
Mouse
#1: Interrupt Environment with the Mouse 1 of 1

Apple II
Technical Notes

Developer Technical Support
Mouse
#1: Interrupt Environment with the Mouse

Revised by: Matt Deatherage November 1988
Revised by: Rilla Reynolds November 1985

This Technical Note describes the interrupt environment one should take into account when
programming mouse-based applications on the Apple II family of computers.

Software developers who are writing mouse-based programs in assembly language need to be
concerned about the computer’s interrupt environment, even if they are using the mouse in
passive mode. Listed below are several conditions which assembly language programmers
should take into account if their programs are to run on the Apple II family of computers.

• Do not disable interrupts unless absolutely necessary. If you disable them, be
sure to re-enable them.

• Disable interrupts when calling any mouse routine. Always use PHP and SEI to
disable interrupts, then use PLP to re-enable them. This method preserves the
state of interrupts (enabled or disabled).

• Do not re-enable interrupts (PLP) after a call to ReadMouse until X and Y data
have been removed from the screen holes.

• Disable interrupts (PHP and SEI) before placing position information in the
screen holes (PosMouse or ClampMouse).

• Enter all mouse routines (except ServeMouse) with the X register set to $Cn
and Y register set to $n0, where n = the slot number.

• Some programs need to disable interrupts for purposes other than reading the
mouse. If interrupts are disabled then re-enabled, the first call to ReadMouse
could return incorrect values; subsequent calls to ReadMouse will return correct
values until interrupts are disabled and re-enabled again. Disabling interrupts for
mouse calls does not create this problem. If you watch numbers from the mouse
while moving it in a direction which would increase values, you would see
something similar to: 6, 7, 8, 9, 8, 9, 10. In practice, this momentary “glitch” in
the stream of data has little importance. If you feel you must avoid this glitch
altogether, do not disable interrupts for more than 40 microseconds or make sure
that at least one mouse interrupt takes place after re-enabling interrupts.

Mouse
#2: Varying VBL Interrupt Rate 1 of 1

Apple II
Technical Notes

Developer Technical Support
Mouse
#2: Varying VBL Interrupt Rate

Revised by: Matt Deatherage November 1988
Revised by: Rilla Reynolds November 1985

This Technical Note describes a method to make the AppleMouse peripheral card interrupt at a
rate other than the default 60 Hz. This method does not work on the Apple IIc or IIGS.

This Technical Note describes a previously undocumented call to the AppleMouse II firmware
which allows the user to set the interrupt rate to 50 or 60 Hz. (The default is 60 Hz, which keeps
the card-generated VBL interrupts synchronized with the actual VBL rate on standard North
American Apples; European Apples use 50 Hz as a standard.)

Call: TimeData
Offset Location: $Cn1C
Input: Accumulator bit 0: 0 for 60 Hz

1 for 50 Hz

Note: All other accumulator bits are reserved, and must be set to 0.

Output: carry bit clear
screen holes unchanged

You must make this call just prior to calling InitMouse to be effective. If you want to change
the interrupt rate in the middle of an application, you must call TimeData with the appropriate
value in the accumulator, then call InitMouse (which generates an interrupt). InitMouse
resets the mouse position, mode, clamps, etc. to their default values. If you fail to call
TimeData, InitMouse will use a default interrupt rate of 60 Hz.

Note: This call exists only on the AppleMouse card for the IIe or][+ and should only be
used when you know you are working with a IIe or][+. A user may configure a
IIGS to 50 Hz by holding down the Option key while rebooting. The standard
North American Apple IIc will not generate 50 Hz VBL interrupts.

Mouse
#3: Mode Byte of the SetMouse Routine 1 of 1

Apple II
Technical Notes

Developer Technical Support
Mouse
#3: Mode Byte of the SetMouse Routine

Revised by: Matt Deatherage November 1988
Revised by: Rilla Reynolds November 1985

This Technical Note explains the results of turning the mouse on and off through the mode byte
of the SetMouse routine.

What Turning the Mouse Off Does

In the description of SetMouse and the mouse mode, the low-order bit of the mouse mode is
said to control mouse off and mouse on. This terminology is somewhat misleading. When this
bit is set to 0, the mouse is off only in the following respects:

1. The mouse position is not tracked; any mouse motion is ignored.
2. ReadMouse calls do not update the status byte or the screen holes, except on the

IIGS, where ReadMouse always functions the same, regardless of mouse on or
mouse off.

