COLOR HEX COLOR
$0 Black $8 Brown
$1 Magenta $9 Orange
$2 Dark Blue $A Gray 2
$3 Purple $B Pink
$4 Dark Green $C Light Green
$5 Gray 1 $D Yellow
$6 Medium Blue $E Aquamarine
$7 Light Blue $F White

Fundamentals of Apple Ilc/IIe Graphics 239

X

O r H N K ^ U 5 ^ C ^ O O C 5 < l P Q C) Q W f c O ^ N

$1
3

O fsets

TJ< lO

6©- 6©-
50 t- x a < ! C Q u Q H f c o -
w-€©-6©-<y*e»-e«-€«-6e-w-ee-6©-6e-̂ -̂ -w-ee-e*-6©-

$400

$480

$500

$580

$600

$680

$700

$780

$428

$4 A 8

| $528

| $5A8

3 $628

^ $6 A 8

$728

$7A8

$450

$4D0

$550

$5D0

$650

$6D0

$750

$7D0

Figure 12-3. Low-resolution graphics screen map

each pixel on the screen can be individually controlled. When you know
how to use high-resolution graphics, you can create pictures and charac
ters that are fairly detailed and quite attractive.

There are some limitations, however, on the ways in which colors can
be used in Apple Ilc/IIe high-resolution graphics. Only six true colors
are available in high-res graphics: black, white, violet, green, orange,
and blue. By using alternating rows of colors, you can blend some of
these colors to create other colors, but unless you’re a real expert at this
kind of color blending, it’s seldom worth the effort that it requires.

There are also limitations on the way that the six colors available in
high-resolution graphics can be combined. These limitations will be

240 Apple Roots

explained in detail in Chapter 14, which deals solely with high-
resolution graphics.

When your computer is in high-resolution graphics mode, the area of
RAM that is used most often for screen memory ranges from memory
address $2000 to $3FFF—a total of 8192 bytes of memory. This block of
memory is sometimes referred to as High-Resolution Page 1. Another
8192-byte block of memory, ranging from $4000 to $5FFF, is also used
quite often. This block of RAM is sometimes referred to as High-
Resolution Page 2.

If you own an Apple lie or an Apple lie equipped with an expanded
80-column card, two more blocks of high-resolution screen memory are
available. These two segments of RAM are High-Resolution Display
Page IX, which extends from $2000 to $3FFF in auxiliary memory,
and High-Resolution Display Page 2X, which ranges from $4000 to
$5FFF in auxiliary memory.

Your Apple uses what is often referred to as a bit-mapped screen
display when it is in high-resolution graphics mode. In a bit-mapped
screen display—the type of display most often used in commercial
graphics programs—each dot on the screen corresponds to a bit in the
computer’s memory. When a bit is set, a dot on the screen generally
lights up; when the bit is cleared, the dot goes dark. Every dot on the
screen can thus be controlled individually by a bit-mapped graphics
program.

In Apple Ilc/IIe high-resolution graphics, each byte in screen
memory controls seven dots on the screen. Since there are eight bits in a
byte, one bit in each byte is therefore left free for use as a status bit. By
setting or clearing this status bit, a programmer can control the colors
generated by the other bits in the same byte when they are displayed on
the screen.

More details on how this process works will be provided in Chapter
14. Meanwhile, we’ll take a brief look at double low-resolution graphics
and double high-resolution graphics, two display modes that were not
available to Apple programmers until the introduction of the Apple lie
and the Apple He.

Double Low-Resolution Graphics

Double low-resolution graphics, as its name implies, is a screen display
mode with twice the resolution of ordinary low-resolution graphics.
With double low-resolution graphics, you can create a 16-color screen
display that is 80 pixels wide and 48 pixels high.

Fundamentals of Apple Ilc/IIe Graphics 241

If you own an Apple lie, or an Apple lie with an 80-column card and
a Revision-B (or later) motherboard, you can write and run double low-
resolution graphics programs.

To find out what kind of circuit board your lie has, open it up and
look at the markings that are printed on the main circuit board just be
hind its expansion slots. On a Revision-B computer, you’ll see the letter
B after the part number. (The part number for my lie is 820-0064-B.)
On a Revision-A machine, the letter after the part number will be an A.

To use double low-resolution (or double high-resolution) graphics
with an Apple lie, you also need a properly configured 80-column text
or text/color card. If you have a standard, non-color 80-column card, you
also have to connect Pins 50 and 55 on your card. If your non-color card
is an unexpanded model (without an extra 64K of memory), you need to
connect those pins with a soldering iron. (Unless you’re a real hardware
expert, you should seek the assistance of a qualified technician.)

Having an expanded non-color card, however, makes the job of con
necting Pins 50 and 55 much easier. All you have to do is connect a
jumper cable that came with your card. You won’t have to do any hard
ware work at all, though, if you have an Apple lie or an Apple He with a
Text/AppleColor card installed, because your computer is ready for
double low-res and double high-res graphics display.

Once you’re sure that your computer can handle double low-res pro
gramming, you can put it into double low-res mode by storing any value
at all in the soft switches situated at memory addresses $C050, $C056,
$C052, $C00D, $C05E, and $C05F. As you can determine for yourself by
consulting the soft-switch tables in Chapter 11, setting these four soft
switches will select graphics rather than text, low-resolution rather
than high-resolution graphics, and full-screen graphics (without a text
window). Setting these switches will also turn on your computer’s 80-
column firmware. Next you have to turn on still another soft switch,
called AN3, which is situated at memory locations $C05E and $C05F.
To enable double low-resolution or double high-resolution graphics, you
have to turn AN3 off by either reading or writing to memory address
$C05E. To disable double low-resolution or double high-resolution graph
ics, you have to turn AN3 on by either reading or writing to memory
address $C05F.

To put a properly equipped Apple into double low-resolution mode,
the following sequence of instructions could be used:
STA $C050 ; TURN OFF TEXT MODE
STA $C056 ; TURN OFF HI-RES MODE
STA SC052 ; TURN OFF MIXED MODE (OPTIONAL)
STA $C00D ; TU RN ON 80-COLUMN DISPLAY
STA SC05E ; ENABLE DOUBLE LOW-RES GRAPHICS

242 Apple Roots

When an Apple lie or lie is in double low-resolution graphics mode,
it displays colors in much the same way that it displays 80-column text
when it's in 80-column text mode. When double low-res graphics are en
abled, the data stored in Low-Resolution Graphics Page 1 (the block of
memory that extends from $400 to $7FF in main memory) will be dis
played as blocks of color in even-numbered columns (beginning with Col
umn 0) on your computer screen. These colors will be interleaved with
colors generated by data stored on Low-Resolution Graphics Page IX (the
block of memory that extends from $400 to $700 in auxiliary memory).
The colors generated by Page IX will be displayed in the odd-numbered
columns (beginning with Column 1) on your computer screen.

Auxiliary-Memory Color Codes

If you ever decide you want to use double low-resolution graphics, you
may encounter one small problem: because of main-memory and
auxiliary-memory timing differences, the color codes that are used for
low-resolution data stored in auxiliary memory are different from those
used for data stored in main memory. Table 12-2 lists the color codes
used for double low-resolution graphics data stored in auxiliary memory.

Double High-Resolution Graphics

Double high-resolution graphics is a mode that offers either twice the
resolution or twice the number of colors of ordinary high-resolution

Table 12-2. Color Codes Used for Double Low-Resolution Graphics Data Stored in
Auxiliary Memory

HEX COLOR HEX COLOR
$0 Black $4 Brown
$8 Magenta $C Orange
$1 Dark Blue $5 Gray 2
$9 Purple $D Pink
$2 Dark Green $6 Light Green
$A Gray 1 $E Yellow
$3 Medium Blue $7 Aquamarine
$B Light Blue $F White

Fundamentals of Apple Ilc/IIe Graphics 243

graphics. By using double high-resolution graphics, you can create an
ultra-high-resolution monochrome display that measures 560 dots wide
by 192 dots high. Alternatively, you can create a 16-color display meas
uring 140 dots wide by 192 dots high that can display any dot on the
screen in any of the 16 available colors.

The screen map that is used for double high-resolution graphics is
similar to the one used for an 80-column text display. When an Apple
lie or He is in high-resolution mode, it interleaves screen data from
High-Resolution Display Pages 1 and IX, thus displaying two bytes in
the space normally occupied by one. Pages HRP2 and HRP2X in auxil
iary memory can also be used for the storage of double high-resolution
screen data.

To use double high-resolution graphics, you need either any Apple
lie or an Apple lie that is equipped to generate double low-resolution
graphics. To get the maximum benefit from double high-resolution
graphics, you also need either an 80-column monochrome monitor (for
double high-resolution monochrome displays) or a high-quality, 80-
column RGB monitor (for double high-resolution color displays). It is
possible to display double high-res graphics in color on an ordinary 40-
column color monitor or TV set, but single dots will sometimes appear
more dimly than normal.

Mapping the Graphics Screens

Now that we’ve taken a brief glance at each of the graphics modes that
can be generated by the Apple lie and lie, we’re ready to examine in
more detail the screen maps used by each of these graphics modes.

First, however, let’s take a closer look at the 40-column text display
illustrated in Figure 12-1. Notice that strings of hexadecimal numbers
have been used to identify each column and each row on the map. These
numbers look like column and row coordinates, but that’s not really
what they are. The numbers running down the side of the map are
actually memory addresses—specifically, the addresses of the initial
bytes in each column. Because these addresses are used to represent
vertical (or Y) positions on the memory map, they are sometimes
referred to as Y addresses. The numbers across the top of the map rep
resent offsets that can be added to the map’s Y addresses to determine
the exact memory address of any byte displayed on the map. Since these
numbers are used to represent the horizontal (or X) position on the
map, they are sometimes referred to as A offsets.

244 Apple Roots

— 40 bytes—

-------------- l z q oytes

|-^ ----40 bytes---- ----40 bytes— U 8 ^
1 bytes*

$400 Row 0 Row 8 Row 16 •

$480 Row 1 Row 9 Row 17 •

$500 Row 2 Row 10 Row 18 •

$580 Row 3 Row 11 Row 19 •

$600 Row 4 Row 12 Row 20 •

$680 Row 5 Row 13 Row 21 •

$700 Row 6 Row 14 Row 22 •

$780 Row 7 Row 15 Row 23 •

"These are “screen holes,” not used for screen memory. These
“leftover” addresses are used by peripheral and expansion cards.

Figure 12-4. How screen display memory is stored in RAM

By using the X offsets and Y addresses on an Apple screen map, the
exact memory location of any byte on the map can easily be pinpointed.
Merely add the character’s X offset to its Y address. That will give you
the character’s exact address in RAM.

If you look closely at the X offsets across the top of Figure 12-1, you
will see that the columns on the map are numbered consecutively from
$00 to $27 —or from 0 to 39 in decimal notation. That numbering makes
it easy to determine the screen column location of any character. It
doesn’t matter what row a character is on; if it’s in a given column on
the screen, its X offset will always be the same.

Notice that the Y addresses down the side of Figure 12-1 are not
consecutively numbered. Instead, they are arranged in three batches of
eight rows each. The first eight rows on the screen map are numbered
$400 through $780. The next eight rows are numbered $428 through
$7A8. The eight rows at the bottom of the screen are numbered $450
through $7D0.

Fundamentals of Apple Ilc/IIe Graphics 245

At first glance, this numbering system might seem strange and
cumbersome. Actually, however, it does make some sense. If your com
puter’s screen memory were not split up, but were simply dropped into
a solid, 960-byte block of RAM, X offsets and Y addresses could not be
used to locate the characters on the screen. Characters in the same
column on the screen would hardly ever have the same X offset, and
characters in the same row on the screen would not necessarily have the
same Y address. Therefore, the somewhat confusing X-offset and Y-
address system that is used for your computer’s 40-column screen dis
play is clearly preferable to no system at all.

Figure 12-4 shows what the Apple Ilc/IIe 40-column screen map
looks like when it is displayed as a consecutive block of memory. As you
can see, the address-and-offset system designed for your computer is
quite memory-efficient. This system allows a 960-byte screen map to be
placed into 1024 bytes of memory, leaving only 64 bytes unused. Yet
each character on the screen can be located by adding a column offset to
a row address.

There is one more point about screen mapping worth mentioning.
The systems used for mapping low-resolution and high-resolution
graphics are based on the same principles as those used in mapping
your Apple’s 40-column text screen. Figure 12-3 clearly shows that the
screen map used for low-resolution graphics is the same as the one used
for 40-column text graphics. The only difference is that each byte on the
screen has been split horizontally into two pixels.

13
Game Paddles,
Joysticks, and
The Apple Mouse

To become an expert graphics programmer for the Apple lie or the
Apple He, it is essential to have an understanding of how to write pro
grams for hand controllers, such as game paddles, joysticks, and the
Apple mouse. In this chapter, you’ll learn how hand controllers work and
how they are used in graphics programs. You’ll also be provided with
two type-and-run programs that demonstrate how to program hand
controllers in assembly language. One of these programs will illustrate
the use of game paddles and joysticks. The other program will illustrate
the use of the, Apple mouse.

247

248 Apple Roots

The Evolution of the Hand Controller

The first kind of hand controller to be used with Apple computers was
the game paddle. Because the game paddle derives its name from its
function, not from its looks, it bears little resemblance to other kinds of
paddles. The devices are called paddles because they were used to simu
late ping-pong paddles in the early arcade game Pong. Electronically,
though, a game paddle is really a variable resistor; mechanically, it’s
usually a rotary knob attached to a rectangular base.

Game paddles always come in pairs, and the pair of paddles that you
get in a set are designed to be connected to the same I/O port. Thus, the
paddles in a set always share the same port when they are connected to
an Apple lie or He.

The Apple He has two kinds of ports to which game paddles can be
connected. One of these ports is an internal 16-pin DIP socket that is
installed on the Apple He motherboard and is labeled “GAME I/O”. The
other paddle port available to He owners is a D-type miniature connec
tor on the computer’s back panel. Both of these ports can also be used
for the installation of joystick controls.

The Apple lie has only one port—a D-type connector on the back
panel —to which game paddles can be connected. This port can also be
used as a joystick connector and as a socket for a mouse control.

Paddles, Joysticks, and Mice Compared

Since a game paddle is nothing but a rotary controller, it can draw a
line or move an object in only one direction on a computer screen. A
joystick can be moved in any direction and can therefore move an object
in any direction on a screen. However, a joystick does not usually offer
as much control over positioning an object on a screen as does a game
paddle.

A mouse, when properly programmed, combines the advantages of a
game paddle and a joystick. A mouse can move an object anywhere on a
screen, and the position of the object can be very accurately controlled.

How Game Paddles Work

We have learned that a game paddle is actually a variable resistor con
trolled by a rotary knob. Since paddles are usually connected in pairs,

Paddles, Joysticks, and the Mouse 249

the Apple Ilc/IIe has two analog inputs to which paddles can be con
nected. Before a program can read these inputs, it must set a timing
circuit that is connected to them. This circuit can be set by accessing a
soft switch situated at memory address $C070. When the timing circuit
is set, the high bits of four other memory registers—registers $C064
through $C067—are each set to 1. Two of these registers (located at
$C064 and $C065) correspond to the two game paddles that can be con
nected to the Apple Ilc/IIe. These two game paddles are numbered
Paddle 0 and Paddle 1.

If no game paddles or other I/O devices are connected to the Apple
Ilc/IIe’s game port when Soft Switch $C070 is read, the high bits of
memory registers $C064 through $C067 may remain set indefinitely. If,
however, game paddles or other devices are connected to these inputs,
the high bits of registers $C064 and $C067 will, after a period of time
ranging from a fraction of a millisecond to about three milliseconds,
change back to 0—and stay there. The exact amount of time that it
takes for each of these bit changes to occur depends upon the resistance
applied to the circuit that corresponds to each affected memory regis
ter. Therefore, if Game Paddle 0 is turned far to the left when Soft
Switch $C070 is accessed, it won’t take long for the high bit of register
$C064 to change from a 1 to a 0. If Paddle 0 is set at a high position, the
bit change will take longer. Similarly, if Paddle 0 is turned to the left,
the high bit of register $C065 will change from 1 to 0 very quickly, and
turning the paddle to the right will slow down the bit change.

To read the states of Paddles 0 and 1, a program must first access
Soft Switch $C070. Then the program must set up a timing loop and use
this loop to determine how long it takes the high bits of memory regis
ters $C064 and $C067 to drop from 1 to 0.

This procedure would be quite a job for a programmer. Fortunately,
however, the Apple lie and Apple lie are provided wih a built-in sub
routine that can take care of much of the work involved in reading a
pair of game paddles. This routine is called PREAD, and its starting
address is $FDB1E.

To use the PREAD subroutine, you have to store a number from 0
through 3 in your microprocessor’s X register. If you’re using the
PREAD routine to read a pair of game paddles, you can store either a 0
or a 1 in the X register, depending upon which paddle you want to read.
Then you can invoke the PREAD subroutine by doing a JSR to memory
address $FB1E. When your computer returns from the subroutine, a
number ranging from $00 to $FF will be stored in your microproces
sor’s Y register. That number will reflect the state of the game paddle
that you want to read.

250 Apple Roots

As you might guess, timing is critical when you’re writing this kind
of program. There’s also a further complication in this particular pro
gramming situation. Because it can take as long as three milliseconds
for the high bits of registers $C064 through $C067 to drop from 1 to 0,
there must be a delay of at least three milliseconds between the reading
of register $C064 and the reading of register $C065. In other words,
after you’ve read the state of one paddle, you must wait at least three
milliseconds before you try to read the other one. This situation exists
whether you write your own program for reading a pair of game pad
dles or use your computer’s built-in PREAD routine.

How Joysticks Work

Game paddles aren’t used much anymore in Apple programs, but the
joystick—a descendant of the game paddle—is still very popular. There
are many similarities between programs written for paddles and pro
grams written for joysticks. In fact, many programs that were origi
nally written for game paddles will also work with a joystick, and some
programs written for joysticks will also work with game paddles.

As previously mentioned, joysticks and game paddles can be plugged
into the same I/O ports on both the Apple lie and the Apple lie. Pro
grams designed to be used with joysticks are written in exactly the
same way as programs intended for use with game paddles. In a pro
gram designed to be used with a joystick, memory register $C064 is
used to read the left-to-right motion of the stick, and memory register
$C065 is used to read the stick’s up-and-down motion. In other words,
the horizontal axis of the joystick is treated as Paddle 0 and the vertical
axis of the joystick is treated as Paddle 1 (although a few programs will
reverse paddle axes).

When you want to read a joystick in an assembly-language program,
you can either write your own routine (using registers $C070, $C064,
and $C065) or use your computer’s built-in PREAD routine. No matter
which option you select, though, you have to be careful about timing.
When you use a joystick in a program, you can read the setting of either
axis repeatedly, as rapidly as you like. However, you must always pro
gram a delay of at least three milliseconds between the time you read
one axis and the time you read the other.

Two other memory addresses that are often used in joystick pro
grams are $C061, sometimes called Switch Input 0, and $C062, some-

Paddles, Joysticks, and the Mouse 251

times called Switch Input 1. These addresses can be used to read the
two pushbuttons on a joystick controller or the OPEN-APPLE and
CLOSED-APPLE keys on the Apple Ilc/IIe keyboard. When Switch 0 on a
joystick is pressed or the OPEN-APPLE key is pressed, bit 7 of $C061 goes
from 1 to 0. When Switch 1 on a joystick is pressed or the CLOSED-
APPLE key is pressed, bit 7 of $C062 goes from 1 to 0. The state of the
switches on a joystick (or the state of the OPEN-APPLE and CLOSED-
APPLE keys) can therefore be read by testing bit 7 (the sign bit) of
memory registers $C061 and $C062 to determine whether the number
in that location is greater than 127.

Using a Joystick in a Graphics Program

Before you type, assemble, and run an assembly-language program that
illustrates how a joystick can be used in a low-resolution graphics pro
gram, let’s take note of some facts about low-resolution graphics that
were not covered in Chapter 12.

We learned in Chapter 12 that low-resolution graphics are a video
graphics mode that can generate up to 16 colors in a screen display
measuring 40 pixels wide by 48 pixels high. You may also remember
that the column coordinates on a low-resolution screen map are laid out
consecutively, but the row coordinates are not. Instead, like the row
coordinates on all screen maps used by Apple II-series computers, the
row coordinates used in low-resolution graphics are arranged in three
groups of eight rows each, with the three groups of rows interleaved
together.

To write programs in high-resolution graphics, it is helpful to
understand this screen mapping system. Chapter 14 will cover high-
resolution screen mapping in some detail. However, it is possible to
write assembly-language programs using low-resolution graphics with
out being concerned with the intricacies of Apple Ilc/IIe screen map
ping. The designers of your Apple have provided a series of built-in sub
routines designed to relieve you of much of the effort involved in
low-resolution graphics programming:

• CLRSCR is a subroutine that will clear your computer’s low-
resolution screen to black. The CLRSCR routine starts at memory
address $F832. To call it, you write a statement like this:

JSR $ F832

252 Apple Roots

If your computer is in low-resolution mode when you issue this
command, the screen will be cleared. If it is in 40-column text
mode, the screen will be filled with “@” characters, because the
ASCII code of the character is $00—the same number used
for the color black in the low-resolution graphics mode!

• SETCOL, a subroutine that starts at memory address $F864, can
set the color that will be used for plotting operations in low-
resolution graphics. To use the SETCOL routine, you load the
accumulator with the code number of the color to be plotted and
then do a JSR to $F864. (The code numbers of all 16 of the colors
used in low-resolution graphics were listed in Chapter 12.)

• PLOT, a subroutine that begins at memory address $F800, can be
used to plot a pixel in any low-resolution color at any location on
the low-resolution screen. Before the PLOT routine is called, a row
coordinate ranging from 0 to 39 must be placed in the Y register,
and a column coordinate ranging from 0 to 47 must be placed in
the accumulator. A single pixel will then be displayed on the
screen in the specified location. The color of the pixel can be
determined by using the SETCOL subroutine before the PLOT
routine is called. The column and row coordinates used by PLOT
run in consecutive order, without using the interleaved system
employed in do-it-yourself plotting routines.

SKETCHER: A Low-Resolution
Joystick Program

Program 13-1 is an assembly-language program called SKETCHER. It
was written using a Merlin Pro assembler, but it can also be typed and
assembled using an Apple ProDOS assembler. It uses a number of the
programming techniques that have been described in this chapter, plus
a few others that will be covered before the chapter ends. You will need
a joystick to run the program, of course. After you have run the pro
gram, we will examine it line by line.

