
Apple II
. With ProDOS

Customer Satisfaction

Limitation on Warranties
and Liability

Copyright

Product Revisions

If you d iscover physical defects in the manuals d istributed with an Apple product or in the
med ia on which a software product is d istributed , Apple wil l replace the documentation
or med ia at no charge to you during the 90-day period after you purchased the product .

In add it ion, If Apple releases a correcti ve update to a software product during the 90-day
period after you purchased the software, Apple wil l replace the appl icable d iskettes and
documentation with the revised version at no charge to you dur ing the si x months after
the date of purchase.

In some countries the replacement period may be d ifferent; check with your authori zed
Apple dealer. Return any item to be replaced with proof of purchase to Apple or an
authori zed Apple dealer.

•

Even though Apple has tested the software described in this manual and reviewed its
contents, neither Apple nor its software suppl iers make any warranty or representation,
either express or impl ied , with respect to this manual or to the software described in this
manual, their quality, performance, merchantabil ity, or fitness for any particular purpose.
As a result, this software and manual are sold "as is," and you the purchaser are
assuming the entire risk as to their quality and performance. In no event will Apple or its
software suppl iers be l iable for d irect, indirect, incidental , or consequential damages
resulting from any defect in the software or manual, even if they have been ad vised of the
possibi l ity of such damages. In particular, they shall no have no l iabi l ity for any programs
or data stored in or used with Apple products, including the costs of recovering or
reproducing these programs or data. Some states do not allow the exclusion or l imitation
of impl ied warranties or l iabi l ity for incidental or consequential damages, so the above
l imitation or exclusion may not apply to you.

Th is manual and the software (computer programs) described in it are copyrighted by
Apple or by Apple's software suppl iers, with all rights reserved. Under the copyright laws,
this manual or the programs may not be copied, in whole or part, without the written
consent of Apple, except in the normal use of the software or to make a backup copy.
This exception does not al low copies to be made for others, whether or not sold, but all of
the material purchased (with all backup copies) may be sold, g iven or loaned to another
person. Under the law, copying includes translating into another language.

You may use the software on any computer owned by you but extra copies cannot be
made for this purpose. For some products, a mult i-use l icense may be purchased to al low
the software to be used on more than one computer owned by the purchaser, including a
shared -d isk system. (Contact your authori zed Apple dealer for information on mult i-use
l icenses.)

Apple cannot guarantee that you wi l l recei ve notice of a revision to the software
described in this manual, even if you have returned a registration card recei ved with the
product. You should period ical ly check with your authori zed Apple dealer.

©Apple Computer, I nc. 1983
20525 Mariani Aven ue
Cupert ino, Cal ifornia 95014

Apple and the Apple logo are registered trademarks of Apple Computer, Inc.

Thunderclock is a registered trademark of Thunderware, Inc.

Simultaneously publ ished in the U.S.A. and Canada. Al l rights reserved.

Reorder Apple Product A2 L2013

Apple II BASIC Programming With ProDOS

Table of Contents

List of Figures, Tables, and Programs xi

Preface xv
xvii The Parts of ProDOS

xvi i i Req u i rements for Us ing P roDOS
xvi i i Th is Manual 's Organ izat ion

Introduction
3 Before You Start
3 M ake a Spare Copy of Examples Disk
4 Start i ng ProDOS BASIC
6 The Startu p P rocess
6 Other Ways to Start P roDOS BAS I C
7 The HELP Command
8 For Example

10 ProDOS and DOS

Files and Commands
13 About Th i s Chapter
13 Disks
14 Fi les
14 Di rectory Fi les
15 Volume D i rectory Fi les
17 F i lenames
18 Pathnames
18 The P refix and Part ia l Pathnames

Table of Contents

1

11

20 The General Form of ProDOS Commands
21 Opt ions
22 Hexadeci mal Notat ion
22 The Pathname Opt ion-[pn]
23 The Slot N u m ber Opt ion-[, S#]
23 The Drive N u m ber Opt ion-[, D#]
24 I n Summary

Using Files 25
27 About Th is Chapter
27 This Chapter 's Commands
29 The CAT and CATALOG Commands
32 The Opt ions
32 For Exam ple
34 What It A l l Means
37 The PREF IX Command
38 The Opt ions
38 For Exam ple
39 When You Use PREF IX i n a Program
40 The CREATE Command
40 Di rectory F i le S ize
41 The Opt ions
41 For Exam ple
42 The RENA M E Command
42 The Opt ions
43 For Example
43 The DELETE Command
44 The Opt ions
44 For Example
44 The LOCK Command
45 The Opt ions
45 For Exam ple
46 The U N LOCK Command
46 The Opt ions
46 For Example

BA SIC Programs in Files 47
49 About Th is Chapter
49 BASIC Program Fi les
50 Th is Chapter 's Commands
50 The - (DASH) Command
51 The Opt ions
52 For Exam ple

• Table of Contents

52 The RUN Command
53 The Opt ions
53 For Exam ple
54 The LOAD Command
54 The Opt ions
55 For Exam ple
55 The SAVE Command
56 The Opt ions
56 For Example

Programming With ProDOS 59
61 About Th is Chapter
61 Th is Chapter 's Commands
64 What Is a Startup D isk?
64 The Anatomy of a Startup D isk
65 The Startup Process
67 Us ing ProDOS From Wit h i n a Program
67 For Example
68 Debugg ing You r Programs
68 Th ings to Watch Out For
69 I ntercept i ng Messages to the D isp lay Screen
70 Read ing the Prefix
70 Hand l i ng Errors in a Program
72 Tu rn i ng Off O N E R R GOTO
72 P rob lems With O N E R R GOTO
73 1/0 From BASIC Programs
73 The C H A I N Command
74 The Opt ions
74 For Example
75 The STORE Command
76 The Opt ions
76 The RESTO RE Command
76 The Opt ions
77 For Example
78 The PR# Command
79 Star t i ng Us ing PR#
80 The Opt ions
80 For Exam ple
81 The IN# Command
81 The Opt ions
82 The FRE Command
82 For Example

Table of Contents

Text in Files 83
85 About Th is Chapter
85 This Chapter's Commands
87 Sequent ia l -Access Text F i les: An I n trod uct ion
88 Random-Access Text Fi les : An I nt rod uct ion
90 Seq uent ia l - and Random-Access Text F i les
91 Posi t ion- i n -the-F i le Pointer
92 Seq uent ial Text Fi les
92 The F ie ld
93 Stor i ng Characters in F ie lds
93 A S im ple Sequent ia l Text F i le
95 Writ i n g to a F i le Us ing P R I N T
95 Read ing Characters From a F i le
96 One Element Per F ield
97 M u l t i p le E lements Per F ie ld
99 GET Characters From a F i le

101 Enter i ng and Read i n g Text
101 A Program for Enter i ng Text
103 A Program for Retr ievi ng Text
105 The OPEN Com mand
106 The Opt ions
106 For Exam ple
107 The CLOSE Command
108 The Opt ions
108 The WRITE Command
108 The Opt ions
109 The READ Command
109 The Opt ions
1 10 The APPEND Command
1 10 The Opt ions
1 10 For Exam ple
1 1 1 The FLUSH Command
1 1 1 The Opt ions
1 1 1 For Exam ple
1 12 The POSIT I O N Command
1 12 The Opt ions

I]
Random-A ccess Text Files 113
1 15 About Th is Chapter
1 15 Random-Access Text F i les
1 1 6 Record Length
1 16 Writ i n g to a Record
1 17 Read ing From a Record

• Table of Contents

1 17 A Sample Program
1 19 Writ i n g a Record
121 Read ing a Record
123 Contro l l i n g the P rogram
124 The OPEN Command
124 The Opt ions
125 The CLOSE Command
125 The Opt ions
126 The WRITE Command
126 The Opt ions
127 The End of F i le
127 The READ Command
128 The Opt ions
128 The APPEND Command
129 The Opt ions
129 For Example
131 The FLUSH Command
131 The Opt ions
131 The POSIT I O N Command
132 The Opt ions

EXEC: Control From a Text File

135 About Th is Chapter
136 EXEC Demonstrat ion
138 Create an EXEC F i le Us ing BASIC
138 Pr in t i ng the Commands to the F i le
139 An A l l -Pu rpose EXEC Maker P rogram
140 List i ng a BASIC P rog ram to a F i le
141 Use EXEC to Com b ine P rograms
141 Mach ine Language to BASIC
142 The EXEC Command
142 The Opt ions

Binary Files

145 About Th is Chapter
145 This Chapter 's Commands
147 B inary F i les
148 B i n ary Add resses
148 The Memory Add ress Opt ions-[,A#] [, E#] [, L#]
150 The F i le Posi t ion Opt ion-[, B#]
150 The BRUN Command
151 The Opt ions
151 For Exam ple

Table of Contents

133

143

•

152 The B LOAD Command
152 The Opt ions
153 For Example
153 Using B LOAD With Non-B inary F i les
154 H igh-Reso lut ion Graphics With ProDOS
154 I nstal l i ng M ach i ne-Language Rout i nes
155 The BSAVE Command
155 The Opt ions
156 For Example
157 The PR# and I N # Commands
158 The Opt ions
158 For Example
159 What PR# and I N # Real ly Do
160 ProDOS and the Mon itor
161 Using a Clock/Calendar Card
162 System Programs
162 Start i ng Up a System Program

Summary of ProDOS 164
167 Featu res of ProDOS
168 F i lenames
168 Pathnames
169 Syntax
170 Summary of the Opt ions
173 ProDOS Commands i n Programs
173 F i l i n g Commands
173 CATALOG and CAT
174 PREFIX
175 CREATE
176 RENAME
176 DELETE
177 LOCK
177 U N LOCK
178 BASIC Prog ram Commands
178 - (DAS H)
178 RUN
179 LOAD
180 SAVE
180 P rogram ming Commands
180 CHAI N
181 STOR E
182 RESTORE
182 PR#
183 I N #
184 FRE

Table o f Contents

184 Text F i le Commands
184 OPEN
185 CLOSE
186 READ
186 WRITE
187 APPEND
1 88 FLUSH
188 POSIT I O N
189 The EXEC Command
189 EXEC
190 B i nary Commands
190 BRUN
191 BSAVE
192 B LOAD

DOS, ProDOS, and Applesoft 194
197 About Th is Append ix
197 DOS Disks and ProDOS Disks
198 Convert i ng F i les
199 The D i fferences Between DOS and ProDOS
200 F i le Organ izat ion and Names
201 DOS Commands That Went Away
202 I m proved DOS Commands
204 New ProDOS Commands
206 Changes to Applesoft
206 H I M E M
206 HGR, HGR2 , and TEXT
207 I N PUT
207 I N # and PR#
207 TRACE and N OTRACE
207 FRE

Error Messages 209
21 1 Hand l i n g Errors From Applesoft
214 Discuss ion of ProDOS Errors
214 RANGE ERROR (Code 2)
214 N O DEVICE CO N N ECTED (Code 3)
215 WRITE P ROTECTED (Code 4)
215 E N D O F DATA (Code 5)
217 PATH NOT FOU N D (Code 6 or Code 7)
217 1 /0 ERROR (Code 8)
218 D ISK FULL (Code 9)
218 F I LE LOCKED (Code 1 0)
218 I N VAL ID OPTION (Code 1 1)
218 N O BU FFERS AVA I LABLE (Code 1 2)

Table of Contents

219 F ILE TYPE M ISMATCH (Code 1 3)
220 P ROGRAM TOO LARGE (Code 14)
220 NOT D I RECT C O M M A N D (Code 1 5)
220 SYNTAX ERROR (Code 1 6)
220 D I R ECTO RY FULL (Code 1 7)
221 F I LE NOT OPEN (Code 1 8)
221 DUPL ICATE F ILENAME (Code 1 9)
221 FI LE BUSY (Code 20)
221 F I LE(S) STI LL OPEN (Code 2 1)

Extras 223
225 About Th is Append ix
225 Using the System Date and T ime
226 Using T I M E
226 Read ing From ProDOS D i rector ies
227 The Applesoft Program mer's Assistant (APA)
228 Start i ng APA
229 Automat ic L ine N u m beri ng
230 Tu rn i ng Off Automat ic L ine N u m beri ng
230 Ren um beri ng a Program
233 Putt i n g a Program On Ho ld
233 Merg ing Two Programs I nto One
236 Delet i n g Remarks From a Program
236 Disp layi ng Control Characters
236 Suppress ing Control Characters
237 Calcu lat i ng a Program 's Length
237 Prod uc ing a Cross-Reference L ist i n g
238 Convert i ng Dec imal to Hex and Hex to Dec imal
238 Clear i ng the APA Program From Memory

Glossary 241

Index 251

Table of Contents

List of Figures, Tables,
and Programs

Chapter 1 : I ntroduction

4 F igure 1 - 1 The ProDOS Tit le Screen
5 F igure 1 -2 T he ProDOS Tit le Screen
8 F igure 1 -3 The HELP Select ion Screen
9 F igure 1 -4 The CATALOG Help Screen

C hapter 2: Fi les and Commands

14 F igure 2 - 1 F i les i n a D i rectory
16 F igure 2-2 The Ma in Fi les on /EXA M P LES
18 F igure 2-3 The Structu re of a ProDOS Pathname
19 F igure 2-4 A Sample D i rectory Structure
19 Table 2- 1 The Prefix and Pathnames
24 Table 2-2 How ProDOS Forms a Pathname

Chapter 3: Using Fi les

29 F igure 3- 1 Usi ng F i les
30 F igure 3-2 CAT and CATALOG
33 F igure 3-3 A Catalog of the /EXA M P LES D isk
34 F igure 3-4 A Catalog of /EXA M P LES/DI RECTORY
35 Table 3- 1 The F i le Type Abbreviat ions
36 Table 3-2 The SUBTYPE Column
4 1 Table 3-3 The Fi le Type Abbreviat ions

Chapter 4: BASIC Programs in Fi les

51 F igure 4- 1 BAS IC i n F i les

List of F igures, Tables, and Programs

Chapter 5: Programmi ng With ProDOS

62 F igure 5- 1 CHA IN
62 F igure 5-2 STOR E and RESTOR E
63 F igure 5-3 PR# and I N #
66 F igure 5-4 The Startu p Process
70 Table 5- 1 Memory Locat ions for Error H an d l i n g

Programs
67 APP LESOFT STARTU P
71 O N ER R . D E M O
74 PART 1
75 PART2
77 E . S . P.

Chapter 6: Text in F i les

87 F igure 6- 1
89 F igure 6-2
95 Table 6- 1
96 Table 6-2

Programs
93 L ISTSELF

Pr int ing to a Scrol l
P r i n t i ng to a N otebook
Pr in t i ng to a Text F i le
Read ing From a Text F i le

96 MAKE.FRUIT
97 GET. FRU IT
97 CONJUGATE
98 CONJUGEATEN
98 CONJUGEAT

101 MAKE.TEXT
103 GET. TEXT
1 1 1 APPEND.TEXT

Chapter 7: Random-Access Text Files

1 16
118
119
121

1 17

F igure 7 - 1
F igure 7-2
F igure 7-3
F igure 7-4
Programs

ADDRESS

Sequent ia l and Random-Access Text F i les
Five Add resses in the F i le
Wri t i ng an Add ress to Record F ive
Read ing an Add ress From Record F ive

Chapter 8: EXEC: Control From a Text F i le

Programs
138 AWAY
138 MAKE. DOIT
140 CAPTUR E
141 MACH I N E LANGUAGE POKER

List of F igures, Tables, and Programs

Chapter 9: Bi nary F i les

B R U N , B LOAD, and BSAVE
PR# and I N #

146 F igure 9- 1
147 F igure 9-2
149 F igure 9-3
161 F igure 9-4

Memory Add ress Opt ions A#, E# , and L#
ProDOS Date and T ime Locat ions

Appendix A: Sum mary of ProDOS

169 Table A- 1 ProDOS Command Opt ions
172 Table A-2 The Fi le Type Abbreviat ions

Appendix B: DOS, ProDOS, and Applesoft

199 Table B- 1 F i le Convers ion

Appendix C: Error Messages

2 1 1 Table C- 1
212 Table C-2
213 Tab le C-3
214 Table C-4

Error Message Formats
ProDOS Error Codes
Errors by ProDOS Command
Applesoft Error Codes

Appendix D: Extras

227 Table D- 1 D i rectory L ine Com posi t ion

L i s t o f F igures, Tables, and Prog rams •

II

Preface

xvii The Parts of ProDOS
xvi i i Req u i rements for Usi ng ProDOS
xvi i i This Manual 's Organ izat ion

Preface

Preface

ProDOS™ is Apple 's Professional D isk Operat i ng System . A d isk
operat i ng system is a computer program that serves as a
housekeeper for the i nformat ion stored on d isks. I t a l lows you to
p lace i nformat ion on d isks, rearrange the i nformat ion that is
al ready on the d isks, and retr ieve i nformat ion from the d isks.
ProDOS lets you organ ize and use the i nformat ion stored on al l
Apple I I d isks made by Apple Computer, I nc .

The Parts of ProDOS

The ProDOS software, or programs, comes on two d isks. The fi rst
d isk , labeled ProDOS User's Disk, contai ns programs that let you
arrange i nformat ion on a d isk and move i nformat ion from one d isk
to another. The programs on the User's Disk are exp la ined i n the
ProDOS User's Manual.

The second d isk , labeled ProDOS BASIC Programming Examples,

holds the program that lets you run other programs, arrange
i nformat ion that is al ready on the d isk , and write you r own BASIC
programs that use the d isks to store i nformat ion . Th is man ual
exp la ins the program on the Examples d isk .

The ProDOS Technical Reference Manual expla ins what makes
ProDOS t ick . An experienced programmer can use th is
i nformat ion to write mach i ne- language prog rams that use
ProDOS.

By t h e Way: The catalog of your Examples d isk may show dates and
t imes that are not the same as those pictu red i n th is manual. Don't
worry-it is just to show you what these catalogs look l i ke.

The Parts of ProDOS Ill

Requirements for Using ProDOS

To use ProDOS, you m ust have an Apple I I with at least 64K of
Random Access Memory (RAM) , and with Applesoft in Read O n ly
Memory (ROM) . If you have a standard Apple I I with I n teger BASIC ,
you m ust replace the I n teger BAS IC ROM wi th an Applesoft ROM.
You must also have at least one D isk I I d r ive; i n add it ion , you can
have any other com b inat ion of d isk d rives.

By the Way: I n th is manual , the name Apple II i m p l ies the Apple I I Plus
and the Apple lie. Because ProDOS d oes not support I nteger BASIC,
ProDOS wi l l not work with BASIC on a standard Apple I I .

Before u s i n g t h i s manua l , you shou ld be fam i l iar w i t h you r Apple I I ,
and w i t h the use o f Applesoft BAS IC . You shou ld also work you r
way through the Applesoft Tutorial before you read th is manua l . I f
you have never used fi les that are grouped i n to d i rectories, read
the ProDOS User's Manual chapter on f i les, f i lenames, and
pathnames.

Remember: Keep the (CAPS LOCK)key depressed when you are typ ing
any of the ProDOS commands; they must be i n u ppercase letters. I f you
type them i n lowercase, you wi l l receive a :::'/i··�n=:::-:; EPF:OF: message.

If you are experienced with DOS, the predecessor to ProDOS, read
Chapters 1 and 2 of th is manual and then sk i p to the append ix that
descri bes the d ifferences between DOS and ProDOS.

This Manual's Organization

This man ual is organ ized to be usefu l to as many people as
poss ib le . Each chapter beg ins with a sect ion descri b i ng the topics
i t covers. I f a chapter i n trod uces new ProDOS commands, i t also
has a sect ion cal led 'Th is Chapter's Commands. " Read th is
sect ion carefu l ly ; you can use i ts command summary to f ind
commands wi th which you are u nfam i l i ar.

N ot ice that most of the command descr ipt ions have th ree
sect ions . The f i rst sect ion tel ls you why you wou ld want to use the
comman d , shows its form , or syntax, and g ives a br ief example.
The second sect ion , "The Opt ions , " g ives a precise defi n i t ion of
the d ifferent ab i l i t ies of the comman d . The th i rd sect ion , " For
Exam ple, " is a hands-on example of the command . I f you learn
best by doing, t ry these examples.

Preface

Here is a qu ick summary of the chapters and append ixes i n th is
manual :

Chapter 1 : What you shou ld know before usi ng ProDOS.

Chapter 2 : What f i les are and how they are n amed . What
ProDOS commands are and how they are structu red .

Chapter 3: How to keep track of and man ipu late the f i les on a
d isk .

Chapter 4 : How to use programs that are stored on a d isk .

Chapter 5 : How to write BAS IC programs that use ProDOS
com mands.

Chapter 6 : H ow to write BASI C programs that use seq uent ia l
text f i les.

Chapter 7: How to write BAS IC programs that use random
access text f i les.

Chapter 8: How to make f i les control the operat ion of you r Apple
computer.

Chapter 9 : H ow to use b i nary programs and f i les, and the
Mon itor. How to use a clock/calendar card .

Append ix A : A summary of ProDOS.

Append ix B : The d i fferences between DOS and ProDOS.

Append ix C : Error messages.

Append ix D: Extra programs.

This Manual's Organization

Introduction

3 Before You Start
3 Make a Spare Copy of Examples Disk
4 Start i ng ProDOS BAS IC
6 The Startup Process
6 Other Ways to Start ProDOS BAS I C
7 The HELP Command
8 For Example

10 ProDOS and DOS

Chapter 1 : Introduction

Introduction

Before You Start

This manual assumes that you al ready have some experience
us ing you r Apple I I . You shou ld be fam i l iar with the Applesoft

Tutorial and at least Chapter 2 of the ProDOS User's Manual.

As you read th is manua l , you should have i n front of you :

• An assem b led Apple I I with a t least o n e d isk d r ive

• The ProDOS User's Manual

• The d isks labeled ProDOS User's Disk and ProDOS BASIC

Programming Examples, and one b lank d isk

• The Applesoft Tutorial (opt iona l) .

Make a Spare Copy of Examples Disk

Whi le you learn to work with ProDOS, you are asked to do many
th ings with you r Examples d isk . Because the Examples d isk that
comes with you r ProDOS package is write-protected-that is , it
does not have a wri te-enable notch-you can not do one very
i mportant th i ng to th is d isk : you can ' t write i nformat ion on i t .

Fol l owi ng the instruct ions i n the sect ion on back ing u p d isks i n the
ProDOS User's Manual, transfer a copy of the i nformat ion f rom the
or ig ina l Examples d isk to you r b lank d isk , nam i n g the new d isk
/EXA M P LES . (Th is is the form that ProDOS recog n izes-with a
slash before the name. You can use u ppercase or lowercase letters
when you name a d isk .) Write you r name and /EXA MPLES on the
d isk label ; th is is you r personal copy of ProDOS. Now put the
or ig ina l i n a safe p lace; someday you may want to copy i t agai n .

B y the Way: Even i f someone else has al ready made a copy of
/EXAM PLES, i t is best to make one of your own . Some of the examples
in this manual ask you to change the f i les on the d isk; i f someone has
a lready done these examples, the d isk w i l l not be in i ts or ig i nal form.

Make a Spare Copy of Examples Disk

Figure 1 - 1 . The ProDOS Tit le
Screen

•

Starting ProDOS BASIC

Place you r copy of /EXA M PLES into d r ive 1 and close the d r ive
door. I f you r Apple II is off , reach your left hand around to the back
of the case and turn i t on. I f you r Apple I I i s al ready o n , reach
around the back , turn i t off , then on agai n . The d isp lay f i l l s u p with
i nformat ion that looks someth ing l i ke F igure 1 - 1 .

PF'PLE][

COPYRIGHT APPLE COMPUTER, INC.

This d isplay tel ls you that ProDOS was just p laced i n memory. Any
d isk that conta ins a ProDOS program shows this d i sp lay when i t
starts up .

Chapter 1 : I ntroduction

Figure 1 -2. The ProDOS Tit le
Screen

What It Tel l s You

The startu p d isk name.

The type of Apple I I .

T h e amount o f R A M i n
your Apple I I .

Applesoft BASIC is i n
Read O n ly Memory.

The contents of each
of your Apple l l ' s slots.

•

After a few moments more, you see a d i sp lay that looks someth ing
l i ke F igure 1-2 . I ts exact appearance depends on the type of
Apple I I system you are usi ng , and the ident ity of the peri pheral
cards that are connected to you r system .

What the Display Says

**************************�************

t PRODOS BASIC PROGRAMMING EXAMPLES
':!:'
·.!.• ··!··

* *

� START DISK: /EXAMPLES/
YOUR Apple //e HAS

64K OF RANDOM ACCESS MEMORY
APPLESOFT IN ROM
;:;; L. C! T 1 ; �::; I L E i··� T \' P E
:::;LOT ? ; E :··1 P T '/
SLOT 3. 80-COLUMN CARD
SL.OT 4: CLOC!<
:::::L.OT ;:::; · PFOF I L.E
::;:;LOT 6: DISI< Di:;:�I11}E
:=.::!....OT ? : E!'·iF'T'/

Th is s ing le d isp lay of text conta ins a weal th of i nformat ion . I t tel ls
you that the ProDOS program was brought i nto memory from the
d isk named /EXA M P LES. Th is d i sp lay a lso descr i bes the setu p of
you r system : how m uch memory it has , wh ich vers ions of BAS IC
you can use, and the type of peripheral card i nstal led i n each of
you r Apple l l ' s peri pheral con nector slots.

By the Way: ProDOS BASIC requires at least 64K of memory. An
App le lie a lways has 64K. Any App le I I must have 48K of RAM and a
Language Card to be able to use ProDOS.

Start ing ProDOS BASIC

A complete explanat ion of what
happens when you start ProDOS is
g iven i n Chapter 5 , " P rogramming
Wi th ProDOS."

The Startup Process

When you tu rn your Apple I I o n , it t r ies to read i nformat ion from
d r ive 1 of the d isk contro l ler card i n the h ighest n u m bered slot
(usual ly s lot 6) ins ide your Apple I I . I f the d isk is a ProDOS startup
d isk , the ProDOS program is brought in to memory. You see the
two d isplays of i nformat ion descr i bed above, fo l l owed by the
BAS IC prompt :

When you type a few l i nes of BAS IC , you see that you r Apple I I
behaves just as i t d i d without ProDOS o r the d isk d r ive-or s o i t
appears. The startup process actua l ly added the ProDOS
commands to the BASIC commands to which you are accustomed .
There are now 23 new com mands that you can type i n , and several
of the o ld commands have been enhanced .

War n i n g
Even though t h e ProDOS commands l o o k l i ke BAS IC commands (as you
w i l l see), they do not always fol low the same rules. For example , m u l t i p le
ProDOS commands, separated by colons, cannot be put on one l i ne.

Other Ways to Start ProDOS BASIC

On an Apple lie, you can always start the system by press ing the
th ree keys-@], (coNTROL) , and (RESET)-al l at the same t ime , and
then releas ing them . On any Apple I I computer, you can start the
system by tu rn i ng the computer off and then on agai n .

When you see one of the prom pts (::i or :j:) , you can usual ly restart
the program on the d isk in d r ive 1 , s lot 6 , us ing the com mand

Chapter 1 : I ntroduction

If you see the mon i tor prompt (:q, and F:·::: !!= ;::; d oesn ' t work , t ry
typ ing

(]](CONTROL) -(E)

If you r d isk control ler card is i nstal led i n another s lot , replace 6
with the slot 's n u m ber.

These commands are expla ined later. For now, remem ber that
usi ng them is a good way to start over if t h i ngs seem to be
hopelessly confused . Beware, however-these commands make
everyth ing that is i n memory d i sappear.

The HELP Command

If you are us ing ProDOS and can ' t qu i te remem ber the exact form
of a command , you can add the HELP command by typ ing

/ !:::. : . . . : �:::: �:::; 1 ... ; ;:::· :

whi le the Examples d isk is i n a dr ive. You need to type th is
command on ly once . The H E L P command remains i n memory unt i l
you turn off you r com puter or use another program (such as the
ProDOS Fi ler) .

After you do this , you can get he lp with any ProDOS command by
s im ply typ ing

··-· :: : : :::::::::: r;-= =··· ···. :.·· . . -.!

whi le the Examples d isk is i n a d rive. Replace the word command

with any one of the ProDOS command words (that you ' re go ing to
learn) . I f you just type

Hi:::: :. =···

you wi l l see the l ist of com mand words shown i n F igure 1 -3 .

The H E L P Command

Figure 1 -3. The HELP Select ion
Screen

Where Explai ned
Explanatory d isplays.
See Chapters 1, 2 , 9 .

See Chapter 3.

See Chapter 4 .

See Chapter 5 .

See Chapters 6 , 7 , 8 .

See Chapter 9 .

•
What You See

HELP (a user-added command)

Te

i·! ;;-·,. :.,";:: : ·. ::::r- ' HELP XXX (XXX's below)

HELP, SYNTAX, BINARY,

CAT CA LOG, PREFIX,
CREAT RENAME, DELETE,
L.OCK .. U!···!LOCt<

CHAIN, STORE, RESTORE,

OPEt··l ..

The left colu m n l ists the use for each group of commands. The
colu m n on the r ight l i sts words you can enter i n p lace of>=>=>=: , the
name of the command you want to use. The fi rst group of
commands is explanatory because the commands H ELP H E L P,
HELP SYNTAX, HELP B I NARY, and HELP F I L E do not g ive he lp
with specif ic commands; they d isplay explanatory i nformat ion .

Each g roup of commands corresponds to one or more chapters,
and with i n each g roup , the help commands are l i sted in the order
they appear in this man ual .

For the HELP com mand to work , the fi les named HELP and
H ELPSCREENS m ust be on the same d isk . To get them onto a
d isk other than /EXAMP LES, copy them usi ng the ProDOS F i ler.
Th is is expla i ned in more detai l l ater.

For Example

I f you r Apple I I is tu rned off , make sure /EXA M P LES is i n d r ive 1 ;
then turn on the computer.

As soon as the prom pt character appears on the d isplay, type

Chapter 1: Introduction

Figure 1 -4. The CATALOG Help
Screen

•

When the BAS IC prom pt returns , type

and you wi l l see the l ist of commands shown in F igure 1 -3 . If you
want to see a typ ical he lp screen , type

and you see the d i sp lay shown in F igure 1 -4 .

Example CATALOG /BUDGET/JAN

Th.i::� fir:;;t

c: !:::! T !:i L 0 G ,I :::: i: • . : D ;;::

lists th files in
the director� GET/JAN; e second
lists files in v�lume directory �b, 02,

This command shows the same items as
CAT In addition, it shows the date
the file was created, the logical
1 .;:; t h o f ·t h e f :i. 1 e, .::J n d :5 o m E:· s '-l b t '::i p e•

At the top of the d isplay is the name of the com man d , c:::::"THL.. C ::C,

fol l owed by the message < I r;-; :-;-; :::., [}:' +" > . Th is message tel ls you
that the CATALOG command can be used i n immed iate mode (as
a command typed from the keyboard) , and in deferred mode (as a
l i n e i n a program).

Next is a l i n e that descri bes what the command does; one more
that shows the form , or syntax, of the comman d ; two l i nes of
examples; and then an explanat ion of the command syntax. Al l the
abbreviat ions shown i n the d isplay wi l l be much c learer after you
fi n ish Chapter 2 .

A l l t h e he lp screens use t h i s same format with some variat ions due
to the req u i rements of each i nd ivid ual comman d .

T h e H E L P Command

Append ix B, which describes the
d ifferences between ProDOS and DOS,
explains how to convert a program from
one format to another.

You can remove the HELP command by typ ing

i -� :·
··.; : :· : : · ... :;···iL:.: :

This shou ld be necessary on ly if you are writ i ng an extremely large
BASIC prog ram .

ProDOS and DOS

Because there are many programs ava i lab le that are written us ing
DOS, i t is im portant that you understand some of the d ifferences
between ProDOS and DOS.

