PRENTICE

HALL

Appie lle

Programming

A Step-by-Step Guide

| I
| L] lll
I I|
-. | W
|
5.
i 1 ¥ _ S 7 B i1 4% 1
d F 4 4 €] i0 12 14
L il L aald _ 1 o | L L € -
-_— e n an] { r J LI
e LU - {2 « N ! & t}ll'
a1 i
v L = s I

PROGRAMMING SERIES

APPLE lle
PROGRAMMING

A
Step-hy-Step
Guide

Never has there been a more urgent need for a'series of-well-produced,
straightforward, practical guides to leaming to use a computer. It is in
response to this demand that The Step-by-Step Programming Series has
been created. It is a completely new concept in the field of teach-yourself
computing. And it is the first comprehensive library of highly illustrated,
machine-specific, step-by-step programming manuals.

BOOKS ABOUT THE APPLE lle
This is Book One in a series of unique step-by-step guides to
programming the Apple lle. Together with its companion volumes, it
builds into a self-contained teaching course that begins with the basic
principles of programming, and progresses — via more sophisticated
technigues and routines — to an advanced level.

ALSO AVAILABLE IN THIS SERIES

Commodore 64 Programming

IBM PCjr Programming

PHIL ROBINSON.
Phil Robinson graduated from Brunel University in 1975 with a degree in
Electrical Engineering. During the next four years he worked as a
computer programmer and analyst on mainframe and mini computers.
His work during this period involved scientific, business and games
programming in BASIC, FORTRAN, COBOL and FOCAL. He transferred
his expertise to microcomputers in 1979 and became a founder member
of Digitus, a micro systems company based in London. Since 1979 he
has written programs for the Apple, the Cromemco, the North Star, the
Sirius and the IBM PC. In 1981 he became a freelance computer

consultant and writer,

| e T =
| | ! l
o N _.__
1Ll 0 _J_T—__'i
i S S S e (55, I
[|kl
:. i + — _.T_'_
§ |
TIa] R T A i—l
|
|
|
| I 1
1 (1171 i
B o 100
{|. - Jl. .._E_._ e
Y N e (.
!

r

Y Yy

P ¥
3 \ \
B e

_+_wu [-
/_ ¥ .

N

N ™

&
i ..—.
] !

L

= .y.-—s.\

4 4 $
_
_
| _ |
= | |
= | L
* [
=l | |
_ | |
| |
| | |
— 1
|
_
|
]
| |
_
|
! _
|
‘
{
=
N
= |
=
|

-

- | PROGRAMMING |
A
| Step-by-Step |
Gulde i T naaEa

.—|-
“PHIL ROBINSON T
3 e R ENR R B O
__| T 0 0 v oo W 5 R e
0 g 255 508 100 8 P R 5 e
MENSE S i 5 A R T B R L 50
| RER ' .] ' .
T R S) O 0 e S | S |
Uiiidnd e vl i_ il] 6 .
T '
§3 V7 3 R il [
o el | Sl gl |
| | | | | ' | !
5 o 50 " O T D O 8 i
N i{ [Ll
PRENTICE-HALL INC,, Englewood CIrﬂs, Newlersey07632 5 |
i__!_!g___.l

12 |

18

CONTENTS

THE DISK DRIVE

THE APPLE lle

I 8 i

INSIDE THE COMPUTER

T

14

STARTING OFF

10

16 |

THE APPLE lle
KEYBOARD

The Step-by-Step Programming Series was
conceived, edited and designed by Dorling
Kindersley Limited, 9 Henrietta Street,
Covent Garden, London WC2E 8PS.

Editor Gillian Aspery

Designer Hugh Schermuly
Photography Vincent Oliver

Series Editor David Burnie

Series Art Editor Peter Luff
Managing Editor Alan Buckingham

First published in Great Britain in 1984
by Dorling Kindersley Limited,

9 Henrietta Street, Covent Garden,
London WC2E 8PS.

Copyright (©) 1984 by Dorling Kindersley
Limited, London

The term Apple is a registered trade mark of

Apple Computer Company, Inc.

MOVING AROUND
THE SCREEN

AT 0 |

All rights reserved. No part of this
book may be reproduced in any form or
by any means without permission in
writing from the publisher. A
Spectrum Book. Printed in Italy. This
book is available at a special discount
when ordered in bulk quantities.
Contact Prentice-Hall, Inc., General
Publishing Division, Special Sales,
Englewood Cliffs, N.J. 07632.

Library of Comgress Cataloging i Publicanon Data
Robinson, Phil.

Apple [Ie programming: a step-by-step guide;
book ane.

“A Spectrum Book. "
Includes index.

1. Compurers. 2
ISBN 0-13-038456-9

Applelle. 1. Title,

Typesetting by Cambrian Typesetters,
Frimley, Camberley, Surrey, England
Reproduction by Reprocolor Llovet
S.A., Barcelona, Spain

Printed and bound in Italy by

A. Mondadori, Verona

1

COMPUTER
CALCULATIONS

20

WRITING YOUR
FIRST PROGRAM

I

22

DISPLAYING PROGRAM
LISTINGS

J18 INPUT “WHAT IS YOUR NAME " ;Hs$

PRIHT “"I¥XXEFXXXXLTELERTEEXRTTE
;‘:?xl!xt!!t o

138 PRINT "APPLE 11E PROGRAMMED BY iNS

J48 PRIHT "SXXFXXEXAXEETXXXEXXXLNETLEETEST
FXEXTTXTXIRE"

ILIST

18 INPUT “WHAT IS YOUR HAME “iHNS

T

OGRAMMED B

L

24

CORRECTING
MISTAKES

26

HOW TO KEEP
YOUR PROGRAMS

s 22 22 2222 22222222222 3 1
H PRODOS USER'S DISK
: COPYRIGHT APPLE COMPUTER. INC 1983 4
o P
YOUR OPTIOMS ARE:
7 - TUTOR: PRODOS EXPLANATION
- PRODOS FILER CUTILITIES?»
- DDS <-> PRODOS CONUERSION
- DISPLAY SLOT ASSIGNMENTS
~ DISPLAY<SET TIME
B - APPLESOFT BASIC
PLEASE SELECT ONE OF THE ABOUE =

28

COMPUTER
CONVERSATIONS

54

42

56

WRITING
SUBROUTINES

UNPREDICTABLE

SPECIAL SCREEN

58
PEEK, POKE
AND CALL

50

48

52

COMPILING A
DATA BANK
46
SHAPES
ANIMATING
SHAPES

HOW TO WRITE
A SHAPE TABLE

HINTS AND TIPS
GRAPHICS GRID

ADVANCED GRAPHICS
TECHNIQUES

62

I

GLOSSARY

64

INDEX

WRITING PROGRAM

 THE ELECTRONIC

LOOPS

T 34|
COLOR GRAPHICS

DRAWING BOARD

[36 |
ANIMATION

(.

38

HIGH-RESOLUTION

GRAPHICS

DECISION-POINT

PROGRAMMING

o

LIERARY
CALIFORNIA STATE POLYTECHNIC UNIVERSITY

POMONA, CALIFORNIA §174°

THE
APPLE lle

The Apple Ile is a member of the popular family of |“|||
Apple computers. It is a versatile and friendly Ull",‘,',,
computer which is equally valuable in the home, the Jf|IJ|||||
office or the classroom.

Although a wide range of software is available for
the Apple Ile it is far cheaper and a lot more fun to
write your own programs in Applesoft BASIC. This is
Apple’s version, or dialect, of BASIC — the most
popular programming language for personal com-
puters. Once mastered, Applesoft BASIC puts the full
power of the Apple Ile at your fingertips.

Although the Apple Ile benefits from modern chip
technology, it remains compatible with earlier models. Video out connects the |Cassette connecta
The programs in this book will therefore work on Apple to a monitor to allow you to save @
older versions of the Apple (the original II and the display text and graphics. (load programs fromg
I1+) providing they have Applesoft BASIC in ROM. o
However, the keyboard and screen display differ
slightly on all three models and certain procedures
require different action to that explained in this book;
these procedures include starting up the system and
editing programs. If you own an Apple II or II+ you
will therefore be advised to consult the Apple owner’s
manual when you reach these stages of the book.

Connectors and peripherals

From the outside, the Apple appears to be little more
than a sturdy plastic case with a typewriter-style
keyboard. But a closer investigation will reveal other-
wise.

Start by turning the computer round to look at the
rear panel. At the bottom left is the video output. This
allows you to connect the Apple to a video monitor
which will display the results of the instructions that
you type into the computer.

On the right of the video jack is the cassette output
and next to that, the cassette input. These allow you to
save and then re-load programs into the computer
using a cassette recorder. The alternative method of
saving programs is on disk. A disk drive is more
expensive than a cassette recorder but it is far quicker,
more convenient and more reliable.

The socket next to the cassette input handles games
controllers and joysticks. And the numbered rec-
tangular openings above and to the right enable you to
install expansion cards into the Apple. As your
programming skills develop you can add expansion
cards to make your Apple talk, recognize speech,
control a light pen and play music. It is this flexibility
for expansion that makes the Apple stand out from
other personal computers.

i

| Hand controller This Connector slots (9, 19 Power plug socket and
| socket connects a joy- and 25 pin.) These allow on-off switch This socket
stick to the Apple for you to install sockets for holds the 3-pin plug that
playing games. optional expansion cards. connects the Apple to

the domestic power supply.

OMPL

When using a computer it helps to understand a little
about how it works. A look under the lid is a good
place to start. Check that the Apple is off and, with the
keyboard towards you, grasp the two tabs that stick
out from the back of the computer cover. Then pull
firmly upwards until you hear a pop and the cover
comes away from the main case.

At the heart of the computer is a microprocessor.
The one used in the Apple Ile is called the 6502 and it
forms a crucial part of the Central Processing Unit
(CPU). All computers, large or small, have a CPU. It
performs all the computer’s calculations, takes deci-
sions and displays the results on the screen. But in
spite of the complexity of this chip, it can only follow
the instructions that it is given. Some of these
instructions are pre-programmed into the Apple but
you will have to enter others using the keyboard. Both
types of instructions are stored in the other main
component of the Apple — its memory.

There are two types of memory, RAM and ROM.
Everything you type at the keyboard is stored in
RAM. It can be changed easily but is lost when you
turn the computer off .

ROM stands for Read Only Memory and as the
name suggests it is permanent and cannot be altered.
This is where the Apple stores the permanent pro-
grams that tell the CPU how to behave. The infor-
mation that is stored in the ROM chips is retained
even when the machine is off.

BASIC and machine code

The CPU only understands a bewildering series of
electrical pulses called “binary”. This system is based
on only two numbers — 0 and 1, where 0 is
represented by “off”” (no pulse) and 1 is represented
by “on” (one pulse). Each 0 or 1 conveys a unit of
information and is called a “bit”. The computer stores
eight bits (known as .one “byte”) of information
together. Each byte represents a different combination
of Os and 1s and stores one character of recognizable
information, one letter of the alphabet or a number
from 0 to 9 for example. A computer’s memory is
measured in kilobytes (kB or just k). One kilobyte, in
computer jargon, is equivalent to 1024 bytes. The
Apple has 64k of RAM and 16k of ROM.

It is very difficult to program the Apple in its own
language, binary — also known as machine code. So
Applesoft BASIC acts as an interpreter, converting the
instructions that you enter in BASIC into machine
code instructions that the CPU can follow.

Numeric keypad connector This is used
to connect a special numeric keypad to
the Apple. A keypad looks like a cal-
culator and is particularly useful if you
want to enter a large volume of numbers.

Auxiliary expansion slot This has an
important function before the Apple
leaves the factory. It is used to test the
chips on the main circuit board. It also
holds a plug-in card which can convert
the Apple’s display to 80 columns and
add an extra 64k of RAM.

Logic chips These allow the CPU, ROM
and RAM to “interface” with hardware
like the keyboard and the video display.

Memory management unit and input/

output unit (MMU and IOU) These two
chips were specially designed for the ,
Apple Ile. They do the work of about 50 |
normal logic chips making the Apple Ile |
cheaper to manufacture and easier to '
service.

Random Access Memory (RAM) These
sght RAM chips provide 64k of memory
snd store information as it is typed into
the computer. Work stored here must be
saved onto disk or cassette before the

computer is turned off, otherwise it is

Jost. If required, the auxiliary expansion
ot can take a card with a further 64k of
RAM.

&

SeogKY @ TWHIE AN KIMOY

pa s3ncwo> oidaf)

Expansion slots These hold optional
expansion cards which enhance the
power of the computer. Each extra card
- performs a special function such as
controlling a disk drive or a printer.

Read Only Memory (ROM) These chips
store the instructions that convert BASIC
programs into a form that the CPU can
understand and act upon. They also
contain programs to test the Apple every
time it is switched on.

Central Processing Unit (CPU) This is
the brain of the computer. It organizes
the activities of other parts of the Apple
and does calculations using programs and
information stored in ROM and RAM.

UITEET
i,
ity

ittt

|

Power supply This converts the voltage
from your domestic power supply to the
lower level that the Apple requires.

JL 1L 1l AL EILELENY THILNAY] L il ! |
The Apple has a high-quality keyboard that will suit a
one-finger programmer or a fast touch typist. On first
sight it looks like a typewriter but closer inspection
reveals a few interesting additions.

Once the Apple is connected to a video display and
switched on, try pressing a “character key”’ (A-Z, 0-9
and punctuation marks). The character will appear on
the screen and will simultaneously be stored in the
computer’s RAM. Later you will use these keys to
“enter” information and “commands”.

Like a typewriter the Apple can display upper- and
lower-case letters. To display upper-case letters press
the SHIFT key at the same time as a “letter key” (A—
Z). Applesoft BASIC only accepts commands entered
in upper case, so you may find it more convenient to
press the CAPS LOCK key. This will click down and
all subsequent characters that you type will be in
upper case. You will also notice that some keys show
two symbols, one above the other. These keys display
the lower symbol if the key is pressed on its own, and
the top symbol if the key is pressed while SHIFT is
held down.

RETURN is another vital key. After you have typed
an instruction, pressing the RETURN key will send it
to the computer. Until that point you can make any
amendments you like or even cancel the instruction
completely, but after RETURN has been pressed it’s
more difficult (and sometimes impossible) to reverse a
command.

The control key (CTRL) sends instructions direct to
the CPU. But the character it sends, known as a
“control character”, is not displayed on the screen.

The RESET key does exactly what its name
suggests — it resets the computer as if it had just been
switched on.

The video display always shows a small flashing
block at the point where the next character you type
will appear, this is called the cursor. The cursor moves
as you type but you can also move it with the cursor
keys. These are the four keys marked with arrows on
the bottom right of the keyboard. The arrows indicate
the direction in which the cursor will move if the key is
pressed, although when the normal flashing cursor is
displayed only the right and left cursor keys will
operate. You can alter the way the cursor keys work by
pressing the escape (ESC) key. Now you can move the
cursor in all four directions. By combining these two
ways of moving the cursor you can change sections of a
program in the computer’s memory without having to
re-type the entire program.

TAB This key is fot used for pro-
gmnmmg,but sofe software packages
uselttommpm
|can on a typewrite

A q pplc

ESCapekcycbangesthewnym
cursor controls work. It is
when you begin to edit

CAPS LOCK When this key is switched
on all letters appear in upper case —
CAPitals — until CAPS LOCK is pressed
a second time.

CTRL When you press ConTRoL, to-
gether with certain letter keys, a “control
character” is sent directly to the com-
puter and gives it a command. For
example, pressing CTRL and C together
will stop a program running.

SHIFT Holding the SHIFT key down RESET This tells the compuiter to stop
while pressing another key produces what it is doing. It is always|pressed at
either an upper-case letter or, if a key has the same time as CTRL. It RESETs the
two symbols, the upper of the two. For Apple ready for new instrucfions but
convenience there are two SHIFT keys. saves any program thar is in|RAM,
However, if Open-Apple is pressed with
CTRL and RESET, the pragram in
RAM will be erased. Pressing the Solid-

DEL this is not normally used for Apple with CTRL and RESET will run a
self-test program to check the Apple’s

programming but some software e 2
: main circuit board. The mesfage “Kernel
packages use it to delete a character. OK? will appear if the Apple is working

correctly.

: Space bar This works exactly like the
'-] space bar on an ordinary typewriter.

| RETURN This is very like the type-
writer carriage return. Pressing it tells
the computer that you have finished
working on the current line of text or
program and are ready to move onto the
next. It moves the cursor onto the next
line.

Open-Apple and Solid-Apple These are
special function keys. They do not
generate any characters, but when
pressed with CTRL and RESET they
cause the computer to perform a special
activity. For example, they can re-boot
the computer while the power is on.

Cursor keys These four keys move the
cursor around the screen, but their
Power indicator This indicates that the precise function varies if they are used
. Apple is switched on. with ESC.

THE DISK DRIVE

The Apple Ile uses a disk drive to make permanent
copies of programs and information held in RAM.
Once you have saved information on a floppy disk the
Apple may be switched off, and although the infor-
mation will be lost from RAM you can recall the same
information back to the computer from the floppy
disk, and resume work on it at another time.

Floppy disks have certain things in common with
both albums and cassette tapes. They use the same
magnetic material as a cassette for recording informa-
tion. But they rotate on a central spindle, and record
information in concentric tracks, like an album.

When you buy a floppy disk it is protected in a
paper sleeve and inside this by a plastic case. If you
remove the paper sleeve, as if to use the disk, you will
notice that there is an oblong slot in the plastic cover.
This allows the “read/write” head to come into contact
with the magnetic surface of the disk when it is placed
in the disk drive. Floppy disks are delicate things and
should always be handled carefully. Never touch the
disk surface through the slot and always keep disks
away from heat, dust and magnets.

Using a disk drive

A floppy disk is placed in the disk drive through the
door on the front of the drive. Normally the disk does
not rotate but when the computer wants to read or
write something on the disk it starts the motor
running; you will hear this happen. An “in-use” light
also glows red on the front of the drive when the
computer is using the disk. Never open the drive while
this light is on, you risk “crashing” the disk and losing
everything you’ve stored on it.

Inside the disk drive is a circuit board and two
motors: one spins the disk on a central spindle, the
other is an unusual type of motor called a “stepping
motor”. Instead of rotating smoothly it goes round in a
series of jerky steps. The read/write head is held on the
arm driven by this motor. The steps occur at the same
place on each rotation of the disk so that the read/write
head can be positioned exactly over the required track.

CROSS-SECTION OF A DISK IN THE DISK DRIVE

Disk drive door Read/write head

CUTAWAY OF A FLOPPY DISK

Index hole The computer uses this hole
to find the beginning of a track.

Cut-out for read/write head This allows
the read/write head to come into contact
with the surface of the disk.

Track Each disk has 35 concentric tracks
for storing programs and information.

Sector Each track on a disk is divided
into 16 sectors and each sector holds 256
bytes of information.

Write-protect notch If you cover this
notch with a small tab the computer will
only be able to read the disk. This is to
prevent you accidentally overwriting the
contents of an important disk.