Program 13-1
THE SKETCHER PROGRAM
1 *

2 * SKETCHER
3 *
4 ORG $8000
5 *
6 * ADDRESSES OF SOFT SWITCH1ES
7 *

Paddles, Joysticks, and the Mouse 253

8 TEXTOFF EQU $C050
9 HIRESOFF EQU $C056

10 CARDOFF EQU $COOC
11 MIXEDOFF EQU $C052
12 PAGE20FF EQU $C054
13 TIMER EQU $C070
14 SWITCH1 EQU $C061
15 SWITCH2 EQU $C062
16 *
17 * ADDRESSES OF BUI LT- I N FIRMWARE ROUTINES
18 *
19 CLRSCR EQU $F832
20 SETCOL EQU SF864
21 PLOT EQU $ F800
22 PREAD EQU SFB1E
23 *
24 * DEFINE CONSTANTS
25 *
26 PRODL EQU $0300
27 PRODH EQU PRODL+1
28 MPRL EQU PRODH+1
29 MPRH EQU MPRL+1
30 MPDL EQU MPRH+1
31 MPDH EQU MPDL+1
32 XCOORD EQU MPDH+1
33 YCOORD EQU XCOORD+1
34 XAXIS EQU YCOORD+1
35 YAXIS EQU XAXIS+1
36 *
37 JMP START
38 *
39 MULT 16 LDA #0
40 STA PRODL
41 STA PRODH
42 LDX #16
43 SHIFT ASL PRODL
44 ROL PRODH
45 ASL MPRL
46 ROL MPRH
47 BCC NOADD
48 CLC
49 LDA MPDL
50 ADC PRODL
51 STA PRODL
52 LDA MPDH
53 ADC PRODH
54 STA PRODH
55 NOADD DEX
56 BNE SHIFT
57 RTS
58 *
59 * DELAY LOOP ROUTINE
60 *
61 WAIT LDX #$ F F
62 LOOP DEX
63 BNE LOOP
64 RTS

254 Apple Roots

65 *
66 * MAIN PROGRAM STARTS HERE
67 *
68 * PUT COMPUTER IN LOW-RES GRAPHICS MODE
69 *
70 START STA TEXTOFF
71 STA HIRESOFF
72 STA CARDOFF
73 STA MIXEDOFF
74 STA PAGE20FF
75 *
76 * CLEAR SCREEN
77 *
78 J SR CLRSCR
79 *
80 * SET COLOR OF SCREEN DOT TO PINK
81 *
82 STA TIMER
83 LD A #11 ; PINK
84 J SR SETCOL
85 *
86 * READ JOYSTICK COORDINATES
87 *
88 RDSTICK EQU *
89 JSR WAIT
90 JSR WAIT
91 LDX no
92 JSR PREAD
93 STY XAXIS
94
95 JSR WAIT
96 JSR WAIT
97 JSR WAIT
98 JSR WAIT
99 LDX #1

100 JSR PREAD
101 STY YAXIS
102 *

103 * CHECK STATUS OF JOYSTICK SWITCHES
104 *
105 LDA SWITCH2
106 BMI START
107 LDA SWITCH1
108 BMI SKIP
109 LDA #0 ;BLACK
110 J SR SETCOL
111 JSR ERASE
112 LDA #11 ; PINK
113 JSR SETCOL
114 *
115 * PLOT SCREEN DOT
116 *
117 SKIP LD A #0
118 STA MPDH
119 STA MPRH
120 LDA XAXIS
121 STA MPDL

Paddles, Joysticks, and the Mouse 255

122 LDA #40
123 STA MPRL
124 JSR MULT1 6
125 LDA PROD H
126 STA XC00R D
127
128 LDA #0
129 STA MPDH
130 STA MPRH
131 LDA YAXIS
132 STA MPDL
133 LDA #48
134 STA MPRL
135 JSR MULT1 6
136 LDA PRODH
137 STA YC00R D
138
139 LDA YC00R D
140 LDY XC00R D
141 JSR PLOT
142 JMP RDSTI CK
143 ERASE LDA YC
144 LDY XC00R D
145 JSR PLOT
146 RTS

How the SKETCHER Program Works

The SKETCHER program starts at line 37, with a JMP instruction
that skips to line 70. Beginning at line 70, five soft switches are set.
These switches turn off your computer’s high-resolution mode, its 80-
column firmware, its mixed mode (so there will be no text at the bottom
of the screen), and its auxiliary memory. Next, in line 78, the low-
resolution screen is cleared to black with a JSR CLRSCR statement.

In line 82, the soft switch at $C070 is set, starting a three-
millisecond countdown so that the game paddle (or joystick) inputs at
$C064 and $C065 can be read. Next, a JSR SETCOL statement is used
to set the color of the low-resolution pixel to pink.

The heart of the SKETCHER program is the segment that extends
from line 88 to line 101. During this sequence, a subroutine called WAIT
(which begins at line 61) is called several times to activate the three-
millisecond delay that must be inserted between the reading of one joy
stick axis and the reading of the other. The remaining commands in the
sequence are straightforward. In lines 91 through 93, the X register is
loaded with a 0, and the monitor routine PREAD is used to read the X
axis of the joystick. In lines 99 through 101, the X register is loaded
with a 1, and the PREAD routine is used to read the state of the joy

256 Apple Roots

stick’s Y axis. When this segment of code ends, the position of the joy
stick’s X axis (expressed as a number ranging from $00 to $FF) is in a
memory register labeled XAXIS, and the position of the joystick’s Y
axis (also expressed as a number ranging from $00 through $FF) is in a
memory register labeled YAXIS.

In lines 105 through 113, the states of the trigger buttons on the joy
stick are checked to see if either button is being pressed. If the side
button on the joystick (called Switch 1 in this program) is being
pressed, the cursor will draw a line as it moves across the screen. If the
top button on the joystick (Switch 2) is pressed, the screen will be
cleared. If neither switch is pressed, movement of the joystick will
cause the cursor to move around on the screen without drawing a line.

Lines 117 through 146 move the cursor and—if Switch 2 is being
pressed—draw lines on the screen. In this sequence of code, a 16-bit
multiplication routine is used to translate the numbers stored in XAXIS
and YAXIS into two valid screen coordinates: a horizontal (or X) coor
dinate, ranging from 0 through 39, and a vertical (or Y) coordinate,
ranging from 0 through 47.

In lines 117 through 137, an interesting shortcut is used to make this
conversion. First, the value stored in XAXIS is multiplied by 40. Then
the high-order byte of the resulting product is stored in a memory reg
ister labeled XCOORD.

Next, the value stored in YAXIS is multiplied by 48. Finally, the
high-order byte of the product that results from this operation is stored
in a memory register labeled YCOORD. Then these two coordinates are
used to position the cursor on the screen.

This may sound like an odd way to calculate coordinates, but it
makes a lot of sense in this application. Extracting the high byte of a
16-bit number and leaving behind the low byte of the number is like
dividing the 16-bit number by 256. When the value stored in XAXIS (a
number ranging from $00 to $FF) is multiplied by 40 and the product
thus derived is divided by 256, XAXIS is converted into a number rang
ing from 0 through 39. That number—a legal screen coordinate—can
then be stored in XCOORD.

In lines 116 through 125, when the value in YAXIS is multiplied by
48 and the resulting product is divided by 256, the value of YAXIS is
converted into a legal screen coordinate ranging from 0 through 47.
That number is then stored in YCOORD.

The plotting routine in the SKETCHER program is the short seg
ment of code that extends from line 139 to line 146. In this segment of
code, the value of YCOORD is stored in the accumulator, the value of

Paddles, Joysticks, and the Mouse 257

XCOORD is stored in the Y register, and the monitor subroutine PLOT
is called. Then, in line 142, the program jumps to the line labeled
RDSTICK, and another joystick reading and plotting sequence begins.

Disadvantages of Joysticks

When you run the SKETCHER program, you’ll probably notice that it
has a couple of minor shortcomings. For example, if your joystick is an
auto-centering model (and most joysticks are), the screen cursor will
always return to the center of the screen when the joystick is released.
Some joysticks have a defeatable self-centering feature so you can
switch off the auto-centering mechanism and eliminate this problem. If
you have a joystick with non-defeatable self-centering, such as the model
marketed by Apple for the lie and the He, then your joystick will return
automatically to the center position when you let it go.

If you move your joystick quickly when you run the SKETCHER
program, you may notice another problem: gaps in the lines that the
program draws on the screen. These gaps are caused by unavoidable
delays in the SKETCHER program, especially the three-millisecond
delay that has to be inserted between the reading of one joystick axis
and the reading of the other.

The problems of auto-centering and gaps in lines can be solved in
several ways. One way to take care of both problems simultaneously is to
simplify the way in which a joystick is read. Instead of trying to keep
track of the exact settings of a joystick at all times, you can use a pro
gram that merely reads the direction in which the joystick is being
held. As illustrated in Program 13-2, such a program can be written
quite easily, even in BASIC.

Program 13-2
JOYSTICK.BAS
A low-resolution joystick program
10 REM **** JOYSTICK.BAS ****
20 REM * * * * LOW-RESOLUTION JOYSTICK PROGRAM ****
30 GR : POKE - 16302, 0: CALL - 1998: C0L0R= 11: REM TURN

OFF MIXED MODE AND CLEAR TEXT WINDOW TO BLACK
40 XM = PDL (0) : X = INT (XM / 6.4>:YM = PDL (1) : Y = INT

(YM / 5.3): REM CONVERT JOYSTICK READINGS INTO LOW-RES
COLUMN AND ROW COORDINATES, AND PRINT A PIXEL AT
MIDSCREEN

50 IF PEEK (49250) > 127 THEN 30: REM IF SWITCH 1 IS
PRESSED, THEN RESTART

60 IF PEEK (49249) > 127 THEN 80: REM IF SWITCH 0 IS
PRESSED, THEN DRAW A LI NE
C0L0R= 0: PLOT T X , T Y : C0L0R= 11: REM OTHERWISE, ERASE
AND REPLOT

70

258 Apple Roots

75 REM **** STICK-PLOTTING ROUTINES START HERE ****
80 PLOT X , Y : T X = X: TY = Y: REM TX AND TY ARE USED FOR

TEMPORARY STORAGE OF X AND Y COORDINATES
90 GOSUB 190: IF XP > XM - 5 THEN 120
100 X = X - 1: IF X < 0 THEN X = 0
110 GOTO 1 AO
120 IF XP < XM + 5 THEN 140
130 X = X + 1: IF X > 39 THEN X = 39
140 IF YP > YM - 5 THEN 160
150 Y = Y - 1: IF Y < 0 THEN Y = 0
160 IF YP < YM + 5 THEN 50
170 Y = Y + 1: IF Y > 47 THEN Y = 47
180 GOTO 50
185 REM **** SUBROUTINE FOR READING JOYSTICK ****
190 XP = PDL (0) : YP = PDL (1) : RETURN

Program 13-2, entitled JOYSTICK.BAS, works much like the
assembly-language SKETCHER listing presented in Program 13-1.
However, as you’ll discover if you type and run the JOYSTICK.BAS
program, it is not plagued by the two problems in the SKETCHER
routine, holes in the lines and auto-centering.

Unfortunately, a price had to be paid for these advantages. The
JOYSTICK.BAS program runs more slowly than the SKETCHER pro
gram, and it offers the user considerably less control over the position of
the cursor. When you run the JOYSTICK.BAS program, you can’t place
the cursor anywhere you like on the screen. Instead, you can move it in
only eight discrete directions: up, down, left, right, and the diagonals.
And, you have no control over the speed at which the cursor moves.

You could speed up the JOYSTICK.BAS program, of course, by
translating it into assembly language. That wouldn’t do much, however,
to increase your control over the cursor on the screen.

In some applications, this limitation of control over the speed and
positioning of the cursor is not important. In arcade-style games, for
example, it is rarely necessary—and sometimes not even desirable—to
have absolute control over the cursor’s direction and speed. However, in
other applications, such as computer-art programs, a high degree of
control over the cursor is important.

The Apple Mouse

The Apple mouse, as pointed out earlier in this chapter, combines the
benefits of a course-charting joystick program with those of a program
in which an absolute plotting system is used. Program 13-3, called
MOUSKETCH, uses a mouse to draw pictures on a low-resolution
screen. It works in much the same way as the SKETCHER program.

Paddles, Joysticks, and the Mouse 259

MOUSKETCH uses a mouse to move a blinking cursor around on the
screen, and if the button on the mouse is pressed, the cursor will draw a
line as it moves. There is only one button on an Apple mouse, so the
button cannot be used to clear the screen. However, if either the OPEN-
APPLE key or the CLOSED-APPLE key is pressed, the screen will clear
and the program will start over.

If you own an Apple He, you’ll need a mouse card installed in Auxil
iary Slot 4 for the MOUSKETCH program to run properly as written.
If the mouse card is installed in some other slot, you’ll have to modify
the program as described later in this chapter.

When you assemble and run the MOUSKETCH program, you may
notice that it has two clear advantages over the SKETCHER program.
First, because a mouse is not a self-centering device, the cursor does not
return to the middle of the screen when you release the mouse. The
second (and probably more important) advantage is that the MOUS
KETCH program will almost never leave a gap in a line that it’s draw
ing, no matter how rapidly you sweep the cursor across your screen.

Program 13-3
THE MOUSEKETCH PROGRAM

1 *

2 * MOUSKETCH
3 *
4 ORG $8000
5 *
6 JMP GO
7
8 SLOT EQU $ FB
9 XPSN EQU S3B8

10 YPSN EQU $438
11 BUTTON EQU $6B8
12 *

13 * MOUSE ENTRY OFFSET POINTS
14 *
15 SETMS EQU $12
16 READMS EQU $14
17 INITMS EQU $19
18 CLAMPMS EQU $17
19 *
20 * ADDRESSES OF SOFT SWITCHES
21 *

22 TEXTOFF EQU $C050
23 HIRESOFF EQU $C056
24 FWOFF EQU $C00C
25 MIXEDOFF EQU $C052
26 PAGE20FF EQU $C054
27 *
28 * MOUSE FIRMWARE ROUTINES
29 *
30 CLRSCR EQU $F832
31 SETCOL EQU $F864

260 Apple Roots

32 PLOT EQU $ F800
33
34 DEFINE CONSTANTS
35
36 PROD L EQU $0300
37 PRODH EQU PRODL+1
38 M PR L EQU PRODH+1
39 MPRH EQU MPRL+1
40 MPDL EQU MPRH+1
41 M PD H EQU MPDL+1
42 XCOORD EQU MPDH+1
43 YCOORD EQU XCOORD + 1
44 XAXIS EQU YCOORD+1
45 YAXIS EQU XAXIS+1
46
47 SIGNATURE BYTES
48
49 CN EQU $C4
50 NO EQU $40
51
52 * SELF-MODIFYING ROUTINE
53

54 SETFW JMP $0000
55
56 MAIN PROGRAM STARTS HERE
57
58 GO EQU
59 JSR IN IT I N I T I A L I Z E SCREEN
60 LD A #$00
61 STA SLOT
62 LD A # C N
63 STA SLOT+1
64 LD Y #INITMS
65 JSR CALLFW
66 J SR CLAMP
67 LD Y #S ETMS
68 LD A #$01 ; SET PASSIVE MODE
69 JSR CALLFW
70
71 MAIN LOOP
72
73 DOIT EQU *
74 LD Y #READMS
75 JSR CALLFW
76 JSR DRAW
77 JMP DOIT
78
79 SUBROUTINES START HERE
80
81 CALLFW EQU *
82 PHA
83 LD A (SLOT) , Y
84 LDX # C N
85 LD Y tt NO
86 STA SETFW+1
87 ST X SETFW+2
88 PLA

89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

Paddles, Joysticks, and the Mouse 261

JSR SETFW
RTS

�

* DRAW SCREEN DOT
�

DRAW EQU *
*

* CHECK MOUSE BUTTON AND APPLE KEYS
�

LD A $ C061
BMI 60
LD A $C062
BMI BEGIN
LDX SETFW+2
LD A BUTTON,X
BMI LEAP
LD A nO ; BLAC K
JSR SETCOL
JSR PLOTIT
LD A n 11 ; PINK
J SR SETCOL

 NOW DRAW DOT
�

LEAP LDX SETFW+2
LD A XPSN, X
STA X A XIS
L D A YPSN, X
STA YAXIS

LD A no
STA M PD H
STA MPRH
LD A X A X I S
STA MPDL
LD A n 40
STA MPRL
JSR MULT16
LD A PRODH
STA XCOORD

*
LD A no
STA M PD H
STA MPRH
LD A YAXIS
STA MPDL
LD A n 48
STA MPRL
JSR MULT16
LD A PRODH
STA YCOORD

*
PLOTIT LOA YCOORD

LD Y XCOORD
JSR PLOT
RTS

262 Apple Roots

146 CLAMP EQU *
147 LDA #$00
148 STA $478
149 STA $578
150 STA $5F8
151 LDA #$FF
152 STA $4F8
153 LDY #CLAMPMS
154 LDA #0
155 J SR CALLFW
156 LDY # C LAM PMS
157 LDA #1
158 JSR CALLFW
159 RTS
160 *
161 MULT16 LDA #0
162 STA PRODL
163 STA PRODH
164 LDX #16
165 SHIFT ASL PRODL
166 ROL PRODH
167 ASL MPRL
168 ROL MPRH
169 BCC NOADD
170 CLC
171 LDA MPDL
172 ADC PRODL
173 STA PRODL
174 LDA MPDH
175 ADC PRODH
176 STA PRODH
177 NOADD DEX
178 BNE SHIFT
179 RTS
180 *
181 * PUT COMPUTER IN LOW-RES MODE
182 *
183 INIT STA TEXTOFF
184 STA HIRESOFF
185 STA FWOFF
186 STA MIXEDOFF
187 STA PAGE20FF
188 *
189 * CLEAR SCREEN
190 *
191 JSR CLRSCR
192 *
193 * SET COLOR OF SCREEN DOT
194 *
195 LDA #11 ; PINK
196 JSR SETCOL
197 RTS

A Close Look at the Apple Mouse

The MOUSKETCH program begins at line 6 with a jump to line 58, the
actual start of the program. At line 59, a subroutine labeled INIT is

Paddles, Joysticks, and the Mouse 263

called, and the low-resolution screen is initialized in much the same way
as in the SKETCHER program. Then, in lines 59 through 69, the firm
ware that comes with the Apple mouse is initialized.

To understand this initialization process, it helps to know something
about the operation and design of the Apple mouse. A mouse is a
“sm art” I/O device; it comes with a complex set of firmware that makes
it far more intelligent than a simple resistor-based device such as a
joystick or a game paddle.

One difference between the Apple mouse and a simple joystick is
that the Apple mouse can be operated in a number of different modes:

• In movement interrupt mode, the mouse generates an interrupt
each time it is moved. A program will then read data generated by
the mouse only when that data changes, rather than keeping con
stant surveillance over the mouse to determine whether it has been
moved. This mode can be useful in high-performance programs
when processing time is at a premium. The intricacies of the
movement interrupt mode are, however, beyond the scope of the
introductory material presented in this chapter.

• In button interrupt mode, an interrupt is generated when the
mouse button is pressed.

• Movement/button interrupt mode combines the two modes just de
scribed.

• Screen refresh interrupt mode examines mouse data every sixtieth
of a second, during the vertical blank interval that takes place
between video screen refreshes. This mode can eliminate the flick
ering that sometimes results when objects are moved around on a
screen during the non-blank part of a video cycle.

• Passive or transparent mode uses an interrupt system built into
the mouse firmware to update mouse data automatically. The
transparent mode is the simplest mouse operating mode available,
and it is the mode that we will concentrate on during the rest of
this chapter.

Subroutines Provided With the Apple Mouse

To determine which mode will be used for mouse operations, a value
called a mode byte must be loaded into your microprocessor’s accumula
tor. Then a JSR must be done to a subroutine called SETMOUSE,
which is built into the firmware that operates the Apple mouse. Before
the SETMOUSE routine is invoked, however, a preliminary routine
called INITMOUSE must be called.

264 Apple Roots

In addition to SETMOUSE and INITMOUSE, a number of other
important mouse-related subroutines are built into the firmware that
runs the mouse. To help programmers access these subroutines, the
mouse firmware also contains a table that points to the entry address of
each routine. In a mouse-equipped Apple He or lie, this table occupies
memory addresses $Cnl2 through $Cnl9, with the variable n equating
to the number of the slot where the mouse is installed. In an Apple lie,
this slot is always Slot 4. In an Apple He, the slot number can vary,
depending upon which expansion slot has been used for the mouse card.

Table 13-1 is a list of address pointers that are built into the Apple
mouse firmware. In assembly-language programs, these pointers can be
used to locate the low bytes of the starting addresses of mouse-related
subroutines. The functions of these routines will be described later in
this chapter.

In each address listed in Table 13-1, the high byte is always $Cn,
with n equating to the mouse’s slot number. For example, if the mouse
connected to your computer uses Slot 4, you can calculate the address
for the routine INITMOUSE by adding the contents of address $C419 to
the literal value $C400. You can determine the starting address of the
SETMOUSE routine by adding the contents of address $C412 to the
literal value $C400.

Once you know the starting address of a mouse routine you want to
use, you can call the routine by storing certain values in your micropro
cessor’s X and Y registers and then jumping to the mouse subroutine

Table 13-1. Mouse Subroutine Low-Byte Address Table

The following addresses hold the low bytes of the
starting addresses of mouse firmware routines:

$Cnl2 SETMOUSE
$Cnl3 SERVMOUSE
$Cnl4 READMOUSE
$Cnl5 CLEARMOUSE
$Cnl6 POSMOUSE
$Cnl7 CLAMPMOUSE
$Cnl8 HOME MOUSE
$Cnl9 INITMOUSE

Paddles, Joysticks, and the Mouse 265

that you want to call. These are the values that must be stored in the X
and Y registers before any mouse routine (except the SERVE MOUSE
routine) can be called:

• The value $Cn (with n equating to the mouse’s slot number) must
be stored in the X register.

• The value $n0 (with n equating to the mouse’s slot number) must
be stored in the Y register.

Once the X and Y registers have been loaded in this fashion, the
desired subroutine can be called.

In lines 49 and 50 of the MOUSKETCH program, two constants
(labeled CN and NO) are assigned the values $C4 and $40 respectively.
If you own an Apple He and have a mouse card installed in a slot other
than Slot 4, you can alter these values in the program to reflect the slot
in which your card is installed.

Calling the INITMOUSE Routine

Before you can use the Apple mouse, you must initialize it by calling the
INITMOUSE routine. In the MOUSKETCH program, INITMOUSE is
called in lines 60 through 65. In lines 59 through 63, the value $C400 is
loaded into a pair of 8-bit Page Zero registers labeled SLOT and
SLOT+1. Then, using the offset table defined in lines 15 through 18, the
offset pointer for the INITMOUSE routine (that is, the literal value 19)
is loaded into the 6502B/65C02 Y register. Next, a JSR instruction is
used to jump to a subroutine labeled CALLFW (an abbreviation for
“call firmware”). This subroutine starts at line 61.

When the CALLFW routine is called, the contents of the accumula
tor are pushed onto the stack for safekeeping. Then, in line 83, an inter
esting operation takes place. With the help of indirect indexed address
ing, the value of the Y register—which in this case is the literal
number 19—is added to the contents of memory address $C400. The
number resulting from this calculation equates to a memory address.
That address, as you can see by examining Table 13-1, is $C419, which
holds the low byte of the starting address of INITMOUSE. In other
words, in line 83 the low byte of the starting address of the INIT
MOUSE routine is loaded into the accumulator.

Next, in lines 84 and 85 of the MOUSKETCH program, the X regis
ter is loaded with the value $Cn and the Y register is loaded with the
value $n0. In lines 86 and 87, a complex programming technique called
address modification is used to JSR to the INITMOUSE routine.
Though difficult to explain (and perhaps even more difficult to grasp),

266 Apple Roots

address modification is often used in assembly-language programming
because it can lead to significant savings in both memory and process
ing time.

In line 86, the value in the accumulator—which is the low byte of
the starting address of the INITMOUSE routine —is stored in a
memory address labeled SETFW+1. In line 87 the value of the X regis
ter (the value $Cn) is stored in an address labeled SETFW+2.

To find these three memory addresses—SETFW, SETFW+1, and
SETFW +2—move back to line 54 of the MOUSKETCH program;
they’re all there.

Line 54 contains a three-byte statement: JMP $0000. That’s a three-
byte instruction because it contains a one-byte instruction and a two-
byte operand. If you break down the three bytes of the statement, you’ll
see that, when the MOUSKETCH program is assembled into machine
language, the machine-language equivalent of the mnemonic jump will
be stored in the memory address labeled SETFW. The value $00 will be
stored in each of the two memory registers that will follow memory
address SETFW. In other words, memory address SETFW+1 and
memory address SETFW+2 will each hold a 0 when the MOUS
KETCH program is assembled into machine language.