When you start up a ProDOS d isk , the ProDOS program is p laced
into memory. The ProDOS program is ab le to write to and read
from a l l d isk d rives made for Apple II computers by Apple
Computer, I nc .

When you start up a DOS d isk , the DOS program is placed into
memory. The DOS program can wr i te to and read from D isk I I
d r ives on ly.

The i nformat ion that ProDOS places on a d isk can not be read by
DOS; l i kewise, the i nformat ion that DOS places on a d isk can not
be read by ProDOS. However, i n some cases you can use the
program CONVERT on the User's Disk (/USERS. D I S K) , descri bed
in the ProDOS User's Manual, to convert i nformat ion from one
format to the other.

Th is means that you can use you r exist i ng DOS programs on ly on a
DOS-formatted d isk u n less they can be converted from DOS
format to ProDOS format . The general ru le is that programs you
buy can not be converted , and that programs you write you rself
can be. I f a program uses on ly BASIC and DOS commands, i t can
be converted . I f i t does any tr icky PEEKs and POKEs, or if i t uses
mach ine la111guage at al l , then i t is l i kely that i t can not be
automatical ly converted .

Chapter 1 : Introduct ion

Files and Commands

13 About Th is Chapter
13 Disks
14 Fi les
14 Di rectory F i les
15 Volume Di rectory F i les
15 For Example
17 Fi lenames
17 Some Legal Fi lenames
17 Some I l legal F i lenames
18 Path names
18 The Prefix and Part ia l Pathnames
20 For Example
20 The General Form of ProDOS Commands
21 Options
22 Hexadeci mal Notat ion
22 The Pathname Opt ion-[pn]
22 For Exam ple-[pn]
23 The Slot N u m ber Opt ion-[,S#]
23 The Drive N u m ber Opt ion-[,D#]
24 For Exam ple-[,S#] [, D#]
24 I n Summary

Chapter 2: Fi les and Commands

The ProDOS User's Manual expla ins
how to format d isks.

See Append ix B for more detai ls on
DOS and ProDOS.

Files and Commands

About This Chapter

The f i rst part of th is chapter is about f i les. I t explains how ProDOS
arranges f i les on a d isk , how f i les are named , and the term inology
used to refer to f i les.

The second part of the chapter exp la ins how ProDOS com mands
are structu red . These commands let you make use of you r f i les.

Some of the i nformat ion i n this chapter is expla i ned by example :
as you read sect ions ent i t led " For Exam ple , " t ry the examples . For
these examples to work , ProDOS m ust be r u n n i n g , as expla i ned i n
Chapter 1 , a n d t h e Examples d isk m ust be i n a d r ive.

Disks

The purpose of ProDOS is to let you use the i nformat ion on d isks.
I t can commun icate with al l d isk d r ives bu i l t by Apple Computer,
I nc . for Apple II com puters. Before ProDOS can use a d isk , the
d isk m ust be prepared for use, or formatted . You can format a
d isk usi ng the ProDOS F i ler.

You ' l l f i nd it conven ient always to have an adeq uate su pply of
em pty ProDOS-formatted d isks on han d , and to mark each d isk
so that you know that i t i s ProDOS-formatted . Disks of other
formats (Apple I I Pascal , DOS) can not be used by ProDOS.
App le I l l 80S-formatted d isks can be used by ProDOS (al though
the prog rams on them can not) .

Disks

Figure 2-1. F i les in a D i rectory

Files

ProDOS lets you organize informat ion into units of d isk storage
known as f i les. Fi les can contain num bers, phone l i sts, letters,
p ictures, programs, or any other type of informat ion that you r
Apple I I can use.

When a f i le is p laced on a d isk , i t is assigned a name and a type.
When you want access to the informat ion stored in a part icu lar f i le ,
refer to that f i le by i ts name. The f i le 's type ind icates the k ind of
informat ion that the f i le contains. For example , there are text f i les,
prog ram fi les, and a very i m portant f i le type: d irectory f i les.

Directory Files

A d i rectory f i le is just l i ke any other f i le , but instead of contain ing a
prog ram or text , it contains a l i st of other f i les and the i r locat ions
on the d isk .

DIRECTORY

.------ -

The d i rectory shown in F igure 2- 1 contains fou r f i les: F I LE 1 , F I LE2 ,
F I LE3, and F I LE4. Each of these f i les can be of any f i le type; thus
al l , some, or none of them could be d i rectory f i les. You can use up
to 64 levels o f d i rectories on a d isk ; however, more than five or s ix
levels o f d i rector ies a re d i ff icu l t to use.

Chapter 2: Fi les and Commands

A vol u m e d i rectory is the main
d i rectory f i le for the ent i re d is k .

CAT i s the s h o r t version of CATALOG.

Volume Directory Files

When you format a disk us ing the ProDOS F i ler, a specia l type of
di rectory f i le i s automat ical ly p laced on the d isk . I t i s cal led a
volume d i rectory, and it is the ma in di rectory f i le for the ent i re
d isk .

A ProDOS volume di rectory

• is on every ProDOS-formatted disk .

• has a name, ass igned when you format the d isk . Th is name,
bei ng associated with the ent i re contents of the d isk , is a lso the
d isk 's name. You shou ld p lace i t on the d isk 's label .

• can conta in u p to 5 1 f i les.

• i s the on ly f i le that you can not create using the CREATE
command (or the ProDOS F i ler command, MAKE D I RECTO RY) .

. • i s the on ly f i le that you can not remove from a disk (a l though you
can remove al l the f i les i n i t) . I t i s also the on ly f i le that you
cannot protect us ing the LOCK command.

I f you have an Apple l ie with an Extended 80-Co lumn Text Card,
ProDOS places a volume di rectory f i le i n the a l ternate 64K of RAM
on the card. This volume is named /RAM and i t can be used just
l i ke a smal l d isk . U n l i ke a d isk , however, the i nformat ion in /RAM
disappears when you turn off you r com puter. You shou ld use th is
volume on ly for temporary storage of i nformat i o n . An example of
the use of /RAM is g iven in the fo l lowi ng sect ion .

For Example

To see the contents of the vol ume di rectory of the Examples

master d isk , type the ProDOS command

and the disp lay shown in F igure 2-2 appears.

By the Way: Your d isk catalog may show dates and t imes that are not
the same as those pictured i n th is manual . Don't worry-they are just
to show you what these catalogs look l i ke .

Fi les

Figure 2-2. The Main F i les on
/EXAMP LES

• .- E ;:.:: H !·1 F L.. r:::: ::;;
HF!!'!E

HELP

PPfiCT ICE
F'FOGPf1!·1:��;
DfiTA

T Y FE BL.OLKb MODIFIED

•'"·'· ···:::· ·-' ; ··-'
::;:; \' �:::;
PFi:=.:;
�:::: I r1

DIF
ure

[)IF
D I i;::
EF! ·:::;

1.

1

1-:=.:;EF· ·· ··:::::;

1 --· �=� E F' -·· :;::; 3
1 · ·-· �:::; E P --· �:: 3

1 ·- ::; E r.:· ·-·· ::: 3
:l · ·-· ::;; E F' :::; ::�:

1 ·- :::; E. p ···- :::: 3
1. · ···· :::; E P -- ::;; 3

1 -- :::; E F' · · · :::: :::

1?3

Some of these f i les are d i rectory fi les: t hey conta in the names and
locat ions of other f i les on the d isk . You can recogn ize a d i rectory
fi le by the abbreviat ion c: ::: i? to the r ight of i ts f i lename in the
catalog .

If you have an Apple lie with an Extended 80-Co lumn Text Card ,
type the ProDOS command

ProDOS d isplays i nformat ion s im i lar to that shown above, but with
no f i lenames l i sted . /RAM is em pty.

Chapter 2: Fi les and Commands

Filenames

Several ProDOS commands cause f i les to be created; each
req u ires that you ass ign the f i le a f i lena me.

A ProDOS f i lename

• i s com posed of up to f i fteen characters . The first m ust be a
letter; the rest can be any com b inat ion of uppercase or
lowercase letters (A-Z) , d ig i ts (0-9) , and periods (.) . Lowercase
letters are automat ical ly converted to uppercase, thus A and a

are equ ivalent .

• must be u n i q ue wi th i n i ts directory. There can be f i les by the
same name i n different directories.

Some Legal Filenames

Here are a few legal f i lenames (assu ming there aren ' t already f i les
of the same name in the same directory) .

A .LONG. F I LENAME
z
A. 1 DERFU L . NA M E

longest poss ib le name
shortest poss ib le name
has letters , num ber, and periods

Note: Although you can ' t use spaces i n f i lenames, you can use periods
to separate words within a f i lename.

Some Illegal Filenames

Here are some i l legal f i lenames and the reasons you can ' t use
them .

3 . B L I N D . M ICE
. P R I NTER
SPACE RACE
BOOP, B ETTY
P EAN UT. BUTTER.AN D . P ICKLES

Fi les

beg ins with a n u m ber
beg ins with a period
contai ns a space
contai ns a comma
too many characters

Figure 2-3. The Structure of a ProDOS
Pathname

A partial pathname is a f i le 's pathname
with the prefix removed from the front
of i t .

Path names

To f i nd a f i le , ProDOS must know the path (from the d isk 's volume
di rectory to the f i le) that i t must fo l low to get to the f i le . The ent i re
pat h , from the volume di rectory to the f i le , i s cal led the f i le 's
pat h name. For example , the pathname of a f i le STA N D i n a
di rectory LAST i n the volume di rectory CUSTER is
/CUSTER/LAST /STAND .

A ProDOS pathname

• is a series of f i lenames, preceded and separated by s lashes

• has a volume di rectory f i lename as i ts f i rst e lement

• i s no more than 64 characters long, i nc ludi ng s lashes.

F igure 2-3 represents the structure of a path name.

� FILENAME I)
F igure 2-4 disp lays the di rectory structure of a disk contai n i n g f i les
that document part of the I ndo-Eu ropean fam i ly of languages.
Below i t are a few of the many val id pathnames with i n th i s
di rectory structure.

In th is example , I N DO .EUROPEAN is the name of the disk
contai n i n g these f i les and also the name of the disk ' s volume
di rectory.

The Prefix and Partial Pathnames

It is very t i me-consu ming to type i n an ent i re pathname every t ime
you use a f i l e . By set t i ng the prefix, a path name that i ndicates a
di rectory f i le , you can refer to f i les i n that di rectory, or to f i les that
can be reached through that di rectory, by us ing the i r part ia l
path names.

Chapter 2: F i les and Commands

Figure 2-4. A Sample D i rectory
Structure

A Directory Structure

I N DO. EURO P EAN

BA LTO.SLAVIC GERMANIC C E LTIC ITALIC H E LLEN I C

/""' /� I
BALTIC SLAVIC GOIDELIC B RYTHO N I C GREEK

NORTH.GERMANIC WEST.GERMANIC EAST.GERMANIC

Table 2-1. The P refix and Pathnames

LAT I N O . FALISCAN

And Some Pathnames Within It

/I NDO. EUROPEAN/H ELLEN IC/GREEK

/I N DO.EUROPEAN/GERMANIC/WEST.GERMANIC

/I N D O . EUROPEAN/ITALIC

/I NDO. EUROPEAN/BALTO.SLAVIC/BALTIC

OSCO.UMBRIAN

Table 2- 1 shows the relationship among path name, prefix , and
part ia l pathname.

You Wa nt ProDOS t o Find C u rrent Prefix Is You Should Type

/CAROL/GHOSTS/XMAS . PAST /CAROL! GHOSTS/XM AS.PAST
/CAROL/GHOSTS/XMAS.FUTU R E /CAROL/GHOSTS/ X M AS.FUTU R E
/ M Y. D I S K/GA M E S /YOUR.D ISK/ / M Y. D I S K /GAM ES

In the third co l u m n of Tab le 2- 1 , GHOSTS/XMAS. PAST and
XMAS. FUT URE are both part ia l pathnames; a fu l l path name is
formed by adding the current pref ix . In the th ird example you want
to use /MY.DISK/ , but the prefix is set to /YOUR.DISK/ . In cases
like this , you m ust use the fi le 's fu l l path name (or change the value
of the prefix).

M ake sure you u nderstand the examples in Tab le 2- 1 . Once you
do , you will never have troub le with pathnames, partial pathnames,
or pref ixes.

F i les

•

A ProDOS part ia l pathname

• i s a f i lename, or a ser ies of f i lenames separated by s lashes

• i s a pathname m i n us the cu rrent prefix

• i s no more than 64 characters long , i nc ludi ng slashes.

You can use the PREF IX command to set the pref ix . Fol l ow th is
command by the pathname of a di rectory. Thus , before referr ing to
several f i les that are i n the /EXA M P LES/CATALOG di rectory, you
can use the command

/ t::. ,:-:, �---� ! : ; ... · L.. j·· _. _ _ �-··j L.1 . ..l l .. := _/

For Example

To set the prefix to the name of the di rectory /EXAM PLES/CATALOG
use the command

.·! ... ·._.·; ___ ;;-:;: __ ::

Now look at the contents of the CATALOG di rectory with the
command

i ... : j---� l

Without any opt ions , you can use the CAT or CATALOG command
to display the contents of the prefix di rectory. Now examine the
contents of the di rectory /EXA M P LES/CATALOG/D I R ECTORY by
typ ing the command

L .Lr':.l:::.= ... - =: ,,.,.

I n two commands, you saved 28 keystrokes !

The General Form of ProDOS Commands

Th is manual descri bes a l l the poss ib le forms of each ProDOS
command by present i ng a one-l i ne descr ipt ion of the command.
Th is one-l i ne descr ipt ion i s cal led the command's general form , or
syntax, and i t looks someth i ng l i ke th is :

com mand [pn] [,S#] [, D#]

The word command represents any of the ProDOS commands.
The expressions [pn] , [,S#] , and [, D#] are the command's opt ions .
There are many opt ions other than these th ree .

C hapter 2: F i les and Commands

The th ree opt ions shown above are cal led the pathname, slot , and
d rive opt ions , respect ively; together they determine the name and
locat ion of the f i le to be accessed . You can specify a f i le on any of
you r d isks us ing on ly the path name opt ion . The slot and d r ive
opt ions g ive you add i t ional control in accessing f i les .

Here is a specif ic i nstance of the CATALOG command t hat uses
the [pn] , [, S#] , and [, D#] opt ions :

Th is command tel ls ProDOS to d i sp lay the f i les contained i n the
BOOKS d i rectory (i n th is case pn is replaced by a part ia l
pathname), which is i n the volume d i rectory of the d isk i n s lot 6 ,
d r ive 1 .

Note the use of commas i n the above example . Commas separate
the opt ions ; you can put spaces before or after the commas if you
wish .

Options

Somet imes an opt ion is shown with brackets around i t , somet imes
not . I f an opt ion does not have sq uare brackets around i t , you
must use that opt ion each t ime you use the comman d , and you
must use it i n the order shown by the com man d ' s syntax. An
opt ion that has square brackets around i t may be inc l uded or
omit ted , depen d i n g on what you want the com mand to do .
Bracketed opt ions can be used i n any order.

War n i n g
When you use a n opt ion , never type i n t h e square brackets; they are only
there to tel l you that the opt ion is not req u i red .

The characters wi th i n the brackets do th ree th i ngs : the comma
separates an opt ion from its predecessor, the capita l letter
ident if ies which opt ion you are usi ng , and whatever is after the
capital letter (usual ly #) stands for the value you can g ive that
opt ion .

The letters p n should be replaced by a pathname or part ia l
pathname, as expla i ned below, and # should be replaced by an
i n teger. The value of # can be a decimal i n teger or a hexadecimal
i n teger.

Options

By the Way: An add i t ional notat ion is used later i n the manual . Two
opt ions separated by a vert ical bar, I , are alternates. Use one or the
other, not both . You can read a bar as the Engl ish word or.

Hexadecimal Notation

You are never req u i red to use hexadecimal n u m bers. The i n teger
in an opt ion , represented by # , can be expressed i n hexadecimal
notat ion by preced ing the hexadecimal d ig i ts with a do l lar s ig n .
For example , t h e decimal i n teger 254 can b e expressed i n
hexadecimal notat ion a s $FE.

The Pathname Option-[pn]

[pn] Th is opt ion i n d icates to ProDOS the name of the f i le that you
want to use. You can replace pn with a pathname or a part ia l
path name.

I f you use a pathname, ProDOS looks for the f i le with that
path name.

I f you use a part ia l path name without the [,S#] and [, D#] opt ions ,
ProDOS looks for the f i le havi ng the pathname formed by the
part ia l pathname added to the prefix. I f the prefix is em pty, the
name of the volume i nd icated by the last used val ues of [,S#] and
[, D#] is used i n p lace of the prefix.

By the Way: You can access any f i le us ing j ust its pathname. The [,S#]
and [, D#] opt ions are pr imar i ly for DOS compat i b i l i ty. They are also
usefu l i f you don ' t remember a d isk 's name.

For Example-[pn]

Here are a few ProDOS commands that use the pathname opt ion :

; · •• = .•• : ; ·:

Did you t ry these commands? If not , t ry them i n the order
presented . How they work is exp la ined i n later chapters.

Chapter 2: F i les and Commands

The Slot Number Option-{,S#J

[,S#] I nc lude th is opt ion to tel l ProDOS the s lot that con nects the
d isk d r ive you want to access . Replace # with a s lot
n u m ber from 1 to 7.

When you use th is opt ion , the val ue specif ied by # becomes the
defau l t s lot num ber.

If you use th is opt ion without the d rive opt ion , d r ive 1 is assumed .

If th is opt ion is used after a pathname, ProDOS f i rst looks for that
path i n the i nd icated slot . If th is opt ion is used after a part ia l
path name, ProDOS forms a pathname by add i n g the volume name
of the i nd icated volume to the part ia l path name (the prefix is
ignored) .

The Drive Number Option-{,D#J

[, D#] I nc lude th is opt ion to tel l ProDOS the d rive that contai ns
the d isk you want to access. Replace # with d r ive n u m ber 1
or 2 .

W h e n you use th is opt ion , t h e value specif ied b y # becomes t h e
defau l t d r ive num ber. I f you use the dr ive n u m ber opt ion without a
slot n u m ber opt ion , ProDOS looks for the d r ive i n the defau l t s lot .

I f th is opt ion is used after a pathname, ProDOS f i rst looks for that
path i n the i nd icated d r ive. If th is opt ion is used after a part ia l
pathname, ProDOS forms a pathname by add i n g the volume name
of the d i sk i n the i nd icated slot and d rive to the part ia l pathname .

... War n i n g
I f you u s e t h e slot num ber a n d d rive n u m ber opt ions to i n d icate a d rive
that is not there, you wi l l get the :· m D E '.} I C: E C: C) i· ·H·� E C T E D error
message.

Options

Table 2-2. How ProDOS Forms a
Pathname

For Example-LS#J LD#J

Here are some ProDOS com mands that use the [,S#] and [, D#)
opt ions . Try them i n order now with the /EXA M P LES d isk in
d r ive 1 .

C H ! r R O G R A M S . S 6 , n 1

d isplays the f i les i n the PROGRAM d i rectory of /EXA M P LES, the
d isk i n s lot 6 , d r ive 1 .

sets the prefix to the name of the vo lume d i rectory, s lot 6 , d r ive 1 .

····· .··· . .. ;:::: ::::= :"··, ,-··· ;:::: ;:::; ;·.·: · . ' ' ' '

checks fi rst i n d r ive 2 for the /EXA M P LES volume , then i n other
d r ives un t i l i t f inds /EXA M P LES.

In Summary

Tab le 2-2 shows the path name that ProDOS seeks for each
poss ib le com b inat ion of the pathname, slot , and d r ive opt ions .

[pn] [, S#] [, 0#]

ppn
ppn + +
ppn +
ppn +
pn
pn + +

Key: + = opt ion used
= opt ion not used

pn = pathname
ppn = part ia l pathname

Pathname Sought
See com mand descr ipt ion
pn = prefix + ppn *
pn = vn + ppn
pn = vn + ppn * *
pn = vn + ppn * * *
pn = pn
pn = pn

vn = volume name of d isk at S# , D#

* If the prefix is em pty, the last used val ues of S# and D#
are used to determ ine a volume name.

* * When on ly S# is g iven , d r ive 1 is assumed .
* * * When on ly D# is g iven , the last value of S# is used .

Chapter 2: F i les and Commands

Using Files

27 About Th is Chapter
27 This Chapter 's Commands
29 The CAT and CATALOG Commands
32 The Opt ions
32 For Example
34 What I t A l l Means
34 The D i rectory's Name
35 N A M E (F i lenames)
35 TYPE (F i le Types)
35 B LOCKS (F i le S izes)
36 M O D I F I E D and CREATED (F i le Dates)
36 E N D F I L E (M axi mum F i le S izes)
36 SU BTYPE (F i le Propert ies)
37 The Bottom L ine
37 The PREF IX Command
38 The Opt ions
38 For Example
39 When You Use PREF IX i n a Prog ram
40 The CREATE Command
40 Di rectory F i le Size
41 The Opt ions
41 For Example
42 The RENAME Command
42 The Opt ions
43 For Example
43 The DELETE Command
44 The Opt ions
44 For Example
44 The LOCK Command
45 The Opt ions
45 For Example
46 The UN LOCK Command
46 The Opt ions
46 For Example

Chapter 3: Using F i les

Using Files

About This Chapter

Th is chapter descri bes the ProDOS commands that let you keep
track of and man ipu late the f i les on you r d isks. You can use these
commands

• to see what i nformat ion is on a d isk

• to create more room on a d isk by th rowi ng away o bsolete
i nformat ion

• to change the name of some i nformat ion so that i t is easier to
locate

• to protect some i nformat ion from be ing accidental ly destroyed .

Because you issue the commands descr i bed i n th is chapter from
the keyboard more freq uent ly than from wi t h i n programs, they are
descr i bed here before the chapter that expla ins the techn ique for
usi ng ProDOS commands in prog rams. Remember that they can
al l be used in programs.

This Chapter's Commands

The ProDOS commands that let you man ipu late f i les are
summarized below; each affects one fi le at a t ime . If you want to
perform operat ions on several or al l of the f i les on a d isk , use the
ProDOS F i ler, descr i bed i n the ProDOS User's Manual.

This Chapter's Commands

CATALOG List a l l the f i les i n a d i rectory

Use th is com mand to p lace a l ist of a l l the f i les i n the d i rectory you
name onto the screen . It also d isplays other i nformat ion about
each f i le .

PREFIX Set a d i rectory to work in

Use th is command to set the value of the prefix, that is , the
pathname that is automat ica l ly added to the beg i n n i n g of any
part ia l pathname you use. You can also use i t to d isp lay the prefix.

CREATE Create a new d i rectory (or other f i le)

Use this command to create a new fi le with a name and type that
you specify. A l though there are ways to create other f i le types, th is
is the on ly way you can create a new d i rectory.

RENAME Change a f i le 's name

Use th is com mand to change the name of a f i le , but you can not use
i t to move the f i le from one d i rectory to another.

DELETE Remove a f i le from a d isk

Use th is command to remove a f i le from its d i rectory. Once you
delete a f i le , it is not possi b le to get it back .

L O C K Protect a f i le from bei ng destroyed

Use th is command to protect a f i le from be ing acc idental ly
destroyed . Once you lock a f i le , i t cannot be ren amed , deleted , or
otherwise changed un t i l i t is un locked .

U NLOCK Unprotect a locked f i le

Use th is command so you can rename, delete or otherwise change
a f i le that is locked .

Chapter 3: Using Fi les

Figure 3- 1 . Using F i les

My name is My name is n Prefix is
/DISKO /MYDISK /DISKO

RENAME: PREFIX:

Give a f i le a new name Set a d i rectory to work in

r------
1
. I
I

r _ _ _ __j_ _ _ _ -,

I My name is n I I /NEWDI R I I I I I
L _ _ _ _ _ _ _ _ J

CREATE:

Make a

new d i rectory f i le

I
_ _ _ _ _ _ _ _ _ j

� 1� (§ . � 1 --

I My "'me ;, I
DELETE:

Remove a fi le

from its d i rectory

n

L CATALOG: What fi les are

in a d i rectory?

I My "'me ;, I n rs=8·

LOCK: UNLOCK:

Protect a f i le Unprotect a f i le

The CA T and CA TAL OG Commands

To view the names and other character ist ics of a l l the f i les i n any
d i rectory, use one of the two forms of the CATALOG command :

CAT [pn] [,S#] [, D#]
CATALOG [pn] [,S#] [, D#]

D isp lay 40 columns
Disp lay 80 columns

CAT d isplays a 40-colu m n w ide l ist o f f i les . I t i nc l udes the f i le 's
name, type , s ize , and mod if ied date . CATALOG d isp lays an
80-co lumn wide l ist of f i les, wh ich i nc ludes the same i nformat ion ,
p l us t he date that the f i l e was created , and some techn ical
i nformat ion . I f you d i sp lay the 80-co lumn l ist on a 40-co lumn wide
screen , each entry in the l ist takes u p two l i nes. F igure 3-2 is a
comparison of the fou r d isplays that can be generated by th is
comman d .

T h e CAT and CATALOG Commands

•
Figure 3-2. CAT and CATALOG

40-co l u m n CAT

•

80-col u m n CAT

•

F' :·-, =-·· ,-, ,-·, ,. ...

H E L P

D I P E C T' C) !? '

D I PECTDR\' n r P

PF:OC:PHf·1·=: l'"; T p

DATA n r p

t� ! �H� D I R

Chapter 3: Using Fi les

i r � � B L O C K S M O D I F I E D

•·::-· : .: •·r·
i {·, I

;-·, .···, ,-·. ;:� n -::-

J. �:J (

• _ccc=- ·:·7 .:. ·-=:.. i '-'·-'

-·-. ;.. :-·-:-: �-

··:. i ::. • . t

i .·
.t i ····'

•

40-co lumn CATALOG

•

80-co lumn CATALOG

. E :=-:: Fi t··! P L E �:;
N A M E T Y P E B L O C K S M O D I F I E D

C R E A T E D E N D F I L E S U B T Y P E

0 : 0 0 5 - A U G - 8 3 2 1 : 0 4
S T A R T U P R A S

1 1 : 4 1 �:� :::� ... - ..J U L ·-- :::: :::;: 0 : 0 0
H E L P B I N

H E L P S C R E E N S T X T

1 0 2 4 0
7 1 - ·· :::: E P - ::: 3
;2 7 5 [1

5 4
5 9 1 - S E P - ::::3

0 : 0 0 2 2 - ..J U L - 8 3 0 : 0 0 1 2 3 5 8 6 5 6

D I R E C T O R Y D I R
0 : 0 0 2 8 - M A R - 8 3 0 : 0 0
P R A C T I C E D I R
0 : 0 0 1 6 - ..J U L - 8 3 0 : 0 0
P R O G R A M S D I R

1 7 : 5 1 2 8 - M A R - 8 3 0 : 0 0
D A T A D I R

1 7 : 4 6 2 8 - M A R - 8 3 0 : 0 0
E X T R A S D I R
0 : 0 0 2 8 - M A R - 8 3 0 : 0 0
F CJ ·:; T A G E , P H T E S
0 : 0 0 1 7 - ..J U L - 8 3 0 : 0 0

0 : 0 0 2 8 - M H R - 8 3 0 : 0 0

T C T Fi L B L. O C f::: ::; : 2 ::: \:.1

/E::-::Ri'1PLE::;
HAt:1E

STARTUP

T\'F'E BLOi):S l·10Dl F IED

i ,-. r- r, .-,, 1 -- .:1 c. r -· .::z ..)
5 1 ;::::

1 1 - ::; E P - ::n
5 L::

3 1 - ::; E P ·-· ::: 3

1 1 - ::; E P - ::: 3
5 1 2
i::' 4 .-1
._i l c.

-.. .-. _, _, ·-· ,:._ ! ·-'

CPEATED

1 - ::; E P - ::n

1 -· :=.:; E P - ::: 3

1 -- ::: E P - ::n

j 7 7 ,;. ! ·-'

ErmF I LE '3U8T'r'PE

HF-:33 11 : 27 22-,JUL-:33 1 i: 27 54

D I �:ECTOP'l D I P
PRACT I CE

D IR
Liii i h D I P

DIP
POSTAGE , PATE::; BAS

59 i - :3EP-t:3 ;3 : �30 22-.JUL -:::3 0 : �30 1235:::656
1 -:::c:-:-::: .;; �j � ({i 2�::-NRR-S3 �:i : �3e :• l t.

::: l-:3EP-:33 0 : ti0 17 -,_ii_!L -:::3 0 : [uj

The CAT and CATALOG Commands II

Display 80 columns.

· D isplay 40 columns.

For example , to see the f i les of jokes in the d i rectory
/JO KES/BAD, you can use the command i n e i ther of the fo l lowi ng
forms:

i . , . :·· .···- : , .···.
; ; ; ; ; . · ... · · - !:::· ····. :··· ;,,,: ; ; ;___:

The Options

If you g ive the CAT or CATALOG command without any opt ions ,
the names and character ist ics of al l the f i les i n the prefix d i rectory
are d isp layed . If the prefix is em pty, a l l the f i les i n the volume
d i rectory i nd icated by the last used values of [,S#] and [, D#] are
d isplayed .

[pn] The f i lename used i n the command must i nd icate a
d i rectory f i le or you see the F: .:. L .. t: . · ·. '··· :::. !"'! I '::>c: :::rr

·
c !···! error

message .

[,S#] I f you use the s lo t and d r ive opt ions without a f i lename,
[, D#] ProDOS d isp lays a l i st of the f i les i n the volume d i rectory

of the d isk i n the specif ied d r ive.

For Example

To see a l ist of the f i les i n the volume d i rectory of the /EXA M P LES
d isk , type

and you see the d isp lay shown in F igure 3-3.

Chapter 3: Using Fi les

Figure 3-3. A Catalog of the
/EXAMP LES Disk

•

B L O C:

T Y P E B L O C KS M O D I F I E D

T >=: T
D I R

D I P
D I P
D I P
E: A :;::;

:L

1

1 .. �. :::; E P ···� 8 3

1 ··-· :::; E P ;::: 3
1 -- :3 E P - :;::: :_:::
1 -·· :3 E P ·- ::: 3

1 -- :;:; E F' -· · :;::: 3

1 7 3 -

Now, be sure that you r /EXA M P LES d isk is i n s lot 6 , d r ive 1 ; type

' H � : :.::; ::: .. . = :.) ·=·

and you see a 40-colu m n l i st of the same d i rectory. The f i rst
example causes a d isplay of the f i les in the vol u me d i rectory of the
volume named /EXA M P LES, no matter which d isk d r ive
/EXA M P LES is i n . The second example causes a d isp lay of the
names of the f i les i n the volume d i rectory of any d isk that is i n the
dr ive connected to s lot 6 , d r ive 1 .

Now look at the f i les i n another d i rectory. Not ice that one of the
f i les d isplayed on the screen is named P ROGRAMS. Type

and a new l ist of f i les appears on the screen . These are the f i les
stored on the /EXA M P LES d isk i n the d i rectory named
P ROGRAMS.

T h e CAT and CATALOG Commands

Figure 3-4. A Catalog of
/EXAM P LES/DI RECTORY

•

What It All Means

By now you m ust be a l i t t le cur ious about the mean ing of the
head ings that appear on the screen each t ime you use the
CATALOG command . Wonder no more, for cur ios i ty k i l led the
CAT. Type

: L .. · i 1·::" 1··· 1 . 1 i

and , if you have an 80-co lumn d isplay, you see the catalog shown
in F igure 3-4 .

Th is is the 80-co lumn vers ion of th is comman d . If you have a
40-co lumn d isplay, you see the same i nformat ion , but each entry i n
t h e l ist takes u p two l i nes on the screen .

The Directory's Name

The f i lename of the d i rectory whose f i les you see i n F igure 3-4
appears i n the upper- left corner of the catalog . If it is a volume
d i rectory, i t is preceded by a slash ; otherwise i t is not .