3. Button and movement interrupts are not generated, regardless of the other mouse
mode bits. Pure VBL interrupts can still be generated, however, if bit 3 is set.

What Turning the Mouse Off Does Not Do

Other mouse functions will continue to work as usual when the mouse is off. PosMouse and
ClearMouse will change the mouse position, ClampMouse will set new clamp values, etc.
In particular:

1. Turning the mouse off and on with the mode byte does not reset any mouse
values, including position. The mouse position retains the last values it had
before the mouse was turned off until it is turned on again.

2. A mode byte of $08 (mouse off but VBL interrupt on) will generate VBL
interrupts.

Further Reference
• Apple IIGS Firmware Reference
• Apple IIe Technical Reference Manual

Apple II Technical Notes

2 of 1 Developer Technical Support

• Apple IIc Technical Reference Manual, Second Edition

Mouse
#4: Mouse Firmware Bug Affecting ServeMouse 1 of 1

Apple II
Technical Notes

Developer Technical Support
Mouse
#4: Mouse Firmware Bug Affecting ServeMouse

Revised by: Matt Deatherage November 1988
Revised by: Rilla Reynolds January 1985

This Technical Note documents a bug in the mouse firmware on the AppleMouse card which
affects the way ServeMouse works.

There is a bug in the AppleMouse II 6805 firmware which may affect the way ServeMouse
works in an application. If the application takes more than one video cycle (normally about 16
ms) to respond to a mouse-generated interrupt, then ServeMouse will not claim the interrupt.
The 6805 returns an interrupt status byte of $00 (i.e., no mouse interrupt pending), and the 6502
firmware sets the carry bit (although the interrupt is also cleared by the ServeMouse call).
This situation can be confusing, and under ProDOS or Pascal it can be lethal. We have identified
the following solutions, any of which should work:

If you are not working under an established operating system (i.e., ProDOS or Pascal):

1. Do not allow unclaimed interrupts to be fatal to your application. Ignore them.
2. Always service mouse interrupts within 1/60 of a second. If you are forced to

disable interrupts for a longer period, first use SetMouse to set the mouse mode
to 0, then call ServeMouse to clear any existing mouse interrupt. After
interrupts are re-enabled, restore the mouse mode.

If you are working under an established operating system (i.e., ProDOS or Pascal) for which
unclaimed interrupts are fatal and the mouse is not the only interrupting device:

1. Write the mouse interrupt handler to claim all unclaimed interrupts and make sure
the mouse interrupt handler is installed last, otherwise the interrupt will never get
through to any interrupt handlers which follow that of the mouse.

Note: This solution may cause cursor flicker by delaying the application’s response to
VBL interrupts.

2. Write a spurious interrupt handler (also known as a “daemon”), not associated
with any device, which claims all unclaimed interrupts (i.e., clears the carry bit
then exits). For the reason just mentioned, this interrupt handler must be installed
last.

Apple II Technical Notes

2 of 1 Developer Technical Support

Note: Under ProDOS, this limits the number if interrupting devices to three.

This bug exists in the AppleMouse card, therefore you must deal with it when you are writing
eight-bit programs for the Apple][+, IIe, IIc and IIGS which use the mouse. The Apple IIGS does
not have this bug in its internal mouse firmware, so sixteen-bit “native” mode programs are not
affected by it.

Mouse
#5: Check on Mouse Firmware Card 1 of 1

Apple II
Technical Notes

Developer Technical Support

®

Mouse
#5: Check on Mouse Firmware Card

Revised by: Matt Deatherage November 1990
Revised by: Rilla Reynolds November 1985

This Technical Note formerly described a protocol which allowed applications to check a device
which matched the mouse firmware identification for support of interrupts.
Changes since November 1988: Added the mouse ID bytes since they are no longer included in
other documentation.

The convention formerly described by this Note has been removed since it conflicted with the
Pascal 1.1 Firmware Protocol. The conflict could cause Pascal to believe that optional firmware
routines were present, when the card being checked was simply stating that it supported
interrupts.

Apple recommends that any mouse-type device which matches the mouse ID bytes should
support interrupts exactly as the Apple mouse firmware does. Applications which believe they
have found an Apple mouse have a reasonable right to expect that the device they actually have
found behave as an Apple mouse.