But the 0’s stored in SETFW+1 and SETFW+2 at assembly time
are actually dummy values. In lines 86 and 87, as we have just seen, new
values are stored in these two memory addresses. In fact, by the time
the subroutine labeled CALLFW ends, the starting address of the
INITMS routine has replaced the dummy 0’s originally stored in
SETFW+1 and SETFW+2.

Once all this is done, the original value of the A register is restored
from the stack, and a JSR instruction is used to jump to memory
address SETFW. These two operations take place in lines 88 and 89.

When the statement JSR SETFW is encountered in line 89, the
address of the next instruction in the program is pushed onto the stack.
(This always happens when a JSR instruction is used in a program.)
Next, the program jumps first to line 54 and then to the address now
stored in SETFW+1 and SETFW +2—which is, as we have seen, the
starting address of the INITMS subroutine. The INITMS subroutine
ends with an RTS instruction, which, like all RTS instructions, will pull
its return address off the stack. In this case, the return address that is
retrieved from the stack will be the address of another RTS instruction
—the one at line 90 of the MOUSKETCH program. (The address of this
RTS instruction was pushed onto the stack at line 89.) Once the pro
gram finds its way back to the RTS instruction in line 90, that instruc-

Paddles, Joysticks, and the Mouse 267

tion will end the CALLFW routine. The program will then return to
where it was before the CALLFW subroutine was called. In other
words, the RTS instruction at line 90 will move the program back to
line 66.

At line 66, the MOUSKETCH program jumps to a subroutine
labeled CLAMR This routine, which starts at line 146, is used to set the
minimum and maximum values that can be returned by the X axis and
the Y axis of the Apple mouse. When the Apple mouse is first initial
ized, the minimum and maximum values that can be returned for the
values of both X and Y range from $00 to $3FF. In the MOUSKETCH
program, the CLAMP subroutine is used to change the maximum
values of both X and Y to $FF —the same values that are returned by
Apple-compatible joysticks and game paddles. In the MOUSKETCH
program, the boundaries for mouse data were changed to these new
values so that routines originally written for the SKETCHER program
could also be used in MOUSKETCH. This procedure saved considerable
programming time when MOUSKETCH was being written.

In the CLAMP routine, a mouse firmware subroutine called
CLAMPMS is used to set the new maximum and minimum values of
the mouse’s X and Y positions. Before the CLAMPMOUSE routine is
called, the accumulator must be loaded with either a 0 or a 1. If a 0 is in
the accumulator when CLAMPMOUSE is called, then CLAMPMOUSE
will set new values for the mouse’s X coordinates. If a 1 is in the accum
ulator, CLAMPMOUSE will change the limits of the mouse’s Y
coordinates.

When CLAMPMOUSE is executed, the contents of four memory
addresses become the new high and low boundaries of the screen coor
dinates of the mouse. These four addresses and their functions are

$478 Low b y t e o f new Low boundar y
$4F8 Low b y t e o f new h i gh boun dar y
$578 High b y t e o f new Low boundar y
$5F8 Hi gh b y t e of new h i gh boundar y

During the CLAMP subroutine, CLAMPMOUSE is called twice —
once for each mouse coordinate. Then the program returns to line 67,
where a routine called SETMOUSE is called. In the MOUSKETCH
program, SETMOUSE is used to put the mouse into passive mode.

Before the SETMOUSE routine is called, a value called a mode byte
must be stored in the accumulator. Table 13-2 lists the mode bytes that
can be used with the SETMOUSE subroutine.

268 Apple Roots

Table 13-2. Mode Bytes Used With the SETMOUSE Routine

$00 Turn mouse off
$01 Set transparent mode
$03 Set movement interrupt mode
$05 Set button interrupt mode
$07 Set movement/button interrupt mode
$08-$0F Bytes used to set screen refresh interrupt modes

for the Apple lie mouse

After the CLAMP subroutine is called, the MOUSKETCH program
moves to its main loop, labeled DOIT, which begins at line 73. In the
DOIT loop, a mouse firmware routine called READMOUSE is used to
read the status of the joystick. Then the program jumps to a subroutine
labeled PLOTDOT, which begins at line 94. The PLOTDOT routine
works almost exactly like the RDSTICK routine in the SKETCHER
program; it checks the OPEN-APPLE and CLOSED-APPLE keys to see
whether the screen should be cleared and then checks the mouse button
to see whether a line is to be drawn as the cursor moves. When the
PLOTDOT subroutine ends, a JMP instruction is used to start the DOIT
loop again.

14
Apple Graphics

If you know BASIC—even a little BASIC—you can write some fairly
impressive programs in low-resolution graphics. To create eye-catching,
fast-action, high-resolution programs, though, you almost have to use
assembly language. In this chapter you’ll learn the principles of both
high-resolution and double high-resolution graphics. You’ll also have an
opportunity to type, assemble, and execute two high-resolution programs.
The first program will allow you to type characters on your computer
screen when your Apple is in high-resolution mode. The second program
will enable you to type headline-size characters on a high-resolution
screen. These characters will be displayed on the screen in color, if you
have a color monitor, and they’ll be four times as large as the screen
characters that your computer normally displays.

These two programs will make sense once you have a fundamental
understanding of how the Apple lie and the Apple lie generate their
high-resolution screen displays.

Figure 14-1 is a screen map of High-Resolution Display Page 1, the
block of RAM most often used as screen memory in the Apple lie and
the Apple He. This block of RAM extends from memory address $2000
to memory address $3FFF.

269

270 Apple Roots

X Offsets

Figure 14-1. A high-resolution graphics screen map

Notice that the screen map illustrated by Figure 14-1 is quite sim
ilar to the 40-column text map illustrated in Chapter 12. The high-
resolution map in Figure 14-1, like the text-display map that was shown
in Chapter 12, is made up of 1024 rectangles arranged in a grid measur
ing 40 columns wide by 24 columns deep. The same kind of system is
used on both maps for locating individual rectangles. On each map, the
first byte of each horizontal row is identified with a two-byte starting
address, and each vertical column is identified with a one-byte offset. To
pinpoint the location of a given rectangle on either map. you add a
column offset, or X offset, to a row address or Y address. The result will
be the starting address of the rectangle being accessed.

Apple Graphics 271

The row addresses listed down the side of Figure 14-1 are arranged
in exactly the same way as the Y addresses that were listed on the 40-
column text map presented in Chapter 12. The Y addresses in Figure
14-1, like those of the text map in Figure 12-1, are arranged in three
groups of eight rows each. On the high-resolution map in Figure 14-1,
the first group of row addresses extends from memory address $2000 to
memory address $2380, and the second group extends from $2028 to
$23A8. The third group of addresses extends from $2050 to $23D0.

At first glance, the layouts of these two maps look exactly alike.
However, there is one important difference in the way the two maps are
interpreted in computer programs. The text map in Figure 12-1 is just
what it looks like: a map of 1024 bytes of data. However, the 1024-
square map in Figure 14-1 actually represents 8192 bytes of data—or
$2000 bytes in hexadecimal notation. The next section will explain how
8912 bytes can be fit into 1024 screen squares.

How the Apple llc/lle
Creates a Screen Display

When you want the Apple Ilc/IIe to display a character on a 40-column
text screen, you can simply store an Apple ASCII code number for that
character on the screen map illustrated in Figure 12-1. Your Apple lie
or lie will then convert that character into a certain pattern of dots and
display that pattern in the appropriate position on the screen.

Figure 14-2 illustrates the dot pattern generated and displayed by
the Apple Ilc/IIe operating system when the key for the letter A is
pressed on the computer keyboard.

x
x x

x x
x x
xxxxx
X X
X X

Figure 14-2. Screen dot pattern for the letter A

272 Apple Roots

When your computer is in 40-column text mode, each rectangle on its
screen map represents a single character code, or just one byte of data.
But, when this byte of data is passed along to the Apple Ilc/IIe charac
ter generating circuitry, it is converted into eight bytes (64 bits) of data.
These eight bytes are then used to create a dot pattern on the screen.

When your computer is in high-res mode, however, it generates what
is known as a bit-mapped screen display. When bit-mapping is used to
create an Apple Ilc/IIe screen display, the computer programmer has
direct control over each dot that is displayed on the screen. Instead of
storing one byte in a screen-map location and leaving it up to the com
puter to convert that byte into a bit pattern, the programmer must store
eight bytes of data in each of the 1064 rectangles shown on the memory
map. Bit-mapping a high-resolution screen, therefore, requires eight
times 1024 bytes, or 8192 bytes. (That’s $2000 bytes in hexadecimal
notation.)

Since 8192 bytes are needed to bit-map a high-res screen, and since
there are only 1024 cells on the map in Figure 14-1, it is obvious that
some kind of trick must be used before the map in Figure 14-1 can be
used to map a high-resolution screen. Since eight lines of dots on a high-
resolution screen occupy the same space on the display as one row of
characters, the total number of dot lines on a high-res display is eight
times 24, or 192.

To display all of these rows on a high-resolution screen, the subset
consisting of all of the first lines of dots in the first group of eight rows
on the high-res screen map is stored in the first 1024 bytes of the block
of memory being used for a high-resolution display. The subset consist
ing of all of the second lines of dots is stored in the second 1024 bytes of
screen memory—and so on, for a total of eight times 1024, or 8192
bytes. In other words, each block of 1024 bytes in the high-resolution
display page contains one line of dots out of every group of eight rows.

There is a short (if not simple) equation that you can use to locate the
exact memory address of any byte on a high-resolution screen. Program
14-1 is a short BASIC program that contains this equation. In this pro
gram, Q stands for “quotient,” R stands for “remainder," and VP stands
for the vertical position of a dot on a screen, expressed as a line number
ranging from 0 to 192. When the equation in the program is solved, it
will yield the value of YP, which stands for “Y position." In this equa
tion, the Y position is the starting address of the line on the screen map
that contains the desired byte. Once this value has been determined, you
can add the byte’s X offset to the value of YP. The result of this calcula
tion is the byte’s exact memory address.

Apple Graphics 273

Program 14-1
Formula for Locating a Line Number on a High-Resolution Screen*
10 Q1 = INT (VP / 8) : R1 = VP - Q1 * 8
20 Q2 = INT (Q1 / 8) : R2 = Q1 - Q2 * 8
30 YP = 8192 + Q2 * 40 + R2 + 128 + R1 * 1024

* Adapted from a program in Graphically Speaking, a book by Mark
Pelczarski (Softalk Books, 830 Fourth Avenue, Geneva, Illinois 60134,
1983). Used by permission.

If you wanted to write a high-resolution graphics program in
BASIC, you could use an equation like the one in Program 14-1 every
time you wanted to plot a dot on the screen. It would make much more
sense, however, to use the equation to set up a table of all 192 Y ad
dresses on a high-resolution screen. Then your program could locate the
Y address of a screen line at any time by simply consulting that table.

Program 14-2
Program for Creating a Y-Address Lookup Table*
10 FOR VP = 0 TO 191
20 Q1 = INT (VP / 8) : R1 = VP - Q1 * 8
30 02 = INT (Q1 / 8) : R2 = 01 - Q2 * 8
40 YP = 8192 + Q2 * 40 + R2 + 128 + R1 * 1024
50 POKE 28672 + VP, INT (YP / 256)
60 POKE 28864 + VP, YP - INT (YP / 256) * 256
70 NEXT VP

* Adapted from a program in Graphically Speaking, a book by Mark
Pelczarski (Softalk Books, 830 Fourth Avenue, Geneva, Illinois 60134,
1983). Used by permission.

Program 14-2 is a BASIC program that creates a table of Y addresses.
The program then stores that table in a segment of RAM beginning at
memory address $7000 (28672 in decimal notation). The low byte of each
Y address is stored in the block of memory that begins at $7000, and the
high byte of each Y address is stored in a second block of memory that
begins at $70C0 (28864 in decimal notation). This strange-sounding pro
gram actually makes using the table easier, since the offset that fetches
the high byte of a Y address can also be used to fetch the low byte.

When you use a program like Program 14-2 to create a table, you
can store the table on a disk as a binary file with a ProDOS command
such as

BSAVE T A B L E , A 2 8 6 7 2 , L 3 8 4

As you may know, the number following the A in this command is
the address where you want to store the table in memory. The number

274 Apple Roots

after the L is the length, in bytes, of the block of data that you want to
store. This technique can be used for storing machine-language pro
grams on a disk, as well as for storing data. Of course, once a program
or data table has been stored on a disk, it can be easily retrieved from
the disk and incorporated into other machine-language programs. Fur
ther details on this process can be found in Apple’s ProDOS Technical
Manual and other ProDOS manuals.

You may type and run Program 14-2 if you like, but there’s really no
need to. The same routine, translated into assembly language, appears
in the next program we’ll be examining. That program, called
PRNTCHRS, is presented in Program 14-3. PRNTCHRS was created
using a Merlin Pro assembler. With minor modifications, it will also
work when typed and run using an Apple ProDOS assembler.

Program 14-3
The PRNTCHRS Program

1 *

2 * PRNTCHRS.S
3 *
4 ORG $ 6 F FD
5 *
6 JMP START
7 *
8 KYBD EQU $C000
9 STROBE EQU $C010

10 *

11 TEMPLO EQU $06
12 TEMPHI EQU TEMPLO+1
13 CBASLO EQU TEMPHI+1
14 CBASHI EQU CBASL0+1
15 TABPTR EQU $4A
16 *
17 FILVAL EQU $300
18 TABSIZ EQU FILVAL+1
19 QU0T1 EQU TABSIZ+1
20 QU0T2 EQU QU0T1+1
21 REMDR1 EQU QU0T2+1
22 REMDR2 EQU REMDR1+1
23 YLINE EQU REMDR2+1
24 PR0DL EQU YLINE+2
25 PRODH EQU PRODL+1
26 MPRL EQU PRODH+1
27 MPRH EQU MPRL+1
28 MPDL EQU MPRH+1
29 MPDH EQU MPDL+1
30 TOTAL EQU MPDH+1
31 XPSN EQU TOTAL+2
32 YPSN EQU XPSN+1
33 *
34 KILOBYTE EQU 1024
35 SCRTOP EQU $2000
36 *

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

Apple Graphics 275

PTRH EQU $8000
PTRL EQU $80C0
*
CHRTAB EQU $7000

HEX 2 0 2 4 2 8 2 C3034383C2 0 2 4 2 8 2 C3034383C
HEX 2 1 2 5 2 9 2 D3 1 3 5 3 9 3 D212 5 2 9 2 D3 1 3 5 3 9 3 D
HEX 22262A2E32363A3E22262A2E32363A3E
HEX 2 3272B2F33373B3F23272B2F33373B3F
HEX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0
HEX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0
HEX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0
HEX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0
HEX 2 8 2 8 2 8 2 8 2 8 282828A8A8A8A8A8A8A8A8
HEX 2828282828282828A8A8A8A8A8A8A8A8
HEX 2828282828282828A8A8A8A8A8A8A8A8
HEX 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 A8A8A8A8A8A8A8A8
HEX 5050505050505050D0D0D0D0D0D0D0D0
HEX 5050505050505050D0D0D0D0D0D0D0D0
HEX 5050505050505050D0D0D0D0D0D0D0D0
HEX 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 DOD0D0D0D0D0D0
HEX D0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 C1C1C1C001C1C
HEX 00363 62 43 6 0 0 0 0 0 0 0 0 1 2 3 F3F123F3F12
HEX 0 00 C3 F 03 3F303F0C000027170F3C3A39
HEX 0 0 0 6 0 9 0 2 0 4 2 A11 2 EOOOCOC080C000000
HEX 0 0 3 8 1 C0E0E0E1C38000E1C3838381C0E
HEX 0 0 0 8 2 A1C3E1C2A08000C0C3 F3 FOCOCOO
HEX 0 0 0 0 0 0 0 0 0 0 0 0 1 C1 8 0 C0 0 0 0 3 E3EOOOOOO
HEX 0 0 0 0 0 0 0 0 0 0 0 0 1 C1 C00607038 1 C0 E0703
HEX 0 0 1 E3 3 3 3 3 3 3 3 3 3 1 E 0 0 3 C 3 6 3 3 3 0 3 0 3 0 3 0
HEX 0 0 1 E3F33 3 80E3F3F001E3 F303 E303 F1 E
HEX 0 0 3 8 3 C3 6 3 3 3 F 3 0 3 0 0 0 3 F 3 F 0 3 1 F303F1E
HEX 0 0 1 C0 6 0 3 1 F3 3 3 3 1 E003 F3F3 01 8 0 COCOC
HEX 0 0 1 E3F331E333F1E001E3 F333E303E1E
HEX 0 0 0 0 1 C1C0 0 0 0 1 C1C0 0 0 0 1 C1C0 0 0 0 1 C18
HEX OC7 0 3 8 1 C0E1C3 8 7 0 0 0 0 0 3 E3E003E3EOO
HEX 0 0 0 7 0 E1 C381COE07001E3F33180C00
HEX 0 C0 07 F 7F7F7F7F7F7F7F1E3F333F3F33
HEX 3 3 0 0 1 F 3 F 3 3 1 F 3 3 3 F 1 F 0 0 1 E 3 F 3 3 0 3 3 3 3 F
HEX 1 E0 01 F3F3 3 3 3 3 3 3 F1F0 03 F3F0 3 1 F0 3 3 F
HEX 3 F 0 0 3 F 3 F 0 3 1 F 1 F 0 3 0 3 0 0 1 E3F033B333F
HEX 1 E0 03333333F3F3333003F3F0C0C0C3F
HEX 3F00B0B0B0B0B3BF9E80333B1F0F1F3B
HEX 3 3 0 0 0 3 0 3 0 3 0 3 0 3 3 F 3F0063776B636363
HEX 6 3 0 0 3 3 3 3 3 7 3 F3B333 3 0 0 1 E3F3333333F
HEX 1 E 0 0 1 F 3 F 3 3 3 F 1F 0 30 30 01 E3 F 23 23 2B 13
HEX 2E00 1 F3 F 33 3F 1 F 3B33 00 1E3F 0 31 E3 03 F
HEX 1 E003F3F0C0C0C0C0C0033335333333F
HEX 1E00333 33 33 33 31 EOC0 0 6 3 6 3 6 3 6B6B77
HEX 6 3 0 0 3 3 3 3 1 EOC1 E333 3 0 0 3 3 3 3 3 3 1 EOCOC
HEX 0 C0 03 F 3 F 1 8 0 C0 6 3 F 3 F0 0 1 F 1 F 0 3 0 3 0 3 1 F
HEX 1 F0 0 0 3 0 7 0 E1C387 060001 FI FI 8 1 8 1 8 1 F
HEX 1 F 0 0 0 C1 E3 F 0 0 0 0 0 0 0 0 0 0 8 0 8 0 8 0 8 0 8 0
HEX 8 0 FFFF060C1 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 E303E
HEX 333 E0003031 F3333331 F0000001 E33 03
HEX 3 3 1 E0 0 3 0 3 0 3 E3333333EOOOOOO1 E331F
HEX 0 3 1 E 0 0 1 C 3 6 0 6 1 F 0 6 0 6 0 6 0 0 0 0 0 0 1 E3333
HEX 3 E30 1 E0 30 31 F 3 3 3 3 3 3 3 3 0 0 0 0 0 C0 0 0 C0 C

276 Apple Roots

95 HEX 0C0C00300030303033331E030333180F
96 HEX 1B33000E0COCOCOCOC1E0000003FSB5B
97 HEX 5B5B0000001F333333330000001E3333
98 HEX 3 3 1 E0000001F33331F030300003E3333
99 HEX 3E303000001F330303030000001E031E

100 HEX 301E0006061F0606361C000000333333
101 HEX 3 3 3 E0000003333331EOC0000006D6D6D
102 HEX 6D7E000000331E0C1E33000000333333
103 HEX 3E301E00003F180C063F001C1E060706
104 HEX 1E1COOOCOCOCOCOCO COCOC0E1E183818
105 HEX 1E 0E 000000281400000000FFFFFFFF
106
107 SET UP TABLE OF SCREEN ROW COORDINATES
108
109 START LDY #0
110 YLOOP' CPY #192
111 BCC CONT
112 JMP EXIT
113
114 * DIVIDE Y BY 8
115
116 CONT T Y A
117 LSR
118 LSR
119 LSR
120 STA QU0T1
121
122 GET REMAINDER OF DIVISION BY 8
123
124 T Y A
125 AND #7
126 STA REMDR1
127
128 DIVIDE QU0T1 BY 8
129
130 LD A QU0T1
131 LSR
132 LSR
133 LSR
134 STA QU0T2
135
136 GET REMAINDER
137
138 LD A QU0T1
139 AND #7
140 STA REMDR2
141
142 * CALCULATE LOW BYTE OF Y ADDRESS
143
144 LD A #o
145 STA MPRH
146 STA MPDH
147 L D A QU0T2
148 STA MPRL
149 LD A #40
150 STA MPDL
151 J SR MULT16
152 L D A PRODL

153
154
155
156
157
1 58
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

Apple Graphics 277

STA TOTAL
LD A PROD H
STA TOTAL+1

LD A #0
STA MPRH
STA MPDH
LD A REMDR2
STA MPRL
LD A #128
STA MPDL
JSR MULT16
CLC
LD A PRODL
ADC TOTAL
STA TOTAL
LD A PROD H
ADC TOTAL+1
STA TOTAL+1

LD A #0
STA MPRH
LD A REMDR1
STA MPRL
LD A #<KILOBYTE
STA MPDL
LD A #>KILOBYTE
STA MPDH
JSR MULT 16
CLC
LD A PRODL
ADC TOTAL
STA TOTAL
LD A PRODH
ADC TOTAL+1
STA TOTAL+1

*
CLC
LD A #<SCRTOP
ADC TOTAL
STA PTRL, Y
L D A #>SCRTOP
ADC TOTAL+1
STA PTRH,Y

INY
JMP YLOOP

*
EXIT EQU *

 I N I T I A L I Z E SCREEN DISPLAY
�

IN IT STA SC050 ; TU RN OFF TEXT MODE
STA $C052 ; TURN OFF MIXED MODE
STA SC057 ; TURN ON HI-RES MODE

*

 CLEAR SCREEN

278 Apple Roots

211 LDA #0
212 STA FILVAL
213 LDA #$00
214 STA TABPTR
215 STA TABSIZ
216 LDA #$20
217 STA TABPTR+1
218 STA TABSIZ+1
219 JSR BLKFIL
220 *

221 * PRINT CHARACTER ON SCREEN
222 *

223 LDA #0
224 STA XVALUE
225 STA XPSN
226 STA YVALUE
227 STA YPSN
228 PRINTIT LDA KYBD
229 CMP #$80
230 BCC PRINTIT
231 STA STROBE
232 AND #$7 F ; CLEAR HIGH BIT
233 STA CHAR
234 LDX XPSN
235 STX XVALUE
236 LDY YPSN
237 STY YVALUE
238 JSR PRNTCHRS
239 *
240 * RESET SCREEN COORDINATES
241 *
242 LDX XPSN
243 IN X
244 CPX #40
245 BCC NEXT
246 CLC
247 LDA YPSN
248 ADC #8
249 CMP #185
250 BCC ITSOK
251 LDA #0
252 ITSOK STA YPSN
253 LDX #0
254 NEXT STX XPSN
255 JMP PRINTIT
256 *
257 * 16- BIT MULTIPLICATION ROUTINE
258 *
259 MULT16 LDA #0
260 STA PRODL
261 STA PRODH
262 LDX #16
263 SHIFT ASL PRODL
264 ROL PRODH
265 ASL MPRL
266 ROL MPRH
267 BCC NOADD
268 CLC

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

Apple Graphics 279

LDA MPDL
ADC PROD L
STA PRO D L
LDA MPDH
ADC PRODH
STA PRODH

NOADD DEX
BNE SHIFT
RTS

* PRNTCHRS ROUTINE

PRNTCHRS LD A #<CHRTAB

STA CBASLO
LD A #> CHRTAB
STA CBASHI
LD A CHAR
LSR
LSR
LSR
LSR
LSR
CLC
ADC CBASHI
STA CBASHI
LD A CHAR
AND #$1 F
ASL
ASL
ASL
CLC
ADC CBASLO
STA CBASLO
LDX tto

LOOP LDY YVALUE
LD A PTRL , Y
STA TEMPLO
LD A PTRH,Y
STA TEMPHI
TX A
TAY
LD A (CBASLO) , Y
LDY XVALUE
STA (TEMPLO) , Y
INC YVALUE
IN X
CPX #8
BNE LOOP
RTS

�

 BLOCK FILL ROUTINE
�

BLKFIL LD A FILVAL
LDX TABSIZ+1
BEQ PARTPG
l d y no

FULLPG STA (T ABP T R) . Y
INY

280 Apple Roots

327 BNE FULLPG
328 INC TABPTR+1
329 DEX
330 BNE FULLPG
331 PARTPG LDX TABSIZ
332 BEQ FINI
333 LDY #0
334 PARTLP STA (TABPTR) , Y
335 INY
336 DEX
337 BNE PARTLP
338 FINI RTS
339 *
340 CHAR DFB 0
341 XVALUE DFB 0
342 YVALUE DFB 0
343 *

Examining the PRNTCHRS Program

The PRNTCHRS program includes a long block of hexadecimal num
bers that extends from line 42 to line 105. This section is actually a table
of bit data that equates to a set of text characters similar to the ones
built into the character-generator ROM of the Apple lie. Predesigned
character sets such as the one used in this program are provided with a
number of graphics utility packages. For example, the character set in
the PRNTCHRS program is included in The Complete Graphics System
from Penguin Software and is used here by permission. If you have a
graphics package that includes a character set, you can substitute that
set for the one in the PRNTCHRS program. You can even write your
own, if you like.