C ha pter 3: U s i n g F i les

Table 3-1. The F i le Type Abbreviat ions

The uses for each f i le type are expla ined
later in the manual .

NAME (Filenames)

The name of each f i le i n the d i rectory is l i sted beneath the leftmost
head i n g , the one labeled i -i ::::: i 'ii::: . I f the named f i le is locked , its
f i lename is preceded by an aster isk .

TYPE (File Types)

The abbreviat ions beneath the head ing labeled T ' !:::: tel l you the
type of each f i le i n that d i rectory. The f i le type that corresponds to
each abbreviat ion is shown i n Tab le 3- 1 .

Abbreviation

D I R
TXT
BAS
VAR
B I N
REL

* $F#
SYS
SYS

File Type

Di rectory
Text
Applesott Prog ram
Applesoft Var iab les
B i nary
Relocatable Code
User Defi ned
ProDOS System F i le
ProDOS System Program

* # is an i n teger from 1 to 8 .

Not ice that a f i l e o f each type is represented i n t h e
/EXA M P LES/ D I R ECTORY d i rectory. W i t h ProDOS started u p and
the /EXA M P LES d isk i n d r ive 1 , type

;···; t::. L.. ;···· :L L.. 1:::.

to see th is l ist of f i le type abbreviat ions .

BLOCKS (File Sizes)

A block is a 5 1 2-byte un i t of d isk space. , · :-··: r·· · l ists the n u m ber of b locks of d isk space that
each f i le uses.

For d i rectory f i les , th is col u m n l ists the n u m ber of b locks used by
the d i rectory f i le , but not the b locks used by the f i les in the
d i rectory.

When you catalog a volume d i rectory, the b lock use of the ent i re
d isk is d isplayed at the bottom of the scree n .

T h e CAT and CATALOG Commands

Chapter 7 descri bes random-access
text files and explains how th is might
happen .

Table 3-2. The SUBTYPE Column

MODIFIED and CREATED (File Dates)

These co lumns conta in the dates and t i mes at which you created
and last mod if ied your f i les. The f i rst half of the i ' i c: : ; T ' '· , . , ..
colu m n is d isp layed by the CAT com man d ; both co lumns are
d isplayed by the CATALOG command . These d ates and t i mes are
correct on ly if

• you have a Thunderclock TM or

• you have used the T I M E prog ram , descr i bed in Append ix D, or

• you have some other type of c lock/calendar card , and have set
it up as exp la i ned in Chapter 9 .

I f there is a Thunderclock i n terface card i n o n e o f t h e Apple l l ' s
s lots, P roDOS recogn izes t h e card a n d sets itself up t o read the
d ate and t i me from the card .

ENDFILE (Maximum File Sizes)

=··· =-· : = , ;:::· T L.. �:::: l ists the n u m ber of bytes that each f i le wi l l use if a l l the
d isk space a l lot ted to that f i le is f i l led (somet i mes i t i s not) .

SUBTYPE (File Properties)

::: : '. ' ' ' ;T<:: l ists i m portant propert ies of some types of
f i les. A s ing le letter precedes each n u m ber i n th is col u m n . The
letters used are shown in Tab le 3-2.

Letter

A

R

Mea n i n g

Load Add ress : Th is is the memory add ress from
which a b i nary f i le (B I N) was saved . The add ress is
g iven i n hexadec ima l .

Record Length : Th is is the s ize (i n bytes) o f each
element in a text f i le (TXT) or user defi ned f i le
($F#) . The length is i n deci ma l .

For example , b i nary f i les are usual ly p laced i n the same par t of
memory each t ime they are used . For a b i nary f i le the property i n
the ::::; : :: : ' ' ' ' ' !: colu m n starts with a n A (for load Add ress) fo l l owed
by the memory add ress at which that b i nary f i le was last p laced .
Th is type of att r i bute is d iscussed i n Chapter 4 , " BASIC Prog rams
in F i les . "

Chapter 3 : Using F i les

The other type of property beg ins with an R (for Record length) . I t
specif ies the size of each e lement of the f i le . Th is att r i bute is
expla i ned i n Chapter 6 , "Text i n F i les . "

The Bottom Line

When you d isplay the catalog of a d i rectory, the bottom l i ne of the
d i sp lay descr i bes how space on the volume is used .

' ' ! F :: · : : is the n u m ber of u n used b locks on the
d isk , !3 L.. C: !:>· :: :: ! . .<::: : : L ! i s the n u m ber of fu l l b locks on the d isk , and

'··"···· '··· C> · ::: i s the maxi mum n u m ber of b locks of i nformat ion
that the d isk can hol d .

The PREFIX Command

If you are go ing to be referr i ng to several f i les i n a s ing le d i rectory,
the PREF IX command can save you some t ime . Use the PREFIX
command to set the prefix to the name of the d i rectory the f i les are
i n ; you can then refer to the f i les by f i lename a lone.

To assig n a new value to the prefix, or to see the cu rrent val ue of
the pref ix , use the com man d :

/PREFIX [p n] [,Stt] [, D#]

For example , i f the prefix is set to /EXAM P LES/, and you want to
use the f i le named / M A M M ALS/RODENTS/BEAVER you must
refer to i t by its fu l l path name. I f you use the command

r·· r==. !:::. r··
, ;.,.; ;.,.; ,···, ; . ; ,: ; ; ;

you can then refer t o the f i le s im ply as BEAVER, and t o the other
f i les in the d i rectory as M OUSE, SQU I RREL , RAT, and so o n .

When you start u p /EXA M P LES or a n y other ProDOS d isk , the
prefix is left empty, and the slot and d r ive defau lts are set to
i n d icate the d r ive contai n i n g that d isk . Whenever the prefix is
empty, ProDOS looks for f i les on the d isk i n the i n d i cated slot and
d r ive.

The PREFIX Command

The Options

I f you use the PREF IX command without any opt ions , the cu rrent
value of the prefix is d isplayed on the screen .

[pn] pn must be the path name or part ia l pathname of a
d i rectory f i le . U n l i ke a normal pathname or part ia l
pathname, i t may end with a s lash . I f i t is not val i d , you wi l l
get a ::::0 I Loo ::::: OT" '/ :: :. ::::: i 'i I ·:::: !'! ::::: T" C:: ! ! or F

o
I moo :: : 0 ' ;00, , 0 0 0 0 0 L.i error.

If you use a slash i nstead of a path name, the value of the
prefix is left em pty.

[,S#] I f you do not specify a f i lename, but you d o use the
[,D#] slot and d r ive opt ions , the volume name of the i nd icated

d isk is ass igned to the prefix. If you have a contro l ler for a
s ing le d isk d r ive i n a s lot , refer to it as d r ive 1 of that s lot .

For Example

With ProDOS started up , and the ProDOS d isk i n d r ive 1 , set the
prefix to i nd icate the /EXA M P LES volume d i rectory us ing the
command

; ; ·! F : ;·· ...

and then make sure the command worked r ight us ing the
command

Not ice that the value of the prefix is pr i nted out as

I f the prefix value that you ass ign doesn ' t end in a slash , ProDOS
automat ical ly adds one. I t d oes th is so, when the prefix is attached
to a f i lename or part ia l pathname, a proper pathname is formed .

Chapter 3: Using F i les

Refer to Chapter 5, " Programming
With ProDOS, " for detai ls on read ing
the prefix.

Verify that you can enter the prefix with a trai l i ng slash by typi ng

: ;::: :. ...
E::: �:::: .··

and check ing the resu l t usi ng the com mand

... r

If you want to set the prefix to the name of the volume d i rectory of
one of you r d isks, but you can ' t q u ite remem ber the d isk 's name,
use the s lot and d r ive opt ions to i nd icate the d isk 's locat i o n . For
example ,

.. ... · ... · · ... · : ' ·' .:.

sets the prefix to the value /EXA M P L ES/ . Try i t . If you r d isk has a
long name, th is form may be shorter than typ ing i n the ent i re
vol u me name.

I f you want to look at or use some of the programs that are
suppl ied with you r /EXA M P LES d isk , type the com mand

/ 1::;_ ,:-:, ;···; J ; ; ... · ;

You can now see a l i st of the programs i n th is d i rectory by typi ng

and you can refer to any one of them by f i lename a lone , as i n

; ; ; ; -;- ···:
' ' i i"''[) .·· ;···, ; ; ; ; : · ·

When You Use PREFIX in a Program

When you use the PREFIX command with no opt ions from wi th i n a
program, the value of the prefix is not d isp layed ; it is set u p so the
next I N PUT statement i n the prog ram reads i t .

The PREFIX Command

The CREA TE Command

The pr imary purpose of the C REATE com mand is to create
d i rectory f i les wi th i n which you can p lace other f i les . A l though you
can use th is com mand to create f i les of a l l types , most of the other
f i le types are created automat ical ly by other ProDOS commands .

A volume d i rectory f i le can store the names and locat ions of u p to
51 f i les. I t isn ' t real ly necessary to create more d i rectory f i les
u n less you r d isk wi l l contai n more than 5 1 f i les . However, a wel l
p lanned set o f d i rector ies can make you r f i les much eas ier t o f i nd
and use.

Be Prepared: Create you r d i rectory f i les before you have f i les to p lace
with i n them. I t is m uch easier to p lace new f i les in a d i rectory than to
m ove exist i n g f i les from one d i rectory to another. I f you m ust do th is ,
use the f i le copy opt ion of the ProDOS F i ler.

You create a f i le by us ing the command

CREATE pn [,Ttype] [,S#] [, D#]

Not ice that the CREATE command uses a new opt i o n , Ttype , that
determ i nes the type of f i le to be created . If you do not use th is
opt i o n , a d i rectory f i le is created . To create a f i le of any other type ,
you m ust use th is opt ion .

For example , you can create a d i rectory f i l e named
/BUDGET /C H I LDREN by using the command

Directory File Size

The n u m ber of f i les that f i t i n to a d i rectory other than a volume
d i rectory is l i m i ted on ly by the amount of space on the d isk . The
s ize of a d i rectory f i le is determ i ned by the n u m ber of f i les i t
conta ins .

The fi rst b lock of d isk space used by a d i rectory can ho ld u p to
1 2 f i les . Each su bsequent b lock used by a d i rectory can ho ld up to
13 f i les. Thus a d i rectory with 27 f i les i n i t i s th ree b locks long
(12 f i les i n b lock 1 , 13 i n b lock 2 , 2 i n b lock 3) .

C hapter 3: Using F i les

Chapter 2 d iscusses the d i rectory f i le
type; the other types are explai ned as
you need to know about them.

Table 3-3. The F i le Type A b b reviat ions

The Options

pn pn is the pathname or the part ia l path name of the f i le to
be created . The f i le m ust not exist .

[,Ttype] type is a th ree- letter abbreviat ion that determi nes the
type of f i le to be created . The abbreviat ions of the
var ious f i le types are g iven i n Tab le 3-3. You can see
these abbreviat ions by usi ng the H E L P F I L E com man d .

Abbreviation

D I R
TXT
BAS
VAR
B I N
REL

* $F#
SYS
SYS

F i le Type

Di rectory
Text
Applesoft Program
Applesoft Var iab les
B i nary
Relocatab le Code
User Defi ned
ProDOS System F i le
ProDOS System Prog ram

* # is an i n teger from 1 to 8 .

[, S#] The slot opt ion has i ts usual mean i n g .

[, D#] The d r ive opt ion has i ts usua l mean i n g .

For Example

With ProDOS runn ing and the /EXA M P LES d isk i n d r ive 1 , set the
prefix to /EXA M P L ES/P RACTICE/ with the com mand

:···. :···· :···· ·:· : :
' . . ·.· =···' : ' ' : ... · L .. �--· .

We want to create a d i rectory named
/EXA M P LES/P RACTICE/ N EW D I R . Type the com mand

and l i sten to the /EXA M P LES d isk wh i rr i ng away. Now type

to see that the new d i rectory exists. Not ice that the catalog of f i les
shows that ! ! E ! ·.! ! : I !::" uses up 1 b lock of d isk space.

The CREATE Command

The RENAME Command

To change the name of a f i le , use the RENA M E com mand :

RENAME pn 1 , pn2 [, S#] [, D#]

Th is command changes the name of a f i le f rom the name i nd icated
by pn 1 to the name i nd icated by pn2 . The new name m ust be in the
same d i rectory as the o ld name. Thus you can use the com mand

;:;:= �::: . . . ' ' '··· _...
;·::: 1:::. l ... · . L �--·· t::. :::::- - l:::· ; : r- ·; l"·:: ;:::· . / j·=:: t::. l ... · .L j···· t::. ::::=- , : · ... · .

to change the name of a test rec ipe from FUDGE to BROW N I ES ,
but you cannot use the command

;:::: ::::·] ..] C ;]·:] ;:··· .· ::::: ;::·· ,···. ···. : .· , ... : ;:;:· �--·� �-=-� � --� -�- F �---; . / h:' !··· ; : 1 f···' i···

...- F� 1) ;
-

... .

to move your BROWN I ES rec ipe from the TEST d i rectory to the
E D I B L E d i rectory. To move a f i le f rom one d i rectory to another, use
the ProDOS F i ler.

You cannot rename a f i le that is locked . Refer to the sect ion "The
LOCK Comman d " i n th is chapter for further deta i ls .

The Options

pn 1 ,pn2 When you g ive a f i l e (pn 1) a new name (pn2) , the new
name must be u n i q ue . If it a l ready exists, you get the

.,. · · ' ' · · - r -· name error message. If pn 1
does not exist , you get the F:· I L .. :

::: :· . .: ····, · ··· ::::· r·: : ! !·· ! L:t error
message. I f the two pathnames, pn 1 and pn2 , d o not
i nd icate f i les i n the same d i rectory, you get a ::::; , , , , , ,

[,S#] The s lo t opt ion has i ts usua l mean i n g .

[, D#] The d r ive opt ion has its usua l mean i n g .

Chapter 3 : Using F i les

For Example

With the /EXA M P LES d isk i n d r ive 1 , set the prefix to the name of
the d i rectory contai n i ng pract ice f i les by typ ing

..... . , ; ; ; ; ; .

Now look at the f i les i n the d i rectory /EXA M P L ES/PRACTICE by
typ ing

! �--·; ;

The l i st of f i les d isp layed on the screen inc l udes the f i les
RENAME. M E . 1 , RENAM E. M E. 2 , and RENAM E . M E . 3 . To change
the name RENAME. ME . 1 to RENAM E . M E .4 , type

and ProDOS swiftly and s i lent ly changes the f i le 's name. Now type

to verify that the name was i ndeed changed . Now rename the f i le
LOCKED .UP. 1 with the command

-- ····· ·
1·· . ::::. 1···! �---� r·� ::::. � t:::. L.1 , = . ..: ;···· , 1 .= .L r·-1 1 = 1 !···; ! t::.

Whoops! Th is f i le is locked ; i ts name cannot be changed un t i l you
u n lock i t . If you have val uab le f i les that you don ' t want to alter or
rename accidental ly, l ock them . The sect ions on the LOCK and
U N LOCK commands i n th is chapter descr ibe th is method of f i le
protect ion .

The DELETE Command

To remove a f i le from a d isk , use the command

DELETE pn [,S#] [, D#]

For example , you can remove the f i le /RESU ME/DRAFT 1 2 from i ts
d isk with the command

!··· ; ; ...

The f i le i n d i cated by pn m ust be u n locked , and if it is a d i rectory
f i le , it m ust be empty. After you delete a f i le there is no way to get i t
back agai n .

The DELETE Command •

I
The Options

pn A pathname or part ia l path name, p n , m ust be i nc l uded in
the comman d ; the i nd icated f i le m ust exist or you get a

: : :
r· .!. : .•.. !:::. , .; , ··. ··· ·· ·· .:: , , , i c: message.

[,S#] The s lo t opt ion has i ts usua l mean i n g .

[, D#] The d r ive opt ion has its usual mean i n g .

For Example

With ProDOS started up , and the /EXA M P LES d isk i n d r ive 1 , set
the prefix to /EXAMP LES/ P RACTICE/ with the command

.. ·.· : ... : : : : : ... · : : ... =: .. . - !:::: ;:::- : ... : :

To see the f i les i n the P RACTICE d i rectory, type the com mand

I nc luded i n the l isted f i les are the fi les DELETE. M E . 1 ,
DELETE. M E . 2 , and DELETE. M E . 3 .

Now delete the f i le /EXA M PLES/P RACTICE/DELETE . M E. 1 us ing
the command

u 1:::: L.. �:::: ·r �:::: L.! 1:::. � !:::. i 1::: . . . : :....

Try delet i ng the other DELETE. M E f i les us ing a fu l l pathname, and
by set t i ng the prefix to someth ing e lse , /EXA M P LES/ for example ,
and usi ng a part ia l pathname.

Use the CAT command to verify that the deleted f i les are no longer
on the d i sk .

The L OCK Command

At t i mes you w i l l want to protect i nd ividua l f i les from be ing
accidenta l ly renamed , deleted , or altered . You can do th is usi ng

LOCK pn [, S#] [, D#]

For example , you can lock the f i le / I NVENTORY / N OTE. PADS by
typ ing

! :··, ,···. : .· ! ; : : : :···· : : ··:·· .···. :··· · : : --: ' '· r·· : · -: : ; : r=: ·.. · ·: -___ . , ,____ , �--·. f···f L..i ::::'

Chapter 3: Using Fi les

Whi le a f i le is locked , it can not be renamed , deleted , or al tered .
Any at tempt to change a locked f i le causes the F: T :

error message to be d isp layed . To alter a locked f i le , you must fi rst
u n lock i t with the U N LOCK com man d .

When you catalog t h e f i les i n a d i rectory, t h e locked fi les are
marked by aster isks to the left of the i r f i lenames.

You can not lock a volume d i rectory f i le . You can , however, protect
an ent i re f lex ib le d isk by cover ing its wri te-enab le notch .

The Options

p n pn is t h e path name or t h e part ia l pathname o f the f i le
to be locked . You can not lock a volume d i rectory.

[,S#] The slot opt ion has its usual mean i n g .

[, D#] The d r ive opt ion has its usua l mean i n g .

For Example

With Pro DOS started up and the /EXA M P LES d isk i n d r ive 1 ,
d isp lay a l ist of the f i les i n the PRACTICE f i le us ing the com mand

Not ice that the f i les LOCKED .UP. 1 and LOCKED . U P. 2 both have
asterisks by the i r f i le types , i n d icat i n g that they are locked . Fi rst
set the prefix to /EXA M P L ES/P RACTICE usi ng the com mand

;:::: ;:;:: j:::· ;:::· T : . / �:::: :=-:: ; : : · : :··· : :::: .·· ;::: :
· . .

Next lock the f i le LOCK. M E . 1 i n the prefix d i rectory with the
command

L i_.) ; __ : ;-:· = , , . , · •• , , · i L. , .•.

Use the CAT command to verify that the f i le is now locked .

The LOCK Command II

The UNL OCK Command

Before you can delete, rename, or otherwise change a locked f i le ,
you m ust U N LOCK i t us ing the command

U N LOCK pn [,S#] [, D#]

For example , to un lock the f i le / I NVENTO RY /N OTE. PADS so that
you can update the i nformat ion it contai ns , use the command

.... ' : : ... ' ·· '

You can U N LOCK any f i le except a volume d i rectory f i le . Volume
d i rectory f i les can not be locked .

The Options

pn pn is the path name or the part ia l path name of the f i le to be
u n l ocked .

[, S#] The s lot opt ion has i ts usual mean i n g .

[, D#] The d r ive opt ion has i ts usual mean i n g .

For Example

With ProDOS started u p and the /EXA M P LES d isk i n d r ive 1 ,
d isp lay the l i st of the f i les i n the PRACTICE f i le by usi ng the
command

····. :··· . . ··· . . ···. ··:·· ·:· .···. :····
;-··; ; · ; ;···· = : ... · / !···" i·::· ;···; ; . ; .L ! ___ . !···

Not ice that the f i les LOCKED .UP. 1 and LOCKED . U P. 2 both have
asterisks by the i r f i le types , i nd icat i n g that t hey are locked . F i rst
set the prefix to /EXA M P L ES/P RACTICE/ us ing the com mand

j···' !. : : T '·-:' ./ t::_ ,:-:. :···! ' ' ' '

Next u n lock the f i le LOCKED .UP. 1 i n the prefix d i rectory with the
command

! ! 1 . !·:. . . : ... · . · : ... ·
! ' .. .' ' ... · ! '·. L ... L.' : ' .. .' !

Use the CAT command to verify that the f i le is now u n locked .

C hapter 3: Using F i les

BASIC Programs in Files

49 About Th is Chapter
49 BASIC P rogram F i les
50 Th is Chapter 's Commands
50 The - (DASH) Command
51 The Opt ions
52 For Example
52 The RUN Command
53 The Opt ions
53 For Example
54 The LOAD Command
54 The Opt ions
55 For Example
55 The SAVE Command
56 The Opt ions
56 For Example

C hapter 4: BASIC Programs i n F i les

BASIC Programs in Files

About This Chapter

This chapter descr i bes the ProDOS commands that let you use the
BAS IC programs on you r d isks. I f a l l you want to d o is run
programs that are al ready on you r d isks, pay specia l attent ion to
the - (DASH) com man d . Th is command moves any type of
program from a f i le on a d isk i n to memory, and then starts i t
ru n n i n g .

You c a n use t h e commands i n t h i s chapter

• to br ing a program into memory and run it

• to br ing a prog ram into memory without run n i ng it

• to store the program that is current ly i n memory on a d isk .

These commands are most usefu l when you are wr i t i ng programs
or mod ifyi ng programs that al ready exist .

BA SIC Program Files

Although the Apple I I can use two d i alects of the BASIC
language-Applesoft and I n teger BASIC- ProDOS supports on ly
Applesoft . To use ProDOS, you r Apple I I m ust have Applesoft
BASIC in Read O n ly Memory (ROM) , and at least 64K of Random
Access Memory (RAM) .

When you start up /EXA M P LES, i t d isplays the message

: : : . . .

tel l i n g you that the Applsoft language i s i ndeed i n Read On ly
Memory.

BASIC Program Fi les

The EXEC command is described in
Chapter 8 .

B inary program execut ion : see also t h e
DAS H command.

EXEC program: see Chapter 8 .

This Chapter's Commands

Th is chapter' s commands are summarized below. Each causes the
transfer of a program between memory and a d isk f i le ; the
d i rect ion of the transfer and the type of f i le transferred are
determ i ned by the command you use.

- (DASH} Run any type of program

Use this command as a short form of the R U N , B R U N , and EXEC
commands . I t causes a BASIC , b inary, EXEC, or system program
to be transferred from a d isk f i le into memory and then executed .
Th is i s the command you use to run the ProDOS F i ler without
start i n g u p /USERS. D ISK .

R U N Run a BASIC program from a f i le

Use th is command to copy a BASIC program , type BAS , from a
d i sk f i le in to memory to be executed automat ical ly.

LOAD Get a BASIC program from a f i le

Use th is command to copy a BASIC program , type BAS, from a
d i sk f i le i nto memory. O nce the program is i n memory, you can run
i t , mod ify i t , or save i t i n a d i sk f i le .

SAVE Save a BASIC program i n a f i le

Use th is command to save the BASIC program that i s current ly in
memory as a BASIC d i sk f i le , type BAS.

The - (DA SH) Command

One of the more usefu l featu res of ProDOS is the - (DASH)
comman d . With th is command you can br ing in to memory and run :
a BASIC program , a mach ine- language program , an EXEC
program , or a system program such as the ProDOS F i ler.

To run a program of any one of these types, use the command

- pn [,S#] [, 0#]

Chapter 4: BASIC Programs i n Files

Figure 4- 1 . BASIC in F i les

To learn more about the way programs
run, read the sect ions "The RUN
Command" i n th is chapter and "The
BRUN Command" i n Chapter 9 .

BASIC prog ram i n memory BASIC program

in a d isk f i le

Both RUN and - cause

a program to be

loaded , then executed

When you run a system prog ram , everyth i ng else in memory is
destroyed . I f you are writ i ng a BAS IC program , be sure to save it
before ru n n i n g a system program .

For example , to run the ProDOS Fi ler, p lace the d isk /USERS. D I S K
i n o n e o f you r d isk d rives a n d type

The Options

pn pn is the pathname or part ia l pathname of the f i le
contai n i ng the program you want to run . The f i le must be
of type BAS, B I N , TXT, or SYS. I f the f i le is a b i nary f i le , i t is
loaded to the add ress from which i t was last saved . A l l
other f i le types cause the F : T : ; . . L. ' !:::. , , :: ::: , :· ·1 ::: : T" c:: 1···1 error.

[,S#] The s lo t opt ion has i ts usua l mean i n g .

[, D#] The d r ive opt ion has i ts usual mean i n g .

The - DASH Command

The - (DASH) command is descri bed
ear l ier in this chapter.

For Example

With ProOOS ru n n i n g , set the prefix to i n d icate the P ROGRA M S
d i rectory w i t h the command

Look at the programs i t conta ins by typ ing

Now t ry runn i ng a b i nary prog ram (type B I N) , a BAS IC program
(type BAS), and an EXEC program (type TXT) by typ ing a d ash (-)
fol lowed by the f i lename of the program you want to run .

To run the F i ler program (type SYS), p lace /USERS . O I S K i n a d r ive
and type

To return to ProOOS from the F i ler, be sure that /EXA M P LES is i n
a d r ive, type @]from the main men u , type the pathname
. , , , , . , , , ; ;: \ : < : . ;:::, ::: : : :: , and press (RETURN) .

By the Way: If you want easy access to the F i ler, use the F i ler program
to copy the fi le /USERS. D ISK/F ILER to a d isk that you usual ly have in a
d rive. Then you can use the F i ler by typ ing the DASH command rather
than start i ng up /USERS . D ISK .

The RUN Command

To run an Applesoft program that is stored on a d isk , use e i ther of
the commands

RUN pn [,@ft] [,Sft] [, Oft]
- pn [,Sft] [, Oft]

O n ly the RUN command is descr i bed here.

When ProOOS sees the RUN com man d , i t f inds the f i le i n d icated
by p n , b r i ngs i t i n to memory, and then runs i t (beg i n n i n g with
l i ne @ft if you use that opt ion) . For example , to run the BASIC
prog ram named C H ECKBOOK on a d isk named /ACCOU NTS ,
use the command

- - - · - - - ···. .· , , ... , , . . . �< E: c� f··� �...-

Cha ter 4: BASIC Proa rams i n F i les

When a prog ram ends , you can run i t agai n by us ing the BASIC
com mand

!·:-' ! : :·. :

Not ice that i n the general form of the RUN com man d , the f i lename
is not opt iona l . When you type i n a command , ProDOS checks to
see i f i t is a ProDOS command . I f i t isn ' t , ProDOS g ives the
com mand to BASIC. I n th i s case, RUN wi thout a f i lename is not a
val id ProDOS comman d ; the command is passed to BAS IC , and
BASIC runs the program i n memory.

The Options

pn pn i n d i cates the f i le to be ru n . The f i le to be run must be of
type BAS {Applesoft BASIC) .

[,@#) I f you use th is opt i o n , the program beg ins runn i ng a t the
l i n e n u m ber specif ied by # . I f you omi t th i s opt i o n ,
execut ion beg ins a t t h e lowest num bered l i ne i n the
program .

[,S#) The s lo t opt ion has i ts usual mean i n g .

[, D#] The d r ive opt ion has i ts usua l mean i n g .

For Example

With ProDOS started up , and the /EXA M P LES d isk i n d r ive 1 , set
the prefix to i n d icate the /EXA M P LES/PROGRA M S vo lume
d i rectory us ing the command

: ... : : . : : ·· . . : ,
- !:::· =··· .. .

Look at the f i les i n the PROGRA M S d i rectory with the command

Do you see a prog ram named T !.'.! :

typ ing

and the screen d isp lays the words

The RUN Command

! ! ! :: !; ' ? Run the program by

The STORE command is descri bed in
Chapter 5 .

But i f you run part of the program us ing the command

you just see

I = ; , .L r·-! t::. ,:::. =::.= .

: ,.; · .. : : :.::: :: ••• ': •• =

If you examine the program by typ ing

L. '· · ... = '

you ' l l d i scover that l i n e 20 contai ns that sentence.

The L OAD Command

To transfer a BASIC program from a f i le to memory, use the
command

LOAD pn [,S#] [, D#]

Th is command is usefu l i f you want to examine or mod ify a
program . I t i s not necessary to load a program before you run i t ;
the RUN command automat ical ly loads a program i nto memory.

War n i n g
When a new program is loaded i n t o memory, a l l records of t h e previous
program are erased from the Apple l l ' s memory. I f you want to save the
var iab les that were set by a previous program , use the STORE comman d .

When you LOAD the contents o f a f i le i n to memory, the f i le on the
d isk remains u nchanged .

Once a program is loaded i nto memory, you can run it by s im ply
typ ing F i.J!··L

The Options

pn pn must i n d icate an Applesoft program f i le (type BAS).

[,S#] The s lo t opt ion has i ts usua l mean i n g .

[, D#] The d r ive opt ion has i ts usua l mean i n g .

C ha pter 4 : BASIC Programs i n F i les

For Example

With ProDOS started up , and the /EXA M P LES d isk i n d r ive 1 , set
the prefix to i n d i cate the /EXA M P LES/PROGRA M S volume
d i rectory us ing the command

Type i · ! E: ! .: to remove any BASIC program from memory, then type
L I ·:::: -:- j ust to prove that there i s no BASIC program in memory.
N ow, br i ng a new program i nto memory with the command

L. i . .J j···! L} ; . . ; ; l .L : : ·

You hear the d isk d r ive work i n g away, then the BASIC prompt
returns . To see the program t hat was just l oaded , type

L . :! ::::= i

It i s i m portant to real ize that when you load a f i le , a copy of the f i le
is transferred f rom the d isk to memory, but the or ig i n al copy of the
f i le rema ins u nchanged on the d isk . For example , even though you
have al ready loaded WH IZBOO M , type the command

i ;···; !

and you see that the f i le is st i l l on the d isk . To p lace the BAS IC
program that i s cu rrent ly i n memory i n to a f i le , use the SAVE
com man d .

The SA VE Command

To transfer the BASIC program that is cu rrent ly i n memory to a f i le
on a d isk , use the command

SAVE pn [,S#] [, D#]

The f i le i s saved as an Applesoft f i le (type BAS).

For example , to save the cu rrent program i n a f i le named
/ BEDTI M E. STO R I ES/A. F R I E N D LY. OGRE , use the command

: : l ,;, ; . , ... �-::: ; i··· :·. : . .

I f you save a program to a f i lename that al ready exists, the f i le
m ust not be locked , and i t m ust be of the same type as the
program (type BAS).

The SAVE Command

War n i n g
I f you are work ing w i t h several d ifferent program f i les a t once, a n d there i s
a chance you wi l l save a program to t h e wrong f i l e , L O C K each f i l e after
you save to it, and then U N LOCK i t before you save to i t agai n . Th is is the
best way to protect valuable BASIC programs.

By the Way: You can use the SAVE command to rearrange program
f i les. I f you use the LOAD command to br ing a program i nto memory,
you can then use the SAVE command to save i t on a d ifferent d isk (you
wou ld then have two copies of the same f i le}. Remem ber that when you
load a BASIC program from a f i le , the file itself does not change.

The Options

pn pn is the path name or the part ia l pathname of the f i le in
which you want to save the current program . I f pn al ready
exists, i t must be un locked .

[,S#] The s lot opt ion has i ts usua l mean i n g .

[,D#] The d r ive opt ion has i t s usual mean ing .

For Example

With ProDOS started up , and the /EXA M P LES d isk i n dr ive 1 , set
the prefix to /EXA M P LES/PROGRA M S with the command

;··, .···. :··· . . ···. : . . : .···.
: ·-. = ... = = •• := !·=:: i•••i ! ' i :·:·: ..