Pressure pad

An Apple’s disk drive has 35 separate tracks and
each track is further divided into 16 “sectors”. Each
sector will hold 256 bytes; this is the smallest amount
of information that can be transferred to and from the
Apple’s RAM,

Before you can use a disk drive with the Apple
you must plug a disk interface card into one of the
expansion slots. The interface card is connected to the
disk drive by a flat cable and allows the Apple to
transfer information to and from disk, and control the
two motors. When you turn the Apple on, the drive
will automatically start to rotate. This is so that it can
read into memory the “Operating System” (DOS 3.3
or ProDOS) which gives the computer the instructions
it needs to use the disk drive. You should therefore
always have a disk in the drive when you switch on.

_

Interface cable As well as transferring
information back and forth to RAM
memory, this cable allows the Apple to
control the two motors in the disk drive.

Stepping motor This plate hides the
motor that spins the disk in a series of
steps and positions the read/write head at
the correct track on the disk.

Drive motor This rotates the floppy disk
inside its sleeve.

Read/write head The read/write head is
hidden by the drive control electronics,
but it is similar to the record/play head in
a cassette recorder. It i1s mounted on an
arm connected to the stepping motor so
that it can be positioned over the
required track.

Pressure pad Like the read/write head,
the pressure pad is hidden but it is
positioned on the opposite side of the
disk to the read/write head, and supports
the floppy disk as the head comes into
contact with the disk.

Drive control electronics These control
the rotation and stepping motors and
convert the electrical pulses coming from
the read/write head into bytes of infor-
mation,

Flywheel The flywheel 1s positioned

behind this plate. It smooths out any
variation in the speed of rotation, much

like the flywheel of a car. It has strobe
markings for speed alignment and when

the motor is running at the correct speed
these appear stationary under artificial light.

RUE

STARTING OFF

With the help of the manual supplied when you
purchased your Apple, start by connecting the com-
puter to a TV set (or a monitor) and a disk drive.
Before you can start programming, the next step is
to “load” or “boot” the computer. The instructions
given below describe this start-up routine for the
Apple Ile; owners of the II and I1+ are recommended
to consult the owner’s manual, as the routine for
earlier versions of the Apple is slightly different.

Booting the Apple Ile

Before you switch on the Apple Ile, the first step is to
place a “Master” disk in the disk drive. This is the
disk that was supplied when you bought the com-
puter. Recent purchasers will have ProDOS User’s
Disk. But if you've had your Apple for a while, you
will have DOS 3.3 System Master. Both Master disks
fulfil roughly the same purpose, but ProDOS is the
most recent development.

Take either disk now, place it in the disk drive and
close the door. Turn on your TV or monitor and then
your Apple. The disk will spin for a few seconds; wait
until it stops and the light goes out on the disk drive. If
you’re using DOS 3.3 you’re now ready to go, but if
you’re using ProDOS you must first type the letter B
(it must be a capital B so first make sure that the CAPS
LOCK is down). Now press RETURN, and you too
are ready to go.

If you haven’t already given in to the temptation to
tap a few keys, try it now — you can’t do any damage.
In most cases the character you have pressed will
appear on the screen.

But having successfully got the computer to display
something on the screen, you will want to know how
to remove it. The simplest method is to hold down the
CTRL key and press RESET. This will clear the
screen and reset the computer although none of the
commands you may have given it are erased from its
memory. If you really do want to erase a program from
the memory you must press the Open-Apple key as
well as CTRL and RESET. The best way of clearing
the screen however is to type HOME, and then press
RETURN.

It is important to remember that the computer will
only obey instructions that are in upper-case letters and
spelt correctly. If you type HOME and press RETURN,
the screen will clear. But if you type HOme and
RETURN, you will just get an “error message”. This
is because the computer treats capital and lower-case
letters as completely different symbols. The screen
shot entitled INCORRECT COMMAND ERROR
MESSAGES shows how the computer responds to
successive failures to type HOME correctly:

INCORRECT COMMAND ERROR MESSAGES

dhome
7SYNTAX ERROR
3

JHome
;SYHTQZ ERROR

JhoME
7SYNTAX ERROR

If during the following pages your computer refuses to
obey your instructions, look carefully at the com-
mands you’ve given it. Are they spelt correctly and in
upper-case letters?

Now clear the screen and type in this line:

PRINT 6

If you press RETURN after this, the number 6 will
appear on the next line of the screen; the computer
has responded to your “command”. PRINT has
nothing to do with ink and paper — it just tells the
computer to display something on the video screen.
Try using this command in the same way with other
numbers. It doesn’t matter whether or not you leave a
space for neatness between the command PRINT and
the number. The computer can read characters that
run together:

PRINT WITH NUMBERS

After you have tried a few different numbers, clear the
screen with HOME and type this in:

PRINT X

The computer responds by displaying the number 0.
Surely it should have PRINTed the letter X? Now,
asing the SHIFT key to type quotation marks around
the X, type:

PRINT “X”

When you press RETURN, the computer makes the
correct response — it PRINTs X on the next line:

PRINTING A VARIABLE

This time the number 14 is printed. LET is a
command for changing the value of a variable slot in
memory. From now on, every time you ask the Apple
to PRINT X, it will display 14 — unless you change its
value again using LET. As the slot X always holds a
number, it is called a “numeric variable”.

So X is a numeric variable, but “X” is not;
furthermore, even if you substituted a number for
“X”, it would not become a numeric variable unless
you removed the quotation marks. The computer
displays everything inside quotation marks exactly as
you type it. Try it, using letters, numbers, mathe-
matical symbols and punctuation marks:

gPRINT =
JPRINT "X*®
=

You have just discovered that, to the Apple, X and
“X’ mean two different things. The Apple treats any
letter on its own as a variable. A variable is a label
which identifies a slot in the computer’s memory that
can hold numbers or letters. When the computer is
first switched on all of these variables have the value
zero. To change the value of a variable try this.
‘Remember to press RETURN after each line):

USING LET AND PRINT

1

PRINTING STRINGS

JPRINT “AGE"
AGE

“LONDOHN"
ON

JPRINT *“THE HNEXT FLIGHT LEAVES AT 13.e@e"
THE NEXT FLIGHT LEAVES AT 13.00
b |

Introducing string variables

In much the same way as a number can be stored
inside the computer and labeled by a numeric variable,
a string of characters is stored and labeled by a “string
variable”. String variables are always indicated by a
variable name followed by a dollar sign. In the line:

LET A$=“"LONDON"

AS$ is the string variable and LONDON is the string it
labels. Once you’ve typed this in, type HOME to clear
the screen and then, to recall the string variable A$,
type:

PRINT A$

After you press RETURN, the computer will PRINT
LONDON. As with numeric variables, the command
LET allows you to put a string into the computer’s
memory. Again, you can use any letter to label a string
variable, and as the computer will only remember the
last version of any one string variable you can change
the string held in say AS$, as often as you like. Strings
can be up to 255 characters long so you can PRINT
several words, numbers, punctuation marks and
symbols together.

MOVING AROUND THE SCREEN

The Apple’s screen is divided into three invisible
“fields” or columns. The first two are 16 characters
wide and the last is eight wide. To see the fields type:

PRINT “ONE”, “TWO”, “THREE”, “FOUR”,
“FIVE”, “SIX”, “SEVEN”, “EIGHT”

FIELDS DISPLAY

e

The first three strings are printed in the fields across
the screen, then the computer returns to the first field
on the next line to print the fourth string, and so on.

This way of PRINTing is very useful for positioning
numbers, strings or variables in neat columns. But
the command TAB allows you to print at any position
on the screen. For instance:

| PRINT TAB(2); “TAB2”

displays TAB2 two spaces in from the left. Here are
some examples of the TAB command being used:

USING TAB

T TABC2>"TAB2"
TAB(4 >"TAB4"
gB(6>"TABE"

JPRINT ;2339 >"ThRBB"

b |

When you use TAB do not leave a space between TAB
and the bracket that follows it; if you do, the Apple
will not carry out the command.

In the example above a number is used in brackets
to set the position of the TAB. But, as you have
discovered, a variable is simply a way of labeling a
number, so you can also use a variable inside the
brackets, and the Apple will use its value to TAB to a
column. Try this example:

| TAB WITH A VARIABLE

JLET T=2
IPRINT TABCTOT
2

ILET T=4
IPRINT TABCTOT
4

JLET T=6
]PRINE TABCTOT

JLET T=8

IPRINT EQB(TY

3

]

As you can see, TAB has the same effect if you use a
number or a variable. But be careful: if you try to TAB
to a column you have already PRINTed beyond, the
TAB will have no effect. Try the following example
and notice that TAB10 appears in the wrong place
because BEGINNING OF LINE is in the way.

PRINT “BEGINNING OF LINE”;TAB(10);
“TABI10”

Introducing VTAB and HTAB

As well as using TAB in a PRINT command to specify
the horizontal position of a number or string, you can
introduce two more commands which will move the
cursor to a position on the screen. These are used
without PRINT. Clear the screen by typing HOME
and try this:

VTAB 20

You will notice that the cursor jumps to the bottom of
the screen. VTAB stands for Vertical TAB and it can
change the vertical position of the cursor on the
Apple’s screen. It can be used before a PRINT
statement to move the cursor to a particular line. Clear
the screen again, type the line shown at the top of the

5 i g k) next screen, and then press RETURN. |

VERTICAL TAB

IWTAB 18: PRINT "UTARB 18"

UTAB 18
. &

The colon is used to separate different commands
tvped on the same line. The computer obeys both
commands before stopping for you to type another. In
this example the command VTAB positions the cursor
first, and the next command PRINTs at this position.

From the top to the bottom of the screen, there are
24 “lines”. The first line is 1 and the last, 24. You
must not use VTAB with a number outside this range.

As well as VTAB for vertical positioning, you can
use HTAB (Horizontal TAB) to move the cursor to a
“column” on the screen. In the same way as VTAB,
vou can use this as a command on its own. But if you
just type HTAB with a number you will find that
nothing seems to happen. In fact, the Apple obeys the
HTAB command, but too quickly for you to see. The
cursor moves to the column number which you gave it
but then moves on immediately to the beginning of the
next line to show that it has carried out your command
and is ready for the next one. To see HTAB at work
type the first line shown below and press RETURN:

HORIZONTAL TAB

JUTAB 20:HTAB 1@:PRINT “UTAB 26 HTAB 18~

UTAB 28 HTAB 180

This time you have given the computer three separate
commands on one line. First the VI'AB moves the
cursor down to line 20, then the HTAB moves it
across to column 10 and finally the computer PRINTs
the string. The Apple has a “40-column display”, so
you can use numbers between 1 (left of the screen) and
40 (right of the screen) with HTAB.

If you try to VTAB or HTAB to an invalid line or
column you will get an “error message”. Try this for
example:

VTAB 50: PRINT “T”

The Apple will respond with “?2ILLEGAL
QUANTITY ERROR” to tell you that you have tried
to VTAB to a line that does not exist.

Using VTAB and HTAB with variables
VTAB and HTAB are powerful commands and they
can be used to move the cursor across and up and
down the screen to PRINT numbers, strings and also
variables. You can use variables with VTAB and
HTAB in the same way as with TAB:

[VTAB AND HTAB WITH VARIABLES

JLET U=2Z8
JLET H=1@
JUTAB V:HTAB H:PRINT U.H

The importance of positioning

Remember that you must use VITAB, HTAB and
PRINT on the same line in order to PRINT at the
correct row and column on the screen. If you type
them in as separate lines the Apple will move the
cursor to the correct place on the screen but then the
cursor will move again, ready for your next command.
Also, if you forget the colons between commands the
Apple won’t understand the line you’ve typed and you
will get an error message.

Now that you’ve begun to use the Apple you will
gradually start to feel more confident. So don’t be
afraid to experiment, and try to work things out for
yourself — you can’t do any harm to the computer and
it is the best way to learn.

|
|

ERARY,
CAbMERN A STATE POLYTECHNIC UMNIVERSTTY
POMONA, CALIFORNIA 91768

COMPUTER CALCULATIONS

The PRINT command is not limited to simply
displaying characters on the screen. You can also use it
to perform calculations on your Apple.

Let’s take addition first. The plus (+) sign is next to
the DEL key. Because it is the upper of the two
symbols on the key-top, the SHIFT key must be
pressed at the same time as the plus key. To add two
numbers together, use PRINT followed by the calcu-
lation. Type in the following, then press RETURN:

PRINT 2+2

Subtraction is carried out in the same way. The minus
sign, which doubles as a hyphen when used in text, is
to the left of the plus key. It is the lower of the two
symbols so there is no need to press SHIFT. The
screens below show simple additions and subtractions,
and multiplications and divisions:

ADDING AND SUBTRACTING

S85+139

18.456+3.724

61.5-44
87-96
S539.7-19.4

MULTIPLYING AND DIVIDING

JPRINT 3%6

P
i8
JPRINT 14%9
126

INT 2.5%18

ve U
ax »

INT 8.85%120
INT 366-32

133387

18e8-0.01

N? nNT
en D ND
O (=
@I WX

-

o =l Gl =l Tl B
27

Multiplication is not carried out with the familiar “x”
symbol but with an asterisk (). The asterisk is the
upper SHIFTed symbol on the number 8 key.
Division uses the oblique stroke (/) next to the right-
hand SHIFT key. In 24/8, for example, the left-hand
number is divided by the right-hand number. You will
find that you quickly get used to the computer’s
multiplication and division symbols.

Calculating exponents and square roots

In addition to these familiar math functions, you can
multiply a figure by itself a specified number of times
(called exponentiation), and calculate square roots on
the Apple. For example 2A3 is equivalent to 2
multiplied by itself three times. In other words 8. The
keyboard cannot produce superscripts like the 3 in 2°
— which is how this calculation is normally indicated
— 50 you have to use the “up arrow” (A) symbol. This
is the upper symbol on the number 6 key, so you will
need to use SHIFT. Here are some examples:

EXPONENTS

gPRINT 2~3

JPRINT 8~2
£4

| 6~3
1~6
2~6
19~5

4~8.5

The Apple also allows you to find the square root of a
number. This time there isn’t a single key that carries
out the calculation; instead you have to type in a
command like this:

PRINT SQR(2)

Make sure that you use the round brackets on the
number keys 9 and 0, and not the square or curly
brackets next to the RETURN key. When you press
RETURN after keying in this line, the computer will
PRINT the answer. However, if you try this com-
mand with a negative number, the computer will
produce an error message to let you know that you
have asked for a mathematical impossibility.

You can carry out a number of different calculations

wung a single PRINT command. Try experimenting
wuth addition and subtraction. You will discover that
% Apple’s ability to calculate seems endless:

= MULTIPLE CALCULATIONS

gPRIHT 2+6+3+7-8+3-4

3:RIHT 48-42+16-2

IPRINT 122-19+32+2.95

137.5

JIPRINT 4 .8+2 .8+1.9

9.5

g:néNT 2.14+8.15+3 . 65+0 . 86+56-54+8+34

3

How to specify a sequence of calculations
You can enter the figures for each addition and
subtraction in any order you like, and the result will be
the same. However, when you introduce multiplica-
mon and division to the chain of calculations, un-
expected things can happen. Say you want to add two
pumbers together and divide the result by two. Look
at the next screen, and try the calculations for
vourself:

THE EFFECT OF VARYING ORDER

gPRIHT 3+4-2

b |
nglNT 4+3-2

> |
ngINT C3+4>r2

3
ngINT (4+3)>-,2

b |

Since 3+4 is exactly the same as 4+ 3, why should the
computer produce three different answers when you
divide it by two? The reason is that the Apple doesn’t
always carry out calculations in the order you type
them. It performs exponentiation first, then multiplic-
ation and division, and finally addition and subtrac-
tion. So in PRINT 3+4/2, the 4 is divided by 2 before

3 is added to the result, and in PRINT 4+3/2, 3 is
divided by 2 before 4 is added; so both fail to perform
the task you set.

To add 3+4 and then divide the result by 2 and
achieve the answer 3.5 you must change the order in
which the computer performs calculations by intro-
ducing a pair of parentheses. This is shown in the
third and fourth examples on the screen. Here, the
addition within the parentheses is carried out first and
then the result is divided by 2. So, whenever there are
parentheses in a calculation, the computer works out
the calculation inside the parentheses first.

What are the Apple’s limits?

There are two limitations to the numbers that the
computer can handle — size and accuracy. The size
limitation is unlikely to cause you a problem.
Numbers with a decimal point can have any value in
the range 1x10 A 38 (1 followed by 38 zeros) to 1x 10
A —39 (1 divided by 1 followed by 39 zeros). Whole
numbers can have any value from —999999999 to
999999999.

Although the largest number that the Apple can
hold is 1 followed by 38 zeros, the computer only
memorizes the first nine of these digits — the rest are
set to zero. This nine figure accuracy is adequate for
most applications. But sometimes small errors in
calculations do occur. Try:

PRINT 9 A 2

The answer should of course be 81. But the computer
introduces a small “rounding error” in its calculations.
You may come across other similar quirks. Try typing
PRINT 2000000000000; it produces 2E12 on the
screen (the E stands for exponent). This is simply a
shorthand way of displaying 2 followed by 12 zeros.
Try entering large numbers and calculations and
notice the way the computer responds to them:

PRINTING LARGE NUMBERS

1000
1000080
p=l=1-1=1-1-1-}

-]
1000000000

100000000000

T %4580300099090
+1

JPRINT 2E2@0%2E20
§0UERFLDH ERROR

WRITING YOUR FIRST PROGRAM

So far the Apple has responded immediately to the
commands you have typed, and the commands have
been very simple — in many cases it would have been
quicker not to use the computer. However, commands
on their own are not computer programs. The
computer reads each command, carries it out and
forgets it. A program, on the other hand, is an orderly
list of instructions which the computer stores in its
memory, It can carry them out as and when you wish.

When you have a task that you want your Apple to
carry out, the first job is to write a program in steps
that the computer can understand. The Apple uses a
language called BASIC (Beginners’ All-purpose Sym-
bolic Instruction Code). BASIC is an example of a
high-level language — that is, one composed of words
and symbols with which you, the programmer, are
already familiar. It is therefore one of the easiest
programming languages to learn.

So what is a computer program? Simply a list of
commands, like those you have already keyed into
your computer, but with line numbers at the be-
ginning of each line:

USING LINE NUMBERS

“"LONDON"

18 EEInT®a%

L

As you key the program in, you will notice that now
the commands are not carried out as soon as you press
the RETURN key. Instead, the program is safely
stored in the computer’s memory until you are ready
to start it — by typing RUN, and then RETURN.
You may be wondering why the lines are numbered
in steps of ten. When you are writing and testing
programs, you will often find that you want to go back
to an earlier stage and add a line here and there, and
since the Apple runs programs in numerical order, it is
not sufficient to simply add it at the next ascending
line number. It has to be given a line number which
reflects its correct position in the program. If you were

to write the program with the lines numbered 1,2,3,4
and so on, there would be no room to insert new lines
later, whereas if you begin 10,20,30,40 there’s room to
add several lines between each existing line.