If you use a substitute character set, it should be loaded into RAM
starting at memory address $7000. If you use a character set that starts
at some other address, you can copy it onto a disk, load it back into
memory starting at $7000, and then copy it back onto a disk as a new
file with a starting address of $7000. Once you have a character set that
starts at $7000, you can substitute it for the one in the PRNTCHRS
program by deleting lines 42 through 105 of the program, loading your
own character set into RAM, and simply running the program. If you
do use a substitute character set, be sure not to delete line 40, which
tells the program where to look for a character set in memory. If you
leave that line out of the program, the character set you use will never
be found.

The PRNTCHRS program begins at line 6 with a JMP instruction
that hops over the character set and goes to line 109. In the section of
the program that begins there and extends through line 201, a Y-

Apple Graphics 281

address lookup table is created and stored in a block of memory that
starts at $8000. The routine that creates this table works exactly like the
one in Program 14-2. The table-creating routine in the PRNTCHRS
program is much longer than the routine in Program 14-2, but it works
much faster because it is written in assembly language.

When the PRNTCHRS program finishes creating and storing its Y-
address lookup table, it initializes a high-resolution graphics screen and
clears High-Resolution Display Page 1 to black by storing a 0 in every
byte on Display Page 1. To clear the screen, the program uses a block-
fill subroutine that starts at line 321. This is a handy routine, since it
can rapidly fill any block of RAM with any desired value. Using a vari
able called FILVAL (fill value) and fancy low-byte and high-byte
addressing techniques, it does its job in two stages. First, it fills as
many IK pages (not display pages) as possible with the value of FIL
VAL. Then it fills in any remaining partial page.

The heart of the PRNTCHRS program is the section that extends
from line 223 to line 228. The first thing that happens in this block of
code is that the screen coordinates for the first character to be
displayed—represented by the variables XVALUE and YVALUE —are
set to 0. The first character that is typed will therefore be displayed in
the upper-left corner of the screen.

After the screen coordinates are set, a commonly used keyboard
reading algorithm begins. Two important memory registers appear in
this algorithm: memory address $C000, which is labeled KYBD, and
memory address $C010, which is labeled STROBE. KYBD is a ROM
address that can be checked to see whether a key has been pressed, and
STROBE is a soft switch that can be used to clear a keyboard character
after the character has been read.

When a key is pressed on an Apple Ilc/IIe keyboard, several things
happen. First, the ASCII code for the character that has been typed is
stored in the accumulator. Then bit 7 of memory register $C000 is set.
By keeping an eye on memory address $C000, a program can look to see
whether a character has been typed. As soon as a character has been
typed, its ASCII code can be fetched from the accumulator.

In the PRNTCHRS program, memory address $C000 is checked in
lines 228 and 229. In line 228, the accumulator is loaded with the value
of $C000; in line 229, that value is compared with the literal value #$80.
If the content of $C000 is less than 80, then bit 7 of $C000 has not been
set, indicating that no character has been typed. If no character has
been typed, the program will loop back to line 228. If bit 7 of $C000 is
clear, however, a character has been typed, so the program will clear

282 Apple Roots

the keyboard strobe by accessing Soft Switch $C010. (A write operation
is used for this operation in the PRNTCHRS program but, because of
the peculiar way in which Apple II soft switches work, a read operation
would also clear the strobe.) Clearing the strobe also clears the key
board so another key can be read.

When a key has been pressed and the keyboard strobe has been
cleared, the high bit of the value in the accumulator is cleared and the
resulting value is stored in a variable called CHAR. The high bit of the
accumulator is cleared because the character set in the PRNTCHRS
program does not include any reverse, flashing, or alternate-font char
acters. In the Apple ASCII system, such characters are assigned ASCII
code numbers that have their high bits set. Since there are no such
characters in the PRNTCHRS character set, the high bit of the ASCII
code in the accumulator is cleared.

Once the ASCII code for a character has been stored in the variable
CHAR, the bit pattern corresponding to that character must be found
in the character set that begins at memory address $7000. Then the
character’s bit pattern can be displayed on the screen.

The process of searching out a character’s bit pattern starts at line
281. In lines 281 through 283, the starting address of the character-set
table—which is called CHRTAB—is loaded into a pair of variables
called CBASLO (character base-low) and CBASHI (character base-
high). Then the accumulator is loaded with the ASCII code stored in the
variable CHAR, and a series of LSR instructions is used to divide that
value by 32. This operation is carried out because the character-set
table fills four IK pages of memory, and each page holds the bit data for
32 characters. Since the character table is arranged in ASCII-code
order, dividing a character’s ASCII number by 32 will tell us what page
it is on in the character table. Then, since it takes eight bytes to form a
character, the remainder multiplied by eight will give us the charac
ter’s location on that page.

In lines 294 through 301, a neat trick is used to calculate the
remainder that must be multiplied by eight. In this segment of the pro
gram, a logical AND operation is performed on the literal number $1F
(decimal 31) and the ASCII code of the number stored in CHAR. Since
31 is one less than 32—or 0001 1111 in binary notation—using AND on
31 with any number will yield the remainder of a division of that
number.

In lines 299 through 392, the quotient of the division problem we
have just performed is added to the high byte of CHRTAB—the start
ing address of the character table. The remainder of our division by 32

Apple Graphics 283

is added to the low byte of CHRTAB and stored in CBASLO. When
these two operations are complete, the high-order byte of the address of
the character we’re seeking will be stored in the variable CBASHI, and
the low byte will be stored in the variable CBASLO.

In the next section of the PRNTCHRS program, the variables XPSN
and YPSN (X position and Y position) are used to represent the current
screen coordinates of the last character displayed on the screen, while
XVALUE and YVALUE represent the X offset of the next character to
be printed. Two constants, PTRL and PTRH (pointer-low and pointer-
high), hold the starting addresses of the low-byte and high-byte Y-
lookup tables stored at memory addresses $8000 and $80C0. Two more
variables, TEMPLO and TEMPHI, hold the starting address of the bit
data that will be used to display the desired character on the screen.

The rest of the PRNTCHRS program uses indirect addressing,
along with loops that increment and decrement registers, to display the
bit patterns of characters on a screen. Using these techniques, the pro
gram fetches consecutive bytes of character data from the character
table at $7000. Then, using the same X offset and a series of different Y
addresses, the program stores those eight bytes in a neat stack that
forms a character on the screen.

Improving the PRNTCHRS Program

As you can see when you type, assemble, and run the PRNTCHRS pro
gram, it could use some improvement. It has no backspacing feature for
making corrections, and it offers no easy way to place a character in
any specific position on the screen. Furthermore, there is no cursor, so
there’s no way to tell exactly where a character will be displayed when
it is placed on the screen.

If you run the PRNTCHRS program on a color television set or a
color monitor, you’ll encounter one other problem: the letters that the
program produces won’t be pure white. Instead, most of them have
muddy-looking colors around the edges. Unfortunately, this “rainbow
effect” is difficult to avoid when small characters are displayed on the
Apple Ilc/IIe screen during high-resolution mode. As we shall soon see,
the problem is caused by the color-generating techniques that Apple II
computers use when they are in high-resolution mode. For reasons that
will be made clear later in this chapter, dots that are turned on in cer
tain dot columns on the Apple screen sometimes show up in one color
while dots in the next column are displayed in another color.

The problem does not affect the Apple Ilc/IIe when it is in text

284 Apple Roots

mode, which uses different techniques to generate a video display. If
you want to mix text and graphics on a high-resolution screen, however,
there are two simple ways to avoid the rainbow effect. You can use a
monochrome monitor, or you can improve the resolution by displaying
larger characters on the screen.

Program 14-4, called HEADLINES, offers at least partial solutions
to the problems presented in this section. HEADLINES, written on a
Merlin Pro assembler, includes a backspace feature for error correc
tion, and the characters that it produces, because of their size, can be
placed easily anywhere on the screen. Its giant-sized characters also
solve the rainbow problem.

Program 14-4
The HEADLINES Program
1 *

2 * HEADLINES.S
3 *
A ORG $6 F F D
5 *
6 JMP START
7 *
8 KYBD EQU $C000
9 STROBE EQU $C010

10 *

11 TEMPLO EQU $06
12 TEMPHI EQU TEMPL0+1
13 CBASLO EQU TEMPHI+1
14 CBASHI EQU CBASL0+1
15 TABPTR EQU $4A
16 *
17 FILVAL EQU $300
18 TABSIZ EQU FILVAL+1
19 QU0T1 EQU TABS IZ +1
20 QU0T2 EQU QU0T1+1
21 REMDR1 EQU QU0T2+1
22 REMDR2 EQU R EM DR 1+1
23 YLINE EQU REMDR2+1
24 PRODL EQU YLINE+2
25 PRODH EQU PRODL+1
26 MPRL EQU PRODH+1
27 MPRH EQU MPRL+1
28 MPDL EQU MPRH + 1
29 MPDH EQU MPDL+1
30 TOTAL EQU MPDH+1
31 XPSN EQU TOTAL+2
32 YPSN EQU XPSN+1
33 COUNT EQU YPSN+1
34 OB EQU COUNT+1
35 NB1 EQU OB+1
36 NB2 EQU NB1+1
37 YCOUNT EQU NB2+1
38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

KILOBYTE EQU 1024
SC RTOP EQU $2000

PTRH EQU $4000
PTRL EQU $ 4 0 CO

CHRTAB EQU *
*

HEX 2024282C3034 38 3 C2024282C3034 3 8 3 C
HEX 2125292D3135393D2125292D31353930
HEX 22262A2E32363A3E22262A2E32363A3E
HEX 23272B2F33373B3F23272B2F33373B3F
HEX 00000000000000008080808080808080
HEX 00000000000000008080808080808080
HEX 00000000000000008080808080808080
HEX 00000000000000008080808080808080
HEX 2828282828282828A8A8A8A8A8A8A8A8
HEX 2828282828282828A8A8A8A8A8A8A8A8
HEX 2828282828282828A8A8A8A8A8A8A8A8
HEX 2828282828282828A8A8A8A8A8A8A8A8
HEX 5050505050505050D0D0D0D0D0D0D0D0
HEX 5050505050505050D0D0D0D0D0D0D0D0
HEX 5050505050505050D0D0D0D0D0D0D0D0
HEX 5050505050505050D0D0D0D0D0D0D0
HEX D000000000000000001C1C1C1C001C1C
HEX 003636243600000000123F3F12 3 F3F12
HEX 000C3F033F303 FOC0000271 7 0 F3C3A39
HEX 00060902042A112E000C0C080C000000
HEX 0 0 3 8 1 C0E0E0E1C38000E1C3838381COE
HEX 00082A1C3E1C2A08000C0C3F3FOCOCOO
HEX 0000000000001C180C00003E3EOOOOOO
HEX 0000000000001C1C006070381C0E0703
HEX 0 0 1 E33333333331E003C363330303030
HEX 001E3F33380E3F3F001E3F303E303F1E
HEX 00 3 8 3 C36333F3030003F3F031F303F1E
HEX 0 0 1 C06031F33331E003F3F30180C0C0C
HEX 0 0 1 E3F331E333F1E001E3 F333 E303 E 1E
HEX 00 0 0 1 C1C00001C1C00001C1C00001C18
HEX 0C70381C0E1C387000003E3E003E3EOO
HEX 00070E1C381C0E07001E3F33180C00
HEX 0C007F 7F 7F 7F 7F 7F7F 7F 1E3F 333F 3F 33
HEX 3 3 0 0 1 F3F331F333F1F001E3F3303333F
HEX 1E 001F 3F 3333333F1F003F3F031F033F
HEX 3F003F3F031F1F0303001E3F033B333F
HEX 1E003333333F3F3333003F3F0C0C0C3F
HEX 3F00B0B0B0B083BF9E80333B1F0F1F3B
HEX 3300030 3 0 3 0 3 03 3 F3F00637 7 6 B636363
HEX 6 3 0 0 33 3 3 3 7 3 F3B3333001E3F3333333F
HEX 1E001F3F333F1F0303001E3F23232B13
HEX 2E 001F 3F333F1F3B33001E 3F031E 303F
HEX 1E003F3F0C0C0C0C0C0033333333333F
HEX 1E0033 3 3 3333331EOC006363636B6B77
HEX 6 3 0 0 33 3 3 1 EOC1E3333003333331EOCOC
HEX 0 C 0 03 F 3 F 1 8 0 C 06 3 F 3 F 0 0 1 F 1F 0 3 0 3 0 3 1F
HEX 1 F0003070E1C387060001F1F1818181F
HEX 1 F0 0 0 C1E 3F 00000000008080808080
HEX 8 0 FF F F 0 6 0 C1 8300000000000001E303E

286 Apple Roots

96 HEX 333E0003031F3333331F0000001E3303
97 HEX 3 3 1 E0030303E3333333E0000001E331F
98 HEX 0 31E001C36061F0606060000001E3333
99 HEX 3E301E03031F3333333300000COOOCOC

100 HEX 0 COC00300030303033331 E0303331BOF
101 HEX 1B33000E0C0C0C0C0C1E0000003 F5B5B
102 HEX 5B5B0000001F333333330000001E3333
103 HEX 3 3 1 E0000001F33331F030300003E3333
104 HEX 3 E303000001 F330303030000001 E031 E
105 HEX 3 0 1 E0006061F0606361C000000333333
106 HEX 3 3 3 E000000333 3 3 3 1 EOC0 0 00006D6D6D
107 HEX 6 D7E000000331E0C1E33000000333333
108 HEX 3E301E00003F180C063F001C1E060706
109 HEX 1E1C000C0C0C0C0C0C0C0C0E1E183818
110 HEX 1E0E0000002814 0 0 0 00 0 0 0 FFFFFFF F
111
112 SET UP TABLE OF SCREEN ROW COORDINATES
113 *
114 START LD Y #0
115 Y LOOP CPY #192
116 BCC CONT
117 JMP EXIT
118 *
119 * DIVIDE Y BY 8
120 *
121 CONT TYA
122 LSR
123 LSR
124 LSR
125 STA QU0T1
126
1 27 GET REMAINDER OF DIVISION BY 8
128
129 T Y A
130 AND #7
131 STA REMDR1
132
133 * DIVIDE QU0T1 BY 8
134
135 LD A QU0T1
136 LSR
137 LSR
138 LSR
139 STA QU0T2
140
141 * GET REMAINDER
142
143 LD A QU0T1
144 AND #7
145 STA REMDR2
146
147 * CALCULATE LOW BYTE OF Y ADDRESS
148
149 LD A #0
1 50 STA MPRH
151 STA MPDH
152 L D A QU0T2
153 STA MPRL

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

Apple Graphics 287

LD A #40
STA MPDL
J SR MULT16
LD A PROD L
STA TOTAL
LD A PRODH
STA TOTAL+1

*
LD A #0
STA MPRH
STA MPDH
LD A REMDR2
STA MPRL
LD A #128
STA MPDL
J SR MULT16
CLC
LD A P ROD L
ADC TOTAL
STA TOTAL
LD A PRODH
ADC TOTAL+1
STA TOTAL+1

*
LD A #0
STA MPRH
LD A REMDR1
STA MPRL
LD A #<KILOBYTE
STA MPDL
L D A #>KILOBYTE
STA MPDH
JSR MULT16
CLC
LD A PRODL
ADC TOTAL
STA TOTAL
L D A PRODH
ADC TOTAL+1
STA TOTAL+1

CLC
LD A #<SCRTOP
ADC TOTAL
STA PTRL, Y
L D A #>SCRTOP
ADC TOTAL+1
STA PTRH,Y

INY
JMP YLOOP

EXIT EQU *

 I N I T I A L I Z E SCREEN DISPLAY
*
INIT STA $ C050 ; TURN OFF TEXT MODE

STA $ C 05 2 ; TU RN OFF MIXED MODE

288 Apple Roots

212 STA SC057 ; TURN
213
214 CLE AR SCREEN
215
216 LD A #o
217 STA FILVAL
218 LD A #$oo
219 STA TABPTR
220 STA TABSIZ
221 LD A #$20
222 STA TAB PTR + 1
223 STA TABSIZ+1
224 JSR BLKFIL
225
226 * PRI NT CHARACTER
227
228 LD A #0
229 STA XVALUE
230 STA XPSN
231 STA YVALUE
232 STA YPSN
233
234 SHOWC HRS JSR PRIN
235 JSR RESET
236 JMP SHOWCHRS
237 *
238 PRINT IT LD A KYBD
239 CMP #$80
240 BCC PRINTIT ; NO
241 STA STROBE
242 AND #$7 F ; CLEAR
243 CMP #8 ; LE FT ARR
244 BEQ BACKUP
245 CMP #127 ; DELETE
246 BN E JUMP
247
248 BACKUP JSR MOVEBA
249 LD A #32 ; SPAC E
250 STA CHAR
251 LD A XPSN
252 STA XVALUE
253 LD A YPSN
254 STA YVALUE
255 JSR PRNTCHRS
256 JSR MOVEBACK
257 RTS
258
259 MOVEBACK LDX XPSN
260 DEX
261 DEX
262 BPL LEAP
263 LD A YPSN
264 SEC
265 SBC #16
266 STA YPSN
267 LDX #38
268 LEAP STX XPSN
269 RTS

ON H I - R E S MODE

ON SCREEN

T I T

KEY P R E S S E D ; TRY AGAIN

HIGH B I T
OW P R ESS ED ?

KEY

K

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

Apple Graphics 289

JUMP CMP #32 ; CONTROL KEY PRESSED?
BCC PRINTIT
STA CHAR
LDX XPSN
STX XV ALU E
LDY YPSN
STY YVALU E
JSR PRNTCHRS
RTS

�

 RESET SCREEN COORDINATES
�

RESET LDX XPSN
IN X
INX
CPX #40
BCC NEXT
CLC
LDA YPSN
ADC #16
CMP #185
BCC ITSOK
LD A #0

ITSOK STA YPSN
LDX #0

NEXT STX XPSN
RTS

* 16- BI T MULTIPLICATION ROUTINE

MULT16 LD A #0

STA PRODL
STA PROD H
LDX #16

SHIFT ASL PRODL
ROL PRODH
ASL MPRL
ROL MPRH
BCC NOADD
CLC
LD A MPDL
ADC PRODL
STA PRODL
L DA M PD H
ADC PRODH
STA PRODH

NOADD DEX
BN E SHIFT
RTS

 PRNTCHRS ROUTINE
�

PRNTCHRS LDA #<CHRTAB
STA CBASLO
LD A #> C H RT AB
STA CBASHI
LDA CHAR

290 Apple Roots

328 LSR
329 LSR
330 LSR
331 LSR
332 LSR
333 CLC
334 ADC CBASHI
335 STA CBASHI
336 LD A CHAR
337 AND # $1 F
338 ASL
339 ASL
340 ASL
341 CLC
342 ADC CBASLO
343 STA CBASLO
344 LDX #0
345 STX COUNT
346 LOOP LDY YVALUE
347 LD A PTRL, Y
348 STA TEMPLO
349 LD A PTRH,Y
350 STA TEMPHI
351 TX A
352 TAY
353 LD A (CBASLO) , Y
354 STA OB
355 *
356 * SPLIT ORIGINAL BYTE INTO NB1 AND NB2
357 *
358 ASL OB
359 *
360 LDY #3
361 LOOPA ASL OB
362 ROL NB2
363 SEC
364 ROL NB2
365 DEY
366 BN E LOOP
367 ASL OB
368 ROL NB2
369
370 LDY #3
371 LOOPS SEC
372 ROL NB1
373 ASL OB
374 ROL NB 1
375 DEY
376 BN E LOOP
377 SEC
378 ROL NB 1
379
380 L D A NB 1
381 ORA #$80
382 STA NB 1
383 LD A NB2
384 ORA #$80

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

Apple Graphics 291

STA NB2

* BACK TO ORIGINAL PROGRAM NOW

LD A #2
STA YCOUNT

*
TWICE LDA NB1

LD Y XVALUE
STA (TEMPLO) , Y
INC XVALUE
LD A NB2
LD Y XVALUE
STA (TEMPLO) , Y
LDX XPSN
STX XVALUE
INC YVALUE

LDX YCOUNT
DEX
STX YCOUNT
BEQ HOP

LDX YVALUE
LD A PTRL , X
STA TEMPLO
LD A PTRH,X
STA TEMPHI
JMP TWICE

HOP LDX COUNT

IN X
STX COUNT
CPX #8
BEQ SKIP
JMP LOOP

SKIP RTS

* BLOCK FILL ROUTI

BLKFI L LDA FILVAL

LDX TABSIZ+1
BEQ PARTPG
LD Y #0

FULLPG STA (TABPTR
INY
BN E FULLPG
INC TABPTR+1
DEX
BN E FULLPG

PARTPG LDX TABSIZ
BEQ FINI
LD Y #0

PARTLP STA (TABPTR
INY
DEX
BN E PARTLP

292 Apple Roots

442 FINI RTS
443 *
444 CHAR DFB 0
445 XVALUE DFB 0
446 YVALUE DFB 0
447 *

To understand how the HEADLINES program works, it helps to
know something about the way the Apple lie and the Apple He generate
color displays on a monitor screen. Figure 14-3 shows how your comput
er’s color-generating system works.

As you can see in Figure 14-3, each character displayed on a high-
resolution screen is represented by eight bytes of bit-map data. How
ever, only seven bits in each byte are actually displayed on the screen.
The high-order bit is not displayed, but is used as a color bit. In each
byte on a screen map, the color bit determines what colors will be used
when the other bits in the same byte are displayed on the screen.

With the help of the color bit in each byte, six colors can be dis
played on an Apple IIc/Apple He high-resolution screen: black, white,
green, violet, orange, and blue.

If the bits in a byte do not have to be displayed in color, but only in
black and white, the setting of the color bit in that byte does not matter.
If two screen dots situated next to each other are turned on —that is, if
the two adjacent bits that represent them are set to 1—both dots will be
displayed in white. However, if two screen dots situated next to each
other are turned off—if the two adjacent bits that represent them are
cleared to 0—both dots will be displayed in black.