..

Now load a very short program in to memory with the command

i : __ _; r-·! L.i ::::· L.l f"": i:::: ·T·
: • ••• : ; : = ••• : ; ·-. :

To see how short th is program is , type the com mand

L.. I -:::= i

and you see before you a s ing le l i ne of program which reads

Chapter 4: BASIC Programs in F i les

Even if you aren ' t a prog ram mer, you m ight guess that th i s
program does one and on ly one th i ng : i t p r i n ts the words ::: :
. .. . " , ,.,. · , :·,:' !·· : : ! onto the screen . To see it do i ts very short
t h i n g , type

Remember that the RUN command without a f i lename is not a
ProDOS com man d ; it is a BAS IC command that causes the
prog ram that i s current ly i n memory to be run .

N ow for the fun part . Save the program to a d i fferent d isk f i l e , say
/EXA M P LES/PROGRAMS/O N E . L I N ER , with the command

. · ·· · : .. . = ••• = : ·: :
. .

You can see that the program has found its new home by typ ing

Not ice that the f i rst copy of the program , VERY. S H O RT, i s st i l l on
the d isk . Not ice also that a program , even after a SAVE, rema ins in
memory. Use ! ' i . . F ! or L ··· ··· ····· to see that the program is st i l l there .

I f you have an Apple l ie with an Extended 80-Co lumn Text Card ,
you can also save th is program to a f i le on the volume named
/ RA M . Type the command

You can see that th is vers ion of the program has been saved by
us ing the command

Not ice how much faster /RAM is than a normal d isk volume . I t is
most usefu l when you are deve lop ing a large BASIC program and
you wish to save i n termed iate vers ions of i t freq uent ly.

The SAVE Command

Chapter S

Programming With ProDOS

61 About Th is Chapter
61 Th is Chapter 's Commands
64 What Is a Startu p D isk?
64 The Anatomy of a Startup Disk
65 The Startup Process
67 Usi ng ProDOS From With in a Program
67 For Example
68 Debugg ing You r Programs
68 Th i ngs to Watch Out For
68 Pr in t Each ProDOS Command on a New L ine
69 You Can ' t Copy Contro l Characters
69 Some ProDOS Commands Work On ly in P rograms
69 I ntercept ing Messages to the Display Screen
70 Read ing the Prefix
70 Hand l i n g Errors in a P rogram
72 Turn i ng Off O N E R R GOTO
72 Prob lems With O N E R R GOTO
73 1 /0 From BASIC Programs
73 The CHAI N Command
74 The Opt ions
74 For Exam ple
75 The STO RE Command
76 The Opt ions
76 The RESTOR E Command
76 The Opt ions
77 For Example
78 The PR# Command
79 Start i ng Us ing PR#
80 The Opt ions
80 For Example
81 The IN# Command
81 The Opt ions
82 The FRE Command
82 For Example

C hapter 5: Progra m m i n g With ProDOS

"

Programming With ProDOS

About This Chapter

Th is chapter conta ins an overview of programm i n g with Pro DOS. I t
descr i bes

• the startup process and how to make a startu p d isk

• how to use ProDOS commands from with i n a program

• how to read the prefix from wi th i n a prog ram

• how a program can hand le errors

• how you r programs can com mun icate with devices i n s lots .

You should have some experience with Applesoft BAS IC . I f you d i d
a l l t h e exam ples i n t h e Applesoft Tutorial, you know enoug h . I f you
d i d n ' t , you shou ld work your way through i t before cont i n u i ng with
th is manual .

If you know I n teger BAS IC , but not Applesoft , read the append ix i n
t h e Applesoft BASIC Programmer's Reference Manual that
summarizes the d ifferences between the two .

This Chapter's Commands

The commands descr i bed i n th i s chapter are summarized below.
Th is is not meant to be a complete descri pt ion of each com man d ;
i t s im ply g ives you an idea o f t h e use o f each command a n d o f the
way the commands are i n terrelated .

CHAIN Run a program , but save the var iab les

Use this command to run a new program . U n l i ke R U N , i t does not
cause the var iab les that are al ready i n memory to be th rown away.

This Chapter's Commands

Figure 5- 1 . CHAIN

Figure 5-2. STOR E and RESTORE

BASIC

Program

Replaces

CHAI N :

Loads new program

BASIC

Var iab les

No change

--, l

Disk-
Memo�

(00 ° ') ,_ _/

STORE Save the var iab les i n memory to a f i le

Use th is command to save i n a f i le a l l the BASIC var iab les th?t are
cu rrent ly in memory. You can retr ieve these var iab les by us ing the
RESTORE comman d .

RESTORE Get BASIC var iab les from a f i le

Use th is command to d i scard the var iab les that are cu rrently i n
memory, a n d to br ing i n new var iab les from a f i le .

No change

BASIC

Program

Replaces

BASIC

Var iab les

�------------�------�
No change No change

RESTORE:

Load var iab les

- - -..........

-+--- Memory /� '\.\ /I \
\ 00 J

Disk -----+- \, 0 //
......_ -/

STO RE:

Save variables

Chapter 5: Progra m m i n g With ProDOS

Chapter 9 expla ins how to use PR# to
send output to a program .

Chapter 9 expla ins how to use I N # to
get i n put from a prog ram .

Figure 5-3. PR# and I N #

Keyboard

PR# Send output to a slot

Use this command to cause the characters that are normal ly
pr in ted on the screen to be sent to a device, such as a pr in ter, i n a
s lot .

I N # Get i n put from a s lot

Use th is command to cause characters to be read from a device,
such as an external term ina l , in a slot i nstead of from the
keyboard .

Slot N

Write characters j
to slot N

to screen

f:>ty,;',t 0

reads and writes

.----

P

-

r

-

og

_

r

_

a

_

m

_

t

_

h

_

a

_

t

----,

PR# N=l
characters � I N # N

\)�'--------' \�c\\ Read characters

Read characters

from keyboard

This Chapter's Commands

f rom s lot N

A ProDOS startup disk contains a l l the
i nformat ion needed to br ing ProDOS
into memory and start i t runn ing .

Examples of STARTUP programs are
g iven later i n this chapter.

What Is a Startup Disk?

Every Apple I I system has a part icu lar d isk d rive known as the
system ' s startup dr ive. The startup d rive is connected to d rive 1
of the d isk contro l ler card i n the h ighest n u m bered s lot . Th is
chapter assumes that you r startup d rive is connected to s lot 6 .

When you p lace a d isk i n the startup d rive and turn on you r
Apple I I , some d i sks cause t h e system t o start up , other d isks j ust
spi n . The d isks that cause the system to start up are known as
startup d isks. A startu p d isk contai ns a l l the crucia l i nformat ion
that the App le I I needs to br i ng a program from a d i sk in to the
App le l l ' s memory and start a program run n i ng .

To make a n y ProDOS-formatted d isk i n t o a ProDOS startu p d isk ,
you m ust copy the f i les contain i n g the ProDOS program onto that
d isk . When you turn on the Apple I I (or type F F: # 6 from BASIC)
with a ProDOS startup d isk i n the startup d rive, the ProDOS
program is automat ical ly transferred from d isk to memory and
run .

Once you have made other startup d isks, you wi l l no longer need
to use the /EXA M PLES d isk each t i me you use ProDOS. Al l the
vital parts of ProDOS are stored on each startu p d isk . In add it i on ,
by copyin g the f i les H ELP and H ELPSCREENS on to the startup
d isk , you can use the he lp featu re w i th other startup d isks.

You can des ignate any program to be automat ical ly run when a
ProDOS d isk is started . You d o so by putt i n g the program i n a f i le
n amed STARTUP. Th is f i le , wh ich may contain a b i nary, BAS IC , or
EXEC program , can contain a program that p laces a g reet i n g
message on t h e screen , a favor ite game, budget i n g program , o r
other program of you r choice .

The Anatomy of a Startup Disk

A Pro DOS' startup d isk has th ree character ist ics:

• I t is formatted using the ProDOS Fi ler.

• I t has the f i le PRODOS i n i ts volume d i rectory.

• It has a f i le named BASIC. SYSTEM i n i ts volume d i rectory.

C hapter 5: Programming With ProDOS

•

To make a ProDOS startu p d isk :

1 . Use the Pro DOS F i ler to format a d isk .

2 . Use the ProDOS F i ler to copy the f i les PRODOS and
BAS IC . SYSTEM from the /EXA M P LES d isk to the newly
formatted d isk .

3 . I f you want a specif ic program to be run when you start up that
d isk , p lace it on the startup d isk and name it STARTU P.

4 . If you wish to use the he lp com mands after you start u p from
that d isk , copy the f i les HELP and H ELPSCREENS from the
/EXA M P LES d isk to the new startu p d isk .

The Startup Process

When you start u p you r Apple I I with a proper ProDOS startu p
d isk , here is what happens:

1 . The f i le named PRODOS, contai n i n g the most soph ist icated
parts of ProDOS, is transferred from the startu p d isk i n to
memory and run .

2 . ProDOS exami nes the per ipheral con nector s lots and t r ies to
ident i fy the type of device in each s lot . I t does th i s to determ ine
wh ich s lots conta in d isk d r ives tha t i t may need to com m u n icate
wi t h . I f one of the devices is a Thunderclock , ProDOS sets itself
up to read from the Thunderclock.

3 . I t then loads the prog ram i n the f i le named BAS IC .SYST E M .
T h i s port ion o f ProDOS conta ins al l t h e ProDOS commands .
Th is part of the program is ru n .

4 . ProDOS BASIC looks for a f i le named STARTUP on t h e startup
d isk . I f i t f inds one , i t runs i t . I f i t does not f ind one , i t d isp lays
the fo l lowi ng message :

W h a t Is a Startup Disk?

Figure 5-4. The Startup P rocess F igure 5-4 i l l ust rates the steps in the startu p process.

II

G) ProDOS attaches rout i nes
for d i sk d r ives, Th u n derclock,
and /RAM (i f 128K) .

DIIIW
User's RAM

ROM

2 ProDOS checks to see
which cards are i n
t h e slots, how much
RAM there is , and
i f Applesoft is i n R O M .

4 If there is a f i le named STARTU P
on t h e start up d i sk , t h e program i n t h i s
f i le is automat ica l ly p laced
in memory and r u n .

1 A boot d isk m ust have the f i les
ProDOS and BASIC. SYSTEM on i t .
These f i les contai n i n g ProDOS are
brought i nto memory (RAM) and r u n .

Chapter 5: Prog ra m m i n g With ProDOS

Using ProDOS From Within a Program

Very often i t ' s usefu l to be ab le to use a ProDOS command from
with i n a BAS IC program . For example , you can use P roDOS
commands i n a program

• to pr int out a d isk 's catalog from a STARTUP program

• to save you r budget records in a f i le

• to save the cond i t ion of a game program for next t i me .

To use a ProDOS command f rom with i n a prog ram , you m ust pr in t
a st r i ng consist i n g of a (coNTROL) -@] as the f i rst t h i ng on a pr in ted
l i ne , fo l lowed by the com man d . Usi ng the CATALOG command as
an example , here is one way to put (coNTROL) -@] i n a str i n g :

There i s a (CONTROL)-@] between " · ·· ·
and C.

CHR$ (4) returns (CONTROL) -@].

D$ contains (CONTROL) -@].
Pr int a t i t le .

Pr int a date.

Then l ist the volume d i rectory.

Right after you type the f i rst q uotat ion mark , type (coNTROL) -@] .
Although you can ' t see i t , i t ' s there .

Here is another way to put (coNTROL) -@] i n a str i ng :

I n th i s example , C H R$ is an Applesoft funct ion that returns the
character whose code is i n parentheses. The n u m ber 4 is t he
App le l l ' s code fo r (coNTROL)-@] . Note the sem icolon after
C H R$ (4). I t is an opt iona l separator between e lements of a P R I N T
l i st , a n d you may leave i t o u t i f you want .

I f you set the value o f a st r i ng var iab le , say D$, to (CONTROL) -@] at
the beg i n n i n g of a prog ram , s im ply pr in t !: ' =:= before each P ro DOS
com mand i n the prog ram . Th is is the method used th roughout the
man ual (see l i ne 40 i n the example below).

For Example

Here i s a vers ion of a STARTU P program that pr ints a message on
the screen , and then pr i nts out a l i st of the f i les on that d isk . Type
. ! .! , and then enter th i s program .

..... ···- ;'··, ;-::· ·r

; ; ;···, ;···, ,···, ;···, ,···, ;··.

j:::: �:;::

····. : ·: ;___, ; ·: ·

Using ProDOS From With in a Program

D$ is (CONTROL) -@].
Semicolon prevents ('-'R=ET;:;-u=R;:-;,N).
So th is doesn ' t work .

N ow type F(F ! to see how i t works. I f you want to preserve th is
program , put a ProDOS-formatted d isk i n dr ive 1 , and type

... . : : : ·. ; : ... : :

Debugging Your Programs

I f you are a former DOS user, you wi l l be p leased to d iscover that
the Applesoft commands TRACE and N OTRACE work with
ProDOS.

Use the TRACE command to cause the l i ne n u m ber of each BASIC
program l ine that is executed to be pr in ted on the scree n . Use the
NOTRACE command to stop the pr in t ing of l i ne n u m bers.

Things to Watch Out For

Th ree th i ngs you shou ld watch out for wh i le us ing ProDOS are
descri bed in the fol lowi ng sect ions .

Print Each ProDOS Command on a New Line

I n a ProDOS command g iven from with i n a program ,
(CONTROL)-@] must be preceded by (RETURN) ; that i S , (r=C-::-0:-:-:NT=R=o-,-,L)-@J
m ust be the f i rst character on a pr in ted l i ne . Thus , the fo l l owing
program wi l l not work .

:···. t· : ; : : .. · : : . : · • . : : : : : ••• · ··:· : ••• · : ; ; ; ; : •••• = ••• = = •• :=

I n stead of l i st i n g the vo lume d i rectory, th i s program pr in ts

If you r program is unexpected ly pr i n t i ng ProDOS commands on
the screen-and never at the beg i n n i n g of a new l i ne-th is i s
probably why.

Notice: If you r program conta ins a statement l i ke th is , with (RETURN)
preced ing (CONTROL) -@]:

you r program wi l l o n l y work w i t h D O S a n d n o t w i t h ProDOS.
Remember that (CONTROL) -@] must be the f i rst th ing on a pr inted
l i ne.

Chapter 5: Progra m m i n g With ProDOS

Display WRITE help scree n .

You Can't Copy Control Characters

When you use E) to copy a BASIC statement , i nv is i b le control
characters are not copied .

Some ProDOS Commands Work Only In Programs

M ost ProDOS com mands can be g iven from the keyboard as
i m med iate commands or from wi t h i n programs as deferred
com mands . Some can on ly be used from wi t h i n programs. They
are

A P P E N D
OPEN
POS IT ION
READ
WRITE

I f you aren ' t sure i f a ProDOS com mand can be used from
i m med i ate mode, s im ply use the HELP comman d . The upper-r ight
corner of each he lp screen tel ls how that command can be used
(as I M M [ed iate] or DEF[erred] commands) . For exam ple , type

!-··; :··· ' . . : . : : ... · : : : ...

and you see that th i s com mand can on ly be used i n a program .

Intercepting Messages to the Display Screen

You can use several P roDOS commands to cause ProDOS to send
i nformat ion to the screen . The CATALOG command prod uces a
l ist of f i les , the P R EFIX com mand without opt ions d isp lays the
prefix, and , i f you use any command i ncorrect ly, an error message
is sent to the screen .

P roDOS provides a way for you r program to read the value o f the
prefix or the n u m ber o f an error message; these are expla i ned
below.

D i rectory f i les can be opened and read as expla i ned i n
Append ix D .

Intercept ing Messages t o t h e Display Screen •

CH R$(4) is (CONTROL) -[[).
Command to d isplay prefix .

Read the prefix into PR$.

Restore prefix to or ig ina l value.

Table 5- 1 . Memory Locat ions for Error

Reading the Prefix

When you g ive the PREF IX command without opt ions from the
keyboard , the cu rrent value of the prefix is d isplayed . When you
use the PREFIX command from with i n a program , ProDOS d oes
not d isp lay the value of the prefix. I n stead , ProDOS p laces the
value of the prefix so the next I N PUT statement i n you r program
wi l l read it .

You might use this feature , for example , i f you r program changes
the value of the prefix, and you want to restore the prefix to its
former value before the program ends . Here i s a program port ion
that does that .

Rest of program which changes the value of the prefix

Not ice the way th is featu re works: You g ive the pref ix command
without any opt ions , and i n put the prefix in to any str ing var iab le , in
th is case , P R$. When you want to restore the pref ix , the o ld value
is i n the str i ng .

Handling Errors in a Program

An error i n an Applesoft program normal ly causes an error
message to appear on the d i sp lay screen . I f you r prog ram uses the
O N E R R GOTO statement , Applesoft puts an error n u m ber i n
memory, a n d then goes t o t h e l i n e specif ied i n t h e O N ER R GOTO
statement .

ProDOS fol lows the same proced u re. When i t encounters an error,
it p laces the error n u m ber i n memory, and then tel ls Applesoft that
i t found an error. ProDOS uses error n u m bers not used by
Applesoft . Tab le 5- 1 l i sts the num bers that are usefu l to a program
tryi ng to catch ProDOS or Applesoft errors.

Handl ing N u m ber How to Read I t

PEEK (222) Error N u m ber

Line N u m ber PEEK (2 1 8) + PEEK (2 1 9) * 256

Chapter 5: Progra m m i n g With ProDOS

D$ is (CONTROL)-@) .

Error hand led at l i ne 1 00 .

Read a f i lename i nto F$.

Read the new name into N$.

G ive the RENAME command .

No error; program ends.

I f i t is not a F ILE LOCKED error (1 0) , go
to l i ne 200.

No , don't rename the f i le .

Yes, un lock the f i le , rename i t , and then
lock i t agai n .

A l l done.

For example , you can not rename a fi le i f i t is locked . The error
n u m ber for F I L.. !::: !. c: c> :E:: c: i s 1 0 . This smal l program lets you
rename a f i le whether or not it is locked . Usi ng O N E R R GOTO , i t
detects the F: I L.. E: L.. c: c !< !:::: c: error, g ives you a chance to u n lock the
f i le , then i t t r ies to rename the f i le agai n . I t also d isp lays the error
n u m ber and l i n e n u m ber of any other error that m ight occu r.

r:::·

.:' !_.·i

: · = -:i:·

.L r·-; ;·· i.J ;
' ' , ,. '

F
.

: : : : ... -::··

. . ' r-.; ·.:.

:;:: : : ·

L ine 20 causes l i n e 1 00 to be cal led if there is any error.

i i ;";"� .:. .:. :-_.
i -· .i. ::,_ :-_:

i .·i ;7�

i . ; �- :

-� - -·· ··- ·-· ;... �--' �- i-· k' .: ,·-� •-:- I : :-· .
. L =::.= , n c . .

.,. ' ' C• ' ; -:-

c � , ,-.
L. ; i ;_:

;; �=- T ; C" T ::· ; ,-, ,-. ; ,.· C t:
J. '-- '- .l. ._: ;_ :_: :_. ; · •• :.._;_: :

. . �- . :.... ·-· ·-··

;; : k
. .

t:. r·-; u

L i n e 1 00 cal ls l i ne 200 i f there's a n error other than F: ' '
! ; ; ; :.· : ... : .

.. - : ,. .

; ; ; \' $

Th is program is saved with the name
/EXA M P LES/PROGRAMS/O N ER R . D E M O . Try i t on a few of you r
locked f i les .

I ts operat ion is q u ite s imp le . L ine 30 reads the name of a f i le to be
renamed i n to F$. I n l i ne 40 i t reads the new name into N$. I n
l i n e 5 0 t h e RENAME command i s g iven . I f there i s no error, t h e f i le
is renamed , and the program ends . I f there is an error, the O N E R R
statement i n l i n e 20 says that the prog ram shou ld l o o k to l i ne 1 00
for the part of the program that t reats the error.

I n tercept ing Messages to the Display Screen

A complete l ist of the ProDOS and
Applesoft errors is i n Append ix C.

Refer to the Applesoft BASIC

Programmer's Reference Manual for
more detai ls on ONERR GOTO.

This O N E R R fixing rout ine is more fu l ly
expla ined in the Applesoft BASIC
Programmer's Reference Manual.

II

L ine 1 00 checks locat ion 222 to make sure that a F T L.. E u:<: t: : E: C)
error (error n u m ber 1 0) occurred . I f i t was not a F I L .. E: L. C<>::: E:: c::
error, the program goes to l i nes 200 and 2 1 0 , which d isplay the
n u m ber of the error and the n u m ber of the l i ne where i t occurred .

If the f i le was locked , l i n e 1 30 un locks i t , l i n e 140 renames i t , and
l i ne 1 50 locks i t u p again-under its new name.

Turning Off ONERR GOTO

On occasion you wi l l use O N E R R GOTO to detect one error, and i t
wi l l be tr iggered by another error. To prevent th is , you m ust turn
off the ONERR GOTO feature. To do th is , use the statement

in you r program when you want O N E R R GOTO to be d isabled . I t is
a good idea to use ONERR GOTO i n the statement preced ing the
one that m ight generate the error, and to turn i t off i n the fol l owi ng
statement .

Problems With ONERR GOTO

As descr i bed i n the Applesoft BASIC Programmer's Reference

Manual, ONERR GOTO does not work q u ite as it shou ld . If you
encounter apparent problems with O N E R R GOTO, inc lude the
fo l l owi ng l i nes i n you r program :

--: .··· .···- . .,.
(1:::: ;:::; ··i j_ .' :: .•. :: ...

r,.· ,. .. :.--= = = :::: • • :::.

Then , with i n you r error-han d l i n g rout i ne, use the cal l

to act ivate th is l i t t le ONERR f ixer. Of course, you can change the
n u m bers of any of these l i nes. J ust make sure that l i ne 1 i s run
before l i ne 200 is .

Chapter 5: Progra m m i n g With ProDOS

1/0 From BASIC Programs

The rema inder of the commands i n th is chapter en hance you r
Apple l l ' s ab i l i ty t o comm u n icate with other BAS IC programs and
with devices such as pr i nters and d isk d rives that are i n the
Apple l l ' s peri pheral con nector s lots . Such comm u n icat ion is
referred to as the i n put of i nformat ion and the output of
i nformat ion , col lect ively known as i nput/output or, more
s imp ly, 1 /0 .

You can use the CHAI N command to le t one program run another
without destroyi ng the var iables that are currently i n memory.
Using CHAI N , two programs i n separate f i les can use the same set
of var iab les, or one very large program can be d iv ided in to more
than one part .

With the STOR E command you can save the names and val ues of
al l you r program 's var iab les. I f a program stores al l i ts var iab les
before end ing , the next t ime you run i t you can use RESTORE to
start u p exactly where i t left off .

You can use the PR# and I N # commands to let BASI C
comm u n icate with devices that are i n a n y o f t h e Apple l l ' s s lots.

F ina l ly, you can use the FRE command to access the fast
housekeep ing rout i nes that ProDOS has.

The CHAIN Command

If a BAS IC program is too b ig to f i t ent i rely i n memory, you can use
the CHA IN command to br ing parts of the program in to memory
and then run each part , one at a t i me. A l l var iab les used , and a l l
f i les opened (see the next chapter) by the current par t of the
program are ava i lab le to the parts of the program connected by
the CHAI N comman d .

To run part o f a program without th rowing away t h e current
var iab les or c losi ng the open f i les, use the command

CHAI N pn [,@#] [,S#] [, D#]

When you cha in from one part of a program to another, the f i rst
part of the program is removed from memory. To use the f i rst part
of the program agai n , use the CHAI N command agai n .

The CHAIN Command

Bring PART1 i nto memory.

Display i t .

D$ is (CONTROL)-@).

Set the prefix.

Set a string value

and say that i t 's been set.

Chain to l i ne 35 of PART2 .

Execut ion of the second program beg ins at the l i ne i n d i cated
by [,@#] , the l i ne n u m ber parameter. I f you don ' t use [,@#] ,
execut ion beg ins at the lowest n u m bered l i n e i n the program .

.A. War n i n g
A chained port ion o f t h e program cannot d i mension an array used by a
previous part of the program.

The Options

pn pn i nd icates the f i le contain i n g the BASI C program you
want to run next .

[,@#] If you use th is opt ion , the new program beg ins run n i n g at
the l i n e n u m ber specif ied by # . If the specif ied l i n e does
not exist , the next h ighest l i ne in the program is run . I f you
omi t th is opt ion , execut ion beg ins at the lowest n u m bered
l i ne in the program .

[, S#] The slot opt ion has its usual mean i n g .

[, D#] The dr ive opt ion has i ts usual mean i n g .

For Example

Here is an example of a program , PART 1 , that uses the CHA IN
command w i th the l i ne n u m ber opt ion to con nect a secon d
program part , PART2 . Both parts are al ready typed i n f o r you . Set
the prefix to /EXA M P LES/PROGRAMS usi ng the command

P R E F I X / E X A M P L E S / P R O G R A M S /

Look at PART 1 and l ist i t us ing the commands

L I ::::: T

You see

2 ��i F= F: I l ··i T �:) :�:: .: : ' F e E F I ;:-:,- E:: :·< !:i J··� F: : : ! c ·:::· ·· r.::= 1:;;� c; :::�; !? !:::i !·=; :-·: = =

�3 ��J I :�:: :::: ' ' T H E:: =:::: ·r F;� I !··� C I ::!� I ::::; 1:::= F� E� ::::; E F;� 1) E !J , ' '

Chapter 5: Programming With ProDOS

Br ing PART2 i nto memory.

D isplay i t .

Th is should n ' t be pr in ted .

If it is , sk ip 35.
This should be pri nted

and so should th is .

An example us ing the STORE command
is at the end of the sect ion on the
RESTORE command .

The exper iment here is to see if the var iab le 1 $ reta ins the value set
by PART 1 when i t is pr in ted out by PART2 . N ow type

and you see

'···· ;·==: .L r·.; ' · · ; ; ;···, ,···, ;, ; :··. ; ; ; ;-,-; ;···, :-··· ;···.

::::. -.. .i

· .. .' · ... ' '···' '···' : r·.J ; ' ' l...' ' = · !? '! : .. :---: ·T T !·.j i:::· !·-.! ! ; ;·:; r··, :····

: ••• : ;,,.; 1 t· .. ; � : . . ; .L .:;·.

If the C H A I N command i n l i ne 50 of PART 1 works properly, l i ne 35
should be the f i rst l i n e that is executed , and the statement
. . · · r:::= T 1"":: ; ... ; ·-r T �--.l r::· t··-! U l . ;:::= : : ·- shou ld be pr in ted on the
screen . I f the l i ne n u m ber opt ion does not work properly, the f i rst
l i n e in the program (l i ne 1 5) wi l l be executed f i rst , and the
statement , F< :: ::::· T , .. : : : ; :)! :; : :: ! , ; • · · wi l l be d isp layed .

L ine 4 5 d i sp lays the l i n e F<::: ::::· .. : ·:::; ·r ::;:: T !< :" :· . .

. . . ;:::· .:::: :::: ::: · • · ... · if the var iab les are preserved , and s im ply d isp lays
i " i f the var iab le 1$ i s not preserved .

P lace you r bets on what wi l l be pr in ted out , and then type

The STORE Command

The STO RE command a l lows you to save to a d isk f i le the names
and val ues of a l l the var iab les that are used by a BASIC prog ram .
You can ret r ieve the variab les usi ng the RESTORE com man d .

A game prog ram , for example , can contai n t h e STO RE command
to save the cond i t ion of a game when you stop p layi ng . The next
t ime you p lay the game, the program can RESTORE the var iab les
from the f i le , and you can cont i nue where you left off. You can also
use the STORE command to create a set of i nformat ion that is
used by more than one program .

To store the current var iab les i n a f i le use the command

STORE pn [,S#] [, D#]

The STORE Command

The STO RE command creates and p laces the variab les i n a f i le of
type VAR .

War n i n g
Because ProDOS puts t h e var iab les i n a com pact f o r m before i t stores
them , there may be a considerable t ime delay from when you issue the
STORE command to when the d isk d rive starts spi n n i n g .

The Options

pn pn i s the pathname or part ia l pathname of the f i le i n wh ich
to store the var iab les . I f the f i le doesn ' t a l ready exist , a f i le
of type VAR is created .

[,S#] The s lo t opt ion has i ts usua l mean i n g .

[, 0#] The d r ive opt ion has i ts usua l mean i n g .

The RESTORE Command

The RESTORE command a l lows you to get from a d isk f i le the
names and val ues of a set of var iab les to be used by a BAS IC
program . O n ly a f i l e created by the STORE command can be
ret r ieved by the RESTORE comman d .

To ret r ieve a set o f variab les from a f i le , use t h e com mand

R ESTO RE pn [, S#] [, 0#]

Th is command c lears a l l current ly defi ned var iab les f rom memory
before br i ng ing i n the new ones.

The Options

pn pn i s the pathname or part ia l pathname of the f i le
contai n i ng the BASIC var iab les . The f i le m ust be of type
VAR .

[,S#] The s lo t opt ion has i ts usua l mean i n g .

[, 0#] The d r ive opt ion has i ts usual mean i n g .

Chapter 5 : Progra m m i n g With ProDOS

For Example

You r /EXA M P LES d isk has a n u m ber guess ing program cal led
E . S . P. on i t . Set the prefix to /EXAM P LES/PROGRAMS by typ ing

Then run the program by typ ing

P lay w i th i t fo r a wh i le , and then type @) to qu i t . Type

again , and guess a n u m ber. Not ice that the overal l score starts
at 0 agai n . You are go ing to use the STOR E and R ESTOR E
commands to make th is program remem ber you r overal l score
from one game to the next . Type @) to exi t the game.

D isp lay the program on the screen usi ng the BASI C command

You r task is to add the STOR E and R ESTOR E commands to the
program . S ince RESTORE c lears a l l the var iab les that are current ly
defi ned , it is a good idea to use th is command as the f i rst l i n e i n a
program . H owever, before inc lud i ng the R ESTOR E command i n
t h e program , you m ust create a f i le from which i t can read
var iab les.

Look at the last l i n e in the program

Th is , the last l i n e executed before the program ends , is the best
p lace to place a STOR E comman d . Type

and then l i st the program aga in to be sure that the new l i nes are
correct . Now when you run the program , the STOR E command wi l l
create the new f i le ESPVARIABLES. Then you can add the
R ESTOR E command to the program . Type

The RESTORE Command

and p lay the game for as long as you l i ke ; then press @]. Not ice
that the d isk d r ive wh i rs as the var iab le f i le i s p laced on the d isk .
Type

to verify that the new fi le was created . N ow look at the f i rst few
l i nes of the program by typ ing

Add the l i ne

Once aga in type

to p lay the game. Press any n u m ber, then look at the overa l l score .
The game now remem bers the total score of al l the previous t i mes
you p layed the game. To save th is game in the PROGRAMS
d i rectory, use the command

Do you have ESP?

The PR# Command

You r Apple I I usual ly sends characters to the d isp lay scree n . You
can use the PR# command to change the dest i n at ion of
characters, send ing them to a device i n one of the Apple l l ' s
per ipheral con nector s lots i n stead o f to t h e scree n . T h e syntax i s

PR# snum

i n wh ich snum is a s lo t n u m ber f rom 0 to 7 . For exam ple , i f you r
Apple I I has an i nterface card f o r a pr in ter i n stal led i n s l o t 1 , t h e
command

!···= ; .. : .;.·.