In addition to the standard Pascal 1.1 Firmware Protocol ID bytes, the AppleMouse II card is
identified by a value of $20 at $Cn0C (“X-Y Pointing device, type zero”) and a value of $D6 at
$CnFB, where n is the slot number. The $CnFB value is not part of the Pascal 1.1 Firmware
Protocol.

Mouse
#6: MouseText Characters 1 of 3

Apple II
Technical Notes

Developer Technical Support
Mouse
#6: MouseText Characters

Revised by: Matt Deatherage January 1989
Revised by: Rilla Reynolds November 1985

This Technical Note describes the MouseText character set which is available on all currently
produced Apple II computers.
Changed since November 1988: Corrected typographical errors in the BASIC and assembly
language program examples.

In unenhanced Apple IIe computers, the alternate character set contained two sets of inverse
uppercase characters. In the enhanced Apple IIe, and in all Apple IIc and IIGS computers, one set
of inverse uppercase characters is replaced by a MouseText character set. MouseText is a set of
graphical characters designed to allow Apple II computers to display a desktop metaphor on the
text screen. The Apple II Desktop Toolkit uses these characters, as do applications like
AppleLink–Personal Edition.

If your program used the set of inverse uppercase characters which were replaced by MouseText
(the set mapped to ASCII values $40-$5F), your program will display MouseText characters
instead of inverse uppercase characters on all currently-produced Apple II computers. If your
program used the other set of inverse uppercase characters (ASCII values $00-$1F), it will
display inverse capital characters as expected.

The following will help you identify if the changes affect you or not.

1. If your program is written entirely in BASIC or Pascal or your assembly language
program calls the COUT routine to put characters on the screen, you are not
affected. The only exception would be if you print (POKE) inverse characters
directly to the text screen in BASIC.

2. If your program uses the standard character set (checkerboard cursor) you are not
affected.

3. If your program is using the alternate character set (solid cursor) and is directly
storing values (via POKE) to the text display area, you will encounter problems if
your character values are in the range from 64 ($40) to 95 ($5F). To recreate the
original display, use values in the range from 0 ($0) to 31 ($1F) instead. Note that
these lower values display as inverse uppercase characters on older machines as
well.

Apple II Technical Notes

2 of 3 Developer Technical Support

Following are the methods recommended for accessing MouseText characters from various
languages:

AppleSoft BASIC

1. Turn on the video firmware with PR#3 (if under DOS 3.3 or ProDOS, use
PRINT CHR$(4);"PR#3")

2. Enable MouseText characters by printing an ASCII 27 ($1B) to the screen.
3. Set inverse printing mode by printing an ASCII 15 ($0F) to the screen.

To stop displaying MouseText characters:

1. Disable MouseText characters by printing an ASCII 24 ($18) to the screen.
2. Set normal print mode (if desired) by printing an ASCII 14 ($0E) to the screen.

This short BASIC program displays all MouseText characters under DOS 3.3 and ProDOS:

10 D$=CHR$(4)
20 PRINT D$;"PR#3": REM Turn on the video firmware
30 PRINT:REM This is so the screen won't be in inverse
40 PRINT CHR$(15):REM Set inverse mode
50 PRINT CHR$(27);"ABCEDFGHIJKLMNOPQRSTUVWXYZ@[]^_\";CHR$(24)
60 PRINT CHR$(14):END

Assembly Language

Assembly language programs are expected to follow the same procedure as AppleSoft BASIC.
Use calls to COUT to print MouseText characters to the screen. The following is a sample
assembly language program which displays two MouseText characters (which create a folder
icon), along with their inverse uppercase equivalents:

START LDA #$A0 ;USE A BLANK SPACE TO
JSR $C300 ;TURN ON THE VIDEO FIRMWARE
LDY #0 ;INITIALIZE COUNTER

LOOP LDA STR,Y ;GET VALUE
JSR $FDED ;SEND IT THROUGH THE COUT ROUTINE
INY
CPY STRLEN
BNE LOOP ;=>NOT DONE YET
RTS

STR DFB $1B,$58,$59,$18,$58,$59
;MOUSETEXT ON, SHOW, MOUSETEXT OFF, SHOW

STRLEN EQU *-STR ;LENTGH OF STR

Note: Using MouseText on the text screen by directly poking or storing MouseText
character values into the text buffer is not supported by Apple at this time.
Should the MouseText character set require remapping in the future, those
programs which use the methods outlined in this Note should still work with any
new mapping. Those which directly store MouseText values run the strong risk
of display failure under a new mapping.