When colors other than black and white are to be displayed on a
screen, bits are not set or cleared in pairs. Instead, only one bit is set for
each two bits to be displayed on the screen. If an even-numbered bit is
set and the bit on its right is cleared, then both bits will be displayed in
the color indicated by the set bit. If an even-numbered bit is cleared and
the bit on its right is set, both bits will still be displayed in color, but the
colors will be different.

As we have seen, the color bit of a byte is also a factor in determining
a screen color. If the color bit of a byte is set, the colors generated by the
other bits in that byte will be orange and blue. If the color bit of a byte
is cleared, the colors generated by the other bits in that byte will be
green and violet.

Still another factor that is used to determine screen colors is the
column position of a given byte on the screen. If a byte is in an even-
numbered screen column, then even-numbered bits will produce one
color and odd-numbered bits will produce another: if a byte is in an
odd-numbered screen column, these colors will be reversed. This may

Apple Graphics 293

Even Byte Columns Odd Byte Columns

0 1 2 3 4 5 6 7* 0 1 2 3 4 5 6 7*

Figure 14-3. How the Apple lie and lie generate colors on the screen

sound like a strange way to lay out a screen map, but it does make sense.
Since only seven bits in each byte are displayed on the screen, each
screen column contains an odd number of dots. If the same on-off pat
tern were used to generate the colors of even-numbered and odd-
numbered bytes, then a pair of set bits or a pair of cleared bits would sit
next to each other at each byte change, and the result would be either a
pair of white dots or a pair of black dots. This problem has been avoided
by using alternating dot patterns to produce the same color in even-
numbered and odd-numbered columns on the screen. Thus a given on-
off dot pattern can be used to generate a single color all the way across
the screen.

294 Apple Roots

How Screen Data Is Stored in RAM

Before we move on to a line-by-line analysis of the HEADLINES pro
gram, there is one more point that should be noted. As strange as this
may sound, dots are reproduced on the Apple Ilc/IIe screen in the
reverse order from the way they are stored in RAM. When a byte is
stored in RAM, bit 0 (the low-order bit) is on the right and bit 7 (the
high-order bit) is on the left. On an Apple Ilc/IIe screen display, how
ever, the screen dot represented by bit 0 is on the left and the screen dot
represented by bit 6 is on the right. (Bit 7, the color bit, is not displayed
on the screen.)

Figure 14-4 shows how a dot pattern for the letter B might look on a
screen, what that dot pattern would look like when converted into on-off
screen data, and how the eight bytes used for the character would actu
ally be stored in memory. As you can see, the bytes stored in RAM mir
ror their corresponding bit patterns on the Apple Ilc/IIe screen.

How the HEADLINES Program Works

The HEADLINES program is quite similar to the PRNTCHRS pro
gram. In fact, it’s the same program, with a few added improvements.

Appearance
On Screen

0 1 2 3 4 5 6

• •

• •

• •

Screen Dot
Settings

0 1 2 3 4 5 6

1 1 1 1 1 0 0

1 1 0 0 1 1 0

1 1 0 0 1 1 0

1 1 1 1 1 0 0

1 1 0 0 1 1 0

1 1 0 0 1 1 0

1 1 1 1 1 0 0

0 0 0 0 0 0 0

Bytes Stored
In RAM

7* 6 5 4 3 2 1 0

X 0 0 1 1 1 1 1

X 0 1 1 0 0 1 1

X 0 1 1 0 0 1 1

X 0 0 1 1 1 1 1

X 0 1 1 0 0 1 1

X 0 1 1 0 0 1 1

X 0 1 1 1 1 1 1

X 0 0 0 0 0 0 0

*Color bit

Figure 14-4. How a screen character is stored in RAM

Apple Graphics 295

The most obvious difference between PRNTCHRS and HEAD
LINES is that the characters displayed by HEADLINES are four
times as large as those generated by PRNTCHRS, although they’re
generated by exactly the same character set that was used for the
PRNTCHRS program.

Another difference between the two programs is that the characters
in the HEADLINES program are displayed against a blue background
rather than the black background used in the PRNTCHRS program.
Also, the characters are pure white with clean outlines, not vaguely
defined and rainbow-edged like the characters in the PRNTCHRS
program.

Still another difference between the programs is that HEADLINES
has a built-in backspacing feature for error-correcting. Although the
HEADLINES program doesn’t use a cursor, it usually isn’t too difficult
to figure out where the next character will appear on the screen, since
the program creates its blue background as it moves along.

The system that is used to blow up characters in the HEADLINES
program is not really very difficult to understand. In lines 356 through
421 of Program 14-4, each byte to be displayed on the screen is
expanded into two bytes. The memory address in which the original
byte is stored is labeled OB, and the two new bytes that are used to store
the expanded byte are labeled NBl and NB2.

In lines 356 through 421, OB is expanded into NBl and NB2 with a
series of ASL and ROL instructions. As these ASL and ROL operations
take place, a set bit is inserted after each bit in the original byte. That
insertion keeps the white characters in OB white but changes their
background to a color. The program also sets the color byte of each bit,
sets the even-numbered bits in even-numbered bytes, and sets the odd-
numbered bits in odd-numbered bytes. These settings make the back
ground of the displayed characters blue.

Once an original byte has been expanded into a pair of bytes labeled
NBl and NB2, the two new bytes are displayed next to each other on
the screen, making the character twice as wide as it is in the character
set used by the program. After NBl and NB2 are displayed, their Y
position is incremented to the address of the next Y line on the screen
and they are displayed again, one pair of bytes right under the other.
Thus each character on the screen is twice as high as it is in the charac
ter set being used.

When a complete character has been displayed in this fashion, a rou
tine called RESET (lines 283 to 297) is used to set the screen variables

296 Apple Roots

XPSN and YPSN to the proper settings for the display of another char
acter. If the DELETE key or the left ARROW key is pressed, however, a
routine called BACKUP (lines 248 to 269) is used to back up an invisible
cursor, to clear the last character typed by displaying a space, and to
back up again so that a new character can be typed. This backspacing
feature makes it easy to correct typing errors when you use the HEAD
LINES program.

Although HEADLINES was designed as a demonstration program,
it could be expanded quite easily into a useful utility. With the addition
of a simple screen-dump routine, screens created by the program could
be stored on a disk and then used as title screens and for other kinds of
eye-catching screen displays.

Double High-Resolution Graphics

With the advent of the Apple lie and the Apple He, the world of double
high-resolution graphics has been opened to Apple II programmers. If
you have an Apple lie or a properly equipped Apple He, you can use
double high-resolution graphics to display up to 16 colors on a high-
resolution screen or to increase the horizontal resolution of a mono
chrome screen to 560 dots.

Furthermore, the color of each dot in a double high-resolution dis
play can be controlled individually. Thus there are no restrictions on
what colors can be placed next to each other within a byte—and the
only restriction on the number of colors that can be displayed within a
byte is the actual number of dots available.

The Apple lie and He use a technique to generate double high-
resolution graphics that resembles the one employed to produce an 80-
column text display. When double high-resolution graphics are being
used, the Apple Ilc/IIe fetches display data from the same screen map
that is used in standard high-resolution graphics: High-Resolution Dis
play Page 1, which extends from $2000 to $3FFF. In the double high-
resolution graphics mode, though, the data retrieved from Display Page
1 comes from both main and auxiliary memory. In a double high-
resolution display, bytes from main and auxiliary memory are inter
leaved in the same way that bytes are interleaved in an 80-column text
display. A double high-resolution screen, like an 80-column text screen,
measures 80 bytes wide. Even-numbered byte columns, starting with
Column $00, come from auxiliary memory. Odd-numbered byte columns
starting with Column $01 come from main memory.

Apple Graphics 297

How Double High-Resolution
Colors Are Programmed

The double high-resolution graphics mode generates colors differently
from standard high-resolution graphics. In double high-resolution
graphics, just as in standard high-resolution graphics, only seven bits of
each byte are displayed on the screen. However, in a double high-
resolution display, the high-order bit of each byte on the screen is not a
color bit. In fact, in double high-resolution graphics the high-order bit
of each byte is not significant. It is neither shown on the screen nor used
as a color bit. It is simply not used at all.

Instead of using a color bit to set the color of each byte on the screen,
the double high-resolution graphics mode sets the color of each dot on
the screen in a very direct manner. A double high-resolution color dis
play has an effective horizontal resolution of 140 dots—exactly the same
resolution as a standard high-resolution display. However, a double
high-resolution display has much more memory at its disposal than a
standard high-resolution display. Thus, in a double high-resolution dis
play, four bits of memory (instead of a single color bit) are used to
determine the color of each dot on the screen. Table 14-1 lists the colors
used in double high-resolution graphics, along with the code number of
each color expressed in both hexadecimal and binary notation.

In double high-resolution graphics, as in standard high-resolution
graphics, the bits used for dot patterns are displayed in reverse order

Table 14-1. Colors Used in Double High-Resolution Graphics

Color Hex Code Binary Code
Black $0 0000
Dark red $1 0001
Dark blue $2 0010
Violet $3 0011
Dark green $4 0100
Gray 1 $5 0101
Dark blue $6 0110
Light blue $7 0111
Brown $8 1000
Orange $9 1001
Gray 2 $A 1010
Pink $B 1011
Green $C 1100
Yellow $D 1101
Light green $E 1110
White $F m i

298 Apple Roots

from the way they are stored in RAM. Therefore, the dot patterns used
to represent colors in double high-resolution graphics are the mirror
images of their actual bit patterns. Table 14-2 lists the binary code for
each color used in double high-resolution graphics, along with the dot
pattern that is used to display each color on the screen.

Figure 14-5 illustrates how this color data is displayed and encoded
in the 80 bytes of screen memory that are used to store each line of dots
on the screen in RAM. Since only seven bits in each byte of screen
memory are used, the bits that are used to generate color codes do not
line up with the bytes in which they are stored. That fact makes double
high-resolution graphics programs somewhat difficult to write. Before
a program can display a given dot in a desired color on a screen, it must
carry out a series of rather complex calculations. First, it must calcu
late the column number of the byte in which the dot will appear. Then it
must determine whether the data used to display the desired column
will come from main memory or auxiliary memory. The program must
also calculate the position of the desired bit within the desired byte.
Then comes the most difficult problem. Since the dot patterns used to
generate colors don’t line up very well with the boundaries of the bytes
displayed on the screen, the arrangements of dots needed to draw a
color differ from byte to byte. Specifically, there are four different dots
that can be used to express each of the 16 colors used in double high-
resolution graphics, and the dot pattern that must be used depends
upon the column number of the byte in which the dot will appear.

Table 14-2. Dot Patterns of Colors Used in Double High-Resolution Graphics

Color Binary Code Dot Pattern

Black 0000 0000
Dark red 0001 1000
Dark blue 0010 0100
Violet 0011 1100
Dark green 0100 0010
Gray 1 0101 1010
Dark blue 0110 0110
Light blue 0111 1110
Brown 1000 0001
Orange 1001 1001
Gray 2 1010 0101
Pink 1011 1101
Green 1100 0011
Yellow 1101 1011
Light green 1110 0111
White 1111 m i

Apple Graphics 299

Bytes
in RAM 6 5 4 3 2 1 0 6 5 4 3 2 1 0 6 5 4 3 2 1 0 6 5 4 3 2 1 0

Bytes on
screen map 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

Bvtes on
screen 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Color ^ i’ " i
codes $xx $xx $xx $xx

Figure 14-5. How RAM bytes and color codes are displayed in double high-resolution
graphics

One way to simplify the writing of a double high-resolution graphics
program is to set up a table containing all of the color-code numbers
used in double high-res graphics. That table can then be inserted into a
machine-language program and consulted for the appropriate color-
code number each time a color is used. Table 14-3 lists all 16 of the
colors available in double high-resolution graphics, together with the
four code numbers that are used for each color.

Table 14-3. Double High-Resolution Colors and Code Numbers

Color

Black
Magenta
Brown
Orange
Dark green
Gray 1
Green
Yellow
Dark blue
Purple
Gray 2
Pink
Medium blue
Light blue
Aqua
White

Aux. Memory,
Even Columns

$00
$08
$44
$4C
$22
$2A
$66
$6E
$11
$19
$55
$5D
$33
$3B
$77
$7F

Main Memory,
Even Columns

$00
$11
$08
$19
$44
$55
$4C
$5D
$22
$33
$2A
$3B
$66
$77
$6E
$7F

Aux. Memory,
Odd Columns

$00
$22
$11
$33
$08
$2A
$19
$3B
$44
$66
$55
$77
$4C
$6E
$5D
$7F

Main Memory,
Odd Columns

$00
$44
$22
$66
$11
$55
$33
$77
$08
$4C
$2A
$6E
$19
$5D
$3B
$7F

300 Apple Roots

Writing a Program in Double Hi-Res Graphics Program 14-5, titled
DUBHIRES, is a type-and-run program that demonstrates how colors
are programmed in double high-resolution graphics. It was written
using a Merlin Pro assembler—but, like the other programs in this
chapter, it can also be typed and run on an Apple ProDOS assembler
with relatively minor modifications.

Program 14-5
A Double High-Resolution Graphics Program

1 *

2 * DUBHIRES.S
3 *
4 * THIS PROGRAM DISPLAYS ALL 16 OF THE COLORS THAT ARE
5 * AVAILABLE IN APPLE I I C / I I E DOUBLE HIGH-RESOLUTION

GRAPHICS.
6 *

7 ORG $8000
8
9 JMP INIT

10 *

11 KILOBYTE EQU 1024
12 SCRTOP EQU $2000
13 *
14 LOOKHI EQU $9000
15 L00KL0 EQU $90C0
16 *
17 * SOFT SWITCHES
18 *
19 C0L80 EQU $C00D
20 TEXTOFF EQU $C050
21 MIXEDOFF EQU $C052
22 HIRES EQU $C057
23 ST0RE80 EQU $C001
24 PAGE20N EQU $C055
25 PAGE20FF EQU $C054
26 DHIRES EQU $C05E
27 *
28 * USER-DEFINED CONSTANTS
29 *
30 SCRPTR EQU $06
31 TEMPLO EQU SCRPTR+2
32 TEMPHI EQU TEMPLO+1
33 TABPTR EQU $1A
34 COLUMN EQU TABPTR+1
35 ROW EQU C OLUMN + 2
36 *
37 CLRFLG EQU $300
38 CLRPTR EQU CLRFLG+1
39 FILVAL EQU CLRPTR+1
40 TABSIZ EQU FILVAL+1
41 QUOT1 EQU TABSIZ+1
42 QUOT2 EQU QU0T1+1
43 REMDR1 EQU QU0T2+1
44 REMDR2 EQU REMDR1+1
45 YLINE EQU REMDR2+1

46 PRODL EQU YLINE+2
47 PROD H EQU PRODL + 1
48 MPRL EQU PRODH+1
49 MPRH EQU MPRL+1
50 MPDL EQU MPRH+1
51 MPDH EQU MPDL+1
52 TOTAL EQU MPDH+1
53 XPSN EQU TOTAL+2
54 YPSN EQU XPSN+1
55 CODENR EQU YPSN+1
56 BARCNT EQU CODENR+1
57 *
58 COLORS EQU *
59 *
60 WHITE HEX 7 F , 7 F , 7 F , 7 F
61 BLACK HEX 0 0 , 0 0 , 0 0 , 0 0
62 MAG HEX 0 8 , 1 1 , 2 2 , 4 4
63 BROWN HEX 4 4 , 0 8 , 1 1 , 2 2
64 ORANGE HEX 4 C , 1 9 , 3 3 , 6 6
65 DGREEN HEX 2 2 , 4 4 , 0 8 , 1 1
66 GRAY1 HEX 2 A , 5 5 , 2 A , 5 5
67 GREEN HEX 6 6 , 4 C , 19, 33
68 YELLOW HEX 6 E , 5 D , 3 B , 7 7
69 DBLUE HEX 1 1 , 2 2 , 4 4 , 0 8
70 PURPLE HEX 1 9 , 3 3 , 6 6 , 4C
71 GRAY2 HEX 5 5 , 2 A , 5 5 , 2 A
72 PINK HEX 5 D , 3 B , 7 7 , 6 E
73 MBLUE HEX 3 3 , 6 6 , 4 C , 19
74 LBLUE HEX 3 B , 7 7 , 6 E , 5 D
75 AQUA HEX 7 7 , 6 E , 5 D , 3 B
76 *
77 * SET UP DOUBLE HI-RES SCREEN
78 *
79 INIT LDA #0
80 STA STORE80
81 STA TEXTOFF
82 STA MIXEDOFF
83 STA PAGE20FF
84 STA HIRES
85 STA C0L80
86 STA DHIRES
87 *
88 * I N I T I A L I Z E POINTERS
89 *
90 LDA #0
91 STA COLUMN
92 STA ROW
93 STA BARCNT
94 *
95 LDA #<SCRTOP
96 STA SCRPTR
97 LDA #>SCRTOP
98 STA SCRPTR+1
99 *

100 * SET UP Y ADDRESS TABLE
101 *
102 J SR MAKETAB
103 *

302 Apple Roots

104 * MAIN PROGRAM STARTS HERE
105 *
106 STA PAGE20N
107 JSR PRNTROW
108 STA PAGE20FF
109 JSR PRNTROW
110 RTS
111 *

112 PRNTROW LDY ROW
113 LDA LOOKLO,Y
114 STA TEMPLO
115 LDA LOOKHI,Y
116 STA TEMPHI
117 CLEARX LDX #0
118 LDY COLUMN
119 NXTCOL STA PAGE20N
120 JSR PRINT
121 STA PAGE20F F
122 JSR PRINT
123 INY
124 CPY #40 ;80 COLUMNS DONE YET?
125 BCS ROWDUN
126 STY COLUMN
127 CPX #4
128 BCS CLEARX
129 JMP NXTCOL
130 ROWDUN LDX ROW
131 IN X
132 CPX #192
133 BCS ALLDUN
134 JSR SETBAR
135 STX ROW
136 LDA #0
137 STA COLUMN
138 JMP PRNTROW
139 ALLDUN RTS
140 *
141 * SET UP TABLE OF SCREEN ROW COORDINATES
142 *
143 MAKETAB LDY #0
144 YLOOP CPY #192
145 BCC MOVEON
146 JMP EXIT
147 *
148 * DIVIDE Y BY 8
149 *
150 MOVEON TYA
151 LSR
152 LSR
153 LSR
154 STA QU0T1
155 *
156 * GET REMAINDER OF DIVISION BY 8
157 *
158 TYA
159 AND #7
160 STA REMDR1

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

Apple Graphics 303

 DIVIDE QU0T1 BY 8

LDA QUOT1
LSR
LSR
LSR
STA QU0T2

* GET REMAINDER

LDA QU0T1
AND #7
STA REMDR2

*
 CALCULATE LOW BYTE OF

LD A #0
STA MPRH
STA MPDH
LD A QU0T2
STA MPRL
L D A U 40
STA MPDL
J SR MULT16
LD A PRODL
STA TOTAL
LD A PRODH
STA TOTAL+1

LD A #0
STA MPRH
STA MPDH
LD A REMDR2
STA MPRL
LD A #128
STA MPDL
J SR MULT 16
CLC
LD A PRODL
ADC TOTAL
STA TOTAL
LD A PRODH
ADC TOTAL+1
STA TOTAL+1

LD A #0
STA MPRH
LD A REMDR1
STA MPRL
LD A #<KILOBYTE
STA MPDL
LD A #>KILOBYTE
STA MPDH
JSR MULT 16
CLC
LD A PRODL

ADDRESS

304 Apple Roots

218 ADC TOTAL
219 STA TOTAL
220 L D A PRODH
221 ADC TOTAL+1
222 STA TOT AL +1
223
224 CLC
225 LD A #<SCRTOP
226 ADC TOTAL
227 STA LOOKLO,Y
228 LD A #>SCRTOP
229 ADC TOTAL+1
230 STA LOOKHI,Y
231
232 INY
233 JMP YLOOP
234
235 EXIT RTS
236
237 * 16- BIT MULTIPLICATION ROUTINE
238
239 MULT 16 LOA U0
240 STA PROD L
241 STA PRODH
242 LDX n 16
243 SHIFT ASL PRODL
244 ROL PRODH
245 ASL MPRL
246 ROL MPRH
247 BCC NOADD
248 CLC
249 LD A MPDL
250 ADC PRODL
251 STA PRODL
252 LD A M PD H
253 ADC PRODH
254 STA PRODH
255 NOADD DEX
256 BNE SHIFT
257 RTS
258
259 * SELF-MODIFYING COLOR-PRINTING ROUT
260
261 PRINT LDA COLORS,X
262 STA (TEMPLO), Y
263 IN X
264 RTS
265
266 * ROUTINE TO SET UP NEW COLOR BAR
267
268 SETBAR TX A
269 PHA
270 LDX BARCNT
271 IN X
272 CPX #12
273 BCC LEAP
274 LD A PRINT+1
275 CLC

Apple Graphics 305

276 ADC
277 STA
278 LDA
279 ADC
280 STA
281 LDX
282 LEAP
283 PLA
284 TAX
285 RTS

#4
PRINT+1
PRINT+2
o
PRINT+2
#0
STX BARCNT

The DUBHIRES program starts at line 9 with a jump instruction
that hops over a block of introductory data and goes to line 79, labeled
INIT. This block of instructions, the first segment of executable code in
the DUBHIRES program, turns on a group of soft switches that initial
ize the double high-resolution graphics mode. All of these soft switches
reside on Page $C0 of the Apple Ilc/IIe memory. The switch labeled
DHIRES, situated at memory address $C05E, controls an annunciator
that permits the use of double high-resolution graphics rather than text
in what would ordinarily be the Apple Ilc/IIe’s 80-column text mode.
(The uses of the other switches used in lines 79 through 86 were
explained in Chapter 12.) The TEXTOFF switch, as its name implies,
turns off your computer’s text mode and completes the job of enabling
the use of graphics. The MIXEDOFF switch turns off the text window
that is sometimes displayed at the bottom of an Apple Ilc/IIe text
screen. HIRES sets up a high-resolution graphics screen, COL80 turns
on your computer’s 80-column firmware, and STORE 80 determines
whether the PAGE20FF switch will be used to switch between Text
and High-Resolution Display Pages 1 and 2 or between the text and
high-resolution display pages in main and auxiliary memory. Since the
double high-resolution graphics mode interleaves the display pages in
main and auxiliary memory, the STORE80 setting used in the DUB
HIRES program is the one that switches between main and auxiliary
memory.

In lines 88 through 99 of the DUBHIRES program, some important
pointers are initialized. Then, in line 102, a subroutine that sets up a
Y-address lookup table is called. This subroutine, called MAKETAB,
works just like table-making routines that were used in the PRNTCHRS
and HEADLINES programs earlier in this chapter. In the DUB
HIRES program, however, the subroutine is used to look up addresses
in two segments of memory—the high-resolution display page in main
memory and the high-resolution display page in auxiliary memory.

The main part of the DUBHIRES program is only five lines long; it
extends from line 106 to line 110. Yet it makes use of the long table

306 Apple Roots

making routine beginning at line 143, plus three other subroutines: one
that prints single rows of colors, one that chooses the code number for
each color used, and one that divides the colors being displayed on the
screen into 16 horizontal color bars.

The subroutine that prints single rows of colors is labeled PRNTROW
and extends from line 112 to line 139. This block of code uses a simple
loop to draw a colored line from the left of the screen to the right, call
ing the MAKETAB routine to determine the memory address in which
each byte in the line should be stored in order to make it appear in the
correct position on the screen.

The colors used in the DUBHIRES program are taken from a color
table that appears in lines 58 through 69. The color codes provided by
this table are looked up and printed on the screen by a subroutine called
PRINT, which appears in line 261. The PRINT subroutine is called
from line 120 of the DUBHIRES program.