Chapter 5: Prog ra m m i n g With ProDOS

Refer to Chapter 9 for more detai ls on
us ing the PR# command to output
characters.

causes su bseq uent pr in ted characters to be sent to the pr in ter. To
restore the screen as the dest i nat ion for pr in ted characters, use
the command

War n i n g
I f you are u s i n g a n 80-co lumn card , make sure i t is turned off before you
issue another PR# comman d . On an Apple l ie , type (ESC)
(CONTROL) -@]to turn off the 80-co lumn card . For other types of 80-
col umn cards, refer to the card 's documentat ion to d i scover how to turn i t
off.

War n i n g
Always remem ber to precede t h e PR# command with a (CONTROL) -@]
when you use it i n a program . If you don ' t , ProDOS ignores the command
ent i rely. I f you th ink that your prog ram isn ' t carryi ng out the PR# and I N #
commands correctly, th is could b e the reason .

Starting Using PR#

I f your Apple I I has a d isk control ler card i n one of i ts s lots , you can
start up the d isk i n that card 's dr ive 1 wi th the command

P R # snum

i n which snum is the num ber of the s lot contai n i n g the card . I t may
seem to you that th i s command on ly sets u p the d isk to receive
future characters, but P R # actua l ly does a l i t t le more.

When you use the PR# command to send output to a per i pheral
card in a slot , ProDOS tr ies to run the program i n t hat card 's Read
On ly Memory chip (most cards have them). The program in the
ROM of a d isk control ler card automat ical ly t r ies to read
i nformat ion from the d isk ; th i s is, of course, exactly what start i n g
u p the system i s .

You c a n also use the PR# command to cal l a mach i ne- language
program that is to perform the output of characters.

The PR# Command

The Options

snum snum is the num ber o f the s lo t to wh ich you want to wr i te .
I f snum is i n the range 1 to 7 , i ncl us ive , future characters
are sent to the device in that s lot . I f snum is 0, future
characters are sent to the scree n . A l l other val ues of snum
are i nval id and must not be used .

For Example

Fi rst save any BASIC program that m ight be i n memory, then p lace
your /EXA M P LES d isk in dr ive 1 , c lose the door, and type

replac ing snum with the n u m ber of the slot (probably 6) to wh ich
you r D isk I I contro l ler card is connected . D isk d r ive 1 wh i rs and
c l icks and then ProDOS starts u p as if you just tu rned the Apple I I
o n .

I f a pr i nter is connected to o n e o f the Apple l l ' s s lots , you can try
th i s example too. F i rst , tu rn on the pr in ter. Then , replac ing snum
with the n u m ber of the s lo t to wh ich your pr i nter is connected , type

The pr i nter makes a l i t t le c l i ck ing noise . L ike the d isk contro l ler
card , the pr inter 's card has a ROM ch ip that contai ns an
i n i t i a l i zat ion prog ram . The pr i nter card 's program i n i t ia l izes the
pr i n ter to a previously set cond i t i on , p lac ing the head or
pr in twheel to the beg i n n i n g of the l i ne , and do ing whatever else
needs to be done . Now type

and the contents of the /EXA M P LES vo lume d i rectory are pr in ted .
P lay arou nd with a few BASIC com mands . You wi l l f i nd that
everyth i ng that is normal ly pr in ted to the screen is now pr i n ted on
the pr in ter. To return output of characters to the screen , type

I f you r system has an 80-co lumn card , you can now turn i t back on .

Chapter 5 : Progra m m i n g W i t h ProDOS

Refer to the sect ion on PR# for more
detai ls on start i ng up. Chapter 9
conta ins an explanat ion of us ing I N # to
i n put characters.

The IN# Command

You r Apple I I usual ly reads characters from the keyboard . You can
use the I N # command to change the sou rce of characters from the
keyboard to a device i n one of the Apple l l ' s per ipheral connector
s lots . The syntax of the command is

I N # snum

i n which snum is a s lot n u m ber from 0 to 7 . For example , i f your
App le I I has an external term i nal connected through s lo t 3 , the
command

causes su bseq uent characters to be read from the term ina l . To
restore the Apple l l ' s keyboard as the sou rce for i n put characters,
use the command

War n i n g
Always remember to precede t h e I N # command with a (CONTROL) -@)
when you use i t i n a program . I f you don ' t , ProDOS ignores the command
ent i rely.

You can start up the d i sk i n dr ive 1 of s lot snum by typ ing the
command

IN# can a lso be used to cal l a mach i ne- language program that is
to perform the character i n put operat i o n .

The Options

snum snum is the n u m ber of the s lo t f rom wh ich you want to
read . I f snum is i n the range 1 to 7 , i nc l usive, future
characters are read from the device i n that s lot . If snum
is 0 , future characters are read f rom the Apple l l ' s
keyboard . A l l other val ues of snum are i nval id and m ust
not be used .

The I N # Command

The FRE Command

To g ive access to the fast housekeep ing rout i nes that ProDOS has,
you can use the FRE com mand i n this form

j·· : ·. : ...•

For Example

You can use the FRE com mand i n a program i n the same format as
any d isk 1 /0 command

F' l:;:: T : . j ___ . j···j ;·=:: ::l:· ; ,· : · .. . ; ; F ;,,,: ;... : ·

By the Way: The Applesoft command F' i;: I !··rr F F: E: < ::.:· ·, st i l l works, but
i t uses the s low Applesoft housekeeping rout ines i n stead of the faster
ProDOS rout ines.

C hapter 5: Progra m m i n g With ProDOS

Text in Files

85 About Th is Chapter
85 This Chapter 's Com mands
87 Sequent ia l -Access Text F i les : An I n trod uct ion
88 Random-Access Text F i les: An I n trod uct ion
90 Seq uent ia l - and Random-Access Text F i les
91 Posi t i on- i n-the-F i le Poi nter
92 Seq uent ia l Text F i les
92
93
93
95
95
96

The F ie ld
Stor ing Characters i n F ie lds
A S imple Sequent ia l Text F i le
Wr i t i n g to a F i le Us ing P R I N T
Read i n g Characters From a F i le
One E lement Per F ie ld

97 M u l t i p le Elements Per F ie ld
99 GET Characters From a F i le

101 Enter i ng and Read i n g Text
101 A Program for Enter i ng Text
103 A P rogram for Retr ievi ng Text
105 The OPEN Command
106 The Opt ions
106 For Example
106 Delete Before Open i n g
107 The C L O S E Command
108 The Opt ions
108 The WRITE Command
108 The Opt ions
109 The READ Com mand
109 The Opt ions
1 10 The APPEND Command
1 10 The Opt ions
1 10 For Example
1 1 1 The FLUSH Command
1 1 1 The Opt ions
1 1 1 For Example
1 12 The POS IT ION Com mand
1 12 The Opt ions

C hapter 6: Text i n F i les

Text in Files

About This Chapter

Th is chapter i n t rod uces you to the use of ProDOS text f i les . I t
descr i bes how to create them, how to p lace i nformat ion i n them ,
and how to take i nformat ion from them.

The f i rst par t of the chapter is an i n trod uct ion to the two types of
text f i les : sequent ia l-access text f i les, and random-access text
f i les . The next part of the chapter teaches you how to write
programs that use seq uent ia l -access text f i les . The last part of the
chapter is a descr ipt ion of the text f i le commands as used with
seq uent ial -access text f i les .

The next chapter teaches you how to write programs that use
random-access text f i les . I t is a con t i n uat ion of th i s chapter, so
read th is chapter f i rst .

You m ight use the commands descr i bed i n th is chapter

• in a program that keeps a l i st of words for a guessi ng game

• in a program that saves and ret r ieves text

• in a prog ram that saves and analyzes experi mental data.

This Chapter's Commands

The commands i n th i s chapter are summar ized below. These are
al l the commands you need to use ProDOS text f i les .

OPEN Prepare to use a f i l e

You must use th is command before you use a text f i le . I f the fi le
ment ioned does not exist , a text f i le i s created . I f the f i le does
exist , OPEN checks to see that the f i le is a text f i le .

This Chapter's Commands

CLOSE Stop us ing a f i le

Use th is command to tel l ProDOS that you have f i n i shed read i n g
from and wr i t i ng to a f i l e . Before end i n g , you r program m ust close
al l the f i les that i t opened .

WRITE Prepare a f i le for wr i t i ng

Use th is command to tel l P roDOS the f i l e you want to write to and
where i n the f i le you want to start wr it i n g . You can use the WR ITE
command on ly after the f i le i s opened ; i t rema ins i n effect un t i l you
g ive the next P roDOS com mand .

READ Prepare a f i le for read i n g

Use th i s command to tel l ProDOS the f i l e you want to read a n d
where i n the f i l e you want to start read i n g . You c a n u s e the READ
command on ly after the f i le is opened ; i t rema ins i n effect unt i l you
g ive the next ProDOS com man d .

APPE N D Prepare t o write to t h e e n d o f a f i le

Use th is com mand to wr i te data start i n g at the end of a text f i le . I t
opens the f i le , posi t ions to the end of the f i le , and then writes to
the f i le .

FLUSH Send al l u nwritten data to the f i le

ProDOS wri tes characters to f i les i n groups , not one by one .
FLUSH causes a l l characters that are not yet wr i t ten to a f i le to be
sent . After you use FLUS H , you can be sure t hat the characters i n
t h e f i le are ident ical to those that t h e program has pr in ted . The
CLOSE command does a FLUSH before i t actual ly c loses a f i le .

POSITIO N Read and d i scard f ie lds i n a f i le

A field is a seq uence o f characters that Th is command lets you sk ip a specif ied n u m ber of f ie lds in the text
ends with a carriage ret u r n . f i le before you read or write more i nformat i o n .

O f These Commands: Only CL OSE and FLUSH can b e used in
immediate mode. Al l can be used i n programs.

C hapter 6: Text i n F i les

I n th is sect ion , a scroll models a
sequential text f i le .

F igure 6- 1 . Print ing to a Scro l l

Sequential-Access Text Files:
An Introduction

You can t h i n k of a d isk fu l l of seq uent ia l-access text f i les as a
col lect ion of scro l l s . Each scrol l , l i ke the seq uent ia l text f i le i t
mode ls , can conta in an u n l i m ited n u m ber of l i nes of text . The
analogy is appropr iate because i n both cases you m ust search
th rough l i ne by l i ne to locate a part icu lar l i n e of text-there are no
pages or markers to make the search faster.

As you read t hese ru les , bear i n m i n d that a scro l l represents a
seq uent ia l text f i le , the scro l l ' s name represents the f i le 's name,
and a l i ne on the scro l l represents one l i ne , or f ie l d , of text with i n
t h e text f i le . A f ie ld i s s imp ly a st r i ng o f characters that ends with a
carr iage ret u r n . There is also a poi n ter to keep track of you r
current posi t i on i n the scrol l .

To pr in t new l i nes onto a scrol l , use these commands i n th i s order :

1 . OPEN name. Th is selects the named scrol l , opens i t , and points
the poi nter to the f i rst l i ne . I f a scro l l by that name is not i n the
col lect i o n , one i s created . You m ust use OPEN before you can
read f rom or wr i te to a scro l l .

2 . W R I T E n a m e [, n u m ber o f l i nes] . Th is starts a t the po i nter o f t h e
named scro l l , a n d sk ips l i nes, o n e b y o n e , u n t i l i t h a s sk ipped
n u m ber of l i nes. You m ust use WRITE before you can use P R I N T
(step 3) .

3 . P R I N T phrase. This p laces phrase on the l i ne po in ted to . Phrase
can be a character, a n u m ber, a word , or an ent i re l i ne . P hrases
are pr in ted one after another u n less you use WRITE to select a
new l i n e n u m ber. P R I N T destroys anyth i ng that was prev iously
on the l i ne . You can repeat th i s step as often as necessary.

4 . CLOSE name. Th is rol ls the scro l l back u p , and returns i t to the
col lect ion .

O P E N SCROLL

CLOSE SCROLL

Sequential-Access Text F i les: An I ntroduction

I n th is sect ion , a notebook models a
random-access text f i le .

Here are the commands you use to read l i nes from a scrol l :

1 . O P E N name. Th is selects t h e named scro l l , opens i t , a n d poi nts
the po inter to the f i rst l i ne . I f a scro l l by that name is not i n the
co l lect ion , one is created . You must use OPEN before you can
read from or wr i te to a scro l l .

2 . READ name [, n u m ber o f l i nes] . T h i s starts a t t h e poi nter o f the
named scro l l , and sk ips l i nes, one by one , unt i l i t has sk ipped
n u m ber of l i nes. You must use READ before you can I N PUT
ph rases f rom the scro l l (step 3) .

3 . I N PUT ph rase. Th is reads a ph rase from the cu rrent l i ne of the
scro l l . I f there are no more phrases on the current l i ne , i t reads
the f i rst ph rase from the next l i ne . You can repeat th i s step as
often as necessary.

4 . CLOSE name. Th is rol ls the scro l l back u p , and returns i t to the
col lect ion .

You can have up to e igh t scrol ls s imu l taneously open . That i s why
you m ust always refer to them by name.

The phrase used with the P R I N T and I N PUT statements can be any
exrress ion or l i st of express ions a l lowed by BAS IC .

Random-Access Text Files: An Introduction

You can t h i n k of a d isk contai n i n g random-access text f i les as a
col lect ion of notebooks. Each notebook, l i ke the text f i le it models ,
has a name and an u n l i m i ted n u m ber of pages. Each of a
notebook ' s pages ho lds the same n u m ber of characters, but s i nce
l i nes can be of d i ffer i n g lengths , there i s n o specif ic n u m ber of
l i nes on a page.

This analogy is appropr iate because in both cases you can flip to a
certai n page before read i n g or wr i t i ng l i nes of text .

As you look th rough these ru les , remem ber that a notebook
represents a random-access text f i le ; the notebook 's name
represents the f i le 's name; each page i n the notebook represents
one record in the f i le (each record in a f i le holds the same n u m ber
of characters); and a l i n e on a page represents a f ie ld in a record .
There is also a po inter to keep track of you r cu rrent pos i t ion on the
current page of the notebook.

Chapter 6: Text i n Fi les

Figure 6-2. Pr int ing to a Notebook

To write i nformat ion on a page of a notebook , you use these
com mands in th is order :

1 . OPEN name. Th is selects the n amed notebook , opens i t , and
po ints the poi n ter to the f i rst l i ne of the f i rst page. I f n o
n otebook b y that n a m e exists , one is created . You m ust use
OPEN before you can read from or write to a notebook.

2 . WRITE name [, page n u m ber] [, n u m ber of l i nes] . Th is q u ick ly
opens the n amed notebook to page n u m ber. If the page with
that n u m ber i s not yet i n the notebook, that page is added to the
notebook . I f a n u m ber of l i nes i s g iven , t hat many l i nes are
sk i pped , one by one. You m ust use WRITE before you can use
P R I N T (step 3) .

3 . P R I N T phrase. Th is adds phrase to the cu rrent l i n e on the
current page. P hrase can be a character, a n u m ber, a word , or a
l i ne . P hrases are p laced one after another u n t i l you use WRITE
agai n , so you m ust be carefu l not to pr in t past the end of the
page . You can repeat th i s step as often as necessary.

4 . CLOSE name. Th is c loses the named notebook and returns i t to
the col lect ion .

CLOSE B O O K

O n ce
upon
a t ime

20

OPEN B O O K

WRITE B O O K , page 20 , 0 l i nes

--.......,,..-

2 1

2 1 II

P R I N T " O nce"
P R I N T "upon"
PR INT "a t i me"

Random-Access Text F i les: An I ntroduction

To read from a page i n one of you r notebooks, use these
commands in the fol l owi ng order :

1 . OPEN name. Th is selects the named notebook, opens i t , and
poi n ts the po inter to the f i rst l ine of the f i rst page. I f no
n otebook by that name exists , one is created . You must use
OPEN before you can write to or read from a notebook.

2 . READ name [, page n u m ber] [, n u m ber of l i nes] . I f you use page
n u m ber, th is q u ick ly opens the named notebook to page
n u m ber. I f a n u m ber of l i nes is g ive n , t hat many l i nes are
sk i pped , one by one. You can next use I N PUT to read from t hat
page.

3 . I N PUT phrase. You read each phrase from the page with an
I N PUT statement . P hrases and characters are read seq uent ial ly
from the page u n t i l you use READ agai n , so you m ust be carefu l
not to read past the end of the page. You can repeat th i s step as
often as neces�ary.

4 . CLOSE name. Th is c loses the named notebook and returns it to
the col lect ion .

You can have u p to e igh t n otebooks open a t any g iven t i me. That is
why you must always refer to them by name.

A random-access �ext f i le has an u n l i m ited n u m ber of records
(pages); each ho lds a fixed num ber of characters. With i n each
record , you can pr in t as many f ie lds (l i nes) as wi l l f it . As ment ioned
above, a f ield is a st r ing of characters that ends with a carr iage
retu rn .

Sequential- and Random-Access Text Files

As the scro l l analogy i l l ustrates, you can use the i nformat ion i n a
seq uent ia l -access text f i le i n a seq uent ia l manner on ly, that is ,
start i ng at the beg i n n i n g of the f i le and work ing towards the end .
Because of th is , seq uent ia l f i les are best su i ted for appl icat ions
t hat read the ent i re contents of the f i le a t the beg i n n i n g of the
program , and that write the mod if ied contents back to the f i le at
the end of the program .

The records (pages of a notebook) i n a random-access text f i le ,
however, can be used i n any order ; a program can mod ify a s ing le
record of the f i le without affect i n g the others . Thus random-access
text f i les are best for programs that keep track of a large n u m ber
of p ieces of i nformat ion that are about the same s ize.

C hapter 6: Text i n F i les

The current position is the character
fol lowing the last read or written
character.

So how do you decide which type of text f i le to use? I t is a matter
of preference, but you m ight want to consider the fo l l owi ng
aspects of text f i le use:

Disk space: The fi rst t ime you write to a record i n a random
access text f i le , the ent i re record is p laced on the d isk . Thus i f you r
records are each 2 0 0 characters i n s ize, a n d i f you write on ly o n e
character to each o f t h e m , you are wast i ng 1 99 characters o f d i s k ·
space p e r record . Because records aren ' t usual ly ent i rely f i l led ,
random-access text f i les use u p more d isk space than do
seq uent ia l text f i les .

Amount of data: I f you are going to read a l l the i nformat ion i nto
memory at the beg i n n ing of the program , i t i s faster to read i t , f ie ld
by f iel d , from a seq uent ia l text f i le .

Use of data: I f the i nformat ion won ' t a l l f i t i n memory, and you
won ' t use it i n any part icu lar order, it is much faster to use a
random-access text f i le .

Seq uent ial text f i les are best for l i sts of var iab le length
i nformat ion , such as l i sts of words or l i nes of text . In fact , many
word processors store their text _i n seq uent ia l text f i les . Later in
the chapter you wi l l write programs that p lace text i n , and read text
fro m , seq uent ia l text f i les .

Random-access text f i les are best for stor i ng many p ieces of
i nformat ion that are of the same size, and that wi l l change
freq uent ly. You might use random-access f i les to store month ly
i nventory records, a l ist of names and add resses , or even a f i le of
he lp screens (the text for each ProDOS he lp screen is stored i n
o n e record o f a random-access text f i le) . You wi l l write a program
that uses random-access f i les to keep a l i st of names and
add resses.

Position-in-the-File Pointer

I n the scro l l and notebook ana log ies there was a po in ter that kept
t rack of the current posi t i on . Every open text f i le has one too. As
you read from a f i le , the current posi t ion i s the character fol l owi ng
the last character read . L i kewise, when you wr i te to a f i le , the
current posi t ion becomes the spot i n the f i le immed iately fo l l owing
the last character writte n . When you f i rst open a f i le , the po inter
i n d i cates the f i rst character posi t ion i n the f i le .

In the rest of th is manual , the posi t ion- in -the-fi le po in ter is referred
to as the current posit ion .

Random-Access Text F i les: An I ntrod uction •

To see a complete descr ipt ion of the
text f i le commands and the i r opt ions ,
refer to Append i x B, the s u m m ary of
ProDOS commands .

Sequenffa/ Text Files

The text f i le commands have many opt ions . Because you wi l l use a
few of them most of the t i me , and most of them on ly once i n a
wh i le , the com mands and thei r opt ions are exp la ined by example ,
with emphasis on the most freq uent ly used opt ions .

Work th rough the examples i n the order g iven . Exp lanat ions of
concepts that have al ready been presented wi l l be br ief .

The Field

The basic un i t of a seq uent ia l text f i le is a field . A f ie ld , l i ke a l i ne of
text on the screen , is a series of characters that ends with a
carr iage return character. When you pr in t a l i ne to the screen us ing
the BASIC statement PR I NT, w i thout a term i nat i ng semicolo n , the
l i ne is ended with a carr iage ret u r n , and the cursor goes to the next
l i ne . L i kewise, when you pr in t to a f i le us ing the BASIC statement
P R I N T, without a term i nat i ng sem ico lon , the f ie ld i s term inated
with a carr iage retu rn ; su bseq uent pr i n ted characters go i n to the
next f ie ld i n the f i le .

The fol lowi ng BAS I C statement cou ld be used to wr i te a l i ne to the
screen , or a f ie ld to a text f i le .

The fo l lowi ng l i ne , however, wri tes j ust part of a l i ne to the screen ,
or part o f a f ie ld to a f i l e ; the sem icolon a t the end prevents a
carr iage return character from end ing the cu rrent f ie l d .

;._.; ,-··, : .· ·····

A su bseq uent P R I NT statement adds characters to the same l i ne
on the scree n , or to the same f ie ld i n a text f i le . A seq uent ial text
f i le can conta in any num ber of f ie lds .

Chapter 6: Text i n F i les

Character sequence:

Field n u m ber:

D$ is (CONTROL) -@].
Set t h e prefix to i n d icate the
/EXA M P LES/ DATA d i rectory.
Open L I S T F I L E ; create it if it does n ' t yet
exist .
Prepare L I S T F I L E for wr i t i n g .
Put the progra m ' s l ist i n g i n L I STF I L E ;
l i n e 40 d i rects i t there.
CLOSE a l l open f i les .

Storing Characters in Fields

Here is an example that shows the way characters are stored i n the
f ie lds of a seq uent ia l text f i le . Assume that you have al ready g iven
the OPEN and WRITE com mands . You can p lace six f ie lds i n an
open seq uent ia l text f i le us ing these BAS IC statements .

A program wou ld normal ly use the CLOSE command to c lose the
f i le . Here is how the characters generated by l i nes 40 th rough 90
wou ld be stored i n a f i le . A carr iage return is represented by the
sym bol > .

GREE N > YELLOW > ORANGE> RED> V I O LET> BLUE>
{ FO }{ F 1 }{ F2 }{ F3 }{ F4 }{ F5 }

Th is seq uent ia l text f i le has s ix f ie lds , and con tai ns 36 characters.

Note the Fact: The f i rst f ie ld i n a sequent ia l text f i le is f ield n u m ber 0.

A Simple Sequential Text File

To create a new seq uent ial text f i le , use the OPEN command with a
f i lename that does not yet exist . Here is a short program that
p laces each of i ts l i nes i n a seq uent ia l text f i le .

Seq uent ia l Text F i les •

EXEC command : see Chapter 8 .

Th is program is very s im ple . I t opens L ISTFILE (l ine 30) , uses
WRITE so that L ISTF I LE can be written to (l i ne 40), and then g ives
the BASIC command L IST. Not ice that L IST is not a ProDOS
comman d , and is not preceded by a (coNTROL) -@). Because the
WRITE command red i rects output to a f i le , the L IST command
p laces the l i nes of the program , one by one , in to the seq uent ia l
text f i le named L ISTFI LE , rather than on the screen . The last l i ne
of the program closes the f i le .

Type i n the program , and with the /EXA M P LES d isk i n a dr ive, type

. ... ; ·.;

The d isk d rive wh i rs as the text f i le is p laced on the d isk . When a
new prompt appears on the scree n , type

and look for L ISTF I LE in the DATA d i rectory.

H ow can you check to see what i s i n the new f i le? Here's a l i t t le
secret . The EXEC command tel ls you r Apple I I to take commands
from a seq uent ia l text f i le rather than f rom the keyboard . When
you type i n l i nes of a BASIC program from the keyboard , they are
entered as a BASIC program . Thus , i f you use the EXEC command
to enter l i nes of a program from a sequent ia l text f i le , t hey too
m ust be entered as a BASIC program . Type

i '•; ;:::. :

to remove the program from memory. N ow type the command

···· .··· . . · r··, ::::, ·r ::::: .· i T =
... ' T" ;:::· ··· ' r::-· ..•..•. ; ; .l. L. .. ; •.•.

One prompt sym bol appears on the screen for each l i n e i n the
BAS IC program . When the d isk stops spi n n i n g , and the prompts
stop prompt i n g , type

and you ' l l see that the program has reappeared in memory. The
EXEC program is descr i bed in Chapter 8; there you w i l l see that
th is techn ique of l i st i ng a program to a f i le i s a valuab le tool .

Chapter 6: Text i n F i les

Writing to a File Using PRINT

There are several ways that the P R I N T command can be used to
A carr iage ret u r n is represented by t h e place characters i n to a text f i le . I n the exam ples i n Tab le 6- 1 A$
sym bol > . has the value DOG, and 8$ has the value CA T.

Table 6- 1 . P r i n t i n g to a Text F i le
PRINT

Statement

P R I N T
"TEXT"

P R I N T
"TEXT" ;

P R I N T A$; 8$;

PR INT A$, 8$

P R I N T
A$; " , " ; 8$

Adds
Characters

TEXT>

TEXT

DOGCAT

DOGCAT >

DOG, CAT >

Com ments

Completes current f ie ld .

Adds to cu rrent f ie ld .

Adds to cu rrent f ie l d .

U n l i ke P R I NT to t h e scree n ,
spaces a r e n o t added
between elements
separated by commas.
Completes current f ie ld .

Adds two e lements to the
cu rrent f iel d , and
completes the f ie ld . See
second example , Tab le 6-2 .

The examples i n Table 6- 1 are i n tended to show th ree bas ic
tech n i q ues: add i n g characters to the current f iel d , complet i n g the
cu rrent f ie ld (su bseq uent characters wi l l go to the next f ie ld) , and
add i n g e lements to a f ie ld .

E lements, each written and read by a s ing le var iab le , are str i ngs of
characters that are separated by commas. They deserve specia l
ment ion because you may need to use some specia l techn iq ues to
retr ieve them i n tact from f i les.

Reading Characters From a File

There are several ways to read characters from a text f i le : I N PUT is
best for some types of data , and GET is better for others.
Tab le 6-2 shows some of the ways to read characters.

Sequential Text F i les II

Ta ble 6-2. Read i n g From a Text F i le

D$ i s (CONTROL) -@).
Set t h e prefix t o /EXA M P LES/DATA.
C reate the f i le FOUR. FRUITS , i f
necessary, and OPEN i t .
Before WRITE is used , characters st i l l
go t o t h e scree n .
P repare F O U R . F R U I T S f o r wri t i n g .
Put f i e l d 0 i n the f i le .
Put f ie ld 1 i n the f i le .
Put f ie ld 2 i n the f i le .
Put f ie ld 3 i n the f i le .
C lose FOUR. FRUITS .

The sym bol > means ffigfQRJi).

Input Statement

I N PUT A$

I N PUT A$, 8$

GET C$

Effect

Reads one e lement of a f ie ld . I f there is more
than one e lement i n the f ie l d , the rest of the
f ie ld is d i scarded .

Reads two elements of a f ie ld . If there are
more than two elements in the f ie l d , the rest
of the field is d i scarded . I f there are not two
elements in the f ie l d , e lements are read from
the next f ie l d .

Reads t h e next character from t h e f i l e . The
GET statement reads al l characters,
i nc lud ing com mas and colons. This is a good
way to read f ie lds with varyi ng n u m bers of
e lements .

As i l l ust rated by the f i rst two examples i n Tab le 6-2 , an I N PUT
statement m ust conta in one var iab le for each e lement i n a f ie ld if i t
is to read a l l the e lements from the f ie ld . I f a carr iage return i s read
before characters are ass ig ned to al l var iab les , characters are
automat ical ly taken from the next f ie l d .

One Element Per Field

Here i s a program that wri tes four f ie lds , each contai n i n g one
e lement , to a seq uent ia l text f i le .

: •... ; _.; 1:::= ;:::= T k i 'T" r··: .:i:· : : = ' ' : : ...

···· r=: l i·-J l

Not ice that even after FOUR. FRU ITS is open , you can st i l l P R I N T to
the screen (l i n e 40) . However, after the WRITE statement i n l i ne 50,
al l P R I N T statements send their characters to the f i le . Here is how
the characters are stored i n FOUR. FRU ITS .

Chapter 6: Text i n F i les

Character sequence:

Field n u m ber:

D$ is jCONTROL) -@).
R$ is Carriage Return .

Set the prefix to /EXAMPLES/DATA.

Prepare FOUR.FRU ITS for use.

Prepare FOUR. FRUITS for read ing .

For f ields 0 through 3, read f ie ld I from
the fi le, and print i t on the screen .

Then do the next f iel d .

Close FOUR.FRU ITS when done.

When there are no elements left i n a
f ie ld , I NPUT reads from the next f ield .

P r i n t the four fruits on the screen , one
fru it per l i ne .

D$ is jCONTROL) -@).
Set t he prefix to /EXAMPLES/DATA.

Create the f i le VERB .L IST, if necessary,
and prepare to use i t .

Prepare to write to VERB. L IST.

Pr int th ree elements in f ie ld 0 .

Pr int th ree elements in f ie ld 1 .

Close VERB .L IST.

A P P L E > BANANA> CANTALOU P E > DATE>
{ FO }{ F 1 }{ F2 }{ F3 }

Here is a program that reads the fou r f ie lds out of the seq uent ia l
text f i le FOU R . FRU ITS , and i nto successive e lements of an array.
I t a lso pr i nts them onto the screen so you can see that i t ' s work i n g .

1·::' 1··· :·,·:

:!. 1? . . ·:·. C: ! , :··._ .. ,.

, ... : ··

l :· ·

. . .
r=:_ .L j ··= , . . : · : .. . ; __ _: .:�:. . ; --- ; .· ..

'··-· ;·=:: .L r·-! = LJ ::t·- ' · · ' ' '···· t::. r·-= : ... l . ..l l.) i••:: : ;··· '
-. -... - -·

L. 1·:;' j ;. : .
L. .:j:· _;

. . . : .•.. ; _ _.; ;-=:. .:. . . . -.::·

' ' ' , __ ,_. ·-. . L .. -

'··· 1_.) 1 ... �< : �-- j·::� j_) j

: j _ _f ::j:: : = = ;:::. , ____ , ___ ... = : ••••

Th is prog ram uses the I N PUT statement once for each f ie ld i t
reads f rom the f i le . I f you wanted to read al l four f ie lds with a s ing le
I N PUT statement , you cou ld replace l i nes 60 th rough 90 wit h :

: : · ... · ··:· : -; -:!:· . ; ; ,; ___ .:;:- :···: . . .

,. ·;

;-··, ;-··, T ;, ; ··:··

The str i ng var iab le R$ was set to carr iage return i n l i ne 20 . When i t
i s pr in ted , a carr iage return is pr in ted on the scree n .

Multiple Elements Per Field

Here is a prog ram that p laces th ree e lements i n each of two f ie lds .
Fol lowi ng i t are programs that read the e lements i n d ifferent ways .

.... :·:: ; ; ·-; ;

,::j. L--;

···:: ,·::: ;::: ;:;::

····- -=-- • ' = c:= r;�· F
:,: ;,,,, ; ·., ;,,,: : : : . .

L.: r•: . . L 1 , , ·. , : ... · : ·. : , , , , ·. , : ... : ;-,.
: ; ; ;._ ; ;_.· , .

; ; ··;·· ; ; T ; . . . ; ; ... ; ; ; ;._ ; ; .. · : :

Sequential Text Fi les

Character sequence:

Field n u m ber:

D$ is (CONTROL) -@ }

R$ is Carriage Return .

C$ is Comma.

Set the prefix to /EXAMPLES/DATA.