The program you have just typed in is still in the
Apple’s memory, so before you try another you must
erase it. To do this type NEW and press RETURN.
NEW tells the computer to erase any program in its
memory, ready for you to key in another. But beware,
there is no opposite of NEW, so if you type NEW at
the wrong time you may have to do a lot of retyping.
After you have cleared the screen, type:

SCREEN DISPLAY PROGRAM

IDH EO§§I PRINT "DEMON
I8 PRINT "SCREE

Taking it from the top, what does REM mean? REM
is short for REMark. The computer doesn’t do any-
thing with a REM statement other than store it with
the rest of the program. But it’s a useful device for
making notes to yourself about sections of a program.

As your programming ability develops you will find
REM lines very valuable for reminding you how a
particular program works. Other people will also be
able to follow your programs more easily if you put in
REM “statements” to explain precisely what you are
doing at each stage of the program.

HOME you have come across already. It’s a quick
way of taking all the old unwanted information off the
screen. Using PRINT on its own (line 30) may at first
seem a little crazy. PRINT tells the computer to send
whatever follows it to the screen and move on to the
beginning of the next line. So here, with nothing
following, it just moves to the next line and leaves a
one-line space. The next PRINT gives a line of
hyphens and line 70 does the same. Lines 50 and 60
contain the HTAB, VTAB and PRINT commands
explained on page 16. When you’ve typed it in, RUN
it to see what happens.

How to correct typing errors
©wen in a short program like this it is easy to make a

peng mistake that will prevent the program from
working. But the computer only recognizes the most
weently entered version of any line, so if you have
made 2 mistake, just re-type the line correctly — with
% same line number — at the end of the program,
snd! the computer will use this version in the correct
stace when the program is RUN. This program uses
¢ techniques demonstrated on pages 18-19. Remem-
wer 1o type NEW again, before keying it in:

CALCULATIONS PROGRAM

é;:; 16 iég’ 4

|
Now type RUN. Everything inside quotes is displayed
exactly as in the program, and the result of each calcu-
ation is displayed on the same line. This is the purpose
f the semi-colon; it ensures that whatever follows it is
displayed on the same line. Correct spacing is also vital
if you want to produce a legible display of strings and
numbers on the same line. The next program, and the
display it produces, demonstrate how spaces in strings
appear when a program is RUN:

CONVERSIONS PROGRAM

"CONUERSIONS"™

Blnge
[l L1]

QT=";12 *x 2.54;" C

~1 POUND=";16 % 28.35;"
mMs*

, 518 KILQMETERS=";10 % S

=0 o oW
o0 00

0;6§QAY-”;24 *x 60 x 60;

-
[

CONVERSION DISPLAY

CONVERSIONS

1 FOOT=30.48 CENTIMETERS
1 POUND=4532.6 GRAMS

18 KILOMETERS=6.25 MILES
1 DAY=8640@ SECONDS

e i

= |
If a program is to RUN properly, it must carry out the
correct operations in the right order. Drawing a
flowchart is a useful way of outlining the steps
involved in making the computer perform a task. The
flowchart below shows how to plan a program to add
up all the numbers from 1 to 1000. Each shape
indicates a separate operation, and the arrows con-
necting the shapes show the path that the program is
to follow. “NUMBER” and “TOTAL” represent
figures that can be entered in a program as the
numeric variables N and T. This program contains
two features which you will encounter later — a
program “loop™ and a program “‘decision point”. The
first is explained in detail on pages 30-31 and the
second is dealt with on pages 40-41.

DRAWING A FLOWCHART

This flowchart shows the
individual steps needed to add
together all the numbers from 1
to 1000.
Key
LET NUMBER = 0

iz 2o :
Terminator Signals start LET TOTAL = 0
and end of flowchart *

= LET NUMBER = NUMBER + 1
Instruction Identifies each e To_m: e
i = TOTAL

separate operation gL

IS NUMBER = 1000?

Decision point Instructs the
computer to make a decision

y y

/ PRINT TOTAL /
Input/Output Instructs the

computer to take in or give END
out information

DISPLAYING PROGRAM LISTINGS

As you start writing programs, you will often want to
RUN a program and then refer back to the “program
LISTing” in order to check something or perhaps to
alter it in some way. In order to do this you must be
able to recall a program to the screen after it has been
RUN.

This is the function of the BASIC command LIST.
After a program has been RUN, if you type LIST the
Apple will recall the listing back to the screen from the
part of memory where it is stored.

LISTING A PROGRAM |

318 LET A$="LONDON"
328 PRINT AS
JLIST

i8 ET A% "LON o
28 BRIN? ﬂ; i

JLIST

I8 METNI%s "LovOON"

A=

|
LISTing doesn’t alter the program or remove it from
the computer’s memory. What you see on the screen is
an exact copy of the program as it is held inside the
Apple. If you want to make sure of that, type HOME
to clear the screen, then type LIST again and watch
the program reappear on the screen. Now key in the
program shown below.

! OPERATOR PROGRAM

318 INPUT "WHAT IS YOUR HAME ";H$

PRINT "SXKEXEEEXXTXXXELXXRETRELLLE
250 i xxa .

339 PRINT "APPLE IIE PROGRAMMED BY ";N$

348 PRINT “Kt*llx!tt!lt‘tttt***t*i*x‘t!t
FEXXXEXXEXR"

JALIST
18 INPUT “"WHAT IS YOUR NAME “iN%

28 P§§:T:E§§§E§t¥¥§=§;§’**“‘**‘

38 OGRAMMED B

o el

=

A

This program will show you how to use LIST more
selectively. It also demonstrates a technique that you
will be using soon. Incidentally, when you RUN it
remember to press RETURN after typing your name.
As before typing LIST will display the whole program.

LIST is a very useful tool for developing a program.
All you have to do to check that you have entered lines
correctly is to type LIST and press RETURN. But
LIST is not limited to displaying the entire program.
In the case of a long program, which will not all fit on
the screen at once, you might only want to see a few
lines.

Using the previous program as an example, type
LIST 10. Only line 10 will be displayed on the screen.
You can also use the LIST command to display a
range of line numbers. For example LIST 20,40 will
display all of the lines in a program between line 20
and line 40:

PARTIAL LISTING |

JLIST 18
18 IHPUT "HHAT IS YOUR NAME ":HNS$

JLIST 20.4@
o bR ceanmeo o
R T T

=

If you study the last two screens carefully, you will
notice that LIST doesn’t always show exactly what
you typed in. Look at line 20. Some spaces have found
their way into the string of asterisks. This is because
LIST tries to display your program neatly on the
screen. If you RUN the program the spaces will not be
PRINTed because they are only in the LISTing, not
in the Apple’s memory. You will soon get used to the
way that LIST “formats” your screen LISTings. Most
of the programs in this book are shown in their
LISTed form.

Removing lines from a program

Sometimes, instead of replacing a line by typing a new
one, you may wish to remove a line completely. If you
type the wrong line number, for instance, you will
want to remove the line from the computer’s memory.

LIST the OPERATOR PROGRAM again and then
svpe 10 and press RETURN immediately. Now LIST
the program once more and you will find that line 10
nas been deleted. This is a good way to delete single
wnes, but if you want to delete several lines it is tedious

type in all the line numbers. So the command DEL

for DELete — allows you to remove a range of line
sumbers from the computer’s memory:

DELETING LINES

JDEL 10.20

JLIST
3@ PRINT “APPLE IIE PROGRAMMED B

D T M T T 11 S

RUN
t :Ii tiggt ggggggigtlxttttt**tttt!!lttx

But be careful — like NEW - there is no command for
unDELeting lines.

How to RUN small sections of a program

As vour programming skills improve you will find that
vour programs become progressively longer. However
there are few programmers who can write lengthy
programs without making one or two mistakes. On
pages 24 and 25 you will discover how to go about
correcting these mistakes but what if they appear right
at the end of a program? Do you have to keep re-
RUNning the entire program before you can observe
and experiment with the problem part?

Fortunately the answer is no, because just as you
can LIST sections of a program, you can also jump to
and RUN any section of a program. Simply type RUN
followed by the appropriate line number. You may
find however that if your program is short it’s just as
convenient to RUN the whole program and in certain
circumstances you will find that the program won'’t
operate correctly if you try to RUN just a section of it.

In the screen that follows the OPERATOR
PROGRAM has been LISTed and then followed by
RUN 30. The computer goes straight to line 30, and
then carries out the remainder of the program.
However, because you've bypassed the INPUT at line
20, NS will not have a value when line 30 is PRINTed.
This is because every time a program, or a section of it,
is re-RUN, any variables that have already been
allocated are erased from the Apple’s memory.

PARTIALLY RUN PROGRAM

JLIST
18 INPUT "HHAT IS YOUR HAME ";Ns$

S | -
so pRpnt Trrrrppnre e

L0 ST LI T LT S

=

Introducing GOTO

You can get exactly the same effect with the keyword
GOTO. GOTO is one of the simplest and most useful
commands in the BASIC language. Used without a
line number in front of it, GOTO makes the computer
go straight to a specified line and then RUN a program
from that point. But when GOTO is actually part of a
program, the results are very interesting. Key in this
short program to see what GOTO can do:

10 PRINT “*";
20 GOTO 10

GOTO DISPLAY

Don’t worry if you’re puzzled about why this has
happened; we will return to GOTO later after you've
mastered a few more BASIC keywords. But in the
meantime, you will find that your Apple will go on
PRINTing asterisks forever — unless you stop it. Hold
down the “CTRL” key and press RESET and the
display will stop.

CORRECTING MISTAKES

Mistakes are unavoidable in computer programming.
Programs very rarely work satisfactorily first time, and
the longer they are the more difficult it is to get them
right. But it’s important to realize that making
mistakes and correcting them is one of the most
valuable exercises in program development — they are
an inevitable part of the process and an aid to learning.

For instance, you can’t alter the punctuation of a
program without changing the sense of what you’ve
written. As you saw on page 21, punctuation means
something very precise to the computer, and if you get
it wrong, a program may not work.

Once you’ve spotted a mistake how can you correct
it? You can edit a program in two ways. First, as you
have seen, you can simply retype a line, and the new
version will automatically replace the old one in the
computer’s memory. However, if there’s very little
wrong with a line, especially if it’s a long one, it’s time-
wasting to retype it completely. The alternative is to
edit the existing line using the ESCape key and the four
cursor keys.

The editing procedure given below applies to the
Apple Ile; owners of earlier models should consult the
Apple owner’s manual on the appropriate procedure.

On the Apple Ile the four cursor keys are labeled
with arrows at the bottom right of the keyboard and
they are used with the ESC key. Here is a program
that needs editing:

I PROGRAM BEFORE EDITING

i EEINT SRRLBRMLOREI e, om

I=

To correct line 30 to read:

30 PRINT “CHARLES DE GAULLE, PARIS”

you could retype the line. But try using the screen
editor instead. First type in the program and RUN it.
Now LIST the program on the screen. Press the ESC
key at the very top left-hand corner of the keyboard.

You will not see anything happen but this changes the
way that the four arrow keys (called cursor keys)
work. Normally you can use only the « and — keys,
but when you press ESC you can use all four.

Press the 1 key now, until you reach the line you
wish to change (line 30). Now press the « key until
the cursor is over the 3 of the line number, then press
ESC for a second time. This is a vital step in the
procedure as it changes the cursor keys back to their
normal way of working, and enables you to make
changes to a program.

In this mode, the <« key backspaces over the
character to the left of the cursor. As it does so it
removes the character from the Apple’s memory
although it still remains visible on the screen. To
change a character, simply position the cursor over the
character you wish to alter and type in the new one.
The « key is also useful when you first type in a
program, to correct mistakes as you go along.

The — key moves the cursor to the right and coples
each character it passes over into the computer’s
memory — as if you had just typed it on the keyboard.
So, if when editing you always start from the very left
of the line and keep pressing the — key until you get
to the part you want to change, the old part of the line
will be safely stored in memory:

PROGRAM DURING EDITING

|

DL .

Do this now with line 30 and then type PARIS over
the top of ROME. Now press RETURN to indicate
that you have finished editing this line. In this
example the correction takes the cursor to the end of
the line, if it had not, you would then have had to
press — until you reached the end of the line before
pressing RETURN.

As you will remember from page 22 LIST adds
extra spaces to your program when it displays it on the

AR | 25

wreen. So when you use the — key to copy characters ;
from the screen into your program, the extra spaces
w1l be copied as well. Usually this won’t matter, but it
can cause problems if you copy extra spaces into a
wing. This is because spaces in a string are printed
exactly as they appear, and this will spoil the
sppearance of your string. Fortunately there is a way

stop LIST adding spaces. This is done by reducing
the screen width from 40 characters to 30. For now,
don’t worry about the details of this, just type POKE
33,30 — the last number refers to the width you want.
I'o get back to the normal 40 characters, type POKE
33,40. Try doing a LIST and edit in this way:

CHANGING THE SCREEN WIDTH

JIPOKE 33,30

aTH M. HDON™
Rew D, rbBK?

GAULLE.

"LINE HUMBER ";V

Remember to change the width back after you have
edited the program or it will not RUN properly. You
can change the screen to different widths but you
should not make it less than 1, or more than 40; if you

do, strange things will happen. ERROR TABLE
Here are some error messages that you may encounter when
Bugs and error messages writing your programs.
itllsit;:sess oltr'l rl;;?g:?:;s tizt;n Cias“cgal]cgug‘sdejbj;;int;’e Coly Nunsues e
e oy :) 16 SYNTAX ERROR Incorrect puncruation,
When you RUN a program containing a line the Apple ket o
doesn’t understand it will print an “error message” — : -
and stop the program. This alerts you to mistakes. A0 L AL QUAKTITY The pubet given n &
Even if every single line of your program makes ERRPR SN u iy ae
sense to the computer, the program may still not RUN 69 .- OVERFLOW ERROR A number has Become too
large for the computer.

properly. You may have inadvertently told the com-

puter to do something impossible — to divide a 90 UNDEFINED A GOTO command has tried
number by zero, for instance. It responds to this by STATEMENT to go to a line which does not
displaying an error report on the screen. In fact the ERROR it

Apple can display over 17 different error messages. 133 DIVISION BY ZERO An attempt has been made to
Each report describes the type of error and gives the ERROR divide a number by zero.
line number on which it occurred — for example, 163 TYPE MISMATCH An attempt has been made to
“DIVISION BY ZERO ERROR IN 100”. Here are ERROR store a string in a numeric

variable, or a number in a
string variable.
176 STRING TOO Strings can only be 255
LONG ERROR characters long.

191 FORMULA TOO Too many brackets in a
COMPLEX ERROR formula.

some slightly more advanced programs which will not
work. Check the error reports they produce on the
table opposite.

HOW TO KEEP YOUR PROGRAMS

As you know, the computer only stores the most
recent program you have entered in RAM, But even
this is only stored in memory for as long as the
computer is left switched on. The moment you turn
the power off, your program is lost. It is therefore vital
to learn how to use floppy disks and the disk drive to
make permanent copies of your programs.

To SAVE a program on disk you will need the
master disk you used on page 14. DOS 3.3 and
ProDOS “format” disks in a different way, if you have
both disks it is therefore vital that you select just one
of these disks for the formatting procedure and use it
consistently throughout. You will also need a new
blank 5%in. disk on which to store your programs.

Re-boot the Apple now with DOS 3.3 or ProDOS
and then follow the appropriate instructions below
according to which master disk you’re using.

DOS 3.3 users start here
Carefully remove the master disk from your disk drive,
replace it with a blank disk and type in this program:

HELLO PROGRAM

TIT
I~ =0
DD X
ZWZ Tom

[
==~ =D

P00 OO0

;&IEF-BY-STEP FROGRAMMI

[]

9CREQTED ON - 1-4-85"

T TUDIVD
TV I BT
Q0K I}

34 EHRS C4))"CATALOG"

4

o
KM ZZ.
mZ n

4
2
7
8
9
1
|
b |

i =00 o

This is called a “hello” program. In future when you
boot the new disk the Apple will greet you with the
title of the disk and the date it was created. Now type
the command to initialize your new disk:

INIT HELLO

The drive will come on; when it stops your new disk
will be ready. You can test your new disk by “re-
booting” the system: hold down CTRL, and Open-
Apple and press RESET. This procedure fools the
Apple into believing that you have only just turned it
on, so it immediately consults the disk drive and loads
the disk you have just initialized. This is what you
should see:

 HELLO PROGRAM DISPLAY

STEP-BY-STEF PROGRAMMING DISK
CREATED ON - 1-4-85

DISK VOLUME 254
A 882 HELLO
I=

|

Now let’s try to SAVE a program on your new disk —
for example, the CONVERSIONS program on page
21. Enter the program into the computer and type:

SAVE CONVERSIONS

CONVERSIONS is the “filename” you’ve given to
this program. You can give a program any filename
providing it is different from all the others on the same
disk. If it’s not different the new program will be
recorded over the previous program of the same name
and you’ll lose the original. To check that your
program has been SAVEd, type: CATALOG. This
command displays a list of all the files SAVEd on a
disk. You should see the filename CONVERSIONS
on the list of contents now. Once you have SAVEd a
program you can take the disk out of the disk drive
and switch the Apple off. When you next want to use
the program you can simply recall it from disk. Just
for now though, leave the Apple on and type this:

NEW
LOAD CONVERSIONS
LIST

The NEW command will clear the Apple’s temporary
memory (RAM) and so lose CONVERSIONS. But the
next line uses the LOAD command to bring it back
from the disk into RAM. The LIST command will
show you that this has happened. If you want to recall
a program but can’t remember which filename you
gave it just type CATALOG and the contents list
should jog your memory.

ProDOS users start here
If you have just loaded ProDOS the screen will display
this ““Main Menu”:

PRODOS USER’S DISK MAIN MENU

FEEFEEERREARRERRRXERER KRR R KRR ERREEE TR
PRODOS USER'S DISK -
% COPYRIGHT APPLE COMPUTER. INC. 1983
PR ERREREREEE IR KRR R R KKK R R L
YOUR OPTIONS ARE: ’
? - TUTOR:' PRODOS EXPLANATION
F - PRODOS FILER CUTILITIES)>
pDOS <-> PRODOS CONUVERSION
DISPLAY SLOT ASSIGNMENTS

x
x
x
x
%
x

APPLESOFT BASIC

c—

S_

T - DISPLAY~- SET TIME

B—

E SELECT ONE OF THE ABOVE =

PLEAS

But if you loaded ProDOS some time ago, you will
have to re-call this menu by typing:

RUN STARTUP

Once the main menu is on your screen type F to select
the “ProDOS Filer”. Then type V to select the
“Volume Command Menu”. Now remove the ProDOS
User’s disk from the disk drive, and replace it with the
new, blank disk. Shut the door and type F to select the
Format command. This display asks for the “slot” and
“drive” numbers and for a name for the disk. The slot
number is the number of the expansion slot on the
Apple’s printed circuit board, which holds the floppy
disk interface card. You could have plugged your card
into any one of several slots so the Format command
needs to know which interface card to access. Similarly
each card can support two drives so the Format
command also needs to know which of the drives you
wish to use. If you have followed these instructions
however you can select the default options by simply
pressing RETURN twice. Finally, type in a name for
the disk — known as the “volume name” — and press
RETURN once more.