PRINT is noteworthy because it uses a recursive programming
technique called address modification. Assembly-language routines that
use address-modification techniques are sometimes called self-modifying
routines.

When the DUBHIRES program is first loaded into memory, the
PRINT subroutine uses indexed addressing to print the color white on a
screen. As you can see by looking at the PRINT routine, this color comes
from a line of data labeled COLOR—specifically, the string of data in
line 60 of the DUBHIRES program.

After the PRINTROW and PRINT routines have been used to print
a white bar on the screen, a routine called SETBAR is called. The
SETBAR routine uses a loop to change the color being displayed so that
a bar of another color can be shown. This is where the technique of
address modification comes in.

To understand how address modification works, it helps to consider
how assembly language and machine language are related. As we have
seen, line 261 of the DUBHIRES program is labeled PRINT. Thus,
when the program is assembled into machine language, the first byte of
machine code in the line labeled PRINT will be a machine-language
instruction that equates to the assembly-language mnemonic LDA.

Now look at the statement LDA COLORS.X in Line 261. This state
ment was written using an addressing mode known as absolute indexed
addressing. According to the rules of Applellc/IIe assembly-language
addressing, the absolute indexed addressing mode always uses a two-
byte operand. Thus the operand COLORS,X is a two-byte operand.

When the DUBHIRES program is assembled into machine lan-

/ /

guage, the assembly-language instruction LDA (which means “load the
accumulator”) will be converted into the machine-language op code
$BD. When the op code $BD is encountered in a machine-language pro
gram, the value of the X register is added to the address specified by
the two-byte operand that follows the op code, and the result of this
calculation becomes the effective address of the instruction LDA. Once
the effective address has been determined, the value stored in that
address is loaded into the accumulator.

Since the operand COLORS,X follows an instruction which has been
labeled PRINT, the first byte of the two-byte operand COLORS,X could
also be referred to by the designation PRINT+1. Similarly, the second
byte of the operand COLORS,X could be referred to as PRINT+2. And
that is exactly how these two bytes are referred to in lines 274 through
280, the section of the DUBHIRES program which makes use of the
technique of address modification.

Once you understand how address modification works, it isn’t hard to
understand how the technique is used in the DUBHIRES program. In
Line 274, the literal number 4 is simply added to the contents of the two
bytes referred to as PRINT+1 and PRINT+2 (in other words, to the
operand of the LDA instruction in line 261). Then, the next time the
PRINT subroutine is executed, the accumulator will be loaded not with
the original value of the COLORS,X, but with that value plus U- The
next time the SETBAR routine is called, the value of COLORS,X will
again be incremented by four, and so on.

Self-modifying code, when properly used, can save both time and
memory in an assembly-language program. It can also serve as a handy
alternative to indirect indexed addressing when the Y register is being
used for other purposes, as it is in the PRINT routine of the DUB
HIRES program.

Apple Graphics 307

Assembly-Language
To Machine-Language
Conversion Chart

Mnemonic Address Form at Function
ADC 61 Ind,X Add with carry
ADC 65 Zpg
ADC 69 Imm
ADC 6D Abs
ADC 71 Ind,Y
ADC 72* (Zpg)*
ADC 75 Zpg.X
ADC 79 Abs,Y
ADC 7D Abs,X

*(in first column) New mnemonic
(in second column) New machine-language op code
(in third column) New address mode

310 Apple Roots

Mnemonic Address Form at Function
AND 21 Ind,X Logical AND
AND 25 Zpg
AND 29 Imm
AND 2D Abs
AND 31 Ind,Y
AND 32* (Zpg)*
AND 35 Zpg,X
AND 39 Abs,Y
AND 3D Abs,X
ASL 06 Zpg Arithmetic shift left
ASL 0A Acc
ASL 0E Abs
ASL 16 Zpg,X
ASL IE Abs,X
BCC 90 Rel Branch if carry clear
BCS BO Rel Branch if carry set
BEQ F0 Rel Branch if equal to zero
BIT 24 Zpg Compare memory bits

with accumulator
BIT 2C Abs
BIT 34* Zpg.X
BIT 3C* Abs.X
BIT 89* Imm
BMI 30 Rel Branch on minus
BNE DO Rel Branch if not equal to

zero
BPL 10 Rel Branch on plus
BRA* 80* Rel Branch always
BRK 00 Imp Force break
BVC 50 Rel Branch if overflow clear
BVS 70 Rel Branch if overflow set
CLC 18 Imp Clear carry flag

!(in first column) New mnemonic
(in second column) New machine-language op code
(in third column) New address mode

Assemuly-Language Machine Language Conversion 311

Mnemonic Address Form at Function
CLD D8 Imp Clear decimal flag
CLI 58 Imp Clear interrupt flag
CLV B8 Imp Clear overflow flag
CMP Cl Ind,X Compare memory with

CMP C5 Zpg
accumulator

CMP C9 Imm
CMP CD Abs
CMP D1 Ind,Y
CMP D2* (Zpg)*
CMP D5 Zpg,X
CMP D9 Abs,Y
CMP DD Abs,X
CPX EO Imm Compare memory with X

CPX E4 Zpg
register

CPX EC Abs
CPY CO Imm Compare memory with Y

CPY C4 Zpg
register

CPY CC Abs
DEA or
DEC A* 3A* Acc Decrement accumulator
DEC C6 Zpg Decrement memory
DEC CE Abs
DEC D6 Zpg.X
DEC DE Abs,X
DEX CA Imp Decrement X register
DEY 88 Imp Decrement Y register
EOR 41 Ind.X Exclusive EOR
EOR 45 Zpg
EOR 49 Imm
EOR 4D Abs

*(in first column) New mnemonic
(in second column) New machine-language op code
(in third column) New address mode

312 Apple Roots

Mnemonic Address Form at Function
EOR 51 Ind,Y
EOR 52* (Zpg)*
EOR 55 Zpg,X
EOR 59 Abs.Y
EOR 5D Abs,X
INA or
INC A* 1A* Acc Increment accumulator
INC E6 Zpg Increment memory
INC EE Abs
INC F6 Zpg.X
INC FE Abs,X
INX E8 Imp Increment X register
INY C8 Imp Increment Y register
JMP 4C Abs Jump to address
JMP 6C (Abs)
JMP 7C* Abs(Ind.X)*
JSR 20 Abs Jump to subroutine
LDA A1 Ind.X Load accumulator
LDA A5 Zpg
LDA A9 Imm
LDA AD Abs
LDA Bl Ind.Y
LDA B2* (Zpg)*
LDA B5 Zpg.X
LDA B9 Abs.Y
LDA BD Abs,X
LDX A2 Imm Load X register
LDX A6 Zpg
LDX AE Abs
LDX B6 Zpg.Y
LDX BE Abs.Y
LDY AO Imm Load Y register
LDY A4 Zpg

* (in first column) New mnemonic
(in second column) New machine- language op code
(in third column) New address mode

Assembly-Language/Machine Language Conversion 313

Mnemonic Address Form at Function
LDY AC Abs
LDY B4 Zpg,X
LSR 46 Zpg Logical shift right
LSR 4A Acc
LSR 4E Abs
LSR 56 Zpg,X
LSR 5E Abs.X
NOP EA Imp No operation
ORA 01 Ind,X Logical OR
ORA 05 Zpg
ORA 09 Imm
ORA 0D Abs
ORA 11 Ind,Y
ORA 12* (Zpg)*
ORA 15 Zpg,X
ORA 19 Abs,Y
ORA ID Abs.X
PHA 48 Imp Push accumulator
PHP 08 Imp Push processor (P)

register
PHX* DA* Imp Push X register
PHY* 5A* Imp Push Y register
PLA 68 Imp Pull accumulator
PLP 28 Imp Pull processor status (P)

register
PLX* FA* Imp Pull X register
PLY* 7A* Imp Pull Y register
ROL 26 Zpg Rotate left
ROL 2A Acc
ROL 2E Abs
ROL 3E Abs.X
ROL 36 ZX

*(in first column) New mnemonic
(in second column) New machine-language op code
(in third column) New address mode

314 Apple Roots

Mnemonic Address Form at Function
ROR 66 Zpg Rotate right
ROR 6A Acc
ROR 6E Abs
ROR 76 Zpg,X
ROR 7E Abs,X
RTI 40 Imp Return from interrupt
RTS 60 Imp Return from subroutine
SBC E l Ind,X Subtract with carry
SBC E5 Zpg
SBC E9 Imm
SBC ED Abs
SBC F I Ind,Y
SBC F2* (Zpg)*
SBC F5 Zpg,X
SBC F9 Abs,X
SBC FD Abs,Y
SEC 38 Imp Set carry flag
SED F8 Imp Set decimal flag
SEI 78 Imp Set interrupt flag
STA 81 Ind,X Store accumulator
STA 85 Zpg
STA 8D Abs
STA 91 Ind,Y
STA 92* (Zpg)*
STA 95 Zpg,X
STA 99 Abs,Y
STA 9D Abs.X
STX 86 Zpg Store X register
STX 8E Abs
STX 96 Zpg.Y
STY 84 Zpg
STY 8C Abs
STY 94 Zpg.X

* (in first column) New mnemonic
(in second column) New machine-language op code
(in third column) New address mode

Assembly-Language/Machine Language Conversion 315

Mnemonic Address Form at Function
STZ* 64* Zpg Store zero
STZ* 74* Zpg,X
STZ* 9C* Abs
STZ* 9E* Abs,X
TAX AA Imp Transfer A to X
TAY A8 Imp Transfer A to Y
TRB* 14* Zpg Test and reset bits
TRB* 1C* Abs
TSB* 04* Zpg Test and set bits
TSB* OC* Abs
TSX BA Imp Transfer stack pointer

to X
TXA 8A Imp Transfer X to A
TXS 9A Imp Transfer X to stack

pointer
TYA 98 Imp Transfer Y to A

* (in first column) New mnemonic
(in second column) New machine-language op code
(in third column) New address mode

Machine-Language
To Assembly-Language
Conversion Chart

Object Code Mnemonic Address
00 BRK Imp
01 ORA Ind,X
04* TSB* Zpg
05 ORA Zpg
06 ASL Zpg
08 PHP Imp
09 ORA Imm
0A ASL Acc

* (in first column) New mnemonic
(in second column) New machine-language op code
(in third column) New address mode

318 Apple Roots

Object Code Mnemonic Address

OC* TSB* Abs
OD ORA Abs
OE ASL Abs
10 BPL Rel
11 ORA Ind,Y
12* ORA (Zpg)*
14* TRB* Zpg
15 ORA Zpg,X
16 ASL Zpg,x
18 CLC Imp
19 ORA Abs,Y
1A* INA or INC A* Acc
1C* TRB* Abs
ID ORA Abs,X
IE ASL Abs,X
20 JSR Abs
21 AND Ind,X
24 BIT Zpg
25 AND Zpg
26 ROL Zpg
28 PLP Imp
29 AND Imm
2A ROL Acc
2C BIT Abs
2D AND Abs
2E ROL Abs
30 BMI Rel
31 AND Ind.Y
32* AND (Zpg)*
34* BIT Zpg.X
35 AND Zpg.X
36 ROL ZX
38 SEC Imp
39 AND Abs,Y

* (in first column) New mnemonic
(in second column) New machine-language op code
(in third column) New address mode

Machine Language/Assembly-Language Conversion 319

Object Code Mnemonic Address
3A* DEA or DEC A* Acc
3C* BIT Abs,X
3D AND Abs,X
3E ROL Abs,X
40 RTI Imp
41 EOR Ind.X
45 EOR Zpg
46 LSR Zpg
48 PHA Imp
49 EOR Imm
4A LSR Acc
4C JMP Abs
4D EOR Abs
4E LSR Abs
50 BVC Rel
51 EOR Ind,Y
52* EOR (Zpg)*
55 EOR Zpg.X
56 LSR Zpg,X
58 CLI Imp
59 EOR Abs,Y
5A* PHY* Imp
5D EOR Abs,X
5E LSR Abs,X
60 RTS Imp
61 ADC Ind,X
64* STZ* Zpg
65 ADC Zpg
66 ROR Zpg
68 PLA Imp
69 ADC Imm
6A ROR Acc
6C JMP (Abs)
6D ADC Abs
6E ROR Abs

* (in first column) New mnemonic
(in second column) New machine-language op code
(in third column) New address mode

320 Apple Roots

Object Code Mnemonic Address
70 BVS Rel
71 ADC Ind,Y
72* ADC (Zpg)*
74* STZ* Zpg.X
75 ADC Zpg,X
76 ROR Zpg.x
78 SEI Imp
79 ADC Abs,Y
7A* PLY* Imp
7C* JMP Abs(Ind,X)
7D ADC Abs,X
7E ROR Abs,X
80* BRA* Rel
81 STA Ind.X
84 STY Zpg
85 STA Zpg
86 STX Zpg
88 DEY Imp
89* BIT Imm
8A TXA Imp
8C STY Abs
8D STA Abs
8E STX Abs
90 BCC Rel
91 STA Ind.Y
92* STA (Zpg)*
94 STY Zpg.X
95 STA Zpg.X
96 STX Zpg.Y
98 TYA Imp
99 STA Abs.Y
9A TXS Imp
9C* STZ* Abs
9D STA Abs.X
9E* STZ* Abs.X

* (in first column) New mnemonic
(in second column) New machine-language op code
(in third column) New address mode

Machine Language/Assembly-Language Conversion 321

Object Code Mnemonic Address
AO LDY Imm
A1 LDA Ind,X
A2 LDX Imm
A4 LDY Zp g
A5 LDA Zpg
A6 LDX Zpg
A8 TAY Imp
A9 LDA Imm
AA TAX Imp
AC LDY Abs
AD LDA Abs
AE LDX Abs
BO BCS Rel
B1 LDA Ind,Y
B2* LDA (Zpg)*
B4 LDY Zpg,X
B5 LDA Zpg.X
B6 LDX Zpg,Y
B8 CLV Imp
B9 LDA Abs,Y
BA TSX Imp
BC LDY Abs,X
BC LDY Abs,X
BD LDA Abs,X
BE LDX Abs,Y
CO CPY Imm
Cl CMP Ind,X
C4 CPY Zpg
C5 CMP Zpg
C6 DEC Zpg
C8 INY Imp
C9 CMP Imm
CA DEX Imp
CC CPY Abs
CD CMP Abs

* (in first column) New mnemonic
(in second column) New machine-language op code
(in third column) New address mode

322 Apple Roots

Object Code Mnemonic Address
CE DEC Abs
DO BNE Rel
D1 CMP Ind,Y
D2* CMP (Zpg)*
D5 CMP Zpg.X
D6 DEC Zpg,X
D8 CLD Imp
D9 CMP Abs,Y
DA* PHX* Imp
DD CMP Abs,X
DE DEC Abs,X
EO CPX Imm
E l SBC Ind,X
E4 CPX Zpg
E5 SBC Zpg
E6 INC Zpg
E8 INX Imp
E9 SBC Imm
EA NOP Imp
EC CPX Abs
ED SBC Abs
EE INC Abs
FO BEQ Rel
FI SBC Ind.Y
F2* SBC (Zpg)*
F5 SBC Zpg,X
F6 INC Zpg.X
F8 SED Imp
F9 SBC Abs,Y
FA* PLX* Imp
FD SBC Abs,X
FE INC Abs.X

* (in first column) New mnemonic
(in second column) New machine-language op code
(in third column) New address mode

The 65C02
Instruction Set

A D C A d d M e m o ry to A c c u m u la to r w ith C a rry L D Y Load Index Y w ith M e m o ry
A N D " A N D " M e m o ry w ith A c c u m u la to r LS R S hift O n e Bit R ight
A S L S h ift O n e B it L eft N O P N o O p e ra tio n
B C C B ra n c h on C a rry C le a r •* O R A "O R " M e m o ry w ith A c c u m u la to r
B C S B ra n c h on C a rry Set P H A Push A c c u m u la to r on S tack
B E Q B ra n c h on R e su lt Z e ro P H P Push P roc essor Status on S tack

* B IT Test M e m o ry B its w ith A c c u m u la to r • P H X Push In d ex X on S tack
B M I B ra n c h on R e su lt M in u s • P H Y Push In d ex Y on S tack
B N E B ra n c h on R e su lt Not Z e ro PLA Pull A c c u m u la to r from Stack
B P L B ra n c h on R e su lt P lus P L P Pull P rocessor S ta tus from S tack

• B R A B ra n c h A lw a y s • PLX Pull In d ex X fro m S tack
B R K F o rc e B rea k • PLY Pull In d ex Y fro m S tack
B V C B ra n c h on O v e rflo w C le a r R O L R o ta te O n e Bit Left
B V S B ra n c h on O v e rflo w Set R O R R o ta te O n e Bit R ight
C L C C le a r C a rry F lag R T I R e tu rn fro m In te rru p t
C L D C le a r D e c im a l M o d e R T S R e tu rn fro m S u b ro u tin e
C L I C le a r In te rru p t D is a b le Bit * S B C S u b trac t M e m o ry from A c c u m u la to r w ith B o rrow
C L V C le a r O v e rflo w Flag S E C Set C a rry Flag

* C M P C o m p a re M e m o ry an d A c c u m u la to r S E D Set D e c im a l M o d e
C P X C o m p a re M e m o ry an d In d e x X SE I Set In te rru p t D isab le Bit
C P Y C o m p a re M e m o ry an d In d e x Y * STA S to re A c c u m u la to r in M e m o ry

* D E C D e c re m e n t by O n e S T X S to re In d ex X in M e m o ry
D E X D e c re m e n t In d e x X by O n e S T Y S to re In d e x Y in M e m o ry
D E Y D e c re m e n t In d e x Y by O n e • S T Z S to re Z e ro in M e m o ry

* E O R "E x c lu s iv e -o r" M e m o ry w ith A c c u m u la to r TA X T ransfer A c c u m u la to r to Index X
* IN C In c re m e n t b y O n e TAY T rans fer A c c u m u la to r to In d ex Y

IN X In c re m e n t In d e x X by O n e • T R B Test and Reset M e m o ry B its w ith A c c u m u la to r
IN Y In c re m e n t In d e x Y by O n e • T S B Test and Set M e m o ry Bits w ith A c c u m u la to r

* J M P J u m p to N e w L o c a tio n T S X Trans fe r S tack P o in te r to In d ex X
JS R J u m p to N e w L o c a tio n S aving R e tu rn A d dress T X A Tran s fe r In d e x X to A c c u m u la to r

* L D A L o a d A c c u m u la to r w ith M e m o ry T X S T rans fer In d e x X to S tack P o in te r
L D X Lo a d In d e x X w ith M e m o ry TY A Tran s fe r In d ex Y to A c c u m u la to r

N ote . • = N e w In s tru c tio n
* = O ld Instruction w ith New Addressing M odes

Note: ©Western Design Center, Inc.
Used by permission.

323

65C02 Op Code
Table

\ l s o

m s d \ 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 BRK ORA
md. X

TSB *
zpg

ORA
zpg

ASL
zpg

PHP ORA
imm

ASL
A

TSB *
abs

ORA
abs

ASL
abs

0

1 BPL
rel

ORA
md. Y

O R A *
md

TRB *
zpg

ORA
zpg. x

ASL
zpg. x

CLC ORA
abs. Y

IN C *
A

TRB *
abs

ORA
abs. X

ASL
abs X

1

2 JSR
abs

AND
md. X

BIT
zpg

AND
zpg

ROL
Zpg

PLP AND
imm

ROL
A

BIT
abs

AND
abs

ROL
abs

2

3 BMI
rel

AND
md. Y

A N D *
md

BIT *
zpg. x

AND
zpg. X

ROL
zpg. X

SEC AND
abs. Y

DEC*
A

BIT *
abs. X

AND
abs. X

ROL
abs. X

3

4 RTI EOR
md. X

EOR
zpg

LSR
zpg

PHA EOR
imm

LSR
A

JMP
abs

EOR
abs

LSR
abs

4

5 BVC
rel

EOR
md. Y

E O R *
ind

EOR
zpg. x

LSR
zpg. X

CLI EOR
abs. Y

PHY* EOR
abs. X

LSR
abs. X

5

6 RTS ADC
md, X

STZ *
zpg

ADC
zpg

ROR
zpg

PLA ADC
imm

ROR
A

JMP
md

ADC
abs

ROR
abs

6

7 BVS
rel

ADC
md. Y

A D C *
md

STZ *
zpg. X

ADC
Zpg. X

ROR
zpg. X

SEI ADC
abs. Y

PLY* JMP *
md, X

ADC
abs. X

ROR
abs. X

7

8 BRA *
rel

STA
md. X

STY
zpg

STA
zpg

STX
zpg

DEY BIT *
imm

TXA STY
abs

STA
abs

STX
abs

8

9 BCC
rel

STA
md. Y

S T A *
ind

STY
zpg. X

STA
zpg. x

STX
zpg. Y

TYA STA
abs. Y

TXS S T Z *
abs

STA
abs. X

STZ *
abs. X

9

A LDY
imm

LDA
ind. X

LDX
imm

LDY
zpg

LDA
zpg

LDX
Zpg

TAY LDA
imm

TAX LDY
abs

LDA
abs

LDX
abs

A

B BCS
rel

LDA
ind. Y

LD A *
md

LDY
zpg. x

LDA
zpg. x

LDX
zpg. Y

CLV LDA
abs. Y

TSX LDY
abs. X

LDA
abs. X

LDX
abs. Y

B

C CPY
imm

CMP
ind. X

CPY
zpg

CMP
zpg

DEC
zpg

INY CMP
imm

DEX CPY
abs

CMP
abs

DEC
abs

C

D BNE
rel

CMP
md, Y

CM P*
ind

CMP
zpg. X

DEC
Zpg. X

CLD CMP
abs. Y

PHX* CMP
abs. X

DEC
abs. X

D

E CPX
imm

SBC
md. X

CPX
zpg

SBC
zpg

INC
zpg

INX. SBC
imm

NOP CPX
abs

SBC
abs

INC
abs

E

F BEO
rel

SBC
md, Y

SBC*
md

SBC
zpg. x

INC
zpg. X

SED SBC
abs, Y

PLX* SBC
abs. x

INC
abs. X

F

0 1 2 3 4 5 6 7 8 9 A B C D E F

NO TE. • = New Instruction
* = Old Instruction with New

Addressing Mode

325

326 Apple Roots

Op Code Matrix Legend

IN S T R U C T IO N A D D R E S S IN G
M N E M O N IC

(C O M M E N T)
M O D E

BASE BASE
NO. BYTES NO. C YC LES

N o te : ©Western Design Center, Inc.
Used by permission.

65C02 Addressing
Modes

Fifteen addressing modes are available to the user of the WOC W65SCXXX
family of microprocessors The addressing modes are described in the
following paragraphs

Immediate Addressing
With immediate addressing, the operand is contained m the second byte
of the instruction, no further memory addressing is required

Absolute Addressing
For absolute addressing, the second byte of the instruction specifies the
eight low order bits of the effective address while the third byte specifies
the eight high order bits Therefore, this addressing mode allows access
to the total 65K bytes of addressable memory.

Zero Page Addressing
Zero page addressing allows shorter code and execution times by only
fetching the second byte of the instruction and assuming a zero high
address byte The careful use of zero page addressing can result m signifi
cant increase m code efficiency

Implied Addressing
In the implied addressing mode, the address containing the operand is
implicitly stated in the operation code of the instruction

Accumulator Addressing
This form of addressing is represented with a one byte instruction and
implies an operation on the accumulator. The op codes are included
under implied addressing

Zero Page Indexed Indirect Addressing: (IND, X)
With zero page indexed indirect addressing (usually referred to as Indirect
X) the second byte of the instruction is added to the contents of the X index
register, the carry is discarded. The result of this addition points to a mem
ory location on page zero whose contents is the low order eight bits of the
effective address The next memory location in page zero contains the
high order eight bits of the effective address Both memory locations
specifying the high and low order bytes of the effective address must be
m page zero

Absolute Indexed Indirect Addressing (Jump Instruction Only)
With absolute indexed indirect addressing, the contents of the second
and third instruction bytes are added to the X register The result of this
addition points to a memory location containing the lower-order eight
b'ts o< the effective address The next memory location contains the
higher-order eight bits of the effective address (opcode 7C).