Prepare to use VERB. L IST.

Prepare to read from VERB. L IST.

Read three elements from f ield 0, and
three elements from f ield 1 .

Pr int a l l six elements

on two separate l i nes.

Close VERB .L IST.

D$ is (CONTROL) -@) .

R$ is Carriage Return .

Set the prefix to /EXAMPLES/DATA.

Prepare to use VERB. L IST.

Prepare to read from VERB. L IST.

Read fi rst element from f ield 0.

Read fi rst element f rom f ie ld 1 .

Display the two verbs.

Close VERB. L IST.

The commas between the verbs i n l i nes 50 and 60 are actual ly
wr itten to the f i le . When an I N PUT statement with m u l t i p le
var iab les reads these commas, i t t reats them as markers for the
end of the e lement current ly bei ng read . Here is the character
seq uence for the f i le VERB . L IST (The sym bol > means (RETURN) } .

DR I N K , DRAN K , D R U N K > T H I N K ,THAN K,TH U N K >
{ F O } { F 1 }

H ere i s a program that reads each verb from the f i le i n to a
separate var iab le .

: ... = : ... r:1

.:::: v= ;·=:: ::;:-

. ! ... : ::!::

====: c:,

. . : :. : : ·
· ... · · ... · : :

:··· . . : .. . l l l:::• l:::: ;:::· ;:::· ·;o : .
. .

: : : ... i·:;' j···: . ;

;:::• ;:;:: T : :·· . . .
.. ·" i_.·i .,. :. : ,. .. , ' ' . .,.. !:::! J .:::· , r··; ,::: . . :::· , , , · ... · .. ,. , . ' .:.:. ·.;._

: ... �---; ,.
.. L.J l···� j ; ... j , ,

; · .. : . . : · ... · :!:: : ;-··; :.--' .:;:. : '···· ·+' : �--·j . -=: -:;:· . . .

.·:·· ;-··; : .. ; . . :;:. : ; . . :::- : ; . . ; ,:;:- ·

�? I �-..j T' : ... · ··:·

Not ice that l i n e 70 s im ply reads consecut ive e lements from the
f i le . When a l l the elements are read from one f ie ld , e lements are
automatical ly taken from the next.

L ine 80 pr ints out the e lements so that they look just l i ke they d i d
i n t h e orig i nal program . Note t h e use o f C $ to p r i n t a comma, and
R$ to pr int a carr iage retu rn .

The next program reads on ly the present tense verbs .

; j. l ' L. L.l ;

· ... ;···j , ._: .. ;:. : ::.:. :

;:;:= -:; ..
: ::.:

;:::· ;:;:: r \! ·r · -... , , , �--·. �-:·· ····· ,
·'· ,

,

' .

.L ; ; ;

. . . .

/ i_.·; T kj �:::= ! ... · ,
; ... ; ; .. : '···· ; :

::::= ::J

. · ' ' 1·=:� 1:::. 1···1 L.1

:...; ·: .
: ; · ;.·

: .. .' .. ;.·
. . ! ... · L.. ! . .J ::::: t::.

C hapter 6: Text i n F i les

Data element: A str ing of characters
separated by commas.

In this example , as exp la ined in Table 6-2, each I N PUT statement
causes an ent i re f ie ld to be read , regard less of the n u m ber of
e lements used i n the I N PUT statement . Thus l i ne 60 causes the
st r ing " DR I N K" to be ass igned to A 1 $, and l ine 70 causes the
str i ng "TH I N K" to be ass igned to A2$. F ina l ly, the verbs D R I N K
a n d T H I N K are d isp layed .

GET Characters From a File

The I N PUT statement has its l i m itat ions . I t i s designed to read
data elements-str ings of characters separated by commas. If
you want to read in st r ings of characters that may contai n
commas, co lons , or other control characters, or if you want to
detect part icu lar characters as they are read , you must use the
GET statement to read the characters one by one .

The GET statement works the same whether you are read ing
i nformat ion f rom the keyboard or from a text f i le .

You can use the GET statement to read a var iab le n u m ber of
e lements f rom a f iel d . I f you have been work ing th rough the
examples, you have al ready used the prog ram CONJUGATE to
create the f i le VERB . L IST . I f you haven ' t done th is , use the
command

: : . ···· ;·:: ; ; ; ., ;-:: ;···; ; · ; :··, .. · ; . ; ; ; ·.; , ; : .

and a text f i le named /EXA M P LES/DATAIVERB . L IST is created .

A l though we know that there are th ree elements i n each f ie ld of
VERB . L I ST , there are s i tuat ions i n which you r program w i l l not
know how many elements to read from a f iel d . Let ' s write a
subrout ine that uses the GET statement to read any n u m ber of
e lements, separated by commas, from one f ie ld of a f i le .

The fo l lowi ng subrout ine reads e lements , separated by commas,
and then p laces them into consecut ive elements of st r ing array A$.
The element i n use at any t ime is i n d i cated by A$(1) .

The GET statement returns one character. Th is su brout i ne reads a
character into the var iab le C$, and if the character is not a comma
or a carr iage retu rn , adds i t to A$(1) . Because a com ma separates
two elements, the subrout i ne u pon read ing a comma adds 1 to the
var iab le I , causi ng I to i n d icate the next e lement of the array, and
then cont i n ues read ing characters. I t repeats th is process unt i l i t
reads a carriage retu r n , which marks the end of the f ie l d .

Sequential Text F i les

R$ is Carr iage Retu r n .

Start w i t h array element 0 .
U s e next array e lement .
Read the next character.

I f comma, use next e lement .
I f carr iage return , you ' re done.

Otherwise, add C$ to e lement .

D$ i s (CONTROL) -@].
Set t h e prefix t o /EXA M P LES/ DATA .
P repare V E R B . L I ST for use.
P repare V E R B . LIST for read i n g .
Read a l l e lements f r o m a f ie ld .
Close V E R B . L I ST.
N ow pr int the I e lements of A$ onto the
scree n .

: ... · : ... 1···1 = :

The next prog ram uses th is subrout ine to ret r ieve the e lements
from the fi rst f ie ld of the f i le VERB . L I ST . Recal l that you use a
subrout ine by sayi ng GOSUB fo l l owed by the num ber of the l i ne on
which the subrout ine starts (see l i ne 60 below). When the RETU R N
statement i n t h e subrout i ne is executed (l i ne 1 040 above) , t h e l i n e
fo l lowi ng t h e GOSUB statement is executed (l i ne 70 below).

· ... · ·

=:::: :·:, = ••• : :· ·

· .. .: = ..• = : , , ._ ' . ; ; ·.; r ..

:···. :···. ·:· : : ··:·· :··· . . : .. : : :···

.... .:�:. . ;

; ·.; ::::_ ;. -.; 1

: ·. : : ·.· : : : t::; : 1

.
' ' ' ' ···· =··· ·.· , . i·=:: t::; , L . .t :···. '

.

To test th is program , type i n the l i nes of the program and the l i nes
of the subrout ine , and then type

You see the th ree words in the fi rst f ie ld of the f i le VERB . L IST
pr i nted on the scree n , one word per l i ne .

I n th is exam ple on ly the f i rst f ie ld was read f rom the f i le . A
techn ique for read ing a var iab le n u m ber of f ie lds from a f i le is i n
t h e program GET.TEXT below.

Chapter 6: Text in Fi les

Al low enough room for 1 00 l i nes of text.
Ask for next l i n e of text with a l i n e
n u m ber fol lowed by a col o n .
Cal l a s u b r o u t i n e t h a t reads a l i n e o f
characters i nto array element A$(1) .

I f A$(1) i s not em pty, then go to l i n e 1 1 0 ,
which prom pts for the next l ine of text .

Entering and Reading Text

You are now go ing to write two short programs: one that reads text
from the keyboard and then saves i t to a f i le , and another that
reads text from a f i le and then pr i nts it on the scree n .

A s you read through t h e fo l lowi ng explanat ions o f the programs,
don ' t bother typ ing i n the l i nes of the programs. You can f ind these
programs in the /EXA M P LES/PROGRAMS/ d i rectory as the f i les
MAKE. TEXT and GET. TEXT.

A Program for Entering Text

Th is prog ram is stored i n the f i le
/EXA M P LES/PROGRAMS/MAKE. TEXT . I t lets you type i n up to
one h u n d red l i nes of text and save them i n a f i le . I t asks for l i nes of
text , reads them from the keyboard , and p laces them in to
consecut ive elements of the array A$. The program stops read i n g
l i nes a s soon a s i t encou nters an em pty l i ne . Th is port ion o f the
prog ram is :

Th is par t of the program uses a coup le of l i t t le t r icks . S i nce the
value of a var iab le is 0 the f i rst t ime i t is used , the f i rst t ime
l i n e 1 1 0 is executed , I is set to 1 , and the prompt

is pr in ted on the screen . Next , l i n e 1 20 reads a l i ne of text into
array element I . Thus the l th l i ne of text i s p laced i n array
e lement I . I f that array e lement is not em pty-that is , i f it d oes not
have a length of zero-then l i ne 1 30 goes to l i n e 1 1 0 , wh ich asks
for the next l i ne of text.

Entering and Reading Text

D$ is (CONTROL) -@).
Open the named f i l e (N$) .

Prepare to wr i te to the f i le .

For each l i ne of text ,

pr int the l i ne to the f i le

and cont inue to the next l i ne .

Close the f i le when done.

Once al l the text is in the array, the program asks you for the name
of the f i le i n which i t is to p lace the text :

... ::;. ; .. -�

.l. :::·: vi

: : ;__; ; ;., :

. '
. .

.L : ··1 r·· · ,

: ... ' ··:·· :
: : ;,,,: ;,,,: ;,,, :L ;:-:;

; ; : 1·.) -:i··

and reads that name in to the var iab le N$. L ine 1 60 g ives you a
chance to end the prog ram without savi ng the text to a f i le . If the
name of the f i le has a length of zero-that is , i f you pressed
(RETURN)before typ ing any other characters-the program goes to
l i ne 230 which is the end of the program . (Not ice the d ifferent
techn iques used by l i nes 1 60 and 1 30 to detect em pty st r ings .)

Next comes the task of savi ng the contents of the array to the
named f i le . The last l i ne that the program read i n is l ine I , and i t i s
an empty one (used to i nd icate the end of the text) . Therefore, now
pr int l i nes 1 through I - 1 to the f i le . Do th is as fol lows:

:· : .:. :

; ·. · · ··

.; :·· .··::
··: ;.- ;

... = ·.··' L-·!

; ·.; ;-·· .···. ;

r== . .L ; ·-; =

r·· � :t , ' ,

: : . · · ; . i i i >··, i···

F inal ly, end the program with the l i n e

T h e purpose o f the TEXT com mand is exp la ined below.

If you type in the program as presented so far, i t works. The
fo l lowi ng l i nes pr in t the i nstruct ions for us ing the program onto
the scree n , and freeze them there.

·r �::· '· ,

�:::: ; .. ·i ;,,,: '···' 1]·. j 1
... ;. · · . . .L] '·i ': :" ''''

c � : :··· ; ; ; ·; :. .• =
... ;. · : .
; ; ·.; ·,,: r··

: ··1 ; __; r•· ·

�-·; �-·;
p ;:::: ·;· : :

F· =···, ., . .

: ... : :... ; i ; :;�: j· .. j ; ;

Chapter 6: Text i n F i les

: : ·r ('=

: .. .: : ... ' ' : L.= :·.] U (1

Sett ing the text window is d iscussed i n
an append ix o f t he Applesoft BASIC

Programmer's Reference Manual.

Al low enough room for 1 00 l i nes of text .

D$ is (CONTROL) -@).
R$ is Carriage Return .

L ine 40 causes the Apple I I to swi tch the d isp lay to fu l l screen text
mode, to clear al l characters from the scree n , and to move the
cursor to the upper-left corner of the screen . L ines 50 th rough 90
p lace the i nstruct ions for the program on the scree n , some in
normal letters, and some i n i nverse letters. L ine 1 00 freezes the
u pper six l i nes of the screen so they remain on the screen even if
you enter more l i nes than the screen can ho ld . This is cal led
sett ing the text window.

Run this program a few t i mes, creat i ng text f i les of d ifferent
lengths . Exper iment with the d ifferent featu res of the program to
become fam i l iar with the way they work .

For example: You can enter a blank l i ne of text by putt i n g spaces on
t hat l ine; s ince the l i ne conta ins characters, the length of the l i n e is
not 0 .

A Program for Retrieving Text

Th is program is i n the f i le /EXA M P LES/PROGRAM S/GET. TEXT .
Load the program so you can look at the l i nes as they are
descr i bed below.

F i rst the program sets up the var iab les it is go ing to use. I t
d i mens ions the array A$ to ho ld u p to 1 00 e lements , and i t ass igns
the val ues RETUR N and CONTROL-D to R$ and 0$, respect ively.

-·::: : :: ... =:..= ; T ;-.-: ' , .. ,. ·. ·'· · ... · · ... · .·

. · .·· : .. .: --;-· ! ... - l l l·=:_ .;!:: · .. ''T .·

I n l i ne 60 , the program asks for the name of the f i le from which it i s
to read text , and reads the f i lename in to the var iab le N$.

E ntering and Read ing Text

! l:::_ ,· ·· j j·-· .L L.. i:::. :

Open the text f i le .
P repare to read from the f i le .
For each l ine that could be i n the text
f i le ,

read the l ine into array element I
and then pr int it on the scree n .

T h e n do the next l i ne .
C lose the f i le .
Restore text mode, and end.

Havi ng read the name of the text f i le, the program can n ow read
consecut ive l i nes from the f i le :

.!. •::.; ;.· :

·i ..

:··· . . : .. : : .···. :···
: : ·;

. . � r·
-� .,.

There is a smal l problem with th is part of the program . If the text
f i le contai ns fewer than 1 00 l i nes, the program reads the last l i n e
o f t h e text f i l e , a n d then h a s no more characters to read . The
prog ram tr ies to read a character anyway, fai ls , and pr i nts out the
error message

To prevent th is occurrence, use the O N E R R GOTO statement
descr i bed i n Chapter 5 . I f you inc lude the l i n e

t h e program , u p o n encounter ing an error, s im ply closes t h e f i le
(l ine 1 60) and ends .

Note: This is not the best way to use the ONERR GOTO statement.
Before tak ing any act ion , a better version of th is program wou ld check
to see which error occurred . Refer to the sect ion on the O N ERR GOTO
statement i n Chapter 5 to see how to d o th is .

The subrout ine that reads l i nes of text is , as before

Chapter 6: Text i n F i les

The l i nes presented so far comprise a complete program ; if you
type them i n , they wi l l r un . As before, you can add a few l i nes that
permanently p lace i nstruct ions for usi ng the program on the
screen .

-r· -···. ,-·. ·-r· ,--. , T k i =-·· : :
! ! ___ , -::: ; :.) 1"" : :. · ... : ; .l

� r-· i:::. . · ... · : ' : : .. · ... : i

; ... ; ;-_ : • . . · ··:·· :·· ····- :··: j. l "''" L. ! ! r· = i = . ..: = ••• · '···' ' ·: : .:. : , ••• •••••

. j 'T
! ; ·-. . : ;---· u ;·= .. t::. ---· T , '-·-'

L ine 50 causes the Apple I I to switch to fu l l screen text mode, to
clear al l characters from the screen , and to move the cu rsor to the
u pper- left t:orner of the screen . L i nes 70 and 80 p lace i nstruct ions
for the program on the screen . L ine 90 freezes the upper s ix l i nes
of the d i sp lay so they rema in on the screen even if you enter more
l i nes than the screen can hol d .

The OPEN Command

You can use the OPEN command on ly i n deferred mode.

Before you r program can wr i te to or read from a sequent ia l text
f i le , it must open the text f i le us ing th is command

OPEN pn [, S#] [, D#]

F i les that you open m ust be c losed (usual ly at the end of the
program) . I f you don' t c lose a f i le that you open and wr i te to , you
may lose some of the written data.

When a program opens a text f i le , ProDOS designates a space in
memory, cal led the f i le buffer , to ho ld al l im portant i nformat ion
about the f i le , and prepares the system to read or write start i ng at
the beg i n n i n g of that f i le . Up to e ight f i les can be open at once.

I f the f i le des ignated by pn does not yet exist , a f i le with that name
is created , and is added to the proper d i rectory. I f the f i le exists,
and is a l ready open , you get the F. :: L.. ::::: :::::: .<::; '·,-' error. You (or the
program) must c lose the f i le before open ing i t agai n .

War n i ng
When you open a f i le , the pathname or part ia l path name with which you
opened the f i le becomes that f i le 's identifier. In a l l su bsequent references
to that f i le , you must use exactly the same pn-even i f you change the
pref ix . See the example which fol lows.

The OPEN Command

Assume the prefix is current ly set to I APP LE/ (a popu lar fru i t) . I f
you open the f i le I APP LE/STRUDEL us ing the BAS IC l i n e

; ; :··, ;-··, ;···· ;, ;

you must always use the name STRU DEL when referr ing to that
f i le . For example , if you su bseq uent ly use the com mands

c· .·
· ::::: ·r �:;:: ! ! ;···, ,

you get the :::: ' '
· ·· · · · · · ···· : :: 1 1 error. Even though the prefix has

changed , you shou ld st i l l use the same fi le ident i f ier :

. . :�; j .. •! : :.... ; ;· . .; i
....

The OPEN command has other opt ions that are not appl icable to
seq uent ial text f i les. They are d i scussed e lsewhere.

The Options

pn pn i nd icates the name of the f i le to be opened . I f the f i le
a l ready exists, i t must not be open . I f the f i le d oes not yet
exist , a f i le of type text (TXT) is created .

(,S#] The s lo t opt ion has i ts usua l mean i n g .

[, D#] The d r ive opt ion has its usual mean i n g .

For Example

Several exam ples of the OPEN com mand have al ready been
presented . The fo l lowi ng sect ion expla ins a new aspect of OPEN .

Delete Before Opening

Suppose you r program rout ine ly replaces an o ld text f i le with a
new one with the same name. If the new one is shorter than the o ld
one , then u n less the program deletes the o ld f i le f i rst , the new one
has part of the o ld f i le hanging on the end . I f you don ' t want al l th is
extra text at the end of the f i le , you must delete the o ld f i le before
wr i t i ng to the new one. This is usual ly easy, but what if i t is the f i rst
t ime you have run the program , and the old file doesn ' t yet exist?

Chapter 6: Text i n F i les

D$ is (CONTROL) -@).
N$ i s t h e n a m e o f t h e f i le .
Open the f i le . I f i t does not al ready exist ,
i t i s created .
Close the f i le before delet i n g i t .
S ince the f i le def in itely exists, the f i le
can be deleted .

For example , suppose a game creates and uses the f i le
/GA M ES/DI NGER , and you wish you r program to de lete that f i le at
the start of each new game. The l i ne

causes the error message

if the fi le d oesn ' t exist , and the program halts . Here 's a q u ick way
to delete a f i le and open it for new data, whether or not the f i le
al ready exists:

; ; : �·. 3 . :l··

The rest of the prog ram goes here.

S im ply open and c lose the f i le before de let i ng i t . This ensures that
the f i le exists and can be deleted .

The CLOSE Command

You can use the CLOSE command i n e i ther immed i ate or deferred
mode.

After a program f in ishes wri t i ng to or read ing from a f i le , i t must
c lose the f i le . P roper c losure of every f i le is necessary to ensure
that a l l characters are written to the i r f i les, and that the f i le buffers
are properly released . CLOSE takes the form

CLOSE [pn]

War n i n g
A program must always close a f i l e that it opened . I n some ci rcumstances,
however, a prog ram that contai ns an error wi l l stop before i t can c lose al l
open f i les. When th is happens, issue the CLOSE command from the
keyboard to close al l open f i les.

The CLOSE Command

The Options

The CLOSE command without any opt ions c loses al l open f i les .

[pn] pn i n d icates the name with which the f i le was opened .

The WRITE Command

You can use the WRITE com mand i n deferred mode on ly.

You must use the WRITE command before you can use the P R I N T
staterp�nt to p lace characters i n a f i le . T h e W R I T E command
ident i f ies to ProDOS the f i le to which you want to wr i te characters,
and the posit ion i n the f i le where the f i rst character wi l l be placed .
The WRITE command remains i n effect un t i l the next ProDOS
command is g iven . Th is command takes the form

WRITE pn [, F#) [, B#]

The Options

Use the F# and B# opt ions to choose the posi t ion of the f i rst
character to be written to the f i le . I f you don ' t use these opt ions ,
the f i rst character is written to the f i le 's current posi t ion .

pn pn i n d i cates the name of the f i le to be wr i t ten to . I t must be
ident ical to the name with which the f i le was opened .

[, F#) # is the num ber of f ie lds past the cu rrent posit ion that
ProDOS is to read and d iscard . P roDOS d oes th is by
read ing characters, start i ng at the current posi t i on , un t i l i t
has read the specif ied n u m ber of carr iage returns . Th is
opt ion changes the f i le 's current posi t i on .

[, B#) # is the num ber of bytes , or characters, that ProDOS must
read and d iscard . The new current posi t ion is the sum of #
and the previous cu rrent posi t i on .

Chapter 6 : Text i n F i les

The READ Command

You can use the READ command on ly i n deferred mode.

You must use the READ statement before you can use the I N PUT
and GET statements to read characters from a f i le . The READ
command ident if ies to ProDOS the f i le from which to read
characters and the pos i t ion in the f i le from which to read the f i rst
character. The READ com mand remains in effect un t i l the next
ProDOS command is g iven . Th is com mand takes the form

READ pn [, F#] [, B#]

The Options

Each t ime you use the READ command you m ust ident ify a f i le by
name (pn) .

Use the F# and B # opt ions to choose the pos i t ion of the f i rst
character to read from the f i le . I f you don ' t use these opt ions , the
f i rst character is read from the f i le 's current posi t ion .

pn pn i nd icates the path name or part ia l pathname of the f i le
you want to read fro m . I t must be ident ical to the value
of pn with which the f i le was opened .

[, F#] # is the n u m ber of f ie lds which ProDOS is to read and
d i scard . ProDOS does th is by read ing characters, start i ng
a t the cu rrent posit ion , un t i l i t reads the specif ied n u m ber
of carr iage returns . This option changes the f i le 's cu rrent
posi t ion .

[, B#] # is the n u m ber of bytes , or characters, that ProDOS is to
read and d i scard . The new cu rrent posit ion is the sum of #
and the previous cu rrent posit i on .

T h e READ Command

See the descr ipt ions of the OPEN,
POSITION , and WRITE commands for
more informat ion on the operat ion and
use of the APPEND command .

The APPEND Command

Use the APPEND command on ly i n deferred mode.

The APPEND command lets you add data to the end of a
seq uent ia l text f i le . I t is l i ke th ree commands i n one: i t opens the
f i le (see the OPEN command) , posit ions to the end of the f i le (see
the POSIT ION command) , and then wri tes to that f i le (see the
WRITE command) . Th is command has the form

APPEND pn [,S#] [,D#]

After g iv ing the APPEND command , your program can send data
to the fi le us ing the PR INT command .

The Options

pn pn i nd icates the f i le to be appended . I t m ust not be open . I f
the i nd icated f i le does not yet exist , the f i le is created .

[,S#] The s lot opt ion has its usua l mean i ng .

[, D#] The dr ive opt ion has i ts usua l mean i ng .

For Example

You can mod ify the prog ram MAKE. TEXT -wh ich creates a
sequent ia l text f i le-so it adds l i nes to the end of a text f i le .

With the /EXA M P LES d isk i n d rive 1 , and with ProDOS started up ,
load /EXAMP LES/PROGRAMS/MAKE.TEXT in to memory and
d isplay i t on the screen w i th the commands

.· · t ... : ·- ·
.···

. :···,
.···. : : · · : : : ; ... : · · .---, .. · r·· r==. = . ..: = .. := r=:_ :···= ·

T

Do you remem ber how MAKE. TEXT works? F i rst it reads l i nes of
text in to the array A$, then it asks you for a f i lename, and then i t
opens the f i le and pr ints the l i nes of text to the f i le .

C ha pter 6: Text i n F i les

To append l i nes of text to the end of a f i le , a l l you need to do is
replace the OPEN and WRITE statements with an APPEND
statement . Replace l i nes 50, 1 70 , and 1 80 by enter ing the
fol lowi ng l i nes:

::::· -···. : ... = : •.. ' ; j·.j ;

J. :
··-

..... , ... ;::·, r··· : ,.. ·' : : : ; : : ·; ;

1 l:::. ;:< !

If you want to keep th is program , you can save it by typ ing

: :" ·, ; ; ; , , ; r·· . , . · · : ... ' !·=: � ! ... � ; . . := ; • •• ; ; ; ; ; ... :.· .

The APPEND command , l i ke the OPEN comman d , creates a new
f i le if the f i le you t ry to append does not al ready exist .

The FL USH Command

Use the FLUSH command i n e ither i mmed iate or deferred mode.

As a program writes to a text f i le , ProDOS stores a b lock of
5 1 2 bytes , or characters, of data before any of the data is placed
on the d isk . I f you use the FLUSH command , al l the characters that
are currently stored are transferred to the f i le . After you use the
FLUSH command , you can be sure that every character wr i t ten to
a f i le is actual ly placed i n that f i le . The FLUSH command takes the
form

FLUSH [pn]

The Options

The FLUSH command without any opt ions f lushes a l l open f i les .

[pn] pn i nd icates the f i le to be f l ushed . I t must be ident ical to
the pn with which the f i le was opened .

For Example

This command can be usefu l i f you wanted to make a program
absolutely foo lproof. I f you use the FLUSH command after each
statement that pr in ts to a f i le , you can be sure that every character
actual ly reaches the f i le . Your programs wi l l be a l i t t le longer and a
l i t t le s lower, but a lot more rel iab le .

The FLUSH Command

This command is also of g reat value for data col lect ion
appl icat ions i n wh ich there are freq uent power outages. I f you r
appl icat ion program is named STARTUP, t he program wi l l restart
after each power outage. Usi ng FLUS H , you can maxi m ize the
amount of data col lected .

Note: Frequent use of the FLUSH command slows d own you r program .
You must decide the i m portance of speed versus data i n tegrity.

The POSITION Command

Use the POSIT ION command i n deferred mode on ly.

With the POSIT I ON command , you can access the i nformat ion i n
a n y f ie ld or byte with i n a f i le . Th is comman d , which takes t h e form

POSIT ION pn , F#

starts at the current posit ion , and reads and d iscards the n u m ber
of f ie lds ment ioned in F#. The f i le must be open .

For example, if t he current posit ion is with i n the fourth f ie ld o f a
f i le , and you want to read from the tenth f ie ld i n the f i le , sk ip six
f ie lds using the POSIT ION command with the opt ion , F6 .

The Options

pn pn i nd icates the f i le whose current posi t ion is to be al tered .
It must be ident ical to the pn with which the f i le was opened .

, F# # ind icates the number of f ie lds to be read and d i scarded .
I f you t ry t o posi t ion past t h e e n d o f t h e f i le , you get the
F i-E:: U F :::: ::::: T H error message.

Chapter 6: Text i n F i les

Random-Access Text Files

1 15 About Th is Chapter
1 15 Random-Access Text F i les
1 16 Record Length
1 16 Wri t i ng to a Record
1 17 I ns ide a Record
1 17 Read ing From a Record
1 17 A Sample Program
1 19 Wri t i ng a Record
121 Read ing a Record
123 Control l i ng the Program
124 The OPEN Command
124 The Opt ions
125 The CLOSE Command
125 The Opt ions
126 The WRITE Command
126 The Opt ions
127 The End of F i le
127 The READ Command
128 The Opt ions
128 The APPEND Command
129 The Opt ions
129 For Example
131 The FLUSH Command
131 The Opt ions
131 The POS IT ION Command
132 The Opt ions

Chapter 7: Random-Access Text F i les

Random-Access Text Files

About This Chapter

Th is chapter i n t roduces you to the use of ProDOS random-access
text f i les. It descr i bes how to create them, how to p lace
informat ion in them, and how to take i nformat ion out of them .

Because random-access text f i les are so s im i lar to sequent ia l
access text f i les , th is chapter assumes that you are al ready fam i l iar
with the mater ia l i n the preced ing chapter.

The f i rst part of th is chapter expla ins the structure of random
access text f i les and how you can make use of i t . The next part of
the chapter leads you through a typical program that uses
random-access text f i les . The remai nder of the chapter contai ns a
descri pt ion of the commands you use to man ipu late random
access text f i les.

By the Way: Notice that although the commands descri bed i n th is
chapter are the same as those i n Chapter 6, the opt ions that
accom pany them are d ifferent . Append ix A contai ns a summary of the
commands with a l l their options.

Random-Access Text Files

As i l l ust rated by the scro l l versus notebook analogy i n Chapter 6 ,
there is a fundamental d ifference between seq uent ia l and random
access text f i les: a seq uent ia l text f i le is a s ing le un i t , com posed of
a series of f ie lds; a random-access text f i le consists of mu l t i p le
u n its , or records, al l the same size, each composed of a series of
f ields. F igure 7- 1 i l l ustrates this com parison .

Random-Access Text F i les

Figure 7- 1 . Sequent ia l and Random
Access Text F i les

Record length is the number of
characters a record can ho ld . A l l
records i n a s ing le random-access text
f i le are the same length.

0

Sequent ia l Random-Access

Record Length

When you open a random-access text f i le for the f i rst t i me, you
m ust ass ign it a record length . For example , to open a random
access text f i le named /MUSIC/CLASSICAL that has a record
length of 33, use the command

·= = ··= ····· r=: . .1: 1··-! ·T ···· · ' ' ;:::; F· �::: :···i
·' : : ·-'

The length of a record is the num ber of characters it can ho ld .
Each record i n the f i le /MUS IC/CLASSICAL is 33 characters long .

Not ice that when you open a random-access text f i le , you don ' t
need to specify the n u m ber of records that the f i le is go ing to ho ld .
ProDOS takes care of such detai ls for you .

Writing to a Record

When you use the WRITE command with a random-access text f i le ,
you m ust specify the n u m ber of the record to which you are going
to wr i te (j ust l i ke writ i ng to a page of a notebook) . I f the specif ied
record does not yet exist , ProDOS reserves enough space on the
d isk for that ent i re record . Thus, even if you are on ly go ing to p lace
one character in a record of the CLASSICAL f i le , that record wi l l
use 33 characters' worth o f d isk space.

Chapter 7: Random-Access Text F i les

3

Stor ing characters is expla i ned in the
sect ion on f ie lds i n C hapter 6 .

For example , before wr i t i ng to record 10 of the f i le you j ust
opened , use the com mand

, ·'·· · ' ' L :J �) T ..

The su bseq uent PR I NT statements you use place characters i n to
record 1 0 of th is f i le .

Inside a Record

The storage of characters i n a record is j ust l i ke the storage of
characters i n a seq uent ia l text f i le . The d i fference is that there is a
maxi mum n u m ber of characters that wi l l f i t i n to each record .

War n i n g
You must be carefu l n o t to p r i n t more characters to a record than i t can
ho ld . I f you do, ProDOS s im ply pr i nts the extra characters i nto the
beg i n n i n g of the next record . For this reason , a f i le 's record size must be
at least as great as the largest n u m ber of characters to be stored i n any of
its records. Don ' t forget that the carriage return at the end of each f ie ld is
counted as a character too.

Reading From a Record

When you use the READ command with a random-access text f i le ,
you must specify the number of the record from which you want to
read . For example , to read the seventh record from the
CLASSICAL f i le, u�e the command

�-·· '···: ; ;. ' . : ... : · .. . ; : -... = · ... = .:. = ... · : ; :

fol lowed by the appropr iate I N PUT or GET statements. If the
record does not exist , the READ statement is al lowed , but the f i rst
I N PUT or GET statement causes the ! . !"-! !.-' f i !:::

·
L.: i···i T" ' : error message.