The Apple will now format the disk. When it has
finished it will display the Format screen again. Now
take out the new disk and insert ProDOS. Then press
ESC until the ProDOS Filer menu reappears. Select
the “quit” option by typing Q. The Apple will ask
which “pathname” you wish to use. Don’t worry
about the meaning of this at the moment, just press
RETURN and the ProDOS Main Menu will appear.

You are now almost ready to start saving your
programs on the newly formatted disk. All that
remains is to leave the Main Menu and return to
Applesoft BASIC. You can do this by typing B (for
BASIC) and the Applesoft prompt “]” will appear.
Now remove ProDOS once again and replace it with
the new disk.

The next step is to type in a program and then
SAVE it. Once the program is on the screen select a
suitable name to label it. It can be anything you like so
long as it is less than 15 characters long and starts with
a letter. The remaining characters can be letters or
numbers — but not spaces.

Now type SAVE, press the space bar once and then
type the name of your program. Say you wanted to
SAVE the CONVERSIONS program on page 21 you
would enter the program and then type:

SAVE CONVERSIONS

Wait for the disk drive to stop and then, to check that
it has been SAVEd, type:

CAT

This is short for CATalog and will display a list of all
the programs SAVEd on a disk. You should see
something like this:

CATALOG OF SAVED PROGRAMS

JCAT

STEPBYSTEP

HAME TYPE BLOCKS MODIFIED
CONUERSIONS BAS 1 <NO DATE>
BLOCKS FREE* 272 BLOCKS USED: 8
J=

Having successfully SAVEd your program you can
switch your Apple off knowing that the program is
stored safely on disk. To reLOAD the program at any
time type LOAD, press the space bar, and then enter
the name of your program. To recall CONVERSIONS

you would type:

LOAD CONVERSIONS

After LOADing a program it can be LISTed or RUN
in the usual way. In ProDOS (and DOS 3.3) you can
also use the RUN command to LOAD and RUN a
program from the disk in one step, like this:

RUN CONVERSIONS

Always remember to use exactly the same name to
LOAD a program as you did to SAVE it; you won’t
get a response otherwise. If you find you can’t
remember the name you allotted to a program, just type
CAT and let the display jog your memory.

e R A

NVERSATIONS

COMPUTER CO

The programs you’ve written so far have given the
computer a set of instructions and left it to carry them
out. Each program has had just one outcome, which
was exactly the same every time the program was
RUN. But few real programs are like this; in a game,
for example, the players feed the computer with new
instructions every time the program is RUN and the
computer responds to these instructions by changing
the display accordingly.

Indeed, it’s difficult to write a program of any
complexity without being able to interrupt the pro-
gram while it is RUNning to feed in new information.

Introducing INPUT

The BASIC command INPUT allows you to type
information into a program as it RUNs. INPUT lets
you carry on a ‘‘conversation” with the Apple — you
“talk” to it through the keyboard and it “talks” to you
through the screen.

The INPUT command tells the Apple that at a
certain stage of the program it must pause until
something has been entered on the keyboard and then
save the entry in memory. It is always used with a
variable — a numeric variable if the information
entered is a number, or a string variable if the
information is in string form. This variable can then
be used later on in the program. Here is an example of
INPUT at work:

= USING INPUT |

S
L3 131135111 L

R

of
X
ET
HT
xx

* I »

IEW

The program instructs the computer to display the
question “What is your name?”. Line 30 then stops
the program, leaving the question PRINTed on the
screen. The computer is waiting for information from
you. There’s no need to hurry — there isn’t a time
limit. The computer will wait until you type in the
information it needs. Type your name and press

L

RETURN. The program then continues.

The INPUT line of the program takes your name
and labels it with the string variable N$. The dollar
sign shows that the computer has been programmed to
expect a string. This program is similar to the one used
on page 22 as an example of LIST. You can see from
that earlier example that the command INPUT can
also be used to PRINT:

| COMBINING INPUT WITH PRINT
L

on
?HPET *“WHAT IS YOUR NAME 7 ":

E‘N "% XEXEEXE
st R ocnmmmeo ©

B M T T T i Lt

Many programs use INPUT a number of times to
gather different items of information. It is quite easy
to do this. Just remember that you will need a separate
variable for each INPUT.

In the previous program N$ was used to label a
string — in that case it was a name. But a string isn’t
restricted to just letters, it can include some numbers
although the Apple will treat any numbers included in
a string in the same way as letters.

[MULTIPLE INPUT STATEMENTS
|

Ll
T@

EH+ TIME @00.0@: "iT#

~ENTER YOBAv-s’'BAre ee-

L]

b 000 WA &
WY =030 000

-l
]

In lines 30 and 90, the program labels and then uses
the variable D$, which is the date. If the variable had
heen just D, you would have got the error message
'REENTER when you tried to type the oblique
separating day, month and year. This is the Apple’s
way of telling you that the / character cannot be part of
a number: it can however, be part of a string.

MULTIPLE INPUT DISPLAY

APPLE IIE PROGRAMMING
BY PHIL ON 12-10-84

Because you can use INPUT to gather numbers as a
program is RUN, the command has many practical
applications. Consider, for example, the problem of
converting lengths, sizes or weights from one unit of
measurement to another. The conversion is always the
same: 2.54 centimeters to the inch, 2.2 pounds to the
kilogram, 1.6 kilometers to the mile, and so on but
the numbers in each new calculation are different.
Here is a simple conversion program to try out:

variable — C — you can only INPUT a number. C is
then used to calculate the conversion.

In the next example, the program uses INPUT with
VTAB and HTAB. See if you can work out what it
does, before reading the explanation below.

INPUT WITH VTAB AND HTAB

i |
g

via
Han
-}

R

L]
a8 ¥
g TIQHQPPXHG THE SCREEN"
T 9l::jl.ls ME A ROW HUMBER <
-S4 H

7
YGIVE_ME A COLUMN NUMBE

T
1
% ¢
INT "x*

Line 50 moves the cursor to the 10th line on the screen
before the INPUT in line 60, so the message “Give me |
a row number” .is printed on line 10. VTAB and
HTAB work with INPUT exactly as they work with
PRINT. After collecting the values of the two
variables R and C from you, the program PRINTS an
asterisk at the position you gave it.

You can change this program to make a single line
with one INPUT statement collect both figures. Type
in the program below, RUN it, enter both numbers
with a comma between them, then press RETURN.

INPUT CONVERSION PROGRAM |

| COLLECTING TWO VARIABLES WITH ONE INPUT

[T .
OO0

[
(-1]

el
»

OO
€ TC TCOUICT

VICII A | D D00

D—A—OZ—ADH=D | mD=DDX
~DDI VD WOZDNZDZHDM

IDOMCD =i &
=D

NBLWN=E20 OF DO

e 0N VUG

|

The program asks you how many centimeters you
want to convert into inches, waits for your response,
does the conversion and then displays the result on the
screen. Because the INPUT line has a numeric

Note that before the INPUT line 90 moves the cursor
back to line 12 with VTAB, and line 100 moves the
cursor to the end of the message already PRINTed on |
screen, with HTAB. |

WRITING PROGRAM LOOPS

In a business environment computers are often pro-
grammed to perform a task and then repeat all or part
of it as often as required. To instruct a computer to
repeat itself in this way, you have to write a “loop”.
There are several ways of writing a loop — on page 23
you came across one which used GOTO. Here is a
slightly more complex loop produced by the same
method:

| NEVER-ENDING LOOP PROGRAM

' NEVER-ENDING LOOP DISPLAY

.aeeve01
eeceoe1

PRIt kot ot L O s i

(AT T ele T T K AT)

DA OTONDUNAIN AN D= BN
Db O+ A DRI A D

U B GO POR gt s ot et bt OO (0 4 G P4 L e

Note that line 40 gives X a value without using LET.
The Apple allows you to use this “shorthand” method
when changing the value of a variable.

RUN this program now and you will see the
disadvantage of using GOTO alone — the program is
never-ending and it will continue to RUN until the
numbers get so big that an “OVERFLOW ERROR”
message is displayed. To stop it, hold down CTRL
and press the letter C.

- STOPPING A LOOP WITH CTRL-C

BABBA DG

WO WN= BB NN S G D
SO GDONDUN S W= GO0
DB UN=OOODOEE=NKSNOEN
= B ONUNDE =D BDNAND b D

(R AT TRTY RTNY RTNT N LT TR

CALRLALNLALALRLACHLN 45 £ .

IREAK IN 3@

(S

|

As you can see, when CTRL-C is used to stop a
program the Apple displays the line number at which
it was interrupted. This can sometimes be useful when
you’re debugging programs.

The other thing to note in this program is that line
50 does not send the computer back to line 10, the
very beginning of the program. If it did, X would
always be equal to 1, and the screen would clear each
time the first line was PRINTed.

How to stop a loop

The way to avoid endless program loops is to use the
BASIC commands FOR and NEXT. These allow you
to set limits on how many times a loop is carried out. It
is easy to adapt the above program to use FOR. . .
NEXT and, as you can see below, this both improves
and shortens the program.

FOR. . .NEXT LOOP PROGRAM

Note that you don’t have to include LET X=, oradd |
w X on each loop of the program now, because
FOR. . NEXT takes care of the increment auto-
matically. It starts off by setting X equal to 1 and
PRINTing X and X-squared. Line 40 asks for the
NEXT value of X and the program is repeated again
from line 20. This continues until X has a value of 22,
the maximum set by line 20, when the program stops.

If necessary the program can be interrupted each
ume it is repeated to wait for new information. Try
this program which uses INPUT in the middle of a
FOR. . .NEXT loop:

FOR. . .NEXT WITH INPUT

=1 TO0 S

.,
F
L

‘e
8
T "TEMPERATURE CONVERSIOH

D =DDIN

SN G-
@2 oooon

E ME ? FAHRENHEIT T

"GI
TU
5" PSRRI cRants T
2I

"PRESS RETURN FOR HEXT

VC ~E VICTM
D=MI~ D=0

ZAN=DIT
X+ TDWZMOCH Zmmm

0oy
Z =CW
ms=
=“XCW - m-
W= H =D =
4MD =@

z

1N =0 O
o o

o

L 2
This program converts Fahrenheit temperatures into

Centigrade. The FOR. . .NEXT loop beginning at
line 10 sets a limit of five calculations, after which you
will have to RUN the program again. The INPUT
statement at line 70 stops the program until you type
in the Fahrenheit temperature you want to convert.
Line 90 then does the calculation and PRINTS the
result.

Slowing down a loop

The second INPUT statement at line 110 makes the
program pause after displaying the conversion, other-
wise it would return to line 20 so quickly after display-
ing the result, that you wouldn’t be able to read it. The
string variable X$ does not really label a string because
you type RETURN without any other characters —
its only purpose is to make the INPUT statement
work, so that the computer will stop and wait for you.

How to produce round numbers

The layout of the conversion display could be im-
proved. It’s fine as long as the result of the calculation
is in whole numbers, but it rarely is, and the more
figures there are after the decimal point, the further
“Centigrade” is pushed along the line until it splits,
and part of it ends up on the next line:

'I'I“i.\“PER:\TL‘R_E CONVERSION DISPLAY

TEMPERATURE CONUERSION

GIVE ME A FAHRENHEIT TEMPERATURE: 65

65 FAHRENHEIT = 18.3333333 CENTIGRADE

PRESS RETURN FOR HNEXT =

To get around this try replacing (T—32)*5/9 with
INT((T—32)%5/9+0.5). INT, short for INTeger,
turns a decimal number into a whole number. If the
result is 18.3333333, for instance, adding INT changes
that to 18. A whole number is a more sensible value for
a temperature and the display looks neater:

ROUNDED-OFF CONVERSION DISPLAY |

TEMFERATURE CONUERSIOHN

GIVE ME A FAHRENHEIT TEMPERATURE -

65 FAHRENHEIT = 18 CENTIGRADE

PRESS RETURN FOR HNEXT =

1
When you use INT, it always rounds downward to the
next whole number, and this is why the INT line adds
0.5 to the Centigrade value. This ensures that INT
always produces the nearest whole number, which is
not always the same thing as the next whole number
down. If you are confused, try keying in these two
direct commands:

PRINT 3-1.1
PRINT INT(3-1.1)

The result of the first is 1.9, and the result of the
second is 1. But 1.9 is much nearer to 2 than 1. And it
is to compensate for this inaccuracy that 0.5 is added
to the converted temperature before the INT is used.

THE ELECTRONIC DRAWING BOARD

Your Apple’s BASIC includes several commands for
drawing on the screen. If you want to draw a point or
line you must have some way of telling the computer
where to draw. The screen is therefore divided into a
grid of small boxes. Each box is numbered from 0 to
39 across the screen and from 0 to 39 down the screen.
At the bottom of this grid you can display four lines of
normal text. The 0,0 position is at the top left corner
of the screen. The co-ordinates of a point are always
given in the form x,y. The number x refers to the
number of boxes across the screen from the left, and y
refers to the number down from the top of the screen:

HOW TO PLOT ON A LOW-RES GRAPHICS GRID

The x-axis runs across the screen and the y-axis runs down the
screen. The bottom four lines are reserved for text.

X axis
0 10 20 30 39
0 1 1 i 1 L L L
10 l (20,10)
1
% 20 4
-
30 4

+—=e(12,36)

39

The TEXT and GRaphics modes
Try typing GR. Any text on the screen will be cleared
and you will have switched the Apple into GRaphics
mode. In fact, the Apple has two types of GRaphics
display, high and low resolution, known as hi- and
low-res. The term “resolution” refers to the level of
detail which can be displayed on the screen.

If you can’t see the cursor on any of the four text
lines at the bottom of the screen, keep pressing
RETURN until it appears, then try this:

COLOR=15
PLOT 20,10

A small white box will appear in the upper half of the
screen. PLOT is the command which lights up one of
the boxes on the screen.

Once in the GRaphics mode, you must switch the
Apple back to the normal text display before you can
type in a program; type TEXT to do this. Using
TEXT and GR you can move backwards and forwards
between the two types of display. Type TEXT now,
and enter this program to draw a square box:

BOX PROGRAM

-

COODODD

N=DEE

bl s DD I TV
o0®

The first thing you will notice is that the display is in
color. You will find out more about the COLOR
statement on the following pages, but don’t worry
about it for now. The FOR. . .NEXT loop at lines 40
to 70 draws the top and bottom of the box, and the one
at lines 90 to 120 draws the sides. Each loop actually
draws two lines at once by adding 20 to the x or y co-
ordinate in the PLOT commands at lines 60 and 110.

Introducing VLIN and HLIN
FOR. . .NEXT loops are one way to draw lines, but
the Apple has two commands, HLIN and VLIN,
specifically designed to draw Horizontal LINes and
Vertical LINes on the screen. To draw a line in this
way you must give x and y co-ordinates to indicate the
beginning and end of the line.

Now return to the TEXT screen once more and
type in this improved box-drawing program:

BOX PROGRAM USING HLIN AND VLIN

This program is both shorter, and easier to understand.
The next program uses HLIN and VLIN to draw a
maze that could be used in an adventure game:

MAZE PROGRAM

Qo
(=]

VADINC® 1l

BrfUre BOOHOBID »

DTODO
ITIIOZINON
omroon

o

CECCCCIIIIIIrrr
DDDDDDDD--4+ =0

e
b

D ot ettt e 5 D G0 VLY L e
P T T it

L A L T 7 4 4=

ZZIZZIZIIIIIIT

AP DADADL

. EEUONONAWN=DDDE 5!
[Tl sl lsslialuals slialin]

-
"

When writing programs to use the low-res screen, map
out the co-ordinates on a graphics grid on paper first.
You can then translate them more easily into PLOT,
HLIN and VLIN commands.

Smartening up facts and figures

One important use of “computer graphics” is the
presentation of facts and figures in an easy-to-
understand form. In the example below the VLIN
command is used to plot a vertical line to represent the
average temperature for each month of the year. The
numeric variable T holds the temperature.

TEMPERATURE PROGRAM

F
DDDDDD~

Hwwnwmnm
PRI

T
]
gV

DO o
e o

......._...............

N DNANN-DEOID

& SPOOEOD alee
[

{ |

Because the y co-ordinates are numbered from the top
of the screen down, the program subtracts the variable
T from 38 (the y co-ordinate at the bottom of the
screen) before plotting the line. This displays the
graph the correct way up.

The program uses the four lines of text at the
bottom of the screen to label the graph with the month
numbers. You could easily change the temperatures to
represent the area in which you live.

COLOR GRAPHICS

The Apple can draw on the low-res screen in 16 colors
(including black and white). Each color is identified
by a number which you use with the COLOR state-
ment. After you have set a color with this command,
all PLOTting and lines will be drawn in the selected
color until it is changed by another COLOR statement.

To see the colors that the Apple can produce key in
this COLOR CHART PROGRAM:

COLOR CHART PROGRAM |

ar'8: HLIN 3,35 aT
AT 3: ULIN 8,39 aT

e
o

7
-]

TO 15
AT X

13 lé“ # - J
- 2 4 6 B8

= elOmhUNS
= SO00000

e
L

Lines 50 to 90 contain a FOR. . .NEXT loop which
draws a line in each of the colors from 1 to 15. The
program will display every color, except black:

COLOR CHART DISPLAY

The program uses the text lines at the bottom of the
screen to PRINT the color numbers. If you are using a
black and white television or monitor, the different
colors will show up as various shades of gray. Even in
black and white, if you choose the colors carefully, you
can produce attractive displays.

Introducing COLOR to a graph

The next program draws a graph on the screen. Lines
10 to 40 fill the entire display with blue, as a
background color. The graph’s axes are drawn in red
by lines 60 and 70. The three FOR. . .NEXT loops
between lines 90 and 170 plot the points of the graph
in yellow. Try experimenting with this program to
draw different graphs or label the x-axis using the four
text lines. But remember you must always type
TEXT to return to the normal display. You could
SAVE a copy of this program on disk and then experi-
ment with the program in RAM. That way you can
always re-LOAD the original program and start again
if your effort to amend it goes badly wrong.

COLOR GRAPH PROGRAM [

L]
omr
[

-
XOAXODKD WZZO=Z -
i it fpgrtar 30

T CXO;
DO N e ae

oM oMo

IZTUNITNT

bl bt e bt A 00 S VUL (e

B NOUAWN-DO00OD

Designing shapes from graphics blocks
The next program is the longest you have had to key in
so far, but that doesn’t mean it’s any more complicated.

The colorful shapes created by this program are con-
structed from small “graphics blocks”. In fact, if you
look closely at the Apple’s normal letters and numbers
you will see that they too are all constructed from
similar, but smaller, blocks.