Indirect Indexed Addressing :(IND), Y
This form of addressing is usually referred to as Indirect, Y The second
byte of the instruction points to a memory location in page zero The con
tents of this memory location is added to the contents of the Y index regis
ter, the result being the low order eight bits of the effective address The
carry from this addition is added to the contents of the next page zero
memory location, the result being the high order eight bits of the effec
tive address.

Zero Page Indexed Addressing
Zero page absolute addressing is used in conjunction with the index
register and is referred to as "Zero Page. X" or "Zero Page, Y " The effective
address is calculated by adding the second byte to the contents of the
index register Since this is a form of "Zero Page" addressing, the content
of the second byte references a location m page zero. Additionally, due
to the "Zero Page" addressing nature of this mode, no carry is added to
the high order eight bits of memory and crossing of page boundaries does
not occur

Absolute Indexed Addressing
Absolute indexed addressing is used in conjunction with X and Y index
register and is referred to as "Absolute. X." and "Absolute. Y ” The effective
address is formed by adding the contents of X and Y to the address con
tained in the second and third bytes of the instruction This mode allows
the index register to contain the index or count value and the instruction
to contain the base address. This type of indexing allows any location
referencing and the index to modify multiple fields resulting in reduced
coding and execution time.

Relative Addressing
Relative addressing is used only with branch instruction; it establishes
a destination for the conditional branch

Zero Page Indirect Addressing: Indirect
In this form of addressing, the second byte of the instruction contains
the low order eight bits of a memory location The high order eight bits
is always zero The contents of the fully specified memory location is the
low order byte of the effective address The next memory location con
tains the high order byte of the effective address.

Absoluts Indirect Addressing (Jump Instruction Only)
The second byte of the instruction contains the low order eight bits of a
memory location The high order eight bits of that memory location is
contained in the third byte of the instruction The contents of the fully
specified memory location is the low order byte of the effective address
The next memory location contains the high order byte of the effective
address which is loaded into the 16 bits of the program counter (op
code 6C)

N o te : ©Western Design Center, Inc. Used by permission.

327

The 65802/65816
Instruction Set

A. The Original 6502 Instruction Set (151 Op Codes)
1 ADC Add Memory to Accumulator with Carry
2 AND "AND" Memory with Accumulator
3 ASL Shift Left One Bit (Memory or Accumulator)

4 BCC Branch on Carry Clear
5 BCS Branch on Carry Set
6 BEQ Branch on Result Zero
7 BIT Test Bits in Memory with Accumulator
8 BMI Branch on Result Minus
9 BNE Branch on Result Not Zero

10 BPL Branch on Result Plus
11 BRK Force Break
12 BVC Branch on Overflow Clear
13 BVS Branch on Overflow Set

14 c l c Clear Carry Flag
15 CLD Clear Decimal Mode
16 CLI Clear Interrupt Disable Bit
17 CLV Clear Overflow Flag
18 CMP Compare Memory and Accumulator
19 c p x Compare Memory and Index X
20 CPY Compare Memory and Index Y

21 DEC Decrement Memory by One
22 DEX Decrement Index X by One
23 DEY Decrement Index Y by One

24 EOR "Exclusive-or" Memory with Accumulator

25 INC Increment Memory by One
26 IN X Increment Index X by One
27 INY Increment Index Y by One

28 JMP Jump to New Location
29 JSR Jump to New Location Saving Return Address

30 LDA Load Accumulator with Memory
31 LDX Load Index X with Memory
32 LDY Load Index Y with Memory
33 LSR Shift One Bit Right (Memory or Accumulator)

34 NOP No Operation

35 ORA "OR' Memory with Accumulator

36 PHA Push Accumulator on Stack
37 PHP Push Processor Status on Stack
38 PLA Pull Accumulator from Stack
39 PLP Pull Processor Status from Stack

40 ROL Rotate One Bit Left (Memory or Accumulator)
41 ROR Rotate One Bit Right (Memory of Accumulator)
42 RTI Return from Interrupt
43 RTS Return from Subroutine

44 SBC Subtract Memory from Accumulator with Borrow
45 SEC Set Carry Flag
46 *SED Set Decimal Mode
47 SEI Set Interrupt Disable Status
48 STA Store Accumulator in Memory
49 STX Store Index X in Memory
50 STY Store Index Y in Memory

51 TAX Transfer Accumulator to Index X
52 TAY Transfer Accumulator to Index Y
53 TSX Transfer Stack Pointer to Index X
54 TXA Transfer Index X to Accumulator
55 TXS Transfer Index X to Stack Register
56 TYA Transfer Index Y to Accumulator

B. New W65SCXXX Instructions (13 Op Codes)
1 BRA Branch Relative always
2 PLX Pull X from Stack
3 PLY Pull Y from Stack
4 PHX Push X on Stack
5 PHY Push Y on Stack
6 STZ Store Zero m Memory (Direct. Direct. X Abs. Abs. X)
7 TRB Test and Reset Memory Bits Determined by

Accumulator A (Direct and Absolute)
8 TSB Test and Set Memory Bits Determined by

Accumulator A (Direct and Absolute)

c. New W65SCXXX Addressing Modes (14 Op Codes)
1 BIT Test Bits in Memory with Accumulator (Direct. X.

Absolute. X Immediate)
2 DEC Decrement (Accumulator)
3 Group I Instructions (Direct Indirect (8 Op Codes))
4. INC Increment (Accumulator)
5 JMP Jump to New Location (Absolute Indexed Indirect)

C on tin u ed

329

330 Apple Roots

D. Group I Instructions with New Addressing Modes (48 Op Codes)
• Direct Indirect Long Indexed with Y (8 Op Codes)
• Direct Indirect Long (8 Op Codes)
• Absolute Long and Absolute Long Indexed with X

(16 Op Codes)
• Stack Relative (8 Op Codes)
• Stack Relative Indirect Indexed Y (8 Op Codes)

1 ADC Add Memory to Accumulator with Carry
2. AND "AND" Memory with Accumulator
3 CMP Compare Memory and Accumulator
4 EOR "Exclusive-or Memory with Accumulator
5 LDA Load Accumulator with Memory
6 ORA “Or" Memory with Accumulator
7 SBC Subtract Memory from Accumulator with Borrow
8 STA Store Accumulator in Memory

E. New Push and Pull Instructions (7 Op Codes)
1 PEA Push Effective Absolute Address or Immediate Data

Word on Stack
2 PEI Push Effective Indirect Address or Direct Data Word

on Stack
3 PER Push Effective Program Counter Relative Indirect Ad

dress or Program Counter Relative Data Word on Stack
4 PLB Pull Data Bank Register from Stack
5 PLD Pull Direct Register from Stack
6 PHB Push Data Bank Register on Stack
7 PHD Push Direct Register on Stack
8 PHK Push Program Bank Register on stack

F. Status Register Instructions (2 Op Codes)
1 REP Reset Status Bits Defined by

Immediate Byte 1 = Reset
0 = Do not change

2 SEP Set Status Bits Defined by
Immediate Byte 1 = Set

0 = Do not change

G. New Register Transfer Instructions (8 Op Codes)
1 TCD Transfer C Accumulator to Direct Register D
2 TDC Transfer Direct Register D to C Accumulator
3 TCS Transfer C Accumulator to Stack Register
4 TSC Transfer Stack Register to Accumulator C

5 TXY Transfer X to Y
6 TYX Transfer Y to X
7 XBA Exchange B and A
8 SCE Exchange Carry Bit C with Emulation Bit E

H. New Branch, Jump and Return Instructions (6 Op Codes)
1 BRL Branch Relative Long Always (16 Bit Relative—32768

to + 32767) (Addressing Mode)
2 JML Jump Indirect Long
3 JMP Jump Absolute Long
4 JSL Jump to Subroutine Long (Uses RTL for Return)
5. JSR Jump to Subroutine (Indexed Indirect)
6 RTL Return from Subroutine Long

I. New Block Move Instructions (2 Op Codes)
1 MVN Move Block from Source (X Addressed) to Destination

(Y Addressed). Block Length Defined by C.
X Y are Incremented.

2 MVP Move Block from Source (X Addressed) to Destination
(Y Addressed), Block Length Defined by C,
X. Y are Decremented

J. New Co-Processor Operations (1 Op Code)
1. COP Co-Processor Instruction with Associated COP Vector

and ABORT Input Supports Co-Processing Function
i e , Floating Point Processors, etc

K. New System Control Instructions (3 Op Codes)
1 STP Stop-the-clock Instruction Stops the Oscillator Input

(or 02 Input) During 02 = 1 This Mode Is Released When
RES Goes to a Zero System Initialization May Be
Desired. However, if After RESET One Performed an
RTI. Program Execution Begins With the Instruction
Following the STP Op Code m Program Sequence

2 WAI Wait for Interrupt Pulls RDY Low and Is Cleared by IRQ
or NMI Active Input.

3 WDM There is One Reserved Op Code Defined as WDM Which
Will Be Used For Future Systems The W65SC816
Performs a No-Operation

N o te : ©Western Design Center, Inc.
Used by permission.

65816 Addressing
Modes

Addressing Modes
Twenty-four addressing modes are available to the user of the
W65SC816 family of microprocessors. The addressing modes are
described in the following paragraphs

1. Immediate Addressing [imm]
With immediate addressing the operand is contained in the second
byte (second and third byte for 16 bit data) of the instruction

2, 3. Absolute and Absolute Long Addressing [a], (si)
For absolute addressing the second byte of the instruction specifies
the eight low order bits of the effective address while the third byte
specifies the eight high order bits For absolute long addressing the
fourth byte specifies the bank address The full 16.7 megabyte address
space is addressed in the long mode In the short mode the bank
address is specified by the data bank register.

4. Direct Addressing [d]
Direct addressing allows for shorter code and execution times by
only fetching a second byte of instruction. The second byte is added
to the direct register (D) value When the direct register low (DL) is
zero fastest execution occurs The bank address is always zero.

5. Accumulator Addressing [acc]
This form of addressing is represented with a one byte instruction
and performs an operation on the accumulator(s)

6. Implied Addressing [Imp]
In the implied addressing mode the address of the operand is implicitly
stated in the operation code of the instruction.

7. 8. Direct Indirect Indexed and Direct Indirect Indexed Long
Addressing [(d), y], [(dl), y]

This form of addressing is usually referred to as Indirect. Y The
second byte of the instruction is added to the direct register and
points to a memory location in bank zero The contents of this memory
location and the byte following (the next byte is the bank address for
the Iona mode) are added to the Y index register with the result being
the effective address For the short mode the bank address is speci
fied by the data bank register Note that when DL equals zero execu
tion is fastest

9. Direct Indexed Indirect Addressing [(d,x)J
With direct indexed indirect addressing (usually referred to as Indirect.
X) the second byte of the instruction is added to the contents of the
direct register and then adding the X register value. The result of these
additions points to a memory location on bank zero whose contents
is the low order byte of the effective address with the byte following
the high byte of the effective address. The bank address of the ef
fective address is specified by the data bank register.

10,11. Direct Indexed with X and Direct Indexed with Y Addressing
[d,x], [d.y]

Direct indexed with X usually referred to as Direct, X and direct in
dexed with Y usually referred to as Direct. Y are two byte instructions
The second byte is added to the direct register (D) and this result is
added to the appropriate index register The bank address is always
zero Execution is fastest when the low byte of the direct register (DL)
is zero.

12,13,14. Absolute Indexed with X, Absolute Indexed Long with X,
and Absolute Indexed with Y Addressing [a,x], [al.x], [a,y]

Absolute indexed addressing is used in conjunction with the X and Y
index registers and is referred to as Absolute. X Absolute Long. X and
Absolute, Y. The effective address is formed by adding the contents
of the X or Y register to the second and third bytes of the instructions
The bank address is specified by the data bank register except in the
long mode the fourth byte specifies the bank address

15,16. Program Counter Relative and Program Counter Relative
Long Addressing [r], [rl]

Program counter relative addressing, usually referred to as relative
and relative long addressing is used only with the branch instructions
The second byte is added to the program counter which for relative
creates a ♦ 128 or -127 byte offset. The second and third bytes are
added to the program counter to create *32768 or -32767 byte offset
for the branch always long operation

17. Absolute Indirect Addressing (Jump Instruction Only) [(a)]
The second and third bytes of the instruction contains the low and
high order address bytes of a memory location located in bank zero
This memory location and the byte following contain the effective
address which is loaded into the program counter. The destination
bank address is specified by the program bank register except for the
JML instruction the third byte fetched is the destination bank address

Continued,

331

332 Apple Roots

18,19. Direct Indirect and Direct Indirect Long Addressing
[(d)]. «dl)]

In this form of addressing the second byte of the instruction is added
to the direct register and the result points to a memory location in
bank zero The contents of this location and the following location
(the next location is the bank address for the long mode) is the ef
fective address The bank address is specified by the data bank regis
ter for the direct indirect mode

20. Absolute Indexed Indirect Addressing (Jump and Jump to
Subroutine) [(a,x)]

With absolute indexed indirect addressing the second and third
bytes of the instruction are added to the X index register contents
The result points to the low and (byte following) high order bytes
which are loaded into the program counter The bank address is speci
fied by the program bank register

21. Stack Addressing [s]
This addressing mode uses the stack register to address memory
locations The instructions which use the stack addressing include
push. pull, interrupts, jump to subroutine, return from interrupt and
return from subroutine The bank address is always zero Vectors
are always pulled from bank 00 (See Compatibility Issues for 6502
Emulation)

22. Stack Relative Addressing [sr]
With stack relative addressing the second byte of the instruction is
added to the stack register value This effective address points to a

data memory location on the stack For 16 bit data the next location
on the stack is the high byte of data This addressing mode, m con
junction with using the push instructions, may be used to pass data
to subroutines using the stack The new TSC and TCS instructions
provide fast stack modification The direct register can be used for
user stack functions The bank register is always zero

23. Stack Relative Indirect Indexed Addressing [(sr),y]
With stack relative indirect indexed with V the second byte of the in
struction is added to the stack register value The address formed by
this addition points to the low byte (the next location contains the high
byte) of an indirect address The Y register is added to this address to
form the effective data address This addressing mode, in conjunction
with using the push effective address (PEA. PEI. PER) instructions,
may be used to pass data addresses to subroutines using the stack
The new TSC and TCS instructions provide fast stack register modifi
cation The direct register can be used for user stack functions The
data bank register is the bank address for the effective address

24. Block Move Addressing [xyc]
This addressing mode is used for multiple byte moves forward (MVP)
or backward (MVN) These three byte instructions use the X register
for the source address, the Y register for the destination address and
the C accumulator contains the number of bytes to be moved The
destination bank address is the second byte of the instruction with the
source bank specified by the third byte. The data bank register is
loaded with the destination bank value (second byte of the instruction)

N o te : ©Western Design Center, Inc.
Used by permission.

H
65816 Op Code
Table

0 1 2 3 4 5 6
LI

7
SD

8 9 A B C D E F

0
BRK s

2 8

ORA(d.x)

2 6

COP s

2 * 8

ORA sr
2 * 4

TSB d

2 * 5

ORA d

2 3

ASL d

2 5

ORA(dl)

2 * 6

PHP s

1 3

ORA imm

2 2
ASL acc

1 2

PHO s
1 * 4

TSB a
3 * 6

ORA a

3 4

ASL a
3 6

ORA at
4 * 5

0

1
B P l r

2 2

0RA(d).y

2 5

ORA (d)

2 * 5

0RA(sr).y

_ 2 * 7

TRB d

2 * 5

ORA d.x

2 4

ASL d.x

2 6

ORAIdD.y
2 * 6

CLC imp

1 2

ORA a y

3 4
INC acc

1 * 2

TCS imp

1 * 2

TRB a
3 * 6

ORA a.x

3 4

ASL a.x

3 7

ORA al.x

4 * 5
1

2
JSR a

3 6

ANO(d.x)

2 6

JS L al

4 * 8

AND sr
2 * 4

BIT d

2 3

ANO d

2 3

ROL d

2 5

AND(dl)

2 * 6
PLP s
1 4

ANO imm

2 2

ROL acc

1 2

PLD s

1 * 5

BIT a

3 4

AND a
3 4

ROL a
3 6

AND al

4 * 5
2

3
8MI r

2 2

AND(d).y

2 5

ANO(d)

2 * 5

AN0(sr).y
2 * 7

BIT d.x

2 * 4
AND d.x

2 4

ROL d.x

2 6

AND(dl).y
2 * 6

SEC imp

1 2

ANO a.y
3 4

OEC acc

1 * 2

TSC imp
1 * 2

BIT a.x

3 * 4

ANO a.x
3 4

ROL a.x

3 7

AND al.x

4 * 5
3

4
RTI s

1 7

EOR(d.x)

2 6

WDM

RES^VEO

EOR sr
2 * 4

MVP xyc

3 * 7
EOR d

2 3

LSR d

2 5

EOR(dl)
2 * 6

PHA s

1 3

EOR imm

2 2

LSR acc

1 2

PHK s

1* 3

JM P a

3 3

EOR a

3 4

LSR a

3 6

EOR al

4 * 5
4

5
8VC r

2 2

E0R(d).y

2 5

EOR (d)

2 * 5

E0R(sr).y

2 * 7

MVN xyc
3 * 7

EOR d.x
2 4

LSR d.x

2 6

EOR(dl).y
2 * 6

CLI imp

1 2

EOR a.y

3 4

PHY s

1 * 3

TCO imp
1 * 2

JM P al
3 * 4

EOR a x

3 4

LSR a x

3 7

EOR al.x

4 * 5
5

6
RTS s

1 6

AOC(d.x)

2 6

PER s

3 * 6

ADC sr
2 * 4

STZ d

2 * 3

ADC d

2 3

ROR d

2 5

ADC(dl)

2 * 6

PLA s

1 4

AOC imm

2 2

ROR acc

1 2

RTL S
1 * 6

JM P (a)

3 5

AOC a
3 4

ROR a

3 6

ADC al

4 * 5
6

7

MSD

8

BVS r

2 2

ADC(d).y

2 5

AOC(d)

2 * 5

A0C(sr),y

2 * 7
STZ d.x

2 * 4

ADC d.x

2 4

ROR d.x

2 6

ADC(dl) y
2 * 6

SEI imp

1 2

ADC a.y
3 4

PLY s

1 * 4

TDC imp

1 * 2

JMP(a.x)

3 * 6

ADC a.x

3 4

ROR a.x

3 7

A PC al.x

4 * 5
7

BRA r

2 * 2

STA(d.x)

2 6

BRL rl

3 * 3

STA sr

2 * 4

STY d

2 3

STA d

2 3

STX d

2 3

STA(dl)

2 * 6

DEY imp

1 2

BIT imm

2 * 2

TXA imm

1 2

PHB S

1 * 3

STY a

3 4

STA a

3 4

S.TX a

3 6

STA a l

4 * 5
8

9
BCC r

2 2

STA(d).y

2 6

STA (d)

2 * 5

STA(sr).y

2 * 7

STY d.x

2 4

STA d.x

2 4

STX d.y

2 4

STA(dl).y

2 * 6

TYA imp

1 2

STA a.y

3 5

TXS imp

1 2

TXY imp

1 * 2

STZ a
3 * 4

STA a.x

3 5

STZ a.x

3 * 5

STA al.x

4 * 5
9

A
LDY imm

2 2

LOA(d.x)

2 6

LOX imm

2 2

LOA sr

2 * 4

LDY d

2 3

LDA d

2 3

LDX d

2 3

LDA(dl)

2 * 6

TAY imp

1 2

LDA imm

2 2

TAX imp

1 2

PLB s
1 * 4

LDY a

3 4

LDA a

3 4

LDX a
3 4

LDA al

4 * 5
A

B
BCS r

2 2

LDA(d),y

2 5

LOA(d)

2 * 5

LDA(sr).y

2 * 7

LOY d.x

2 4

LDA d.x

2 4

LDX d.y

2 4

LDA^dDy CLV imp

1 2

LDA a.y

3 4

TSX imp

1 2

TYX imp

1 * 2

LDY a.x

3 4

LDA a.x

3 4

LDX a.y

3 4

LDA al.x

4 * 5
B

C
CPY imm

2 2

CMP(d.x)

2 6

REP imm

2 * 3

CMP sr

2 * 4

CPY d

2 3

CMP d

2 3

DEC d

2 5

CMP(dl)

2 * 6

INY imp

1 2

CMP imm

2 2

DEX imm

1 2

WAI imp

1 * 3

CPY a

3 4

CMP a

3 4

OEC a

3 6

CMP al

4 * 5
C

0
BNE r

2 2

CMP(d).y

2 5

CM P (d)

2 * 5

CMP(sr).y

2 * 7
PEI s

2 * 6

CMP d.x

2 4

DEC d.x

2 6

CMP(dl).y

2 * 6

CLO imp

1 2

CMP a.y

3 4

PHX s

1 * 3

STP imp

1 * 3
JM L (a)

3 * 6

CMP a.x

3 4

DEC a.x

3 7

CMP al.x

4 * 5
D

E
CPX imm

2 2

SBC(d.x)

2 6

SEP imm

2 * 3

SBC sr
2 * 4

IPX d

2 3

SBC d

2 3

INC d

2 5

SBC(dl)

2 6

INX imp

1 2

SBC imm

2 2

NOP imp

1 2

XBA imp

1 * 3

CPX a

'3 4

SBC a

3 4

INC a

3 6

SBC al

4 * 5
E

F
BEQ r

2 2

SBC(d).y

2 5

SBC (d)

2 * 5

SBC(sr).y

2 * 7

PEA s

3 * 5

SBC d.x

2 4

INC d x

2 6

SBC(dl) y

2 * 6

SED imp

1 2

SBC a.y

3 4

PLX s

1 * 4

XCE imp

1 * 2

JSR(a.x)

3 * 6

SBC a.x

3 4

INC a x

3 7

SBC al.x

4 * 5
F

* New W65SC816 Op Codes

• W65SC02 Op Codes

333

334 Apple Roots

Op Code Matrix Legend

INSTRUCTION ADDRESSING
MNEMONIC

(COMMENT)
MODE

BASE BASE
NO. BYTES NO CYCLES

N o te : ©Western Design Center, Inc.
Used by permission.

The ASCII
Character Set
For the Apple II

I

A. $00-3F: Reverse Video Characters
Hex Dec Screen
$00 0 @
$01 1 A
$02 2 B
$03 3 C
$04 4 D
$05 5 E
$06 6 F
$07 7 G
$08 8 H
$09 9 I
$0A 10 J
$0B 11 K
$0C 12 L
$0D 13 M
$0E 14 N
$0F 15 0
$10 16 P

335

336 Apple Roots

$11
$12
$13
$14
$15
$16
$17
$18
$19
$1A
$1B
$1C
$1D
$1E
$1F
$20
$21
$22
$23
$24
$25
$26
$27
$28
$29
$2A
$2B
$2C
$2D
$2E
$2F
$30
$31
$32
$33
$34
$35
$36
$37

Hex

Q
R
S
T
U
V
W
X
Y
Z
[
\

]

Screen

SPACE

#
$
%
&
f

(
)
*
+

/
0
1
2
3
4
5
6
7

Dec
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

ASCII Character Set for the Apple II 337

Hex Dec Screen
$38 56 8
$39 57 9
$3A 58 ;

$3B 59 J
$3C 60 <
$3D 61 =
$3E 62 >
$3F 63 ?