A Sample Program

To i l l ust rate the use of random-access text f i les, here is a short
program that you can use to keep t rack of an add ress l i st . The
program has two mai n tasks: to enter new add resses and to look
up add resses that are al ready entered . Each of these two parts is a
subrout ine ; a ma in program cal ls these subrout i nes as needed .

A Sample Prog ram

Figure 7-2. Five Addresses in the F i le

Record
Number

5

4

3

2

0
5

The f i rst add ress you g ive the program is stored i n record one of
the f i le , the second i n record two , and so on . The total n u m ber of
records i n the f i le is stored i n record zero of the f i le . F igure 7-2
represents the structure of the f i le when i t contai ns f ive add resses.

Joe's Mama �
�

B i l l Smith
29 1 1 Main St .
Los Al tos, CA

Addresses
(5 of them)

Total Number of Addresses

D$ is (CONTROL) -@}
Open the f i le .

Write to record 0 .

Put a 0 there.

Close a l l f i les.

The total n u m ber of add resses in the fi le is i n i t ia l ly 0 . F i rst write
and run a l i t t le program that places the i n i t ia l total n u m ber i n
record 0 .

' ' C• ·:
�-.; 1 • • :. : :.. ••

:-. ...- .·-. . ···· ;:::· :-·. ,-..
r:: t. 1 : ; · .. :...: ::_:

:-·· .-. :··· . . ··· . ..,. . . -.
... ,_ , , , , , i t-·· t__ :_ ._, ... · · �--= � �-; .. ·- �::: ;_ __ H �.-- 1·:

·

·-= =: .. =
. . . . r·.: : �..:.i

;::;- .···. .···. : .···. ·=:· [.�' : :
: · ' · · '···' ··-' '-·

L ine 20 opens the f i le B LACK. BOOK, i n which add resses are to be
kept, with a record length of 200. Thus , add resses stored by the
prog ram can have no more that 200 characters in them . L ine 30
specif ies that data wi l l be wr i t ten to record 0 of the f i le . L ine 40
pr ints a 0 to that record , and l i ne 50 closes the f i le .

Chapter 7: Random-Access Text F i les

Figure 7-3. Writ ing an Address to
Record F ive

Type i n th is program and run i t . The d isk d r ive spi ns as the new f i le
B LACK. BOOK is created (OPEN causes a new f i le to be created if
i t does not al ready exist) , and the 0 i s p laced i n i t . Then type

to remove th is program from memory. You no longer need i t .

Writing a Record

You m ust now decide how i nformat ion is arranged with i n each
record . Each record contai ns a name, an add ress, a c i ty, a state, a
z ip code, and a phone num ber. P lace each p iece of i nformat ion i n
a separate f ie ld ; that i s , use a separate pr in t statement t o place
each p iece in the record . To improve the c lar i ty of the program , use
a separate var iab le for each p iece of the add ress. F igure 7-3
shows the BAS IC statements that p lace an add ress in record f ive
of a f i le named BLACK.BOOK .

PR INT D$;"0PEN BLACK.BOOK,L200"

PR INT D$,"WRITE BLACK.BOOK,RS"

PR INT N$

PR INT A$

PR INT C$

PR INT S$

PR INT Z$

PR INT P$

PR INT D$; "CLOSE BLACK.BOOK"

To write a new record to a f i le

NAME ")
ADDRESS ")
CITY ")
STATE ')
Z IP CODE)
PHONE)

Record 5

1 . Read i n the new add ress to be entered . Store it i n the var iab les
N$,A$,C$,S$,Z$, P$.

2 . Add 1 to the total num ber of records stored (TR = TR + 1) . Th is
is the n u m ber of the new record .

3 . Use OPEN and WRITE to prepare that record to be written .

4 . Pr in t the new i nformat ion to the f i le .

5 . Pr in t the new total n u m ber to record 0.

6 . Close the f i le .

A Sample Program

Read name to be entered .
Read add ress.
Read c ity.
Read state.
Read zip code.
Read phone n u m ber.

Open the fi le with record length of 200.

Read tota l records.
Get total records; add 1 .

P repare to write to record n u m ber T R .
P lace each p a r t o f add ress i n a
separate f ie ld .

P repare to wr i te record n u m ber i n
record 0 .

Pr in t new record n u m ber.
C lose the f i le .
End of s u b rout ine .

Store records i n f i le
/EXA M PLES/DATA/BLAC K . B O O K .
C a l l the s u b rout ine , over and over
aga i n .

Here is a subrout ine that does th is . L i nes 1 0 1 0 through 1 060
gather the i nformat ion for an add ress .

; =: . .= -.. .= =: •• :

: : : : : : ; ; : ... = : ... :

;· .. ; ; .. ; ; ,···
...

:. : : : · : : = •• : ; ;,,,; ; : •••

�-) F' ; : : : : ... L..l ,..., ;, : :···· : : : ;,,,: ::�::

L ines 1 070 through 1 1 20 open the f i le whose name is stored i n F$
and write i nformat ion to a new record (record TR) i n that f i le .

; ; ,.; ; ... : : .

.t. =::_; .:::: ;.· :
. .. . · ···· · · ····· i,) ;

; ; ,···, ;-··, ;-··· ;, ; : : T· .

,.... ' ' F� �:::: ,···= , .

; ; . ;-··· . .;. . . ; :

L i nes 1 1 30 th rough 1 1 60 pr in t to record 0 the total n u m ber of
add ress records that are now i n the f i le , c lose the f i le , and end the
subrout i ne.

; ; -:;:· : : : 1.: - i i·::
: �

These l i nes are al ready typed i n and stored as part of the program
in the fi le /EXAMP LES/PROGRAMS/ ADD RESS . I f you want to
test j ust th is subrout ine , load
/EXA M P LES/P ROGRAMS/ ADDRESS , and add the l i nes

: ... · : : ... ·

Chapter 7: Random-Access Text F i les

Figure 7-4. Read ing an Address From
Record Five

When you want to stop the program , press (coNTROL) -@)and then
press (RETURN) . These keystrokes, as descr i bed i n the Applesoft

Tutorial, stop a lmost any prog ram . If you typed i n l i nes 1 1 - 1 3 , type

J. : t
J. ::::.

l :::�:

to remove them from the program .

Reading a Record

You al ready know how i nformat ion is stored i n the records. Your
new task is to f ind a way to ask wh ich record (add ress) is to be
d isplayed . To do th is , d i sp lay the name f rom each record , together
with its record num ber, and then ask for the n u m ber of the desi red
add ress. F igure 7-4 shows the BAS IC statements that read an
add ress from record f ive of the fi le BLACK.BOOK .

NAME ')
ADDRESS)
CITY')
STATE)
ZIP CODE)
PHONE)

Record 5

To read a record from the f i le

PR INT D$;"0PEN BLACK. BOOK, L200"

PR INT D$; "READ BLACK.BOOK, R5"

I NPUT N$

I NPUT A$

I NPUT C$

I NPUT S$

I NPUT Z$

I NPUT P$

PR INT D$;"CLOSE BLACK.BOOK"

1 . Use OPEN and READ to prepare the f i le to be read .

2 . Read the total n u m ber of entr ies from the f i le .

3 . Pr in t a num bered l i st of the entries on the screen .

4 . F ind out wh ich entry to d isplay.

5 . Pr in t the selected record on the screen .

6 . Close the f i l e .

A S a m p l e Program

Open the f i le .

Read from record 0.

Get the number of records.

Check for no records.

Clear the screen .

For each record I , posi t ion to record I ,
and read the stored name.

Here is a su brout i ne that does all t hese th i ngs . F i rst i t reads the
total number of add resses from record 0 of the f i le . Then i t reads
the name from each add ress and pr in ts al l of them on the screen .

:: ... •: .. = :: ... •:.,: ,;, ; ·; ; '···' ;

! ; ,···, ;.. r··; : . ..: ; · ; t::.

: : . r··· .+· _; r· .:;:· _; , L. . . : ... �:.:l U , ,
! ! . r··· .. ; .. . ; : :···. :·:, ; ;

-' r· .:;:· -' , , ·. · ... ·

' ' : ' LJ ;-; C L:;" ;.·� ; ! ,_, ·-' ;.._ ; ; ;_,: ;,, ; · .. ;_ ·-' ·-·' L' :_:
=

i...l -+· ;

l f.j ! ... • ; ; : j·-.j ::i::

1 U ; r•:.

! '·. ! ; ; ;,,,• : ; .. ;.· : , F� · -� 1

= = c.: k = ·r =::· l···' l-:-' ; r-� ;

Pr int the record number and the name .::: :.:; ::; :.:. ,.,.· ' ,. .. , ! .!. .. !··n::
on the screen .

Repeat for a l l records. ·;:. ·: ;:::; ;:::, i··F::: :: :: ··:·
·

-'
·

Empty ProDOS command; turns off
READ.

Get numeric value of answer.

If bad number, try again .

Because the READ statement causes ProDOS to read characters
from the fi le rather than from the keyboard , you m ust cancel the
READ statement 's act ion before read ing anyth i ng from the
keyboard . A READ or a WRITE is canceled by a ProDOS
command ; one way of do ing th is is by us ing the em pty ProDOS
command in l i ne 2 1 1 0 below.

L ine 2 1 20 asks for a n u m ber and then reads it i n to the st r ing R$.
S i nce the q uest ion asks for a numeric answer, i t cou ld have read
the answer in to a regu lar var iab le , but then the accidental press ing
of a letter key wou ld cause an error. L ine 2 1 30 converts R$ to a
n u m ber (R) , and the next l i ne compares the n u m ber to the val id
add ress num bers. An i nval id response causes the q uest ion to be
red isplayed .

.. · ; ; ;,.·;

:: :. · ... • •: .. :
. . .

:::: . .:. ···: ::..:

; ... · ;.,. : ·.: : ;,,,: .. ;.· .

.:. : ·: : L� ! ' ' 1 '{ !···' t:. !i

,-, c· _;_ :_: ; ·.. . .

1'1 :_: ; ; ;,,,: ;_ ; · ..

Chapter 7: Random-Access Text F i les

,,: ; ..; :: ••• • :. :: .•• =: . .:

Clear the screen .

Prepare to read record R.

Read address.

Pr int name and address.

Put c i ty and state on the same l i ne.

Print z ip code and phone number.

Close the f i le .

Posit ion the cursor.

Preserve the screen .

D$ is (CONTROL)-@).

F$ is the f i le of addresses.

Clear the screen .

Convert response to number.

If bad entry, try again .

Enter a new address.

Look up an address.

The last part of th is subrout i ne places an add ress on the screen . I t
uses READ to pos i t ion to the requested record and uses I N PUT to
read the s ix f ie lds f rom the record . Then i t pr in ts the six f ie lds on
the screen . L ine 2230 prevents the add ress from bei ng erased
before you have a chance to read i t .

� � J . 6 !�� P F;�� I f··! T iJ ::�: .:
i i F;�� E:: f:� [i i i

.: F :$: .: = � .. F�� : i .: F

2 1 7 0 I N P U T N $, A $, C $, S $, Z $, P $

2 1 8 0 P R I N T N $: P R I N T A $

2 1 9 0 P R I N T C $, P R I N T S $

P R I N T Z $: P R I N T P $
r.:= i::: T k i T i j "· • • 1. ! 1 !

2 2 2 0 V T A B 2 3 : H T A B 8

Controlling the Program

j j .: F :�:

The remainder of the program is s imple . Here is the main part of
the program that lets you choose between enter ing a new address,
read ing an exist i ng add ress, or end ing .

[:> i::• T k i T
j i '• . .i. ! 1 ! 1 C:' k ! T C i::: Ci k ! C i . i C.i i: i: C: C C =:· : : i- ! 1 j :.._ : ··. j j i 1 i.- i-'-i ! i i. .. ' :,._: : ··. i.... ·-' ··-'

::; �J I t·� P U T
i i

T \' P E A t·-! U l=i t: E f;:� Fl f·� D F P E �:; �:; F E T U F f·�
! ! .

: C $

9 �J �=: = !) l4 L < c �� >
1 0 0 I F C < 1 O R C ; 3 T H E N G O T O 3 0
1 1 0 I F C - 1 T H E N G O S U B 1 0 0 0
1 2 0 I F C - � T H E N G O S U B 2 0 0 0
1 3 0 I F C - 3 T H E N E N D

Li nes 80 through 1 00 use the same techn ique that you used earl ier
to choose a record to be d isplayed . They read i n a letter, convert i t
to a num ber, and then check to see that the n u m ber fal ls i n the
expected range. I f i t is a bad entry, the program repeats the
q uest ion . A good entry causes the proper su brout i ne to be cal led .

See if you can mod ify the program to delete and change entr ies.

A Sample Program

The OPEN Command

Use the OPEN command i n deferred mode on ly.

Before a program can write to or read from a random-access text
f i le , it must open the text f i le us ing th is command

OPEN pn [, L#] [,S#] [, D#]

When you open a random-access text f i le for the f i rst t ime , you
must open it with the length opt ion , L# . # is the n u m ber of bytes,
or characters, that each record can hold . Each su bsequent t ime
you open the f i l e , the or ig i nal record length is assumed .

If you open a random-access text f i le with a record length other
than that with which i t was created , the new record length is used
as long as the f i le is open , but the or ig ina l record length remai ns as
the defau l t .

F i les that are opened m ust be closed , usual ly at the end of the
program . I f you don ' t c lose a f i le that you open and write to , you
may lose some of the written data.

When a program opens a text f i le, ProDOS des ignates a space i n
memory, cal led t h e f i le buffer , t o ho ld a l l i mportant i nformat ion
about the f i le . I t also prepares the system to read o; write start i ng
a t t he beg i nn i ng o f the f i l e . Up to e igh t f i les can be open a t a t i me.

War n i ng
ProDOS uses the name with which you opened the f i le as the f i le 's
ident if ier. Always use the exact same name, even i f you change the prefix.

The Options

pn pn i nd icates the name of the f i le to be opened . I f the f i le
al ready exists, i t m ust not be open . I f the f i le does not yet
exist , it is created as a text f i le .

[, L#] You m ust use the length opt ion the f i rst t ime you open the
f i le , that is , when the f i le is created . I f you create a f i le
without the length opt ion , the f i le is g iven a record length of
one. The record length , # , m ust be i n the range 1 to 65535.

Chapter 7: Random-Access Text F i les

War n i n g
Be sure that a f i le 's record length is g reater t h a n t h e maxi mum n u m ber o f
characters that you wi l l ever p u t i n o n e o f t h e f i le 's records. I f you
accidental ly write past the end of a record , data is written onto the
beg i n n i n g of the next record i n the f i le , destroying any data that might be
i n that next record .

[,S#] The slot opt ion has its usual mean i ng .

[, D #] The dr ive opt ion has its usual mean ing .

The CL OSE Command

Use the CLOSE command i n e i ther immed iate or deferred mode.

After a program fi n ishes wri t i ng to or read ing from a f i le , i t m ust
close the f i le . Proper closure of every f i le is necessary to ensure
that a l l characters are written to the i r f i les , and that the f i le buffers
are properly released . CLOSE takes the form

CLOSE [pn]

War n i n g
A program must always close a f i l e that i t opened . I n some c i rcumstances,
however, a program conta ins an error and stops before i t can close a l l
open f i les. When th is happens, issue the CLOSE command f rom the
keyboard to c lose a l l open f i les .

The Options

The CLOSE command without any opt ions closes a l l open fi les.

[pn] pn i nd icates the name of the f i le to be closed . I t must be
ident ical to the name with which you opened the f i le .

The CLOSE Command

The WRITE Command

Use the WRITE command on ly i n deferred mode.

You must use the WRITE statement before you can use the PR INT
statement to p lace characters i n a record o f a random-access f i le .
The WRITE command tel ls ProDOS the f i le , the num ber of the
record , and the pos i t ion with i n the record of the f i rst character to
be written . The WRITE command remains in effect un t i l another
ProDOS command is g iven . This command takes the form

WRITE pn [, R#] [, F#] [, 8#]

You must use the WRITE command each t ime you want to write to
a record other than the current record . I f you use the WRITE
command wi thout the R# opt ion , ProDOS defau l ts to record 0 .

The Options

pn pn i nd icates the f i le to be wr itten to. I t m ust be ident ical to
the name with wh ich the fi le was opened .

[, R#] # is the number of the record to wh ich characters are to be
sent . I f th is opt ion is omitted , record 0 i s assumed . The
maximum record num ber is 1 6 megabytes d iv ided by the
f i le 's record length , or 65535, whichever i s smal ler.

If # is larger than any previous record num ber, the
E:: i"·D F J : u:: column i n the catalog changes. Refer to the
sect ion on the End of F i le for more deta i ls .

[, F#] # is the number of f ie lds that ProDOS is to read and
d iscard . ProDOS does this by read ing characters, start i ng
a t the current posit ion , unt i l i t has read the specif ied
num ber of carriage returns . This opt ion changes the f i le 's
current posit ion .

[, 8#] # is the number of bytes, or characters, that ProDOS is to
read and d iscard . This new current posi t ion is the sum of #
and the previous current posit ion .

Chapter 7: Random-Access Text F i les

The End of File

Each f i le l i sted by the CATALOG command has a n u m ber under
the E:l -E::H : · I L.. C: head i ng . For al l types of f i les except random
access, th is n u m ber i nd i cates the n u m ber of bytes i n the f i le . For
random-access f i les, th is num ber represents the n u m ber of bytes
that wou ld be in the f i le i f every record , from 0 to the h ig hest
num bered record written to, were used .

For example , assume that a random-access text f i le has a record
length of 50, and that data is written to records 0, 1 56 , 756 ,
and 1 890 . This f i le has data stored i n four b locks on the d isk .
However, E: ! -! C: F · I L..E :: i s calcu lated by mu l t i plyi ng the total poss ib le
num ber of records by the record length (1 89 1 * 50 = 94550) . Th is
num ber is used by ProDOS to determ ine the locat ion on the d isk
of the last record i n the f i le-needed , for example , i f you want to
append a record to the f i le .

The READ Command

Use the READ command on ly i n deferred mode.

Before you can read from a record , you m ust use the READ
command to i nd icate the n u m ber of the record you want to read .

Th is command takes the form

READ pn [, R #] [, F#] [, B#]

When used with random-access text f i les, the READ command
tel ls ProDOS the f i le from which the next I N PUT or GET statements
wi l l take characters (pn) , the record wit h i n the f i le from which
characters are to be read (R#) , and the pos i t ion wi th i n the record
from which the f i rst character is to be read (F# and B#). The READ
command remai ns i n effect un t i l the next ProDOS command is
g iven .

The READ Command II

The Options

pn pn i nd icates the name of the f i le to be read . I t must be
ident ical to the name with which you opened the f i le .

[, R#] # is the n u m ber of the record from which you are go ing to
read . I f you don ' t use th is opt ion , record 0 i s assumed .
If R# i nd icates a record that doesn ' t exist , you don ' t get an
error ; the fi rst I N PUT or GET statement from a non-existent
record causes an error. The maxi mum a l lowab le record
n u m ber is 1 6 megabytes d iv ided by the record length
or 65535, whichever i s smal ler.

[, F#] # is the n u m ber of f ie lds past the beg i n n i n g of the
i nd icated record which ProDOS is to read and d iscard .
ProDOS does th is by read ing characters, start i ng at the
cu rrent pos i t ion , un t i l i t has read the spec if ied n u m ber of
carr iage returns . Th is opt ion changes the f i le 's cu rrent
pos i t ion .

[, B #] # is the n u m ber of bytes, or characters, that ProDOS is to
read and d iscard . The new cu rrent pos i t ion i s the sum of #
and the previous current posi t i on .

The APPEND Command

Use the APPEND command i n deferred mode on ly.

You can use the APPEND com mand to add data to the end of a
random-access text f i le . It i s l i ke three com mands i n one : it opens
the f i le , pos i t ions to the beg i n n i n g of the record that fol lows the
last record i n the f i le , then i t wri tes to that f i le . This com mand has
the form

APPEND pn [, L#] [,S#] [, D#]

After g ivi ng the APPEND com mand , you r prog ram can send data
to the f i le us ing the P R I NT com man d .

Chapter 7 : Random -Access Text F i les

The Options

pn pn i nd icates the f i le to be appended . I t m ust be open . I f the
i n d i cated f i le does not yet exist , i t is created .

[, L#] # i nd icates the length of the f i le 's records . If # is the same
as the record length ass ig ned when the f i le was created ,
the next character written is the f i rst character fol lowi ng
the last record i n the f i le . I f not , see the fol lowi ng
descri pt ion .

F i rst ProDOS posit ions to the last character i n the f i le (the
character i nd icated in the :: :: : :r ·, , T L.. :: : col umn in a
CATALOG). It d iv ides : :: i· F ' ' T L.. : : by the record length ; the
remai nder is the offset i nto the current record . F i na l ly i t
uses :: . : : : . : : T U to f i nd the pos i t ion of the f i rst character i n
t h e next record 0 . , , . . , T L.. ! - Offset + Record
Length + 1) . Thus , i f you use a record length of 1 when
appen d i n g to a random-access text f i le , the next character
written is the character fol lowi ng ::::: : :::;: T L.. : :: ; that is, i t is
the same as appen d i n g a seq uent ia l text f i le .

[,S#] The s lot opt ion has its usual mean i ng .

[, D #] The d r ive opt ion has its usual mean i n g .

For Example

You can change the ADD RESS program so i t uses APPEN D i n the
subrout i ne that wri tes new records.

With the /EXA M P LES d isk i n d r ive 1 , and with ProDOS started up ,
set the prefix to the /EXA M P LES/DATA/ d i rectory

Now load ADD RESS i n to memory and d isp lay part of it on the
screen with the com mand

The APPE N D Command

Open the f i le wi th record length of 200.

Read total records.
Get total records; add 1 .
P repare to wr i te to record n u m ber TR.

Place each part of add ress i n a
separate f ie ld .

P repare to write record n u m ber i n
record 0 .

P r i n t n e w record n u m ber.
C lose the f i le .
End of subrout ine .

Add after last record .

Delete these l i nes.

Put new add ress at e n d .
P lace e a c h part o f add ress i n a
separate f ie ld .

Read tota l records.
Get total records; add 1 .

P repare to write record n u m ber i n
record 0 .

P r i n t new record n u m ber.
C lose the f i le .
End of s u b rout ine .

You now see these l i nes:

. ' . . L. -� .;, :; ,: :

1

. · · .:
.: . . : : · ... ·
:L .L -.::· =:· :

.i. -. ..: =::.:

J. :i i , ;.-1

j ••• , . __ _ ;_ ; , , r·) ::i:: , ,, i •.... • . . . , 1·- ::;:- , = = 1 .. = ; .. ·; !.-·!

····· ;·=.: _;: l -; ·
r

r··. ' ; , •.. r=: . . t ; ··; ;

, :. ; ; ; : ...
' ::!:: · 1 •• : •••• •• ..l ::::· t:.. _: F· ::!::

:···, ; ;

::i:-

The pu rpose of l i nes 1 070 th rough 1 1 00 is to d i scover the n u m ber
of the last record , and to prepare to write to i t . The APPEND
command does just that . Replace those four l i nes with

·; !.-·' '· ' '

J. C:; ... ; ; .. :

After the subrout ine writes the new add ress to the record
(l i nes 1 1 1 0 and 1 1 20), i t saves the new n u m ber of records i n
record 0 o f t h e f i le . Before t h e program can do t h i s i t m ust
d iscover the total n u m ber of records, as was previously done i n
l i nes 1 080 a n d 1 090 . Just p lace t h e same two l i nes somewhere
between 1 1 20 and 1 1 30 (say, 1 1 24 and 1 1 26) , as shown below,
and the revis ion of the subrout ine is com plete. It shou ld now look
l i ke th is :

: :· : : ::J
i :::.:

:1

·: : .:
.:. .!. '··j· l::.:

; · .. . ;, ; ·: .
, ___ ; ::1:: . . , ... , , ... · ;···· , _, : , , : !··· :�:: _; , , , L :···, ;-··, ·:

, . _ _ ,_ , . . r·-j ::;:- . ;::·= r i-. = ··=·· ;· : · . . : : : : i .. ::�-

' ' , F· .:;:-

L= i:::= r : i '•! i

C ha pter 7: Random-Access Text F i les

The FL USH Command

Use the FLUSH command i n e i ther i mmed iate or deferred mode.

As a program writes to a text f i le , ProDOS stores a b lock of
5 1 2 bytes, or characters, of data before any of the data is p laced
on the d isk . I f you use the FLUSH command , a l l the characters that
are current ly stored are transferred to the f i le . After you use the
FLUSH comman d , you can be sure that every character written to
a f i le is actual ly p laced i n that f i le . The FLUSH command takes the
form

FLUSH [pn]

The Options

The FLUSH command without any opt ions f lushes al l open f i les .

[pn] pn i nd icates the f i le to be f lushed . I t m ust be ident ical to the
name with which the f i le was opened .

The POSITION Command

Use the POSIT I O N command on ly i n deferred mode.

When used with random-access text f i les , the POSIT I O N
command works exactly as i t does with sequent ia l text f i les. You
can use i t to sk ip f ie lds with i n the current record ; you cannot use i t
to posit ion to another record . Th is command takes the form

POSIT I O N pn [, F#] [,8#]

Start i ng a t the current posi t ion , ProDOS reads and d iscards the
n u m ber of f ie lds specif ied i n F# , then i t reads and d i scards the
n u m ber of f ie lds specif ied i n 8# . The f i l e m ust be open .

For example , i f the current pos i t ion is with i n the four th f ie ld o f a
record , and ybu want to read from the tenth f ie ld i n that record ,
sk ip six f ie lds usi ng the POSIT I O N command with the opt ion , F6 .

The POSITIO N Command

The Options

pn pn i nd icates the f i le whose pos i t ion is to be al tered .

, F# # ind i cates the n u m ber o f f ie lds to be read and d iscarded .
If you t ry to pos i t ion past the end of the f i le , you get the

[, 8 #] After sk ipp ing the num ber of f ie lds specif ied by the f ie ld
opt ion , ProDOS reads and d i scards the n u m ber of bytes,
or characters, specif ied by # in the byte opt ion .

Chapter 7 : Random-Access Text F i les

EXEC: Control From
a Text File

135 About Th is Chapter
136 EXEC Demonstrat ion
138 Create an EXEC F i le Us ing BASIC
138 Pr in t i ng the Commands to the F i le
139 An A l l -Pu rpose EXEC Maker Prog ram
140 L ist i ng a BASIC Prog ram to a F i le
141 Use EXEC to Com b ine Programs
141 Mach ine Language to BAS IC
142 The EXEC Command
142 The Opt ions

Chapter 8: EXEC: Control From a Text F i le

EXEC: Control From
a Text File

About This Chapter

This chapter exp la ins how you can use the EXEC com mand to
cause the Apple I I to take its commands from a seq uent ia l text f i le
rather than from the keyboard . Th is seq uent ia l text f i le can contai n
ProDOS commands, l i nes of BASIC program , or even l i nes of i n put
to a BASIC program-nearly any com mand that you can type from
the keyboard .

Because the var ious uses of EXEC are not always obvious,
exam ples are g iven to show how the EXEC com mand can be used .
Th is chapter provides several d iverse exam ples; th is may g ive you
some ideas for us ing it i n new and d ifferent ways .

Throughout th is chapter, a text f i le that is to be used with the EXEC
command is cal led an EXEC f i le , and the contents of an EXEC f i le
are cal led an EXEC prog ram .

Because EXEC f i les are externa l ly ident ical to a l l other text f i les,
you ' l l f ind i t usefu l to p lace the end ing . EXEC on al l EXEC
f i lenames. This convent ion is used th roughout th is chapter.

You can use an EXEC f i le

• to g ive automat ical ly a freq uent ly used set of commands

• to use instead of repeated ly typ ing the same i n puts in to a
program

• to com b ine BASIC programs or subrout i nes

• to put a mach i ne- language rout i ne in a BAS IC prog ram .

About This Chapter

This chapter f i rst g ives you a demonstrat ion of the EXEC
command , then a few d ifferent ways to create EXEC f i les, and
f ina l ly some sam ple appl icat ions of the EXEC com man d . The
sect ion that descri bes the EXEC command i n detai l is at the end of
the chapter.

EXEC Demonstration

There are two steps to the EXEC demonstrat ion . I n the fi rst step
you run a BAS IC program that creates an EXEC f i le , and in the
second step you use the EXEC command to tel l you r Apple I I to
take its commands from the EXEC f i le .

With your /EXA M P LES d isk i n dr ive 1 , set the prefix by typ ing

and then type

F� � tJ !··-! t::. ,=·=, t:: . • ____ . , ___ ; ; ____ r··! tJ

to see th is page of i nstruct ions

·-r- ' ' T :::-· ; : ; ,;, · ... :

1::· : : ;-··· .:. L .. : ...

·. ·.. ;:::: : . . : �:::: ;:::: �::·· i:::: ;- ·; .:::. : l �:::; ; � < �--·! � : i : :-. : _.- .-·

.···- : _ _j ("
r·-i

····· :._.: ; . . : .. .' '• •'
· .• .= : : = •.. • :-·-: = .. .= : : : : .•.. : : : ...• • .•. · : .•. ' ;

i j···i t::.

: : ; · ; .. ,; :

; '···' '···'

L. : : L. · ... · .:::, !···1 1:::i !.=.j ! ... � � =··· i-·· · . . •..•.

. ···- :··, ;-.-; ; 1 �---� :·. : :.... . . . : :·-.; � !···! E::: ::::- �- : : .. : ! . � :
·-·· ··· ·
! j···j :-: . ::::. .•. .. : : : : -� � ... : : ...•

: ,: ,···, ; . . : · ···· :···· :··· : r·· i = .. .: : . ..: r·. '
···· '···' ' . . -... · , : · . .

� ... : t.J r=1 r=·! i···l l""-l LJ .t .:::. t::: ; . . ; ;:::: ;:::: : ... : r 1:::. ;
-;-· !
l r·1 1::. r· .. ;:::. , •... · · .. , , , · .

t:< ; ...• -.... , , i···' i·=-= i i i ___ : �:; __ !:::; ; ... ; j·--; = =· = ; .: 1 ... ; ... ·r !···i F' ;:;:= ;--·; i . ..i ::::=
. .

:··· · �-··: !:::: ::::; ::::; : r··; r·· :··, r· r··; ; . r·· r··, 1:::; ;:;:' : : ;

: 1:::_ ;:-:; !:::. l ... :
1:::_ ;·-·; i, ... i···=

:···, ;-··, :··, :··. ;-··, :··, ; ... ; r-· : ·. ·--· · .. := : ·. : . . ;···
.,. , ;:::· • .• .: ; ' = •• .: ' ; .:::, ;···· :···· • :·· �: :� F .. �-··: .

Chapter 8: EXEC: Control From a Text Fi le

Press (SPACE) . The screen goes b lan k , the message

appears on the screen , and the d isk d r ive 's I 1 ··1 : . ..: ::=.; t::: l i ght g lows as
the program wri tes the SHOWO FF f i le onto the d isk . When the
program f in ishes, you see th is message

.:. :
; :::·

.
: .. .' : : � �

::::: 1:::: 1:::: : :···· : i. .•. . :. -.. •

: .. : ·, ;,_,_ , .

! ; · .. i.... -:::· -:::: : ;---� !:::. ;··:: t::. 1 i.. j·::� (.j

; i ! : :···· ;·--i T 'T

: ! ; i : ... : : �- : .. .J : . ..: :

···· ···· . . ··· . . ···. :···. •· : . . : .--. . ···. : ... : :" -, ; ; ; ; ; L.. !:::. :::: .·· ;···· ;·=:: ! ... · · ... · : -. : : : ; ··-' ... ·-·' ; ; '···' ;-·-l ; ___ , ; !