NUMBERS PROGRAM

COLER ? gg
ﬂL; o él AT 18+ ULIHN
AT
g n g
z;:a i At

1 T2é

IC

0 OZT
-o-—amr;'g
CNI‘QI")CHD

Lx]

« peOMO NON
= - N O DO

0o

SO OFT O~ O O=Z
CNZ= D00 =51 C
D=l bl ={I=1TI=N

s

T
T
2

-~

r

TR X8 U

0 HLIH 7:.11 AT 24: ULIN

Lluk* i; ﬁ ﬁ?;sHLIH
nkiﬁzg} ULIE?3SHLIN

CWo
I—IH
> D 3
-m—iw
""N HN

=
AL I‘rqw
CWo CNONO

m-»-mr--:.uxbr'..x

== =
u-«m

* BNO B0 &
['\IDN N0

'Y

Introducing SCReeN

As well as commands to draw points and lines on the
screen, the Apple has a BASIC command to find out
the color of any point on the screen. Using this
command you can discover if a point has already been
plotted and, if so, what color it is. After RUNning the
NUMBERS PROGRAM, try typing this:

LET CL=SCRN(10,10)
PRINT CL

The SCRN command is different from other com-
mands because it “returns” a value. In the example
above it gives the color of the point (10,10) on the
SCReeN. Commands that return a value like this are
called “functions”. INT and SQR are also functions.
All functions can be used in LET statements in the
same way as a variable.

Next, type in these extra lines which will automatic-
ally be added to the NUMBERS PROGRAM:

[COLOR CHANGING PROGRAM '

When you RUN the amended program now, the same
display will appear, but then the colors will start to
change. This is done by the two FOR. . .NEXT loops
in lines 140 to 200. Line 160 finds the color of each
point on the screen with the SCRN command. Line 170
then subtracts the color from 16 to give a new color
number and re-plots the point in the new color. You can
use this technique to produce interesting color patterns
on the screen.

LOW-RES COLOR NUMBERS

Number Color Number Color

0 Black 8 Brown
1 Magenta 9 Orange
2 Dark Blue 10 Gray

3 Purple 11 Pink

4 Dark Green 12 Green
5 Gray 13 Yellow
6 Medium Blue 14 Aqua
7 Light Blue 15 White

ANIMATION

Once you are confident enough to PLOT a point
anywhere on the screen in different colors, you can
attempt some simple animation. Animation is
achieved by PLOTting a point, erasing it, and re-
PLOTting it in a new position on the screen. Suppose
you want a program to animate a missile launched at a
target. First key in this program and RUN it:

MISSILE LAUNCH PROGRAM

TOODD
ZOMO
Lg=i=F]

N=22D00
CNOZO:
[=]=Ty!
mao il orxr-

IO
0

:
4
=
6
7
8
9
1
1
1
b |

L

L

Line 10 switches on the low-res graphics screen. Lines
20 to 40 draw the ground in green. Then the program
fills in the blue sky at lines 50 to 70. The missile silo is
drawn by line 80, and the FOR. . .NEXT loop at lines
100 to 120 launches the missile. When you RUN this
program, the first thing you will notice is that it
doesn’t do exactly what you want it to. The Apple
moves the missile up the screen, but instead of
displaying a single moving block to represent the
missile, it draws a vertical line:

] AFTER IMAGES DISPLAY

How to remove after-images

The problem is that you haven’t told the Apple to
remove the old unwanted images as the missile moves
upwards — so it appears to be drawing a line. But it is
quite easy to remove it by PLOTting a blue-colored
block behind the missile as it moves. Type in this new
line and re-RUN the program:

102 COLOR=2:PLOT 19,V+1

The missile now moves up the screen without leaving a
trail. But there are still several improvements you can
make. The missile moves very quickly. How can you
scale down the speed? One way is to put in a
FOR. . .NEXT loop to slow the program down:

112 FOR I=1 TO 50:NEXT I

Now the missile takes longer to move up the screen.
The FOR. . .NEXT loop at line 112 doesn’t do
anything except occupy the Apple’s time before it
moves on to the next PLOT command. You can
reduce the speed of the missile further still by
increasing the value in the TO part of the loop. This
will make the Apple go round the loop more times and
so decrease the take-off speed:

l ANIMATION WITH DELETIONS |

You will find that the slower the speed, the more
clearly the missile appears on the screen. Flickering
occurs when the missile is moving quickly, because of
the time it takes the Apple to erase and re-draw the
missile as it moves upwards.

Adding details

Now you are ready to improve the program still
further. First, you can add a yellow exhaust flame to
the missile. And by drawing and erasing the exhaust in
the same way as the missile, you can make it appear to

el RN

follow the missile. The missile also needs a target, so
you can draw a spaceship at the top of the screen:

MISSILE LAUNCH PROGRAM WITH ADDITIONS

S TO_ 39
t HLIN ©.39 AT V

e 10
' HLIN 2,39 AT v

. gt H‘,i"" 31 &1
?3 sgrit

NOOPITOOD

;9
it HLIN
6§8T119PLOT

* ULIN VU + 3,V AT 19

Line 82 draws the spaceship, and line 112 has been
amended to PLOT the exhaust flame as well as
provide a time delay with the FOR. . .NEXT loop.
Line 102 erases the path of the missile and the exhaust
flame with a VLIN command. When you RUN the
program now, the missile moves up the screen until it
hits the spaceship:

MISSILE LAUNCH WITH SPACESHIP DISPLAY J

The final touch
To complete your animated sequence, all you need is
an explosion when the missile unpacts, followed by
falling debris. You can do this using the animation
techniques that you used for the missile launch, just
type in the EXPLOSION AND FALLING DEBRIS
ADDITIONS opposite.

Line 130 plots orange blocks to represent the
explosion. The FOR. . .NEXT loop at line 140 slows
the Apple down so that the explosion stays on the

EXPLOSION AND FALLING DEBRIS ADDITIONS

B

_8 85200 2E§5 13: HLIN
(1]

: * E F-3 U }9

7i8.0 '3 Blor
1“21 U“hé
718,90 L

]

rora

-CC+0 CC+0 NO
WC‘\IIH

CHérmll +4=1

F
Cc
1
F
C
2
¢
c

2 OT

I

screen. Line 150 erases the explosion and the space-
ship, and lines 160 to 200 repeatedly draw and erase
the debris as it falls to the ground:

| EXPLOSION AND FALLING DEBRIS DISPLAY

HIGH-RESOLUTION GRAPHICS

In addition to commands for drawing on the low-res
graphics screen, your Apple has several BASIC
commands for plotting on the hi-res graphics screen.
Hi-res graphics allow you to draw and plot in far
greater detail:

TRIANGLE-DRAWING DISPLAY

THE HI-RES GRAPHICS SCREEN

279

(}J]
[
|

159 f———

As for low-res graphics the 0,0 position is at the top
left and there are four lines for text at the bottom of
the screen. Many of the hi-res commands are similar to
the ones you used with the low-res screen, but they are
preceded by the letter H. Try typing HGR. The
screen will clear and the Apple will be in the hi-res
graphics mode. The available colors are defined in
much the same way as low-res colors, except that only
six are now available (including black and white). To
plot a point on the screen, try this:

HCOLOR=3
HPLOT 140,80

A small white dot will appear in the middle of the
screen. There are no hi-res commands for drawing
lines. Instead the HPLOT command is used with two
sets of co-ordinates giving the start and end position of
a line. The next program draws a triangle on the
screen. But before you can enter it you will need to
type TEXT to return to the TEXT screen.

TRIANGLE-DRAWING PROGRAM

ol 1g 1o 804180

o UaWN-
¥ OOD6®

Line 10 switches on the hi-res graphics mode and line
20 sets the color to orange. Lines 30, 40 and 50 each
draw one side of the triangle. Notice that the HPLOT
co-ordinates on lines 40 and 50 both start where the
previous HPLOT ended. In fact, you can leave out
these first co-ordinates. Try typing in these lines to
replace lines 40 and 50:

40 HPLOT TO 240,60
50 HPLOT TO 0,159

How to PLOT multiple lines

When you HPLOT without a starting position, the
Apple will continue to draw from the last point plotted
on the screen. HPLOT is a very versatile command.
As well as plotting single points and lines, it can be
used to plot several lines at once. Try this program:

MULTIPLE LINES PROGRAM £l

|
|

R33%144 TO 203.56 T
0*763143%:8%713%: " %0%3s

MULTIPLE LINES DISPLAY

SOLID TRIANGLE DISPLAY

| —

The HPLOT on line 30 draws all the lines which mak

up the shape. It starts at the first co-ordinates 43,144
and draws a line TO 203,56 and then on TO 27,56
and so on until it returns to the starting point.

How to produce solid figures

After this, it is very easy to fill in these line drawings to
produce solid figures. You just HPLOT a series of
lines adjacent to one another. For example, to draw a
solid triangle you need to draw a series of lines from a
single point (one apex of the triangle) to a gradually
shifting point along the triangle’s base line. This
program draws two triangles in different colors:

SOLID TRIANGLE PROGRAM

R=
39?23"1’605. 159

538,79,28°, oo

OO0

2::11:%11::
r
2o rae e
X0 =x0
%
N

VOGN
m

]
i OPO0DOOOD
Xr00X
x

You don’t even need to have fixed co-ordinates in a
program. You can use INPUT to allow the person
RUNning the program to set the start and end co-
ordinates of a line as in the next program:

HPLOTTING WITH INPUT

X = 9-279., Y = 9-159"
"START OF LINE <(X1> 7%;

ceNd’of LYhe cx2> 2vix2
BT 1782 Fo'¥B.v2

LY
=0 0% moawgg;

e D00

]

On both black-and-white and color screens you will
find that certain hi-res colors don’t always draw
vertical lines on the screen. This is because of the way
hi-res colors interact with the circuitry in your TV.

HI-RES COLOR NUMBERS

There are restrictions on the number of areas on the screen in
which hi-res colors can be plotted. This table indicates which
colors can be used in which columns.

The solid lines of color are drawn by the two FOR
.. .NEXT loops. The loop at line 30 increments the
value of X from 1 to 100. The HPLOT inside this
loop, at line 40, draws lines from the fixed point 60,20
to a point with the y co-ordinate of 159, and a
changing x co-ordinate, given by the variable X. The
loop at line 70 draws the second triangle.

—

Number Color Columns available

0 Black 1 Any column

1 Green Odd-numbered columns
2 Violet Even-numbered columns
3 White 1 Any column

4 Black 2 Any column

5 Orange Odd-numbered columns
6 Blue Even-numbered columns
7 White 2 Any column

DECISION-POINT PROGRAMMING

You now know that if you want to carry out a
calculation or put something on the screen 10 times
you can write a loop like this:

FOR A=1TO 10. . .
NEXT A

But there is also another way — using an IF. . .THEN
statement. To take an example, let’s say that you want
to PRINT the multiplication tables from 1 to 10. This
is how you would do it with FOR. . .NEXT:

decision by examining B. The < symbol is BASIC
shorthand for “less than”. So, if B is less than 11, the
Apple is told to GOTO line 50 and repeat the loop. If
B is more than 11, the GOTO following THEN is not
obeyed. Instead the Apple moves on to line 80. A
similar test is performed on A at line 100, but notice
that the test is A<=10. This means *“if A is less than or
equal to 10” and it will give the same result as “less
than 117

FOR. . .NEXT LOOP |

'

EE i i 4‘§B(B X 4X;:"1";

onn
'XIQD
=D

Tz
om
-

MULTIPLICATION TABLES DISPLAY |

163 72
170 80

. .THEN versus FOR. . NEXT
The program which follows does the same thing using
IF. . .THEN. Lines 30 and 40 set the two variables A
and B to 1, which is the first value of the loop. At line
60, 1 is added to variable B ready for the next time
round the loop. Line 70 is where the Apple makes a

| IF. . .THEN LOOP

-0 NG Ubi
o GO0 558 o

JI=

You might wonder what the point of this is, as the
IF. . .THEN loop produces exactly the same result as
the FOR. . .NEXT loop. But the advantage of IF. . .
THEN is that the Apple can respond to information
that you INPUT by examining it against criteria that
you have set, and taking a decision. Here is an
example that illustrates this, and tests your skill at
arithmetic:

MATH-TEST PROGRAM

% S35 NepTeS
Bl } Riﬂ) E
:jzinf sce¥4s.

TO
<7>,-éuéx .
‘ R$ (7);+ GOTO 6@

S T T

| _

MATH-TEST DISPLAY

(]

S XE= T

17T 177
ITT 17T
| i
5 s o0 i &

I I T IR TRy gy

T
QO==TTITMMTNZO |

ormm

el e D GO VB Gl e
DD
DO e
D ——

WN=-O00DO0

The command RND(1) which appears in line 50 is
fully explained on pages 42-43; it is used here to select
a RaNDom number between 1 and 10 every time the
loop is repeated.

Each time the computer repeats the loop, it sets a
problem and waits for your answer. It is then faced
with two possible courses of action. If you type in the
correct answer, the IF. . .THEN statement at line 70
“beeps” the Apple’s speaker several times and GOes-
TO line 50 for the next problem. If the answer is
wrong, then the computer ignores the part of line 70
after THEN and moves on to line 80. This makes just
one “beep” on the speaker and returns to line 60 for
another attempt.

The SPC command in lines 40 and 60 is yet another
way of formatting the Apple’s display — SPC stands
for SPaCe. The number in the brackets tells SPC how
many spaces to PRINT.

Introducing control characters

The CHR$ command in lines 70 and 80 allows you to
put one of the special control characters, mentioned on
page 10, into a program. You cannot type these
characters directly into your program — you have to
use CHR$ instead. The number of the control
character you wish to PRINT is given inside the
brackets — character number 7 is CTRL-G, which
beeps the Apple’s speaker.

IF. . . THEN conditions

You can also use IF. . .THEN, in combination with
graphics commands, to turn your Apple into an |
electronic drawing system. All you have to do is to |

left and right. After each keypress remember to press
RETURN. The Apple will PLOT a point and then
move in the direction indicated by the key typed.

The four IF. . . THEN lines make the computer
examine your INPUT, and then decide in which
direction to move after PLOTting the point. Here’s an
example of the kind of display this program can
produce but you could easily change the color
statement in line 20.

IF. . .THEN GRAPHICS DISPLAY

When you use IF. . .THEN, remember that there is a
variety of “conditions” which can follow the IF part of
the statement. The programs on these pages have used
either <, <= or =, but these are only some of the
complete range of symbols that the Apple uses, as you
can see from the following table:

program the computer to respond to INPUT by

IF. . . THEN CONDITIONS

PLOTting. In this simple program the four IF
. . . THEN statements allow the Apple to decide what

The Apple recognizes six shorthand symbols for the conditions
that can be tested by an IF. . .THEN loop:

action to take. The program draws on the screen when
you press the I, M, J and K keys to move up, down,

is equal to <> is not equal to

> is greater than < is less than

>= s greater than or equal to <= is less than or equal to

]

UNPREDICTABLE

Although computers generally work with precise
information, doing exactly what you tell them to, an
element of chance is necessary in certain applications.
For instance, most computer games — like ordinary
games — are based to some extent on luck. If you want
to make something happen at an unpredictable time,
or if dice are to be thrown, or coins tossed, you can’t
tell the computer what result to produce or the
element of chance would disappear.

Introducing chance with RaNDom

You can build chance into a program by using
RND. This command is similar to the SCRN com-
mand on page 35, as it returns a value which can be
used in calculations. RND, as you’ve probably
remembered, stands for RaNDom and it allows you to
generate random numbers. You can then use these
numbers to produce unpredictable sequences. The
command is used like this:

10 A=RND(1)

This assigns A, a value between 0 and 0.999999999.
Try using RND(1) in the next program, which
PRINTSs numbers at random:

RANDOM NUMBER DISPLAY

2.80524873

i!t'!***tttt***t#i
EEERAERXERXRKEKKK

Producing whole numbers with RND

The Apple can generate only a limited range of
random numbers. To generate other numbers, you
therefore have to multiply the outcome of RND(1). If
you replace line 140 with:

RANDOM NUMBER GENERATOR

%
%"

%"

tttiﬁtsﬁttlttllt*t”
? 2 PRINT *

> HTQB 12+ PRINT "@";

"R%(;“e- MEXT X

This program uses RND(1) in line 140 to generate
random numbers between 0 and 0.999999999, while
lines 30 to 110 set up a border of asterisks to frame the
numbers. Very small numbers produce the E symbol
you came across on page 19. Normally, as each new
number is PRINTed, it automatically erases the last
number — simply by PRINTing on top of it.
However, when something like E-4 appears, it is not
automatically erased, so the blank spaces in line 130
take care of that. The FOR. . .NEXT loop at line 160
provides a delay between the PRINTing of numbers.

140 VTAB 12:HTAB 12:PRINT INT(RND(1)x10)

and RUN the program again, you will notice an
immediate change in the display. The Apple is now
generating whole numbers between 0 and 9 — a much
more useful result.

“Heads or tails” on your Apple

This way of using RND(1) is very useful for pro-
gramming games involving chance. For example, to
simulate throwing dice or tossing coins:

COIN TOSS PROGRAM

§§ fguiﬁﬁﬁ BRINT uebe:

J=

As a tossed coin can have only one of two values —
heads or tails — line 30 simulates this process by
producing a random number that either has the value
1 or 2. Heads are represented by 1 and tails by 2. Two
IF. . .THEN lines assess the outcome and determine
what is to be PRINTed and then the program con-
tinues. The SPEED command changes the rate at
which the Apple PRINTSs on the screen — 255 is the
normal rapid display, 0 is very slow.

COIN TOSS DISPLAY

o]
DDMD
bnup-—.!f.

orrorre

DNURDDNDNNNNUNNNINUNG

MMMMIMD D DMMD DM

DDDDD e D Dot
DODOrorrr-oorT

W EIIIATA—A-ATI T~

It is possible to write a program which will show just
how random RND(1) is. If you use RND(1) to toss an
electronic “coin” 100 times, you should get roughly 50
heads and 50 tails each RUN. You can actually test to
see if this is true. Key in this program:
’ RANDOM TEST PROGRAM

1@ HOHE ' UTAB S: HTAB 14: SPEED=
ﬁ B jen BRINT PiExssrsaxas-

tu? ﬁEB S PERTINY

IN'I'
H AR 12+ PRINT "THIS
155““3- THEN H = H +

GOTO

PRINT “HEA
PRINT "TaAIl

. 37]
* HTAB 16

+ HTAB 16!
H 12" PRINT "TOT
us"T9R ¥

L

Producing random displays

You can produce some interesting effects with
RND(1) by incorporating it in graphics programs so
that the computer is instructed to PLOT a point at a
‘ random position on the screen. If you then make the

computer repeat this process by setting up a loop, you
can build up a display which will be different every
time the program is RUN. Here is a program which
uses RND(1) in this way:

RANDOM GRAPHICS PROGRAM

Line 20 sets COLOR to a random value, and lines 30
and 40 set random co-ordinates for the PLOT
statement at line 50. RND(1) is multiplied by 40 to
give numbers between 0 and 39.9999999 and INT
rounds these to the integer values needed by PLOT.
Line 60 sets up an endless loop with GOTO 20. (You
will have to type CTRL-C to stop this program
RUNning because there is no limit to the loop.)