$40-7F: Flashing Characters*
Hex Dec Screen
$40 64 @
$41 65 A
$42 66 B
$43 67 C
$44 68 D
$45 69 E
$46 70 F
$47 71 G
$48 72 H
$49 73 I
$4A 74 J
$4B 75 K
$4C 76 L
$4D 77 M
$4E 78 N
$4F 79 0
$50 80 P
$51 81 Q
$52 82 R
$53 83 S
$54 84 T
$55 85 U
$56 86 V
$57 87 W
$58 88 X

* ASCII characters $40 through $5F are displayed as special
MouseText characters if mouse firmware is installed and active.

338 Apple Roots

$59
$5A
$5B
$5C
$5D
$5E
$5F
$60
$61
$62
$63
$64
$65
$66
$67
$68
$69
$6A
$6B
$6C
$6D
$6E
$6F
$70
$71
$72
$73
$74
$75
$76
$77
$78
$79
$7A
$7B

Hex
Y
Z
[
\

J

SPACE
!
v

#
$
%
&

(
)
*
+

Screen

/
0
1
2
3
4
5
6
7
8
9

Dec
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

ASCII Character Set for the Apple II 339

$7C 124 <
$7D 125 =
$7E 126 >
$7F 127 ?

C. $80-9F: Control Characters

Hex Dec Key
$80 128 @
$81 129 A
$82 130 B
$83 131 C
$84 132 D
$85 133 E
$86 134 F
$87 135 G
$88 136 H
$89 137 I
$8A 138 J
$8B 139 K
$8C 140 L
$8D 141 M
$8E 142 N
$8F 143 0
$90 144 P
$91 145 Q
$92 146 R
$93 147 S
$94 148 T
$95 149 U
$96 150 V
$97 151 W
$98 152 X
$99 153 Y
$9A 154 Z
$9B 155 [

340 Apple Roots

Hex Dec Key
$9C 156 \
$9D 157]
$9E 158 n
$9F 159 _

D. $A0-FF: Normal Characters

Hex Dec Key
$A0 160 SPC
$A1 161 f
$A2 162
$A3 163 #
$A4 164 $
$A5 165 %
$A6 166 &
$A7 167
$A8 168 (
$A9 169)
$AA 170 *
$AB 171 +
$AC 172
$AD 173
$AE 174 >
$AF 175 /
$B0 176 0
$B1 177 1
$B2 178 2
$B3 179 3
$B4 180 4
$B5 181 5
$B6 182 6
$B7 183 7
$B8 184 8
$B9 185 9
$BA 186 I
$BB 187
$BC 188 <
$BD 189 =
$BE 190 >

ASCII Character Set for the Apple II 341

$BF
$C0
$C1
$C2
$C3
$C4
$C5
$C6
$C7
$C8
$C9
$CA
$CB
$cc
$CD
$CE
$CF
$D0
$D1
$D2
$D3
$D4
$D 5
$D6
$D7
$D8
$D9
$DA
$DB
$DC
$DD
$DE
$DF
$E0
$E1
$E2
$E3
$E4
$E5
$E6

Hex Key
1
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V
W
X
Y
Z
[
\

Jy

a
b
c
d
e
f

Dec
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

342 Apple Roots

$E7
$E8
$E9
$EA
$EB
$EC
$ED
$EE
$EF
$F0
$F1
$F2
$F3
$F4
$F5
$F6
$F7
$F8
$F9
$FA
$FB
$FC
$FD
$FE
$FF

Hex

s
h
i
j
k
1

m
n
o
P
q
r
s
t
u
V

w
X

y
z
[
/
]f

Rubout

KeyDec
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

Bibliography

Andrews, Mark. A tari Roots: A Guide to Atari Assembly Language.
Chatsworth, CA: Datamost, 1984.
--------- The Apple He User’s Guide. New York: Macmillan, 1983.
--------- Programming the Commodore 6A/128 in Assembly Language.
Indianapolis, IN: Howard W. Sams & Co., Inc., 1985.

Apple I I Reference Manual (For He Only). Cupertino, CA: Apple Com
puter, Inc., 1982.
The Apple lie Reference Manual. Cupertino, CA: Apple Computer, Inc.,
1984.
Apple Mouse lie User’s Manual. Cupertino, CA: Apple Computer, Inc.,
1984.
AppleMouse II User’s Manual (For the Apple He, II Plus, and II).
Cupertino, CA: Apple Computer, Inc., 1983.
Extended 80-Column Text/AppleColor Adaptor Card Manual. Cuper
tino, CA: Apple Computer, Inc., 1984.

Findley, Robert. 6502 Software Gourmet Guide & Cookbook. Rochelle
Park, NJ: Hayden Book Co., Inc., 1979.

Leventhal, Lance A. 6502 Assembly Language Programming. Berkeley,
CA: Osborne/McGraw-Hill, 1979.

Little, Gary B. Inside the Apple He. Bowie, MD: Brady Communica
tions Co., Inc., 1985.

Maurer, W. Douglas. Apple Assembly Language. Rockville, MD: Com
puter Science Press, Inc., 1984.

Pelczarski, Mark. Graphically Speaking. Geneva, IL: Softalk Books,
1983.

343

344 Apple Roots

ProDOS Assembler Tools. Cupertino, CA: Apple Computer, Inc., 1984.
ProDOS Technical Reference Manual for the Apple I I Family. Cuper
tino, CA: Apple Computer, Inc., 1983.

Wagner, Roger. Assembly Lines: The Book: A Beginner’s Guide to 6502
Programming on the Apple II. Santee, CA: Roger Wagner Publishing,
Inc., 1984.

Zaks, Rodnay. Programming the 6502. Berkeley, CA: Sybex, 1983.

Trademarks

The following names are trademarked products of the corresponding
companies.

Apple®
Atari®
Commodore 64™
The Complete Graphics

System™
CP/M®
The Graphics Magician™
IBM®
Macintosh™
Merlin Pro™
ORCA/M®
Ping Pong®
ProDOS®
Radio Shack®
Sourceror™
Texas Instruments®

Apple Computer, Inc.
Warner Communications
Commodore Business Machines

Penguin Software
Digital Research
Penguin Software
International Business Machines, Inc.
Apple Computer, Inc.*
Roger Wagner Publishing, Inc.
The Byte Works, Inc.
Harvard Table Tennis
Apple Computer, Inc.
Radio Shack, A Division of Tandy Corp.
Roger Wagner Publishing, Inc.
Texas Instruments, Inc.

♦Macintosh is a trademark of Macintosh Laboratory, Inc., licensed to Apple, Inc., and is
being used with expressed permission of its owner.

345

/ /XT

Index

A

Abbreviations used in instruction set,
106

Absolute addressing, 139
Absolute indexed addressing, 143, 306
Absolute indexed indirect addressing,

148
Absolute indirect addressing, 147
Absolute mode, 136
Accumulator, 41
Accumulator addressing, 141
ADC, 107
Addition of numbers, 196
Address bus, 37, 38-39
Addresses, 243
Addressing, 135-155
Addressing modes, 105-133, 135-156,

219
Addressing modes, 65C02, 327
Addressing modes, 65816, 331-342
Address map, 218-227
Address modification, 306
Alternate character set, 16
ALU, 13
AND, 108
Append, 58
Apple architecture, 3-6

Apple display, 80-column, 175
Apple ProDOS assembler, 54-71
Apple ProDOS Assembler Tools, ix,

53
Arithmetic Logical Unit (ALU), 41
Arithmetic shift left (ASL), 180
ASCII Code, 13
ASL, 108
Assembler, 2
Assembler, ProDOS, 68
Assemblers, 8-9
Assembling an assembly-language

program, 53-83
Assembling, ORCA/M, 83
Assembly language, 8-11
Assembly-language instructions,

105-133
Assembly-language loops, 167-171
Assembly-language math, 193-210
Assembly-language program, 36
Assembly language to machine

language, 309-315
Auxiliary-memory color codes, 242

B

Bank-switched memory, main and
auxiliary, 215-218

347

348 Apple Roots

Bank-switching, 39-40, 211, 213-214
BASIC, 1, 7-8, 15, 54, 56, 86, 95,

220, 269
BCC, 108
BCD numbers, 65, 207-208
BCS, 108
BEQ, 109
Bibliography, 343-344
Binary-coded decimal (BCD), 46-47
Binary numbers, 9, 19-31
Binary numbers, single-bit manipu

lations, 179-192
Bit, 20
BIT, 109
Bit descriptions, 44-49
Bit-mapped screen, 240
Bit-mapping, 272
BIT Operator, 191
Bit-shifting, 180
BLOAD, 85
BMI, 110
BNE, 110
Boolean logic, 185
Booting ORCA/M, 79
BPL, 110
BRA, 111
Branching, 142-143, 157-178
Branching and comparison together,

161
Break Flag, 47
BRK, 111
BRUN, 85, 93
Buffer, 170
BVC, 112
BVS, 112
Byte, 3, 20
Byte Simulator, 124

C

CALL command in BASIC, 96
Carriage return, 170
Carry bit, 179, 193-195
Carry Flag, 45
Central processing unit, 33-52
Chip architecture, 49-52
Chips, Apple, 6, 33-52
CLC, 112
CLD, 113

CLI, 113
CLV, 113
CMP, 114
Color codes, 238
Colors, 239
Columns, 61
Command level mode, 55
Comments, ORCA/M, 82
Comments field, 64
Comparing values, 161
Comparison and branching together,

161
Compilers, 7-8
Complement addition, 205-207
Computers, 8-bit, 36
Conditional branching, 162, 166
Converting numbers, 23
CPU, 3, 6, 33-52
CPX, 114
CPY, 114

D

Data, 36
Data bank register, 52
Data bus, 37-39
DEA, 115
DEC, 115
Decimal Mode Flag, 46
Decimal system, 19-31
Decrementing registers, 160
Delete, 58
DELETE, 59
DEX, 115
DEY. 115
Directing listings, 70
Directives, 159
Directives, ORCA M, 82
Division, 202-204
DOS 3.3, ix-x
Double-read operations, 216-217
D Register, 52

E

Editing, 58
Editor, 2, 58
Editor, ORCA/M. 81
E Flag, 49
Emulation Flag, 49

Index 349

EOR, 115
EOR Operator, 187
Executable code, 5
Executing a machine-language

program, 87

F

Fields, 61
Floating-point accumulator, 101
Floating-point arithmetic, 101
Floating-point numbers, 208-209

G

Game I/O, 248
Game paddles, 247-268
GETLN1, 175
Graphics, 233-246
Graphics, Apple, 269-308
Graphics, double high-resolution,

242, 296-307
Graphics, double low-resolution,

240-242
Graphics, high-resolution, 238-240
Graphics, low-resolution, 237-238
Graphics, screen mapping, 243-245
Graphics and text modes, 234
Graphics screen programs, 274-292

H

Hand controllers, 247-268
Hardware stack, 149-155
Hexadecimal numbers, 12, 19-31
Hexadecimal system, 10
High-Byte, 176

I
Icons, 16
Immediate Addressing, 138
Immediate mode, 136
Implied Addressing, 138
INA, 116
INC, 116
Incrementing registers, 160
Indexed indirect addressing, 145
Indirect addressing, 145
Indirect indexed addressing, 147
Insert, 58
INSERT, 59

Instruction set, 65C02, 323
Instruction set, 65802/65816, 329
Instruction set, 6502B/65C02,

105-133
Internal registers, 13
Interpreters, 7-8
Interrupt Disable Flag, 46
Interrupts, 46
INX, 116
INY, 116
I/O, 4
I/O devices, 37

J

JMP, 116
Joysticks, 247-268, 250-258
JSR, 116
Jumping, 162
Jump instructions, 162

K

KILL2, 60
Kilobyte (“K”), 212

L

Label field, 62
LDA, 117
LDX, 117
LDY, 117
Line numbers, 56-58
Line numbers, ORCA/M, 81
LIST, 58
Listing, Merlin, 76
Loading a machine-language

program, 86-87
Logical operators, 185-188
Logical Shift Right (LSR), 182
Long-distance branching, 166
Looping, 157-178
Loops, 167-171
Low-Byte, 176
LSI, 3
LSR, 117

M
Machine language, 1, 9-10
Machine language and assembly

language, 2-3

350 Apple Roots

Machine-language monitor, 86
Machine-language program, 85
Machine-language programs, 5, 35
Machine language to assembly

language, 317-322
Maskable interrupt, 46
Math, 193-210
Memory, 4-6, 211-232
Memory, Apple, 34-40
Memory, Apple ProDOS assembler,

230
Memory, auxiliary, 40
Memory, basic concepts, 212
Memory, main, 40
Memory, Merlin, 230
Memory, non-switchable, 218
Memory, ORCA/M assembler, 230
Memory address, 3
Memory architecture, 37-40
Memory location, 3
Memory map, 218-227
Memory mapping, displays, 235
Memory register, 3
Memory requirements of assemblers,

228-230
Merlin Pro assembler, ix, 54, 71-78,

86, 91, 137, 169
Merlin Pro assembler commands,

74-76
Merlin’s modules, 72-73
M Flag, 50
Microcomputer architecture, 3-6
Microprocessor, 6502B/65C02, 13
Microprocessors, 33-52
Mnemonics, 2, 10, 106
Monitor, Apple, 88-91
Monitor disassembly, 89
Mouse, 16, 247-268
Mouse, Apple, 258-268
Mouse, operating modes, 263
MPU, 3
Multiplication, 198-202
Multiprecision binary division,

202-204

N

Negative Flag, 49
Nibble, 20

Nonmaskable interrupts, 46
NOP, 118
Number-base prefixes, 20
Number systems, 19-31
Numbers, 16-bit, 196-197

O
Object code, 2, 11
Offset, 163
Offsets, 243
Offset values, 164-165
Op code, 66
Op code table, 65C02, 325
Op-code field, 63
Operand, 66
Operand field, 63
Operating system, 152
Optional parameters, 69
ORA, 118
ORA operator, 186
ORCA/M assembler, ix, 54, 78-84,

86, 91, 137, 169
ORCA/M commands, 80-81
ORG, 36
Origin directive (ORG), 35
Origin line, 64
Overflow Flag, 48, 207

P

Packing data in memory, 188-191
Page, 212
PHA, 118
PHP, 118
PHX, 118
PHY. 119
Pixels, 237
PLA. 119
PLP, 119
PLX, 119
PLY, 119
PREAD, 249
P Register Flags, 50-51
PRINT, 58
Printing, Merlin, 77
Printing, ORCA/M, 83
Printing a program, 67
Processor status register, 44-49
ProDOS, ix-xii

Index 351

ProDOS assembler, 137, 169
ProDOS Assembler Tools, 86
ProDOS assembly-language

programming, 227-228
ProDOS commands, 68
ProDOS memory map, 228-229
Program bank register, 52
Program counter, 37, 39, 43

R
RAM, 4-5, 34, 294
RAM, auxiliary, 214, 215
RAM, main, 214, 215
Registers, 52
Registers as counters, 160
Relative addressing, 141
Relative line numbering, 75
Relative line numbers, 56-58
Remarks, 65
ROL, 120
ROM, 4-5, 34
ROR, 120
Rotate left (ROL), 184
Rotate right (ROR), 184
RTI, 120
RTS, 120
Running an assembly-language

program, 85-104

S

SAVE, 60
Saving, Merlin, 77
Saving, ORCA/M, 83
Saving a program, 67
SBC, 121
Screen display, 271-293
Screen display program listings,

274-280
Screen map, 270
SEC, 121
SED, 121
SEI, 121
Self-modifying routines, 306
Signed binary addition, 205
Signed numbers, 204-207
Single-bit manipulations of binary

numbers, 179-192

Soft switch, 211
Soft switches, 40, 217
Source code, 2, 11
Spacing, 60
S Register, 52
STA, 122
Stack, 14, 149-155, 217
Stack pointer, 43, 149-150
Starting address, 35
Startup program, 94
Status register, 44
STX, 122
STY, 122
STZ, 122
Subroutine, 14, 92-93
Subroutines, 163
Subtraction, 16-bit, 198
Suppressing object code, 71
SWAP, 60
Symbol Table, 92-93

T

TAX, 122
Text and graphics modes, 234
Text buffer, 171
Text display, 80-column, 235-237
Text modes, 40-column and

80-column, 234
TXS, 124
TYA, 124

U

Unconditional, 163
Unpacking data in memory, 188-191
USR(X), 97-104

W

Writing an assembly-language
program, 53-83

X

X Flag, 50
X register, 42-43

Y

Y register, 43

352 Apple Roots

Z

Zero Flag, 46
Zero-Page, X addressing, 145
Zero-Page, Y addressing, 145
Zero-Page Addressing, 140
Zero-Page indirect addressing, 148
Zero pages, 217

	Apple" Roots:

	Introduction

	Breaking the Assembly Language Barrier

	Machine Language and Assembly Language

	How the Hl.TEST.BAS Program Works

	Inside a Microcomputer

	Your Apple’s Memory

	Your Apple’s CPU

	Compilers, Interpreters, and Assemblers

	Interpreters and Compilers

	Assemblers and Assembly Language

	Machine Language: A Language of Numbers

	Object Code and Source Code

	What the HI.TEST.S Program Does

	How FLASH.BAS Works

	A Program for Displaying Mouse Icons

	Number Systems

	Number-Base Prefixes

	Converting Numbers From One System to Another

	Software-Based Converters

	Programmers’ Calculators

	Charts and Tables

	Converting Binary Numbers To Hexadecimal Numbers

	Converting Decimal Numbers To Hexadecimal Numbers

	In the Chips

	Your Apple’s Memory

	Running a Machine-Language Program

	Using Data in an Assembly-Language Program

	8-Bit and 16-Bit Numbers

	Data and Address Buses

	The 6502B/65C02 Program Counter

	Your Apple’s CPU	

	The Arithmetic Logical Unit

	The Accumulator

	The X Register

	The Y Register

	The Program Counter

	The Stack Pointer

	The Processor Status Register

	Layout of the Processor Status Register

	The E (Emulation) Flag

	Additional P Register Flags

	The S Register

	The D Register

	The 65816 Chip’s 24-Bit Registers

	Writing and Assembling An Assembly-Language Program

	Entering the ADDNRS.SRC Program

	Completing the ADDNRS.SRC Program

	Listing Your Program

	Spacing

	The ADDNRS.SRC Program Line by Line

	Printing Your Program

	Saving Your Program

	Using ProDOS Commands

	Assembling a Program

	With the Apple ProDOS Assembler

	Using Optional Parameters

	Directing a Listing

	To a Disk Drive or Printer

	Suppressing the Generation Of Object Code

	Merlin’s Modules

	Merlin’s Menu

	Listing Your Program

	Closer Look the ADDNRS Program

	Printing Your Program

	Assembling and Saving Your Program

	Booting the ORCA/M Assembler

	The NEW and EDIT Commands

	Full-Screen Editor and Line Numbers

	Keep, Start, and End Directives

	Comments in ORCA/M Programs

	Assembling the ADDNRS.SC Program

	Printing an Assembly Listing

	Running an

	Assembly-Language

	Program

	The Apple Ilc/IIe Machine-Language Monitor

	Using the Apple llc/lle Monitor

	Running a Program

	Using the Apple llc/lle Monitor

	The ADDNRS.SR2 Program

	A Symbol Table

	A Subroutine That Is Displayed On the Screen

	The BRUN Command

	Creating a Startup Program

	Devising a Better Startup Program

	Using the CALL Command

	The USR(X) Function

	The USR(X) Function as a Programming Tool

	The 6502B/65C02 Instruction Set

	The Instruction Set

	Addressing Your Apple

	Implied (Implicit) Addressing

	Immediate Addressing

	Absolute Addressing

	Zero-Page Addressing

	Accumulator Addressing

	Relative Addressing

	Absolute Indexed Addressing

	Zero-Page, X Addressing

	Zero-Page, Y Addressing

	Indirect Addressing

	A Pseudo-Address: The Stack

	How Your Operating System Uses the Stack

	A Two-Part Program

	An Important Warning

	Looping and Branching

	Saving the BULLETIN Program

	Using the X and Y Registers as Counters

	Incrementing and Decrementing the X and Y Registers

	Comparing Values in Assembly Language

	Using Comparison and Branching Instructions Together

	Conditional Branching Instructions

	How Branching Differs From Jumping

	Offset Values

	Long-Distance Branching

	How Conditional Branching Instructions Are Used

	Assembly-Language Loops

	The BULLETIN.B Program

	Testing for a Carriage Return

	Clearing a Text Buffer

	One More Program: THE NAME GAME	

	The GETLN1 Routine

	Using Your Apple’s 80-Column Display

	Low-Byte and High-Byte Symbols

	Playing THE NAME GAME

	Single-Bit Manipulations of Binary Numbers

	ASL (Arithmetic Shift Left)

	LSR (Logical Shift Right)

	ROL (Rotate Left) and ROR (Rotate Right)

	The Logical Operators

	Boolean Logic

	The ORA Operator

	The EOR Operator

	Packing and Unpacking Data in Memory

	How It Works

	Testing the Results

	Unpacking Data

	Assembly-Language

	Math

	Looking for a Bit in a Haystack	

	16-Bit Subtraction

	An Improved Multiplication Program

	Running the Program

	Not the Ultimate Division Program

	Signed Binary Addition

	One’s and Two’s Complement Addition

	A Few Examples

	Using the Overflow Flag

	Memory Magic

	The Difference a “K” Makes

	The “Page” Concept

	Bank-Switching

	Main and Auxiliary Bank-Switched Memory

	Double-Read Operations

	Other Soft Switches

	Two Stacks and Two Zero Pages

	Non-Switchable Memory

	Addresses $00 to $FF (Page Zero)

	Addresses $0100 to $01FF (Page 1: the Stack)

	Addresses $0200 to $02FF (Page 2: the Input Buffer)

	Addresses $0300 to $03FF

	(Page 3: Vectors and Link Addresses)

	Addresses $0400 to $07FF:

	Text and Low-Resolution Page 1

	Addresses $0800 to $0BFF:

	Text and Low-Resolution Page 2

	Addresses $0C00 to $1FFF:

	Free RAM

	Addresses $2000 to $5FFF:

	High-Resolution Pages 1 and 2

	Addresses $6000 to $BFFF:

	Free RAM

	Addresses $C000 to $C0FF:

	Hardware Addresses

	Addresses $C100 to $CFFF:

	ROM Addresses

	RAM Addresses $D000 to $FFFF

	ROM Addresses $D000 to $F7FF:

	The BASIC Interpreter

	ROM Addresses $F800 to $FFFF:

	The Monitor

	Under ProDOS Assembly-Language Programming

	Merlin’s Memory

	Mapping the Apple ProDOS Assembler

	Memory Requirements Of the ORCA/M Assembler

	Fundamentals Of Apple llc/lle Graphics

	Memory Mapping

	Low-Resolution Graphics

	Auxiliary-Memory Color Codes

	Game Paddles, Joysticks, and The Apple Mouse

	The Evolution of the Hand Controller

	Using a Joystick in a Graphics Program

	SKETCHER: A Low-Resolution Joystick Program

	How the SKETCHER Program Works

	Disadvantages of Joysticks

	A Close Look at the Apple Mouse

	Subroutines Provided With the Apple Mouse

	Calling the INITMOUSE Routine

	Apple Graphics

	How the Apple llc/lle Creates a Screen Display

	Examining the PRNTCHRS Program

	Improving the PRNTCHRS Program

	How Screen Data Is Stored in RAM

	How the HEADLINES Program Works

	How Double High-Resolution Colors Are Programmed

	Assembly-Language To Machine-Language Conversion Chart

	Machine-Language To Assembly-Language Conversion Chart

	The 65C02 Instruction Set

	65C02 Op Code Table

	65C02 Addressing Modes

	The 65802/65816 Instruction Set

	65816 Addressing Modes

	65816 Op Code Table

	The ASCII Character Set For the Apple II

	Bibliography

	Trademarks

	Index