January 1989

Mouse
#6: MouseText Characters 3 of 3

Apple II Pascal

1. Output a CHR(27), an escape character, to enable MouseText.
2. Output a CHR(15) to turn on inverse video.
3. Output the appropriate capital letter for the desired MouseText character.

A Pascal sample program:

PROGRAM OUTPUT_MOUSETEXT
VAR CMD:PACKED ARRAY[0..1] OF 0..255
BEGIN

CMD[0]:=27; CMD[1]:=15;
UNITWRITE(1,CMD,2); {turn on MouseText mode}
{code to display MouseText

.

.

.
}
CMD[0]:=24;
UNITWRITE(1,CMD,1); {turn off MouseText mode}

END

Pictorial descriptions of the MouseText character set may be found in the Apple IIe Technical
Reference Manual, the Apple IIc Technical Reference Manual, Second Edition, and the Apple
IIGS Hardware Reference.

Note: The pictures of MouseText characters in these manuals differ from early
implementations. In early MouseText character sets, the icons mapped to the
letters F and G combined to form a “running man.” In current production, these
letters are different pictures (an inverse carriage return symbol and a window title
bar pattern) which form no picture when placed next to each other. Programs
should not attempt to use the running man MouseText characters.

Further Reference
• Apple IIGS Hardware Reference
• Apple IIe Technical Reference Manual
• Apple IIc Technical Reference Manual, Second Edition

Mouse
#7: Mouse Clamping 1 of 2

Apple II
Technical Notes

Developer Technical Support
Mouse
#7: Mouse Clamping

Revised by: Matt Deatherage November 1988
Written by: Rilla Reynolds October 1986

This Technical Note describes the different methods available for obtaining mouse clamping
values on different Apple II family machines.

AppleMouse Card

The AppleMouse card delivers clamping values on request. There is no specific mouse routine
to obtain the clamping values, but an internal routine may be used by the mouse card to return
them. The values are returned as minimum and maximum values of X and Y clamps, both low
and high bytes.

Note: The following code is the only supported use of the $Cn1A offset into the mouse
card firmware, and this entry point is not available in any other mouse firmware
implementation.

GetClamp LDA #$4E
STA $478 ;Needed by Mouse Card firmware
LDA #$00
STA $4F8 ;Needed by Mouse Card firmware
STA Tmp ;Zero-page word for indirect addressing
LDA #CN ;$C<slot>, obtained prior to this rtn
STA Tmp+1 ;$C<slot>00, Mouse Card firmware main entry
STA ToCard+2
LDY #$1A
LDA (Tmp),Y
STA ToCard+1 ;Mouse Card firmware GetClamp entry
LDA #7
STA BytePtr
LDY #N0 ;$<slot>0, for Mouse Card firmware

GetByte LDX #CN ;$C<slot>, for Mouse Card firmware
LDA #0 ;Needed by Mouse Card firmware
JSR ToCard
LDA $578 ;Clamp byte returned by Mouse Card firmware
LDX BytePtr
STA Byte,X
DEC $478
DEX
STX BytePtr
BPL GetByte
RTS

ToCard JMP $0000 ;Operand modified by rtn

Apple II Technical Notes

2 of 2 Developer Technical Support

Byte DS 8,0
;MinXH,MinYH,MinXL,MinYL,MaxXH,MaxYH,MaxXL,MaxYL

BytePtr DS 1,0

Apple IIc

For the Apple IIc, you can get clamping values by reading the following auxiliary memory
screen holes:

$47D MinXL $67D MaxXL
$4FD MinYL $6FD MaxYL
$57D MinXH $67D MaxXH
$5FD MinYH $6FD MaxYH

Apple IIGS

On the Apple IIGS, the Miscellaneous Tool Set call GetMouseClamp returns the mouse clamp
values as four words on the stack. This call is documented in the Apple IIGS Toolbox Reference,
Volume 1.

Further Reference
• Apple IIGS Toolbox Reference, Volume 1

	1. Interrupt Environment with the Mouse
	2. Varying VBL Interrupt Rate
	3. Mode Byte of the SetMouse Routine
	4. Mouse Firmware Bug Affecting ServeMouse
	5. Check on Mouse Firmware Card
	6. MouseText Characters
	7. Mouse Clamping