RANDOM GRAPHICS DISPLAY

However long you let this program RUN, the screen
will never completely fill with points. This is because
the COLOR numbers selected include 0, which will
PLOT a black point. You could write a similar
program to HPLOT random points on the hi-res
screen. You would need to multiply RND(1) to give
co-ordinates between 0,0 and 279,159 and HCOLORs
between 0 and 7.

COMPILING A DATA BANK

The data necessary for a program can either be col-
lected while it is RUNning by using INPUT, or alter-
natively it can be written into the program itself using
DATA. The commands used to store data are quite
straightforward. Data is held in DATA statements
and read by READ statements. This program shows
these techniques at work:

CONSTELLATION PROGRAM

LOR= 1
g‘ CALL 62454

689748%248%184%9:18%

=D~V &
OODOD mlﬁlh’u—

®

118 HEL T X + 2,Y
128 HNEXT S
q=

When you RUN this program you should see a
computer-generated map of a group of stars called the
constellation Ursa Major, also known as the Great
| Bear or Big Dipper:

CONSTELLATION DISPLAY

= .
The information for the display is held in line 40 in the
form of 14 co-ordinates. Line 70 tells the Apple to
READ the DATA in line 40, and to understand it as
pairs of co-ordinates to store in the variables X and Y.
Line 50 tells the Apple that there will be seven pairs of
co-ordinates altogether, by setting the numeric variable

N equal to 7. Lines 80 to 110 instruct the Apple to
HPLOT a star at each value of X and Y, and so trans-
form the row of DATA into a map on the screen. With
a program like this it is easy to change the DATA to
get the Apple to HPLOT a new map. Here is a set of
line changes and the map that they produce:

40 DATA 30,80,80,120,140,90,180,140,240,80
50 N=5

[CONSTELLATION DISPLAY

When you use DATA statements, it is important to
tell the Apple how much DATA there is to READ.
Line 50 in the CONSTELLATION PROGRAM
shows you how to do this. It sets the limit for the
number of pairs of co-ordinates that are to be READ,
so that when the Apple has HPLOTted the final star,
it stops. If you had not set a limit, the Apple would
run out of DATA and the program would end with an
error message.

Storing strings as DATA

Strings, as well as numbers, can be stored and READ
using DATA lines. You can also hold a mixture of
both numbers and strings — the names of friends and
their phone numbers, for example. If you do mix
numbers and strings though, it can sometimes cause a
problem, because two different types of READ state-
ment are needed to READ numbers and strings—READ
A and READ AS$. For this reason it is often better to
store all DATA, including numbers, as strings.

How to create a telephone list

The next program holds a personal telephone list.
Names and telephone numbers are held in lines 10 to
30 and lines 40 to 90 display the program title and
offer a choice of functions.

TELEPHONE LIST PROGRAM |

=]
T
o=
EHD

=]
z(DMIN

=D=DrDI0 - -
2D
& DN

CCCX O

AL ==M=D=00ND:
COMD OMOAND,

mo
n3
-m m

£ ot oo

DD Sty
0D
ZDONC—
mamo—mn
X~DOD

FigEfetne » -0

NQT Founp"

X
=T D=0

OCIAAM MMO VZ-D)
=MD DN =TD~

TO 1
'f‘rueuks-m-*

EE&S RETURN TO CONTI

= @O OV M-

@ 000 OO

bl G GINNORD NN PO RPN ettt s
OZ=TTVZ

When you RUN this program type 1 then press
RETURN to PRINT the whole telephone list; you
should see a screen display like the one below:

COMPLETE TELEPHONE LIST

£oamD
D=TDD

ADCONEATIDOMENONT
D OC Cri=t={D I =M

VWOEOTZZ
CromFDDDMT

PRESS RETURN TO CONTINUE =

Alternatively, you can find the telephone number for
just one name by typing 2 and pressing RETURN.
After displaying the required number, the Apple
returns to the selection display:

TELEPHONE LIST SELECTION DISPLAY

PERSONAL TELEPHOME LIST

COMPLETE LISTING... . PRESS 1

.PRESS 2 7

SELECTIVE LISTING. .

If you type in 2 at line 90, the program follows lines
210 to 310. You are first asked to enter the initial and
name. Be careful not to type any extra spaces or
punctuation in this INPUT or the Apple will not
recognize your entry.

If the Apple finds that the name (S$) you typed in is
the same as one of the names (N$) in the DATA state-
ments, it will give you a new string, R$: the value of
N$ plus a line of dots and the telephone number (M$).
If it cannot match S$, RS is left unchanged as “NAME
NOT FOUND” (set by line 230), and this is
PRINTed out at the end of the program.

Because you want to add the name, a line of dots,
and the telephone number together in line 260, the
telephone number has to be treated as a string variable
MS$, instead of a numeric variable M. If you used M
the program would not work because string and
numeric variables cannot be added together.

Introducing RESTORE

Line 120 uses a new command, RESTORE. This tells
the Apple to go right back to the beginning of the
DATA statements the next time it carries out a READ
command.

Without RESTORE the program would only work
correctly once, because having searched all the DATA
the first time it was RUN the Apple would have
reached the end of the list. RESTORE is therefore
important because it instructs the Apple to return to
the beginning of the DATA, enabling it all to be re-
READ every time you consult the telephone list.

With a little practice at compiling a DATA bank
you can store your friends’ birthdays, list bills and
payments, or index your tape library.

LI Bty
CALIFORMIA STATE POLYTECHNIC UNIVERSIT>
POMONA, CALIFORMIA 91768

INTRODUCING SHAPES

Now that you’re familiar with the commands for hi-res
graphics, and have seen DATA and READ statements
at work, you’re ready to get to grips with Shapes. A
Shape is a pictorial design that can be described to the
computer using ‘“coded numbers” which represent a
series of “movements”. The numbers are contained in
one or more lines of program called a “Shape table”. A
Shape can be any design — for example, a space
invader, a bicycle or a bird. Once a Shape has been
defined, it can be SAVEd on disk and recalled every
time you want to use it in a program.

How to define a simple Shape

Shapes are only used in hi-res graphics and writing a
program to define a Shape is quite a complicated
procedure. But without Shapes it would be virtually
impossible to draw any complex design on the Apple
— because you would have to HPLOT every single
point. Here is a very simple Shape program to draw a
square box:

memory large enough to hold this Shape table.

Line 60 holds four special numbers that tell the
computer where to find the Shape table that has been
stored in memory when you give a DRAW command.
Line 70 switches the computer into hi-res graphics,
then sets the COLOR to 3 (white), the SCALE to 10
and the angle of ROTation to 0.

Finally, line 80 instructs the computer to DRAW
Shape number 1 — the first, and in this case the only,
Shape in the table — at the hi-res screen co-ordinates
140,80. If you RUN this program, a small white box
will appear on the screen.

See if you can work out the relationship between the
box that this program DRAWSs, the SHAPE MOVE-
MENT INSTRUCTIONS below, and instructions
five to thirteen in line 10 of the program. Ignore the
first four numbers for the moment; they provide the
Apple with information that enables it to use the
Shape table.

SHAPE MOVEMENT INSTRUCTIONS

SHAPE DEFINITION PROGRAM

1,0,4.8,88,5,6.,6,7.:7.:4.

PEReT8 750 *

2%RB6PorEO8T &33(E- 10 rOT-
1 AT 149.880

|
2
3
4
2
e
8
b |

O D0O000 o

Line 10 holds the “Shape table” that defines the box.
Line 20 tells the Apple how many instructions there
are in the table.

The last 0 in the DATA is only there to tell the
Apple that it has reached the end of the Shape
definition. It is particularly important when several
Shapes are defined in one table because it indicates to
the computer that one Shape is now complete, and the
instructions for the next are about to start.

The FOR...NEXT loop in lines 30 to 50 tells the

Apple where to store this Shape table in its memory —
this one will begin in the byte of memory labeled 768.
The number which labels a byte is called its “address”.
As you learn more about your Apple you will
recognize address 768 as the start of a free area of

A Shape is defined to the computer with a series of numbers that
represent movements. The computer can either be instructed to
move in a given direction and then plot a point, or it can be
instructed to move without plotting:

Direction Move only Move and plot
Up 88 4
Right 89 5
Down 90 6
Left 91 7

Don’t worry if you haven’t completely understood this
program, as you will learn how to define your own
Shapes later.

How to SCALE and ROTate a Shape
The next program demonstrates the effects of SCALE.
Notice that it does not begin by re-listing the Shape
table for the box. Once a Shape has been defined, in a
SHAPE DEFINITION PROGRAM, it is held in
memory until you define another table or switch off.
All that is needed in any subsequent program is the
command DRAW followed by the position of the
Shape in the table: 1,2,3 or 4 and so on.

The crucial command in this program is in line 40.
It enlarges the box on the screen using SCALEs of 1 to
27. You can SCALE any Shape between one and 255
times as long as it will still fit on the screen. Line 30
sets the first co-ordinate for the first box, and line 60
determines that enough space is left between the
boxes as they are DRAWn to ascending SCALEs on
the screen. Line 70 instructs the computer to return to
the left of the screen once it has reached the right side
(where X+S>279).

L T i O T |

SCALING SHAPES

AT X.¥Y
HEN X = § + 1
3

ROTATING BOX DISPLAY

The next program uses the same box Sha;e and shows-
the effect of the command ROTate. In this program
line 40 sets the first co-ordinate, line 70 determines the

ROTATING BOX PROGRAM

COLO

BALL 624
gckts- 13*
*ar x.v

® THEN X = 20:¥ = ¥ +

19 T YT
" ® @ﬂ@&@ggﬂ

(TR YT Y

amount of space to be left between boxes and line 80
moves the “cursor” back to the left once a line has
been completed. The command CALL is explained
later, but here it colors the background.

But line 50 is the crucial line here: it ROTates the
box between the values 0 and 44. These numbers do
not refer to points of the compass they are specific to
the Apple computer and are determined by the
SCALE you have selected. The table, ROTATING
A SHAPE, illustrates the options available with
SCALEsof 1, 2and 3.

ROTATING A SHAPE

The angles at which you can ROTate a Shape are determined by
the SCALE you select: at a SCALE of 1 only four ROTation
options are available but as the SCALE increases you can extend
these options from 0 right up to 255. The options available at
SCALEs of 1, 2 and 3 are illustrated below:

0
| SCALE 1

SCALE 3

0
56 8
N /
16
=
T
40 24
32
SCALE 2

AN'MAT'NG SHA

Once you have created a Shape and expcnmented with
SCALE and ROTate, the next step is to set your
Shape in motion.

The principles of animation
You already know that the principles of animation for
low-res graphics are to draw an object on the screen,
erase the object and then re-draw it in a new position.
In hi-res graphics the method is virtually the same but
simplified by the command XDRAW.

The command XDRAW is the same as DRAW,
except that the colors available in this mode operate as
“complementary pairs”’. These are the colors available:

ROTATING BOX DISPLAY

COLORS AVAILABLE WITH XDRAW

Black (0) and White (3) |! l | i I

Green (1) and Violet (2)

Orange (5) and Blue (6)

This is how you use them: black and white form one
pair of complementaries, so if you set the background
to black and then XDRAW a Shape, the Shape will
automatically be drawn in white. If you then XDRAW
the same Shape again, in the same position, it will be
re-drawn in black (because its immediate background
is now white). This effectively erases the Shape ready
for you to XDRAW it again in the next position in the
animation sequence.

Setting the box Shape in motion

The next program uses these steps and the ROTate
command to animate the box Shape from page 46. You
should recognize the first few lines (10 to 70) from the
SHAPE DEFINITION PROGRAM. Line 90 sets the
SCALE and 100 sets the ROTation values. Then the
second part of 110 XDRAWS the box. The CALL

[ROTATING BOX ANIMATION |

=

U
SO00D6S ©

t PO E 233.,3
OLOR™
Ll CALL 62454

=OE

EEEHZ?SGT 140,80: XDRAHW

o o

el et "L 0]
N

command in line 80 has already filled the screen with
orange, so the first XDRAW automatically draws the
box in blue — the complement of orange. The third
section of line 110 then XDRAWS the box again in the
same position, and as its immediate background is
now blue — it re-draws the box in orange. The box
therefore blends in with the background and dis-
appears. Line 120 then calls for the next ROTation
value and the process is repeated until the FOR. . .
NEXT loop has XDRAWn the box at all the
ROTation values set in line 100.

Designing Shapes for computer games

Try experimenting with different colors in line 70 of
the ROTATING BOX ANIMATION and then type
in this program. It contains a Shape table for a lunar
module.

LUNAR MODULE PROGRAM |

00D

VXDVENOZ I~ ADUDOD DODLD

o000 DX @

= =0
~ D~

D

===

m e

Type it in, RUN it, then SAVE it on disk. Now type
in these new lines to make the module move without

leaving a series of after-images:

ANIMATED LUNAR MODULE

D

= s 0S55:A2 = 9.85:VU1 =
LR,

T 15

- .
NAUNAGN- @
£

000 SO0DOTO0S o

103
ATyE. g uR 3 A T Y

X.¥

bk POPOI it
=@ 0

L

The new line 100 sets initial values for the ship’s
velocity (V1 and V2) and acceleration (Al and A2) in
both horizontal and vertical directions. The FOR. . .
NEXT loop in lines 120 to 210 lowers the module onto
the moon’s surface. Line 130 sets the ROTation value
to the numeric variable R and XDRAWSs the module
at the co-ordinates X.,Y. Line 140 saves these co-
ordinates in the variables OX,0Y. The IF. . .THEN
statements (lines 150 to 180) set the value of the
variable R depending on how far the descent has
progressed. Line 190 calculates the new horizontal and
vertical speeds and the new co-ordinates for X,Y. Line
200 then XDRAWS the module again, at the old X and
Y co-ordinates. This erases the module and prepares
the screen for the next drawing in the animation
sequence. Once the sequence is complete, the DRAW
command in line 220 displays the motionless ship on
the surface of the moon. Now try this program:

i3
30 i
49 DATA # 3 i
4.,
D?¥ﬂa ?a§'
H:M: IF M = - l THEN GOTO
» T 3 T? a* POKE A.M:A =

cg o 2 s
RE . “3EaPe."2NERET2 T
EEB?RS g EsaLh :23;4 i

= 140:¥ =

RAM 1 AT X.Y:0¥ =
R 1 8.5 2
Brgad
12,3 8°33.%°,
= 2
T EE:*“-Z=§3§
ﬂ.; THEN GOTO |
g OT @.159 TO OX
8'J = PEEK ¢ -

E£8¥ 8,159 TO OX

X3

-]
O=
<h

N -
@€l ~
<CXX DX
<+12

OO0
v OB ZvAvA i

OO
1
=OEM==0 T
=Ox
[
L]

Ne=- 0

B XTI\ et bt |

OOOOMOOATITIMIMM

W W NN NN ONee——
B s W N
Qo0 @0
=<CODND<OD
o rou

If you RUN this program you will see a laser firing at a
spaceship. The spaceship and the laser have been
programmed to move and fire at RaNDom:

LASER ATTACK DISPLAY

HOW TO WRITE A SHAPE TABLE

Now that you’ve seen what can be done with Shapes,
all that remains is to learn how to define your own.

SHAPE TABLE CONSTRUCTION PROGRAM

INT (SH -~ 256>

nBEE 6BMshaBEE 2 i
=§Hz- SH + 2
NS

§ 132 s78e 3

g
0D
1]
=T TIT

I
n v
X~T ZZIMMINONIONZO O m

x

4
S
6
1
1
i
1
{
1
1

SHUNAWN-ODROD oD

[l libialalidindio]

. HPLOT % +
1PE0T T "weLor

The first stage of the process involves a number of
calculations. You could do them on paper but this is
the very thing that the computer is good at, so the
adjacent program has been designed to do most of the
hard work for you.

Once you've typed it in, SAVE it on disk and then
RUN it. It will first ask how many Shapes you want to
create. For now, just type 1; a grid of dots will appear
on the screen. Use this grid as if it were a piece of
graph paper to draw the design you want to reproduce
on the screen. To move the cursor over the grid press
the following keys:

HOW TO DESIGN ON THE SHAPE GRID

To MOVE and PLOT To MOVE without PLOTting

UP DOWN uP DOWN
;EI“ NM‘) |(E“ “X”
LEFT RIGHT LEFT RIGHT
..'J'H niK“ LIS}! “D”

' HPLOT X -~
1V AbloT

-

X PuEN®
"M" THEHN
"J% THEN
"K* THEN
“E" THEN
“x* THEN
"§* THEN

B0 RN D <O+ D
N XOW
ZTXTXTTIIXII X

L

=
L]

L IR
-
St
mm
-z 44+NHNNONDZIU‘U
AT

i
INT (S -~ 256> %

s 256):8H =

w
I TWOI=DCA | W

=D0N B NN
ZTOTHZIN TN DO
MDOMMIONOOO0 i

OO0
WA EMFEE =,

W BB O W

After each keypress, press RETURN. And when
you’ve finished your design, press RETURN without
first pressing a character to indicate that it is complete.
The screen will look like this while your design is in
progress:

| CONSTRUCTING A SHAPE
|

Once it is complete the Apple will display a list of
numbers. This is the Shape table for your design;
write down a copy of the table for reference later.

How to test your Shape

Before you go to the trouble of writing the final
program for this Shape, you can now test your design
by writing a simple program to see if it will achieve
the desired effect. To DRAW the Shape once on the
screen, try a program like this:

10 HGR: HCOLOR=3
20 SCALE=4: ROT=16
30 DRAW 1 AT 100,90

If you would like to DRAW the same Shape several
times on the same screen there is no need to repeat line
10 again. Just give a SCALE, ROTation value,
DRAW command and co-ordinates for every time you

TESTING A SHAPE ;

want the Shape repeated. The above screen illustrat;s
the type of effect that can be achieved in this way.

Writing a Shape table into a program

When you’re happy with the Shape table you’ve
created the next step is to write it into a “Shape
Definition Program”. You will then have the Shape
table in a form that can be SAVEd on disk and recalled
when you’re next writing a program that needs a
design like this.

If you turn back to the SHAPE DEFINITION
PROGRAM that defined a box on page 46, you should
find that you can now understand and imitate lines
10,20,70 and 80 in your own program. But what of the
rest? Here they are again to jog your memory:

30 FOR A=768 TO 768+N
40 READ M:POKE A,M

50 NEXT A

60 POKE 232, 0:POKE 233,3

The loop at lines 30 to 50 stores the Shape table in the
Apple’s memory. Line 30 selects the area of memory
that it will be stored in. This one will begin at address
768. Lines 40 and 50 then instruct the Apple to POKE
each of the movements (M) into memory addresses (A)
between 768 and 768+ N.

It will help you to understand this process if you
compare it with the method the Apple uses to store
variables. You can define a variable, for example Z=
25, simply by typing LET Z=25. The Apple will then

decide where to store this information in RAM an%
leave “notes™ for itself so that it knows where to find
the variable again when you recall it with the
command PRINT Z. But the Apple cannot store
Shapes in the same way. You have to tell it where to
store the Shape table and also leave instructions so that
the computer can find it again when you give a
command to recall it.

This is why programs to define Shapes use the
POKE command. The first appearance of POKE is in
line 40. After the computer has READ the list of
movements (M), which are given in line 10, it POKEs
(which in this case means “stores’™) the first movement
in A — the first available byte of memory (address
768). This process is then repeated until all the move-
ments have been stored in memory.

POKE reappears in line 60. Addresses 232 and 233
are special bytes of memory that are always reserved to
hold the information that tells the Apple where to re-
find Shapes it has stored. In the SHAPE DEFINITION
PROGRAM for the box, these addresses were POKEd
with the numbers 0 and 3. They were calculated using
the formulas below and tell the Apple that the Shape
table begins in address 768. The numbers you have to
POKE into 232 and 233 change according to the area
of memory you select to store your Shape, but they can
always be worked out with these formulas:

PRINT# — INT (#/256) » 256
PRINT INT (#/256)

When you have selected an area of memory to store
your Shape, simply replace the # in these formulas
with the first of the addresses that are available, and
calculate the correct values on your Apple. Try it now
with 768: you should get the answers 0 and 3.

You should now be able to write a Shape definition
program for your own Shape by imitating the box
definition program. You can then begin to manipulate
it using SCALE, ROT and DRAW.

How to select memory to store a Shape

You may have noticed that all the Shapes you’ve used
so far have been stored in the same section of the
Apple’s memory — address 768 onwards. But this is
the beginning of just a small empty area, and if you
wanted to store a long Shape table you could run into
problems. So there is a command to reserve a larger
area of memory; it is called HIMEM. The SHAPE
TABLE CONSTRUCTION PROGRAM opposite
contains HIMEM: 30208 in the first line. This sets the
Hlghest MEMory address that the Apple can use to
store the subsequent program lines and variables at
30208. If you then add 1024 (one kilobyte) to this
number, the number you arrive at (31233 in this case)
will be the first available address into which you can
POKE your Shape.

ADVANCED GRAPHICS TECHNIQUES

Once you’ve mastered Shape tables and hi-res color
graphics, you can bring all the graphics, Shape and
animation commands together in one program. The
example on these two pages produces a complex
picture; but if you work through the listing carefully,
you should be able to write a similar program yourself.

Creating a landscape
If you introduce a number of areas of color onto the
screen, allowing some of them to overlap, and then
HPLOT lines over certain areas, you can produce
some interesting effects. The next program illustrates
some of these techniques:

BASIC LANDSCAPE PROGRAM

o0
< ZINTZT

Z I IMUOOMIonn

M1 DO 1 OXrDOXr D00

Rl b e b ADOD N OV UV
OO0
<

o U= ORDH0 OO

|
The first thing you’ll notice about this program is that
line 10 uses HGR2, instead of the usual HGR. In fact
the Apple has two hi-res screens and the command
HGR2 allows you to DRAW and HPLOT on the
second screen. HGR2 functions in the same way as

HGR except that it does not have four lines of text at
the bottom. The y co-ordinates of HGR2 go right from
0 at the top of the screen to 191 at the bottom.

The program draws a green foreground at lines 20 to
50. Next, at lines 60 to 90, it HPLOTS orange linés
that radiate from a point below the horizon, making
the display look like a sunset. Notice the new
command STEP, which makes the value of X increase
in steps of 19 instead of 1. Finally, the perspective
lines appear, at a spacing which increases the further
they are from the horizon. To do this, you need to
make the spacing between the y co-ordinates grow
larger as you move away from the horizon. Line 140 is
the crucial one; it makes Y increase by a progressively
larger amount every time the loop is carried out.

When you have keyed in and RUN the first section
of the program, you can improve it by HPLOTting
and filling in some objects in the foreground:

ADDITIONAL LINES |
2

[T,
= SN0
LROODO

Once you have RUN this, try going back over the
program and altering some of the lines. The best part
of graphics programs is experimenting!

Adding a Shape table

Now you can design a Shape to add to your program
and use it to introduce some animation to the picture.
First key in these extra lines at the end of the program:

- ADDING A SHAPE TABLE |

Q 247,
.88, 4

3 54, §9

NOD=o00
D@ DD

DO=D0MMO il =+ AD-
ADODEXDA - 0 =0~

V88,8
o175,

T? ?69 + N

& °no'?°"5 g2 Yeo:v =

LAT 8'Y 25,v + 25

o0 CROD
HKX=TDZAOT NS

2
2
2
2
3
3
3
3
b |

B W =S\

|
These lines define a Shape table containing three
Shapes. When you RUN the program now, two of the
Shapes are drawn and show two birds in mid-flight.
The third Shape is used at the next stage.

BIRD SHAPE DISPLAY

Animating the Shapes

The next phase of the program is to animate the birds
so that they appear to be flying towards you. So far,
your animated displays have always conveyed the
impression of motion across or up and down the
screen. But in order to make the bird’s flight look
realistic you will need to use a similar, but slightly

different technique.

Animated cartoons for television and the movies are
produced by photographing a series of drawings, each
depicting a slightly different stage of motion. You will
use a similar method here, except that you will
XDRAW a Shape, XDRAW it again to erase it, and
then repeat the process with the next Shape in the
flying sequence.

The FOR. . .NEXT loop starting at line 320 steps
through each of the bird Shapes in turn. To add
realism, the two birds flap their wings out of step.
This is done by subtracting the variable S (Shape
number) from 4 at lines 340 and 370. Line 350
provides a short delay between XDRAWS and the
bird Shapes are erased at lines 360 and 370.

ANIMATED BIRD EXTRA LINES

0D
DD
EE~ EEW0

sy
SO0 AN

xxm
Q00 ooo

N By
k]

OO0 000 oo

100+ NEXT 1

(]
R

X + 58.Y + 235
0
Y
AT X + S0,y + 25

T
s
T
S

(N
NGy
x
L Xxm
x

ounm
O<{X- DD
W+ +0

N

{ RNB ¢13 = :33 % 8

(S AT
=@D00
7]
-

To make the display even more realistic, the two birds
in the final display move up and down and from side to
side at random. This effect is achieved by the two
RND(1) statements in lines 390 and 400. The last line
of the program (410) then puts the program into an
endless loop.

You have probably noticed that the program does
not check to see if the random movement takes the
birds off the edge of the screen. So if you left the
program to RUN for some time this could happen,
causing the program to stop and give an error message.
However it would be fairly simple to insert extra lines
to monitor the position of the birds and take corrective
action if they stray too near the edges of the screen.
These are the lines that could be inserted to test the x
co-ordinates of the birds:

382 XI=(RND(1)—0.5)%8

384 IF X+XI < 0 OR X+XI >279 THEN
GOTO 382

390 X=X+XI

Using the same principles amend the program to test
the y co-ordinates as well.

WRITING SUBROUT INES

You will often want to repeat a few lines of a program
again and again to carry out the same calculation or to
display the same group of characters on the screen. To
avoid writing out the same lines time after time (and
using up too much of the computer’s memory) you
could branch off to frequently used sections of the
program with GOTO. However, using GOTO for this
is frowned on by many programmers because it can
quickly turn your program into untidy mazes.

The easiest program to analyze and debug is one
written methodically in blocks or “modules”, each of
which you can test independently of the others if
problems arise. If you look up the listing of a good
games program in a magazine, for example, you will
find that it works something like this:

MAIN PROGRAM SUBROUTINES
Set up screen display
B 7
Print instructi = Time delay A
program instructions ‘ = Time debo B
‘ Display A
Start program phase 1 - = Biney
= - - Time delay A
ol
Increase game speed phase 2 [+ > Display A
i - Time delay B
* -
Switch to mor; difficult game = = Ti.zlsgialzync
Final screen display = Display C
-— = Display D

How to use a subroutine

As you can see from this chart, the way around this
problem is to use subrourines. This is the name given
to frequently used modules of programs which can be
recalled by their line numbers at any time, using the
GOSUB command.

GOSUB tells the computer to branch off from the
main program in the same way as GOTO. But when
it’s finished the subroutine, it will return to exactly the
point in the program from which it branched to the
subroutine. The command is used like this:

50 GOSUB 500

Following this command, a program would RUN
normally until it reached line 50, and then follow the
instruction to GO to the SUBroutine at line 500. After
it had performed the statements in the subroutine it
would return to the line after line 50 in the main
program (usually line 60). Subroutines always end

with RETURN. Without RETURN, your Apple would
follow all of the statements from line 500 to the end of
the program.

You can use GOSUB in almost any program where
the Apple has to repeat an operation. The next
program produces a temperature-conversion chart
using Centigrade, Fahrenheit and Kelvin. The sub-
routine at line 80 makes the Apple PRINT out a line of
the table, produce a beep on the speaker and then
RETURN to line 60. The command END at line 70
stops the program from carrying on into the sub-
routine when the FOR. . .NEXT loop has finished. If
you miss out END, the computer will reach the
RETURN command at line 100 and produce an error
message because it has been told to RETURN without
a previous GOSUB instruction.

The subroutine in the listing below is inside a loop
so that it is “called” several times.

| TEMPERATURE CONVERSION PROGRAM

i"C"J TABC 19);

WA
o oo

TO 1S5@ STEP 1@

TAB? 3837¢¢¢

WL
OOR®

LT88¢.5355

CHRS$ <72,

o =g
¥ O
L]

s e DIV B N | | | |

NaWN=0D00DR0DOO

In the TEMPERATURE CONVERSION PROGRAM
the subroutine is not actually saving any space. How-
ever, if you extended the program to carry out other
functions, the subroutine could save both space and
memory, and clarify the program.

Setting up “menu” displays with GOSUB
Many programs start with a “menu” and ask you to
select one of the options; the choice is often pro-
grammed using GOSUB. When you enter your
selection, the program goes to the appropriate sub-
routine and sets up the display you have chosen. Here
is a simple listing to do just that:

MENU PROGRAM

T ‘E?EELﬂY 1 0RZ2 T ":in

= HB = 1'G= 2:§S =
usarggue-:c-ss-
0s

L2101
< AUK
DNC-

ror n (2]
n 0 ﬂ*OﬂQ

=<

Bldhye

@
M i

TZOMWTOZM

MMoOOMBOO OO -

t CALL 62454
3?0‘273%

,$39,7g,49 sTer 3

OSSO0

DZIMIZINIT

=Uro0Xro0r0 D
=0

W WNRRNNNNNNNG U
c=0

n OVONOURWNN-DD

This program can set up two simple displays. One of
them is illustrated below. The colors in each display
are produced by a subroutine — your INPUT following
line 20 determines which colors are displayed. If you
were using this subroutine in a real games program,
you could GOSUB to this subroutine often with
different values for the variables B, G and S.

MENU PROGRAM DISPLAY

The next program HPLOTs a trap and then XDRAW's
aliens falling from random points at the top of the
screen. If an alien falls into the trap, line 210 directs
the computer to go to the subroutine at line 230. This
erases the aliens and restarts the program:

GOSUB ANIMATION PROGRAM
Al

gt {g i
é;,ggg ! 53

53 63
gség
§§ 4255? i52,

;E Tg 768 + N

RS Rt

28.188 TO
X 10> x 26
170 STEP S
¥ Z = PEEK ¢ -
.Y

GOsSuUB 23@: GOTO

]
L]

Hi
1
£

PR AORdet b i o
oA
oD

SO =HO0
e OO0

=3
PEEK

n
7]
®

DEIAIT MIO==DZT XXM
mm T OOO=TIDMOMN
=X I 0=0 DXDUDDD

~
-1

(")
L]

SPECIAL SCREEN TECHNIQUES

The Apple has two commands for highlighting charac-
ters displayed on the TEXT screen. Using these
commands you can display selected PRINT com-
mands in flashing or inverse (black on a white back-

FLASH AND INVERSE PROGRAM

W DN S o
T 0O000D05O
ZVZ V=TT

ground) characters. This program turns on the flash-
ing mode in line 30,.with the BASIC command
FLASH. All characters PRINTed after this will
FLASH on the screen. The command at line 50 turns
on the inverse display mode with the command
INVERSE. This command works in the same way as
FLASH. The normal mode of operation is restored on
line 70 with the command NORMAL. This state-
ment cancels whichever of the special modes —
FLASH or INVERSE — is in operation. If neither of
these modes is set, then NORMAL will have no
effect.

FLASH, INVERSE and NORMAL are useful for
drawing attention to information displayed on the

screen. For example, a FLASHing display could warn
of a dangerous situation such as “Low on Fuel”.

Enhancing a text display

In the next example, random numbers are generated
using the RND(1) command. A check is made at line
130 to see if the number can be divided exactly by 3. If
it can, the number is displayed in INVERSE.

DIVIDING BY THREE |

e

L00DEE =

1 TO 20

: PRINT = =,
t PRINY » &

QDML

=3 T 9
=
T 2 ;ND €1) x 180 + 1)

o0

INT €N - 3> THEN
TAB H * 6 + 2: PRINT

- b)
®

[T

i SNOA B g =D

bl
u

I

8! (b=

(T
B L)

Lines 10 to 80 PRINT a white border round the
outside of the screen. The program does this by
PRINTing spaces in INVERSE mode — an INVERSE
space shows as a solid white block on the screen.

How to create “flicker-free” animation

You will have noticed that when you animate Shapes
on the screen the display sometimes flickers. This
flickering becomes more noticeable as you SCALE
Shapes to larger sizes because it takes longer and

longer for the Apple to XDRAW the Shape on the
screen.

Fortunately, there is a way around this problem.
Key in this program and then RUN it:

" CITY APPROACH PROGRAM

0 D o
DB
™

O=TTOOZ I DU=DU- D

D

TOULN: Bbs ~ O » HO
- A VIO GIA BT A

= ~ & . e
TN OIO- 0O ~ Nv AOO- U0 *
®0
@ o Of- O BWOR: O

©® D - -
m

You will notice that the flickering becomes quite
severe and spoils the effect of the “aircraft approach”
as the SCALE increases.

As you know, the Apple has two hi-res screens,
selected by HGR and HGR2 and it is possible to
program the computer to alternate between these
screens and so eliminate the flicker. If you XDRAW
on screen one whilst displaying screen two, and then
display the new XDRAWing on screen one while the
computer re-XDRAWS on screen two, the flicker will

disappear.
A good way to write this program is to set up
subroutines — one to draw on screen one whilst

displaying screen two, the other to do the reverse. If
you key these extra lines into the program you will see
this “smooth” animation in action:

SMOOTH ANIMATION LINES |

The subroutine at line 500 POKEs a special memory
address which makes the Apple display the second hi-
res screen. At line 510 it POKEs a value into yet
another special address which makes all HPLOTs,
DRAWSs and XDRAWS take place on graphics screen
one. Line 520 sets the SCALE and x co-ordinate to the
value of variables S1 and X. These are reserved to
store these two values for graphics screen one. Finally
the subroutine XDRAWS the Shape and RETURNS.
The subroutine at line 600 does the same thing, except
that it displays screen one and XDRAWS on screen
two.

The main program is between lines 100 and 210.
First, the two subroutines are called to XDRAW the
Shapes, and then the FOR. . .NEXT loop at line 150
increases the SCALE wvariable, S. Notice how the
variable HG is used as a “switch” which the IF. . .
THEN statements at lines 160 and 170 use to decide
which subroutine to call. The variables S1, S2 and X
are set to the correct values before calling the sub-
routines:

SMOOTH ANIMATION DISPLAY

L = o

§7322°,.

5982563=Sl
SUB _6©88:52
- 1

GOsSuB

M N~
o8 000
wn

- 1§295.0

é? T o
20,0

: |
G ouage - o2 v 10

DOEFEINOOIEE @
AXNTVVOXNTUMZ = =Ty
mMOOCoOmMOOOOZIMI T I oS
=DDAXR~ADDAEOX

W OONOONNANNNR = = gpa
BUNHDANNSD=D ~

[

PEEK, POKE AND CALL

On page 47, you saw how to use the command CALL
to summon a program from the Apple’s ROM; it filled
the hi-res screen with color. But there are also other
more useful programs in ROM which you can use with
the CALL statement. All of these are “machine-code”
programs. In other words, they are instructions which
the Apple can obey directly — unlike BASIC which it
has to “interpret”. Although some programmers do
write in machine code to achieve speed and compact-
ness, machine code programs are notoriously difficult
to write and debug.

Clearing the screen with CALL

Imagine a screen full of text, and your cursor
somewhere in the middle. Now suppose you wanted to
clear the screen from the current cursor position to
the end of the screen. You could do this by writing a
subroutine to PRINT space characters over all the
existing text on the screen. But the result would be
rather slow and you would see the cursor as it moved
along over-PRINTing the text. The subroutine would
also take up some space in the memory.

A better way of clearing the screen is to use a CALL
command to activate one of the programs stored in
ROM. Try typing CALL —958. This will clear the
Apple’s screen from the current cursor position to the
end of the screen. A list of CALLs and their functions
is given below:

TABLE OF CALLS

CALL address Function

—936 Clears the text window

—958 Clears the text window from the current
cursor position to the end

—868 Clears a line from the cursor position to the
right of the text window |

—992 Moves the cursor down a line

—-912 Scrolls the text screen up one line

—1994 Clears the low-res graphics screen leaving
four lines of text

62450 Clears hi-res graphics screen to black

62454 Clears hi-res graphics screen to the last
plotted color

Introducing PEEK

Programs written in machine code cannot use variables
in the way that BASIC programs do. Instead the
programmer has to reserve memory addresses to store
numbers and strings — as you had to with Shapes.
POKE is the only way that a BASIC program can
place a value at a reserved address for a machine code
program Lo use.

The BASIC command which does the opposite of
POKE is aptly named PEEK. This allows you to
retrieve a value from an address and store it in a
BASIC variable. Try this:

HTAB 20:CH=PEEK(36)
PRINT CH

The value stored at address 36 is the horizontal cursor
column. Type in this program which illustrates the use
of PEEK, POKE and CALL.:

TEXT WINDOW PROGRAM

°TOT

DOOMHDODO

Bl
Se0
OGN DOERRTIN M

VIDZZ

Z=CI- VT OTVO

me

5
6
?
]
9
1
1
1
|
1
;]
1
1
1

WY OO AW N=O0000%

o0 00 O OO0

e
]

This program moves a TEXT “window” across the
Apple’s screen, using the FOR.. .NEXT loop
beginning at line 10. First, it fills the screen with
asterisks and then sets the window at lines 70 to 100. It
does this by POK Eing values into the addresses which
are reserved for the top, bottom and left screen
margins, and the display width. The CALL at line 110

TEXT WINDOW DISPLAY

¥ 9
Bl

4 DM M
4 9 0

26 IEFE B 3B
e D

A Ra kst akanaketokoteton s d 2 L T T

S8 P B
-4 363 36 3 36 6 26 366 34 336 542436 1 24
66 HE B I3)

¥ 3 ¥
HE e DI

clears the screen but only inside the TEXT window.
The program PEEKSs to find the top and bottom of the
TEXT window at line 120 and then fills the window
with “+” signs. CALL —958 in line 160 is then used
to clear the bottom half of the window.

The table below, describes the functions of various
PEEKSs and POKEs:

duration. The FOR. . NEXT loop at lines 50 to 70%
steps through all the pitches that can be produced.
The subroutine at line 200 makes the sound, by first
POKEing the pitch (variable N), then the duration
(variable D) and then CALLing the machine-code
program.

The first thing you’ll notice when you RUN this
program is that the duration of the sound gets longer
as the pitch decreases. A correction factor is needed to
make all sounds have an equal length. This correction
could be added to the machine-code program, but it
would make the program longer, and less convenient
to turn into DATA. The next program shows the
correction factor added in BASIC, at line 200:

TABLE OF PEEKS AND POKES
Address Function
32 Left screen margin
33 Screen width
34 Top screen margin
35 Bottom screen margin
36 Cursor horizontal position
37 Cursor vertical position

Making music

As well as CALLing machine-code programs that are
already in the Apple’s ROM, you can POKE your own
machine-code program into RAM and then CALL it.
Unlike a lot of personal computers, the Apple does not
have any BASIC commands for producing sounds and
music on its speaker. You can produce a sort of
buzzing noise using PEEK, as you did in the LASER
ATTACK PROGRAM on page 49, but here is a
machine-code program to make more melodic sounds:

MACHINE-CODE MUSIC PROGRAM

-
(=}
T

MIO0X AT DM~

:
i
|
|

TMZoT

=200
(=]
mz
DOVZM I OMMO©-

-1 1]

3
4
2
e
£
8
-
2
2
A=

The machine-code instructions are held in the DATA
at line 10. Don’t worry about the details of how
machine code works or what the DATA represents —
the advantage of CALL is that it allows you to use
machine code without having to worry about its
complexities.

The machine code is POKEd into RAM by the
FOR. . .NEXT loop at lines 20 to 40. The program
starts at address 770 and has two reserved addresses —
768 for the pitch of the sound and 769 for the

ADDITIONS FOR EQUAL-NOTE DURATION

-]
o

=]
ZMOoO immog-

DT B bty
SOOSDIHS
XMZOm ZaM

-]
mpo0 | IDXNA XDOi-

0700

2
2
5
2
. |

I I L
oee®

= 3

When you RUN this program it will produce sounds
of equal duration over the range of pitches set by the
FOR. . .NEXT loop.

It is now a simple matter to get the Apple to play a
tune. The notes and their durations can be turned into
DATA and played in turn:

TUNE PROGRAM

-
-]
=]
b

WX DN

OCZIO~ &+

ozam
- WOMMom-

<D

D

LFYNNY
D000
D=0 -~

KOCr=T
XOTVL Qomm-

.56 - 4 (N % S
= E) x 96 + G.S)E

+ POKE 769.0D

MIDOO | =) Dhoss

ZNNNHZO -
NN o @ O~
Q== O

Hl=- DOODDO
@
—“r=Ax

e OO
RIS

HINTS AND TIPS

While learning to program your Apple, you will
discover, through trial and error, ways to improve
your technique. However, there are ways of saving
time and sorting out problems which may not be
immediately obvious. So here are a few hints to help
you produce well-organized, bug-free programs.

Using REM as a marker

The computer ignores lines that begin with REM -
this can be useful for labeling and testing parts of a
program. However, when a program gets really long it
is sometimes difficult to spot the REM labels among
all the other lines. So it helps if you surround REMs
with stars that are easily seen:

260 REM s oo de s e e e e s s de e e e e ok e de ok

270 REM SHAPE TABLE FOR ANDROID

Using REM as a mask

REM can also be useful in program development. It
enables you to observe what happens when certain
lines are omitted from a program.

You can skip sections of a program by using GOTO
or RUN followed by a line number, but this won’t
help if you just want to miss out a few lines in the
middle. The way to deal with this problem, without
deleting lines, is to insert a REM command at the
beginning of each of the lines you want to skip. This
will “mask” or ““disable” them.

How to check for tangled loops

When a program has a number of loops it is easy to get
them tangled, and if they are, the program won’t
produce the results you want. But there is an easy way
to check whether the loops are correctly “nested”:

I LINKING LOOPS

TMNZIIONMTO

B WN-D000000800
ZZIO00OMMOOOOR
MMMONNAX XD

oo

1
2
3
4
5
8
8
9
1
1
1
1

Write the program down (or better still use a printer)
and then use a pencil to link the beginning of every
loop with its end. If none of the lines overlap, as in the
program opposite, then the loops are functioning
correctly. If they do, you have probably found the bug
in your program.

Debugging techniques

The Apple has a large repertoire of error messages
which will alert you to any incorrect lines in a
program. However, a program will often RUN with-
out any hitches, only to produce an entirely different
result from the one you had in mind.

If this happens and checking loops and using REMs
doesn’t help, try giving each variable a single fixed
value instead of allowing them to run through a
number of values.

Imagine, for example, that you have a graphics
program which uses the command RND(1) to produce
a random-color display in a loop. If it doesn’t work
correctly take out RND(1), and insert a fixed value
instead. Then use REM to mask out the lines that start
and terminate the loop and if the result of a single
RUN through is not what you predicted, the display
should give you some idea where the program is going
wrong. Here is the RANDOM GRAPHICS
PROGRAM, from page 43, edited for testing:

PROGRAM EDITED FOR TESTING

15: REM INT ¢ RND <1
REM INT < RND <1> %x 48
REM INT ¢ RND <15 *x 4

W P
o o9

58
68
78
I=

Finally, don’t forget that CTRL-C can be helpful in
telling you how far the Apple has got through a
program. If you RUN a program which either seems
to do nothing, or gets stuck at a certain point, press
CTRL-C and a message will tell you where the hold up
is. You can PRINT and change variables after typing
CTRL-C and then use the command CONT to
CONTinue RUNning the program.

LN
H
ic
L

R AdD

T we i

L -

i e L L |

graphics of any

The gnds below show the co-ordinates of the screen ordinate sets the vertical position which is measured
display for low-res (GR), hi-res (HGR) and hi-res 2 from the top of the screen down. The co-ordinates
(HGR?2) graphics. A point on the screen is identified (30,15) therefore locate a point which is 30 places
by two co-ordinates, x and y. The first co-ordinate sets across the screen from the left and then 15 places
the horizontal position which is measured along from down. On the low-res and hi-res screens, four lines at
the left-hand side of the screen. The second co- the bottom of the screen are reserved for text.
LOW-RES GRAPHICS GRID
In order to produce 0 5 10 15 20 25 30 35 30
0 T I
complexity on the Apple
you have to use one of
the two hi-res graphics 5
modes — HGR or HGR2.
Both screens permit you
to plot tiny “points” 10
instead of the “blocks”
that are plotted on the i I
low-res screen, but 15 . 1 !
HGR2 produces a full- i | 1
screen display whereas '
HGR leaves four lines for 20
text at the bottom of the
25
30
35 |
39 |
HI-RES GRAPHICS GRID HI-RES 2 GRAPHICS GRID
279 5 0
i I il
Mgssingis! "Ir I .'f .'I‘|]Jfli |III|"1I flr |
il i Lt i1 il '.“ i :
X .' i il ..-JJI"HH et et il Wit
a1 |J| HHHE] i T]|
H I'.Iai:" ml'l' Ifl“ il Ir, i fl i
"'JJIJI.Ir f:lll};ir"' 'ill'.{l |'H'I/!J[JIFH?LI)J|"EIFI;IJ'-'I".Jl-‘-llrfl: TW.J II[”':!;;}%J j
i il ,,%
|','|! It I-..l!f “”1‘ ! i ']’

screen.

159 |—

191

it 1
H
| "I
m . N
’r 11
J

I‘I!(;'f!a;f?; 'ﬁ. T

1! ﬁ.a}!lr

i
il

Entries in bold type are BASIC keywords.

Address: A number used to identify a location in the
computer’s memory.

BASIC: Beginner’s All-purpose Symbolic Instruction Code;
a high-level programming language designed to be easy to

learn and use.

Binary: The counting system used by computers which uses
only two numbers — 0 and 1.

Bit: A single Blnary digiT, i.e.a0ora 1.
Bug: An error that causes a program to malfunction.
Byte: A group of eight bits.

CALL: Executes a machine-code subroutine at the
specified memory address.

CAT: Short for “Catalog”; the ProDOS command which
displays a list of all the files stored on a disk.

CATALOG: The DOS 3.3 equivalent of CAT.

Chip: One of the components that plugs into the Apple’s
printed circuit board and contains a complete electronic
circuit. Also called an integrated circuit (IC).

CHRS: Yields the character corresponding to the
subsequent ASCII code.

COLOR: Sets the display color for PLOTting low-res
graphics.

CONT: Resumes program execution after it has been halted
by STOP or CTRL-C.

CPU: Central Processing Unit. The component of a
computer that performs the actual computation by directly
executing instructions represented in machine-code and
stored in memory,

CTRL-C: When pressed simultaneously these two keys halt
a RUNning program.

Cursor: A flashing symbol on the Apple’s screen that shows
where the next character will appear when a character key is
pressed.

DATA: Creates a list of items for use by READ statements.
Debugging: The process of ridding a program of bugs.
DEL: Deletes specified lines from a program.

DRAW: Draws a previously-created Shape at a specified
point on the Apple’s hi-res graphics screen.

W

END: Terminates the execution of a program and returns
control to the user.

ESC: A control character which changes the way in which
the cursor keys work for editing programs.

FLASH: Makes any subsequent text flash on the screen.

Flowchart: A diagrammatic representation of the steps
necessary to solve a problem.

FOR. . .NEXT': Marks the beginning and end of a loop
which the computer repeats a specified number of times.

Function: A pre-programmed calculation that can be
carried out on request from any point in a program.

GOSUB: Causes the computer to execute a subroutine
beginning at the line number that follows the command.

GOTO: Makes the computer jump to the line number
following the command.

GR: Converts the display to 40 rows of low-res graphics
with four lines of text at the bottom.

Hardware: The physical machinery of a computer system,
as distinct from the programs (software) that RUN on the
computer and perform useful work.

HCOLOR: Sets the display color for plotting hi-res
graphics.

HGR: Converts the display to 159 rows of hi-res graphics
with four lines for text at the bottom.

HGR2: Converts the display to full-screen (191 rows) hi-res
graphics with no text lines.

HIMEM: Sets the HIghest MEMory address that the Apple
can use to store program lines and variables and therefore
reserves an area of memory to store Shapes or DATA

or machine-code.

HLIN: Draws a horizontal line in low-res graphics.
HOME: Clears all text from the text window currently in

operation and moves the cursor to the top-left corner of the
window.

HPLOT: Plots a point or a series of lines on the hi-res
graphics screen,

HPLOT TO: Draws a line from the last plotted point.

HTAB: Moves the cursor to a specified column of the
TEXT display.

IF. . .THEN: Prompts the computer to take a particular
course of action only if the condition specified is detected.

INPUT: Instructs the computer to wait for some DATA,
from either the keyboard or the disk, which is then used in
the program.

INT: Converts a decimal number into a whole, or integer,
number.

INVERSE: Makes any subsequent text appear in black-on-
white on the screen.

k: Abbreviation of kilobyte (one kilobyte = 1024 bytes).

LET: Assigns a value to a variable.

LIST: Displays all, or part, of the program in memory on
the screen. It can also output a program to a disk or to a
printer.

LOAD: Reads a program into memory from disk.

Loop: A sequence of program statements which is executed
repeatedly, or until a specified condition is fulfilled.

NEW: Clears the current program from memory and resets
all variables and internal control information to their initial
states so that a new program may be entered.

NORMAL: Cancels the effect of INVERSE or FLASH.

PEEK: Yields the contents of a specified location in
memory.

PLOT: Plots a point at a specified position on the low-res
graphics screen.

POKE: Stores a value at a specified location in memory.

PRINT: Transfers strings, numbers and variables to the
current output device. This is most commonly the screen
but it can also be used with the disk or printer.

RAM: Random Access Memory. The contents of RAM are
erased when the Apple is switched off.

READ: Instructs the computer to take information from a
DATA statement.

REM: The computer ignores a program line beginning with
REM. REM therefore enables the programmer to insert
reference REMarks.

RESTORE: Causes the next READ statement executed to
begin READing at the first item of the first DATA
statement in the program.

Return: The Return key, on the right hand side of the
keyboard, enters a command or program line into memory
after it has been typed on the keyboard.

RETURN: The RETURN command returns control from
the subroutine to the statement following the GOSUB that
called the subroutine.

RND: Yields a RaNDom number.

ROM: Read Only Memory which is programmed

permanently by the manufacturer and whose contents are

ROT: Sets the angle at which a Shape will be ROTated

before it is DRAWn or XDRAWn.
RUN: Executes an Applesoft program.
SAVE: Writes the program currently in memory to a disk.

SCALE: Sets the scale factor to which a Shape will be
DRAWn or XDRAWn.

SCRN: Returns the code for the color currently displayed
at a designated position on the low-res graphics screen.

Shape: A Shape, described and saved in coded numbers, that
can be DRAWn on the hi-res screen.

Software: Computer programs.

SPC: Introduces a specified number of SPaCes.

SPEED: Sets the speed at which characters are sent to the
display screen. The slowest rate is 0 and the fastest is 255.

SQR: Returns the SQuaRe root of the number that follows
it.

STEP: Sets the size of the increment in a FOR. . .NEXT
loop.

STOP: Terminates the execution of a program at the point
where it appears in the listing and gives a message identifying
the line in which itappears.

String: A sequence of characters treated as a single item — a
name for instance.

Subroutine: A part of a program that can be executed on
request from any point in the program.

Syntax: The rules governing the structure of statements and
commands in a programming language.

TAB: Positions the cursor to a specified position on the
screen. It is used with a PRINT statement.

TEXT: Converts the display to 24 lines of text.

Variable: This term refers to a labeled slot in the
computer’s memory in which information can be stored,
and also to the symbol used in a program to represent
such a location.

VLIN: Draws a Vertical LINe on the low-res graphics
screen,

VTAB: Moves the cursor to a specified row of the TEXT
display.

XDRAW: Draws a Shape at a specified point on the hi-res
screen in the complement of the color already displayed at

not lost when the Apple is switched off. that point.

RS

Main entries are given in
bold type.

Addition 18
After-images 36
Animation 36-7
flicker-free 56-7
Shapes 48-9, 53
Applesoft BASIC 6, 8

BASIC6, 8, 20, 58

Binary system 8

Bits 8

Booting 14-15

Bugs 25 _
see also Debugging

Byte 8

Calculations 18-19
limitations 19
round numbers 31
specifying a sequence

of 19

CALL 58-9

CAPS lock 10

CAT 27

CATALOG 27

CHR$ 41

COLOR 32, 34

Color numbers, high-
resolution 39
low-resolution 35

Commands 14, 20

CONT 60

Control characters 41

CPU (Central
Processing Unit) 8,9

CTRL 10

Cursor, moving 10, 11,
24

DATA 44-5

Data banks 44-5

Debugging 60

DEL 11, 23

Decision points 40-1

Disk drive 12-13

Disk interface card 12,
27

Disks, crashing 12
drive motor 13
formatting 26-7
master 14

Dividing 18

DOS 3.3 14,26

DRAW 46

Editing 24-5

Error messages 14, 25

Errors, correcting 24-5
typing 21

ESC 10, 24

Expansion slots 8, 9

Exponents, calculating
18

Fields, screen 16-17
FLASH 56

Floppy disks 12-13
Flowcharts 21
FOR...NEXT 30-1, 40
Formatting disks 26-7
Function keys 11

GOSUB 54-5
GOTO 23, 30, 54, 60
GR 32
Graphics 32-3
advanced techniques
52-3
animation 36-7, 48-9,
53,56-7
COLOR 32, 34-5
grids 61
high-resolution 32,
38-9,61
multiple lines 38-9
random displays 43
Shapes 46-7, 48-9,
50-1
Graphs, color 34

HGR 38, 61

HGR2 52,61

High-resolution
graphics 32, 38-9, 61

HIMEM: 51

HLIN 32-3

HOME 14, 20

HPLOT 38-9

HTAB 16-17, 29

IF...THEN 40-1

INPUT 28-9, 44

INT 31

INVERSE 56

IOU (input/output unit)
8

Keyboard 10-11
Kilobytes 8

LET 15

Lines, numbers 20
plotting multiple 38-9
removing 22-3

LIST 22-3

LOAD 27

Loading 14-15

Loops 30-1, 40-1
slowing down 31
stopping 30-1
tangled 60

Machine code 8
Master disks 14
Menu displays 55
Microprocessor 8
Multiplying 18
Music 59

Nested loops 60
Never-ending loop 30
NEW 20-1
NORMAL 56
Numbers, random 41,

42-3

round 31

see also Calculations

Open-Apple 11
Operating systems 12
Overflow error 30

PEEK 58-9

Peripherals 6-7

PLOT 32, 34, 36-7,43
POKE 25, 51, 58-9
Power supply 7,9, 11
PRINT 14-15, 16-20, 28
ProDOS 14, 26-7
Program, definition 20
Punctuation 21, 24

RAM (Random Access
Memory) 8,9, 12, 26

Random numbers 41,
42-3

READ 44-5

Read/write head 12, 13

REM 20, 60

RESET 10, 11, 14

RESTORE 45

RETURN 10, 11, 54

RND41,42-3

ROM (Read Only
Memory) 8,9

ROT 46-7

Rotating Shapes 46-7

RUN 20-1, 22, 23, 60

SCALE 46
SAVE 26-7
Screen, clearing 14, 58
fields 16-17
special techniques 56-7
SCRN 35
Shapes 46-7
animation 48-9, 52
storage 51
tables 50-1, 53
testing 50-1
Shift keys 10, 11
Solid-Apple 11
Solid figures 39
SQR 18
Start-up routines 14-15
STEP 52
Storage, programs 26-7
Shapes 51
strings 44
Strings, storage 44
variables 15
Subroutines 54-5
Subtraction 18

TAB 16-17

TEXT 32, 56, 58-9
Tracks, on disk 12
Typing errors 21

Variables 15
string 15
VTAB and HTAB
with 17
VLIN 32-3
VTAB 16-17, 29

Write-protect notch 12
XDRAW 48

Acknowledgements
Dorling Kindersley
would specially like to
thank Ian Graham for
his significant
contribution to this
series.

Thanks are also due
to Apple Computer
(UK) Ltd for their
advice and generosity,
Caxton Software Ltd for
a copy of Brainstorm and
Emily Reed for her help
at every stage in the
preparation of this book.

o

PRENTICE
HALL

COMPUTERS ::'{['
q
L