Before you actual ly run the EXEC program , take a look at
SHOWOFF. EXEC us ing the GET.TEXT program from Chapter 6 .
Type

: ·: : ___ ; : ; : : ·- .

then choose the f i le SH OWOFF. EXEC . Not ice the wide var iety of
commands, that can al l be typed from the keyboard . Set th is
command f i le i nto act ion by typ ing

·. · · . . 1:::. :· • •.... -... ·

.···. ; , ,. .. _ :···· :···· :···· : : :--· :-
-.::: ; ; : ... • :-'-: • ... • ! ... ,

.
. : !:::. :"·, ;:::. • ... -

As SHOWOFF. EXEC is runn i ng , it descr i bes everyth ing it is do ing .
Su rpr ised ? Don ' t be , showoffs are hard ly ever modest.

EXEC Demonstration

Create an EXEC File Using BASIC

A BASIC program that creates an EXEC f i le m ust

1 . Use the OPEN com mand to open the text f i le .

2 . Use the WRITE or APPEND command to prepare the f i le to be
written to.

3 . Use the PR I NT or L IST command to p lace com mands in the text
f i le .

4 . Then use the CLOSE command to c lose the text f i le .

Printing the Commands to the File

Here is a step by step example that i l l ust rates how to create an
EXEC f i le named DOIT. EXEC that contai ns these commands

i_: H l
; .:. , ..

L_ I '3 T

e x A M P L E S / P R O G R A M S /

Fi rst enter and use the SAVE command t o save a n Applesoft
program cal led /EXAMPLES/PROGRAMS/ AWAY to be run by the
EXEC program .

Next write and save the fo l l owi ng program , cal led MAKE.DOIT ,
wh ich , when run , creates a text f i le cal led
/EXA M PLES/PROGRAMS/DOIT. EXEC . The PR INT statements
that beg i n with D$ are ProDOS com mands; they are executed
when the program is run . The other PR INT statements are written
to the EXEC fi le, to be used later. N ot ice that ProDOS commands
i n an EXEC f i le , such as F:� U r·� H·H \' , should not be preceded by a
(CONTROL)-@).

Chapter 8: EXEC: Control From a Text Fi le

0$ is (CONTROL) -@].
Set the pref ix .
P repare the f i le to be written to.

Put t hese four commands into the
EXEC f i le D O l T.

Close the f i le .

: .. . · ... l : : : : : ;

. : : .···: i:::: =
'···' ' ; : ·· : •. .: = .• .: .:. ; : : ...• : ·: :.. .. : .

: .. .: l< .L l ; ;

. . .
: ·. : : ·: .

;::: !? :! : : .

. .. .
i:::: : l j._ l ::::: :

;;::, ;. ·; :.. : ·

. . . : . · : .::: ;.- : ; ; ·.; ; : ... · L .. l.) . · r··

..... ···. ; :

.... . :··· ···. · :··· : : : : : : : : : : · ... · .· : ·. · ... · · ... · : . : : : : · ... · .·

. .. : . .: :·::· :·· . . .
l .. .' '.-' .i. :

After you have MAKE. DOlT and AWAY both saved i n the
/EXAMPLES/PROGRAMS d i rectory, type the command

. .,..
: : : ; ; · .. :.. .. : : ... · · ... · .:

to create the seq uent ial text f i le named DOIT. EXEC . To see the
contents of DOIT. EXEC , you can once agai n use the program
GET. TEXT.

Now type the command

t::: �:. : � F=· :··. ; . .: ; .. .: .L i
..•.

to cause the commands i n the f i le DOIT. EXEC to be executed one
by one, just as i f you were typ ing them-very qu ick ly-from the
keyboard . Th is EXEC program d isplays the f i les in the
/EXA M P LES/PROGRAMS d i rectory, which shou ld i nclude the f i les
MAKE.DOIT , DOIT. EXEC , and AWAY ; i t d isplays the sentences
pr in ted out by AWAY; and f ina l ly i t d isplays a l ist i ng of the program
AWAY.

An All-Purpose EXEC Maker Program

Just as you can use GET. TEXT to look at an EXEC program , you
can use the program MAKE. TEXT to create one . The on ly problem
with th is program is i f you enter an erroneous l i ne , there is no way
to change i t . Just make sure each l i ne is correct before you press
(RETURN) .

C reate an EXEC F i l e U s i n g BASIC

D$ is (CONTROL) -@].
P repare to write to the f i le
L ISTING. EXEC.

List the l i nes to the f i le .
C lose the f i le .
End the prog ram.

Listing a BA SIC Program to a File

A far more usefu l appl icat ion of the EXEC command is to captu re
the l i st i ng of a BASIC program as a text f i le . Such a program can
be used

• to ed i t a program us ing a word processor

• to place part of a program anywhere in another program

• to i nsert subrout i nes from a su brout i ne fi le i n to a program

• to con nect two programs.

The fol lowi ng vers ion of the CAPTU RE program captu res
l i nes 2270 through 5 1 30 of the program that is current ly i n
memory i n a text f i le named L ISTI NG .EXEC. Replace t h e l i n e
num bers i n l i ne 5 o f t h e prog ram with t h e l i nes that you want to
save , and replace the f i lename L ISTI NG. EXEC with the name of the
f i le in which you want the l ist i ng saved .

l:::. l ·-; ; :

�::: j ::j:: : : : : ; L.: :

· · · ··:· :· ·: : · . . :. : :

: : .···· i :::: �:::.

To use th is program , you must al ready have a program i n memory.
Add these l i nes to those of the program i n memory. I f you r
prog ram beg ins with l i ne 1 0 , you can a d d these l i nes with t h e same
l i ne num bers; a lternately, you can change the l i ne num bers so that
they are a l l g reater than the h ig hest num bered l i ne i n you r
program .

If you placed CAPTU RE at the beg i n n i n g of your prog ram , run it by
typ ing

· ... · ; · .. : .

If CAPTU RE is elsewhere i n your program , type

where l i nenum is the number of CAPTU RE's f i rst l i ne .

C hapter 8: EXEC: Control From a Text F i le

D$ is (CONTROL) -@).
Set t h e prefix.

Open, close, and delete

deletes POKER. EXEC

even if i t d i d n ' t exist .

Open PO K E R . EXEC.

Prepare to write to i t .

Fi rst l i ne n u m ber of program .

For each memory locat ion ,

i ncrement counter.

Put 10 POKES on each l i ne .

For fi rst POKE on a l i ne,

pr int the l ine n u m ber,

then increment l i ne n u m ber.

Poke a byte.

Do next locat ion .

New l i ne for ProDOS command .

Then close POKER.EXEC.

Al l done.

Use EXEC to Combine Programs

Execut ing (EXEC) a f i le does not delete the program that is al ready
in memory. Therefore, i f you have a program in memory, and you
EXEC a f i le that was created us ing CAPTU RE, the l i nes from the
text f i le program are added to the l i nes that are al ready i n memory.
Th is is a good way to com b ine programs or subrout i nes.

Machine Language to BASIC

Here's a prog ram that reads (PEEKs) consecut ive bytes of a
mach ine- language program , and for each byte places a POKE
statement in to an EXEC program (POKER. EXEC). When the EXEC
program is run , a BASIC program contai n i ng these POKE
statements is entered i n to memory. You can use EXEC to p lace
these l i nes i n to an exist i ng BASIC prog ram , or you can use EXEC
to put them into memory when no other prog ram is present and
save i t as a separate BAS IC program .

.:::: 1::'1

; =: •• :

.!. :::·. ::: :

l. ..:� ...

. ...
-· .. � :

1·-' 1·:·'

. ,__, - . : : ... : : ,_

: : .·�· : : : ;___: ! ... : �-- 1-- 1 · ... ·

: : .. .: ; · .. ;.,,, ; ·.

··· ··-· : : : :_; . ;, : : .
.·· : : ·, ; : : : ! . .. ! · .. .' .•' ; ; · ..

]·"· : ... : �--.. �:::. �-: . . . ,·., 1:::

L) ::�- � .
•... · :.. ... :... =: �

·- 1:: r·.- ;:::; r< E �·
··
: . : :· ·: ::. ' __

· · ·

, : .. . ; ; ,.-, ::::= �: i·-� F' Ct j·= ;:::: F� , '··- : ·, : = .

, , -�. · ' ' L=J !·=:' i i 1··· '-· '·-· : : : : ·. : : · . . L .. :' ': L .. ' ... ·
·:· :. • 1:: l-. 1 1 1 1·:1 D L�· 1::·= : : : · ... · : : :.. .. · : . .

�-· l 1 1···' :··· : �··: : :·-

' · : : : : : .. : : : '···· '···' '···' ; ·; ; [::. t�:
. � . ; ... ;.,.· -··· . :.· · 'T L..1 C:' L '

'···· '···' ,_, ; ·: . ; : ; :.. ... ; ·: : : : : : : ·.: : ,. .. ,.,

. . . :
r·· : : r· .. c.

L. . .L l··l C:. l·-l i i l ' '···· ···· '···· '

'' : �·-' i H i " i··· : ' ' ' ' :

]. { !···; : ... · ;.,.· : ..

.!. =:::= •:: =

; · ... ; ; .. ·:

List ing a BASIC Prog ram to a Fi le

· .. r · : r·1 ;_. i__ ::: ' ' '

To use th is prog ram , put the proper memory locat ions i n l i ne 90 ,
change the l ine n u m ber i n l i ne 80 if you wish , and then run i t . I t
creates the EXEC program POKER. EXEC (i n the prefix d i rectory) .
Next type

and the l i nes contai n i ng the pokes are added to whatever BAS IC
l i nes are al ready i n memory.

The EXEC Command

Use the EXEC com mand to take commands or data (al l non-f i le
i n put) f rom a seq uent ia l text f i le i nstead of the keyboard . I t has the
form

EXEC pn [, F#] [,S#] [, D#]

The F# opt ion a l lows you to sk ip the f i rst # l i nes of the text f i le .

The EXEC program current ly i n memory is not affected by the
N EW command or the CLOSE command . An EXEC program
can not be stopped by (coNTROL) -©. I f an EXEC prog ram uses the
EXEC com mand to cal l another EXEC prog ram , the second
prog ram replaces the f i rst .

If an EXEC prog ram runs a BAS IC program , and the BASIC
program contai ns a (non-f i le) I N PUT statement , that i n put req uest
is sat isf ied by data from the EXEC f i le . If you i n terrupt a runn ing
BAS IC progam w i th (CONTROL) -©, the remai nder o f the EXEC
program usual ly is not executed .

Mon itor commands cannot be executed from with i n EXEC
programs.

The Options

pn pn i nd i cates the f i le contai n i ng the EXEC prog ram .

[, F#] # is the n u m ber of f ie lds to sk ip at the beg i n n i n g of the
EXEC f i le .

[,S#] The slot opt ion has its usual mean i ng .

[, 0#] The d r ive opt ion has its usua l mean i ng .

Chapter 8 : EXEC: Control From a Text F i le

Binary Files

145 About Th is Chapter
145 This Chapter 's Commands
147 B inary F i les
148 B inary Add resses
148 The Memory Add ress Opt ions-[,A#] [, E#] [, L#]
150 The F i le Pos i t ion Opt ion-[, B #]
150 The BRUN Command
151 The Opt ions
151 For Example
152 The BLOAD Command
152 The Opt ions
153 For Exam ple
153 Using B LOAD With Non-B i nary F i les
154 H igh-Reso lut ion Graphics With ProDOS
154 I nstal l i n g Machi ne-Language Rout i nes
155 The BSAVE Command
155 The Opt ions
156 For Example
157 The PR# and I N # Commands
158 The Opt ions
158 For Example
159 What PR# and I N # Real ly Do
160 ProDOS and the Mon itor
161 Usi ng a Clock/Calendar Card
162 System Programs
162 Start i ng Up a System Program

Chapter 9: Bi nary F i les

The BRUN command : see also the
DASH comman d , Chapter 4 .

Binary Files

About This Chapter

This chapter descri bes the ProDOS commands that let you use
b i nary programs and b inary t i les on your d isks. I t you want on ly to
run b i nary prog rams that are al ready on your d isks, refer to the
DASH (-) command in Chapter 4. This command moves any type
of prog ram from a d isk ti le i n to memory and then starts i t ru n n i n g .

T h e commands i n t h i s chapter can b e used

• to load , ru n , and save b inary programs

• to use b i nary programs to read and write characters.

This chapter also expla ins about system t i les and programs that
are written i n mach ine language. The end of th is chapter has a
sect ion on ProDOS and the Mon i tor, and another sect ion that
exp la ins how you can connect ProDOS to a c lock/calendar ch ip so
that t i les can be dated .

This Chapter's Commands

This chapter 's com mands are summarized below.

BRUN Run a b inary program from a t i le

Use th is command to transfer b i nary data f rom a b i nary d isk t i le
(type B I N) to a specif ied port ion of memory; the program then
executes automatical ly.

BLOAD Read b inary data from a t i le

Use th is command to transfer b inary data from any d isk t i le to a
specif ied port ion of memory. B i n8;rY data is typ ical ly a mach i ne
language program or a p icture tor one of the graph ics screens.

This Chapter's Commands II

Figure 9- 1 . B R U N , BLOAD, and BSAVE

II

BSAVE Save b inary data i n a f i le

Use th is command to transfer b inary data from a specif ied port ion
of memory to any type of f i le . Data anywhere i n the Apple l l ' s
memory can be transferred to a f i le .

//""- - -...................
/ "'

I /'':-... I / \ \ f </ B i n ary \\

I 0\ f i le
t \ t----, 1 \ 0 / B i nary // \ � '

,
fi le /

; \ 'v/
"" /- / -- - -

B LOAD

B R U N : B LOADs
a f i le , then runs
the loaded program

1 -..... B SAVE

PR# Use a b i nary program to pr int characters

Memory

You use th is command most often to send output to a device i n a
s lot . You can also use it so a b i nary program is used i n p lace of the
normal character output rout ine .

I N # Use a b inary prog ram to read characters

You use th is command most often to read characters from a
device i n a s lot . You can also use it so a b inary program is used i n
p lace o f t h e normal character i n put rout ine .

C hapter 9: Binary Fi les

Figure 9-2. PR# and I N #

Normal Normal
Output Input
Routine Routine

t N p u l

BASIC

PR#: Send data us ing

you r output rout ine .

Your
Input [Pro Jram Routine

/N pUI

IN# : Get data us ing

your i n put rout i ne .

*

Your
Output
Routine

* Memory arrangement is arb i t rary.

Binary Files

ProDOS al lows you to store on d isk , and retr ieve from d isk , the
i nformat ion i n your Apple l l ' s memory. You have al ready seen the
ProDOS commands RUN, LOAD, and SAVE: these commands deal
with the contents of the BASIC program memory, i nterpreted as
BAS IC programs. The ProDOS commands d iscussed in the next
th ree sect ions-BRU N , BLOAD, and BSAVE-perform s im i lar
funct ions , but they deal with the i nformat ion in any part of the
Apple l l ' s memory, i n i ts u n i nterpreted form .

Bi nary F i les

The DASH com mand: see Chapter 4 .

The B before the commands BRUN , BLOAD, and BSAVE , stands
for b i nary. Each command transfers b i nary i nformat ion , zero-for
zero , and one-for-one , between memory and a f i le . From now on
these commands are cal led the b inary com mands. The
i nformat ion that the b inary commands transfer is often a machi ne
language program or a h igh- reso lut ion p icture from one of the
Apple l l ' s graphics screens, but i t can be any i nformat ion that is in
memory or on a d isk .

The two most common uses of the b inary commands are : run n i n g
b inary programs, a n d br ing ing b i nary images i nto memory for
d isplay. You can run a b i nary prog ram usi ng the DASH (-)
comman d . I f you have a f i le that contai ns a b inary p icture , you can
move i t to the g raph ics page from which i t was transferred by the
BSAVE command without havi ng to understand the memory
add resses i nvolved . If you want to do th is , use the example i n the
sect ion on the B LOAD comman d .

Binary Addresses

If you are go ing to be usi ng the b inary commands on ly to run
mach i ne- language prog rams that al ready exist , you don ' t have to
understand the organizat ion of the Apple l l ' s memory. I f , however,
you want to save a g raph ics screen to a f i le , or i f you want to work
d i rectly with the b inary i nformat ion i n memory or i n a f i le , you need
to know a l i t t le about memory add resses.

Your Apple l l ' s memory is a cont i n uous seq uence of memory
locat ions , or bytes , each havi ng an add ress . The add ress of the
f i rst memory locat ion is 0 (wr i t ten as $0000 i n hexadec imal) , the
add ress of the second memory locat ion is 1 ($000 1) , and so on . I f
you r App le I I has 64K of memory, the add ress of the last memory
locat ion is 65535 ($FFFF) .

The Memory Address Options-[,A#J l,E#J l,L#J

When you use a b inary command to save b i nary i nformat ion , you
must g ive the add ress of the f i rst memory locat ion that contai ns
i nformat ion to be saved . The start i ng memory add ress is
determi ned by the add ress opt ion , A#.

You must a lso g ive the number of memory locat ions to be saved .
You can do th is usi ng the length opt ion , L# , which is the n u m ber of
memory locat ions , or bytes , to be saved ; or you can do it usi ng the
end add ress opt ion , E# , the add ress of the last memory locat ion
to be saved .

Chapter 9: Binary F i les

Figure 9-3. Memory Add ress Opt ions
A#, E#, and L#

For example , i f you want to save h igh- reso lut ion graphics screen 1 ·

i n a f i le , you must save the i nformat ion that is i n memory locat ions
8 1 92 th rough 1 6383 ($2000 th rough $3FFF) . Thus , to specify the
start add ress , you can g ive the add ress opt ion i n decimal or
hexadecimal

or

and you can g ive the add ress of the last byte to be t ransferred
usi ng the end add ress opt ion , as i n

Alternate ly, i f you l i ke subtract ion , you can use t h e length opt ion t o
g ive t h e number o f bytes to be transferred , a s i n

o r _, L .. :::: . . ·· , ... , , ... , , ... ,

You can calcu late the value for the length opt ion by su btract i ng the
start add ress from the end add ress and add i ng one.

The relat ionsh ip between these th ree opt ions for h igh- reso lut ion
graphics screen 1 is shown i n F igure 9-3 .

Memory Address Memory

E#: 1 6383 ($3FFF) End Add ress

H i-Res Graphics Screen # 1 t
L# : 8 1 92 ($2000) Length

L# (length) = E# - A# + 1 �
A#: 8 1 92 ($2000) Start Add ress

0 ($0000)

Bi nary Add resses

The File Position Option-[,8#]

I f you don ' t want to start the transfer of i nformat ion with the f i rst
byte in a f i le , you can use the byte opt ion , B# , to i nd i cate the
n u m ber of the f i rst byte to be transferred .

For example , if you have two h igh-reso lut ion pictu res i n a b inary
f i le , the f i rst p icture starts at byte 0 ($0000) i n the f i le , and the
second picture starts at byte 8 1 92 ($2000) in the f i le . To add ress
the second picture in the f i le , use the byte opt ion

I f you use the byte opt ion , you must a lso use the length opt ion , L#,
or end opt ion , E# , to specify the n u m ber of bytes to be
transferred . I f you don ' t , the ent i re f i le is transferred .

The BRUN Command

To run a b inary prog ram that is stored i n a b inary d isk f i le
(type B I N) , use the command

BRUN pn [,A#] [, B #] [, L# I , E#] [,S#] [, D #]

When ProDOS sees th is command , it transfers the f i le i nd i cated by
pn i n to memory, as determ i ned by the opt ions , and then runs the
program . I f the A# opt ion is not used , the program is placed in
memory start i ng at the add ress from which i t was transferred
us ing BSAVE.

War n i n g
ProDOS cannot tel l t h e d ifference between a b inary prog ram a n d b inary
data such as a picture f i le . I f you g ive names to b i nary f i les that i nd icate
their contents, such as add i ng . P I C to the end of all p icture f i les, i t is less
l i kely that you w i l l accidental ly run a non-prog ram f i le . If you ever run a
non-prog ram f i le , parts of ProDOS might change; if th is happens, it is a
good idea to restart ProDOS.

See Chapter 4 for the DASH command . You can also run a b inary program usi ng the DAS H comman d .

Chapter 9 : Binary Fi les

The Options

pn pn m ust i nd icate a b inary f i le (type B I N) . I f you use
on ly th is opt ion , the ent i re contents of the b inary f i le
i nd icated by pn are p laced into memory start i ng at
the add ress from which they were transferred us ing
BSAVE.

You can see the add ress f rom which a f i le was
transferred by BSAVE if you use the CATALOG
command . Th is add ress is g iven , i n hexadec imal , in
the column labeled ::::: : . . F::: T" ' ; T<::: , and it has an A in
front of i t .

[,A#] # is the memory add ress in to which the f i rst byte of
the program is to be transferred . I t is not usefu l to
use an add ress that is greater than the maxi mum
memory add ress o f your App le I I .

[, B#] # is the n u m ber of the fi rst byte i n the f i le to be
transferred . I f you don ' t use this opt ion , the fi rst byte
transferred is the fi rst byte in the f i le , byte 0 ($0000).

[, L# I , E#] To load and run a port ion of a f i le , use one of these
opt ions . L# is the number of bytes to be transferred ;
E# is the last memory add ress in to which the
program is to be transferred . I f you inc lude both of
these opt ions , the last i n the l i st is used .

[,S#] The s lo t opt ion has i ts usua l mean i ng .

[, D#] The dr ive option has its usual mean i ng .

For Example

With ProDOS started up , and the /EXA M P LES d isk i n d r ive 1 , run
the b inary program /EXAMP LES/PROGRAMS/SU RPR ISE us ing
the command

. ··· . . · :·· i·::' ! i i ·: r:: ; : ; · ; . :
.
.. .. , ; ; ;·::· ;···· :···, ·;· , .. _ ,

. ...

Now try ru nn i ng it us ing the add ress opt ion

!:::: =-··, : . .
: ···· : : : : : : : : · ... · .· r=:. :.,.; : .. : ···· ····· · · · ··· · ··

The BRUN Command

: .: .: ;-··; .:;:- . ··, ;.· ; ;.· :

Movi ng a b inary i mage of any type of
f i le into memory is d i scussed in the
sect ion "Using BLOAD With Non
B inary F i les . "

The BL OAD Command

To transfer b i nary i nformat ion from a d isk f i le to your Apple l l ' s
memory, use the command

B LOAD pn [,A#) [, B #) [, L# I , E#) [,Ttype] [,S#) [, D#]

You can transfer i nformat ion from any f i le type (the Ttype opt ion) ,
start i ng at any posi t ion i n the f i le (the B# opt ion) , to any part of the
Apple l l ' s memory (the 6..# , L#, and E# opt ions).

You can use the B LOAD command

• to transfer a mach ine- language program from a f i le to memory

• to move a p icture from a f i le to a g raph ics screen

• to move the b i nary image of any type of f i le in to memory.

I f you plan to write programs that use mach ine- language rout i nes
or h igh-reso lut ion p ictures, you need to take specia l precaut ions .
The sect ions " H igh-Reso lut ion Graph ics With ProDOS" and
" I nstal l i n g Mach ine-Language Rout i nes" add ress these i ssues.

The Options

I f you g ive th is com mand usi ng on ly the f i lename opt ion , the f i le
i nd i cated by pn must be a b inary f i le (type B I N) . The ent i re
contents of th is f i le are placed into memory start i ng at the add ress
from which it was transferred by BSAVE.

pn Un less you use the Ttype opt ion , pn must i nd icate a
b inary f i le . If you use Ttype, pn can i nd icate any type
of f i le . I f you use the B LOAD command to transfer a
non-b i nary f i le in to memory, you must use the
A# opt ion .

[,A#) # is the memory add ress into which the f i rst byte of
the b inary data is to be transferred . You m ust use th is
opt ion i f you use BLOAD to load a non-b inary f i le . I f
you use the B LOAD command to load a b inary f i le
wi thout th is opt ion , the f i le is placed i n memory
start i ng at the add ress from which it was transferred
by BSAVE.

[, B #) # is the n u m ber of the f i rst byte i n the f i le to be
transferred . I f you don ' t use this opt ion , the f i rst byte
transferred is the f i rst byte in the f i le , byte 0 ($0000).

Chapter 9: Binary F i les

D$ is (CONTROL) -@].
Display Page 1 .

Load picture.

Restore text.

To clear the graphics page: see the
sect ion " H igh-Resolut ion Graphics
With ProDOS. "

Token: an encoded element that
represents a BASIC keyword .

[,Ttype] type is the th ree-letter abbreviat ion that i nd i cates the
type of f i le to be transferred . I f no type is specif ied ,
the f i le m ust be of type B I N .

[, L# I , E#] To transfer a port ion of a f i le i nto memory, use one of
these opt ions . L# is the n u m ber of bytes to be
transferred . E# is the last memory add ress into which
the data are to be transferred . You can not use both
these opt ions i n the same comman d .

[, S#] The s lot opt ion has i ts usua l mean ing .

[,D#] The dr ive opt ion has its usual mean i ng .

For Example

With ProDOS started up , and the)EXA M P LES d isk i n d r ive 1 , set
the prefix to /EXAMP LES/DATA us ing the command

Now d isplay h igh-reso lut ion Page 1 and load i n a p icture by typ ing
and run n i ng th is program :

:.j.)

·::= r·· LJ ; : ... · ..:: ; ..
;,,, ·; :: .. . :: ; ... : .: : ·

To d isplay text agai n (and to clear the g raph ics page), s im ply press
(RETURN) .

Using BLOAD With Non-Binary Files

When ProDOS places i nformat ion i n a f i le , the command that you
use to save the i nformat ion determ i nes the format of the
i nformat ion i n the f i le . For example , a BAS IC program is saved as
a set of BASIC tokens.

To see how a f i le is stored , and to work with the f i le in its
un i n terpreted form , use the B LOAD command with the Ttype
opt ion . For example , i nstead of manual ly chang ing every i nstance
of a var iab le in a BASIC program , write a program that does it for
you . Let the prog ram use the B LOAD command to br ing a BAS IC
program i n to memory, change a l l references to the var iab le , then
save the program back to its BASIC f i le us ing BSAVE (wi th Ttype).

The BLOAD Command

Refer to the Applesoft BASIC

Programmer's Reference Manual to see
how to use H I M E M and LOMEM to
protect the g raphics page.

High-Resolution Graphics With ProDOS

ProDOS does not ever prevent BASIC programs from overlappi ng
the h igh-reso lut ion g raph ics pages. To use h igh-reso lut ion
g raph ics Page 1 for g raph ics , use the HGR com man d ; to use h igh
resolut ion Page 2 for g raph ics, use the HGR2 . command .

War n i n g
On a n Apple l ie , you can not B LOAD data i n t o h igh-resolut ion graphics
page 2 whi le 80-column text is bei ng d isplayed .

When you f in ish us ing t h e g raphics pages, use t h e TEXT
comman d : the BAS IC program moves back down into p lace. When
you use the TEXT com mand , the contents of the g raph ics pages
are lost .

By the Way: I f you want to go from h igh- resolut ion mode to text mode
and back again without affect ing the contents of the g raph ics pages,
use the PO KEs descr ibed in an append ix of the Applesoft BASIC
Programmer's Reference Manual .

... War n i ng

Refer to the ProDOS Technical
Reference Manual for more detai ls on
mach ine language.

I f your program halts-due to a STOP statement, an error, or a (CONTROL)-@) typed from the keyboard-whi le you are us ing HGR or
HGR2, do not attempt to cont i n ue the program using the CONT
comman d . Type the CLOSE comman d , and run the program agai n .

Installing Machine-Language Routines

Because of the way ProDOS uses memory, i t is d ifficu l t to pred ict
which parts of memory are free to hold mach ine- language
rout i nes.

When ProDOS opens a f i le, i t moves H I M EM down 1 K and p laces a
1 K f i le buffer where H I M EM used to be. I t then marks that
1 024-byte port ion of memory as used i n the system b i t map.

To place a rout ine i n memory, you m ust do the same th i ng : move
H I MEM down by a mu l t i p le of 256 bytes, transfer the rout ine by
us ing B LOAD, and then mark the used port ions i n the system b i t
map .

... War n i n g
You must do t h i s before a n y fi les are opened . T h i s ensures that ProDOS
places a l l f i le buffers below your rout ine , so your rout ine won ' t be closed
instead of a f i le .

C ha pter 9: Bi nary Fi les

The BSA VE Command

To transfer b inary i nformat ion from your Apple l l ' s memory to a
d isk f i le , use the command

BSAVE pn ,A# , L# I , E# [, B #] [,Ttype] [,S#] [,D#]

You can transfer i nformat ion from any part of memory (the
A#, L#, and E# opt ions) to any type of f i le (the Ttype opt ion) ,
start i ng at any posi t ion i n the f i le (the B# opt ion) .

You can use the BSAVE command

• to transfel' a mach ine- language program from memory to a f i le

• to move a p icture f rom a g raph ics screen to a f i le

• to move any port ion of memory i nto any type of f i le .

The Options

When you use th is command , you must use the pn , A#, and either
the L# or the E# opt ions .

pn Un less you use the Ttype opt ion , pn m ust i nd icate a
b i nary f i le . If you use Ttype, pn can i nd icate any type of
f i le .

,A# You must use th is opt ion every t ime you use the BSAVE
command . A# is the memory add ress from which the
f i rst byte of data is to be transferred .

, L# I . E# You m ust use one o f these two opt ions every t ime you
use the BSAVE command . L# is the n u m ber of bytes of
memory to be transferred . E# is the last memory
add ress from which data are to be transferred .

[, B #] B# i nd icates the f i rst byte i n the f i le to which data is to
be transferred . I f you don ' t use this opt ion , the f i rst
byte is transferred to the fi rst byte in the f i le ,
byte 0 ($0000).

[,Ttype] type is the th ree- letter abbreviat ion that i nd icates the
type of f i le to be transferred . I f no type is specif ied , the
f i le must be of type B I N .

[,S#] The s lot opt ion has i ts usua l mean ing .

[, D#] The d rive opt ion has its usual mean ing .

T h e BSAVE Command

Turn on Page 1 .

Load P ICTURE.

Save P ICTURE.

B LOAD the system program start i ng
at 8 1 92 .

Create a n e w system f i le .

BSAVE the data from 8 1 92 to the
ENDFILE shown by CATALOG.

BLOAD the BASIC .SYSTEM f i le .

Create a new system f i le .

BSAVE the data.

For Example

This exam ple loads a p icture in to g raph ics Page 1 and then saves
it back i nto the same f i le . With ProDOS started up and the
/EXA M P LES d isk i n dr ive 1 , set the prefix usi ng the command

: . ;,,, :L ;:-:: :···· :. : .···. : . . : :···. ·

Now, load the p icture i n to h igh-reso lut ion Page 1 and then save i t
us ing these commands

t::; L. · ... · : : : ... ·
··· ····· ·

.:. '···· ; :, : : ·

: f···� .i. '···' · .. :· ::::� 4 . �--·· ·:::· :L �:) ;:::�

As a s l ight ly more sophist icated example , here is how to move the
fi les PRODOS and BAS IC .SYSTEM from one d isk to another us ing
B LOAD and BSAVE. Assume that you are t ransferr ing the f i les
from the volume /EXA M P LES to the vol ume /N EW. BOOT .

F i rst type c:: :: rr· : ·<::: :: :: ::::: ! · ! F' ! E:: ::::: to see how long the two fi les
are. This is just part of the fi rst two l i nes of a sam ple catalog :

,/;: ·: :..: : : : :..· : :.. ·-

23 . .
!.. "7·-··-·'-'

Here is how to perform the t ransfer:

.... · : · : · : · .· ;,,,, ,· ·, ; ; ; : · : ... ·... · · . . · :_: • : .· ; ; · •. = .. .= : .. = = •• .= · .. .' : ; · .. .' ; · ... ' : ; ; = ••• = .: . . ::= ,::-

C. , · .. ;:: .. � � � L. . , 1 1:::.].=.] , 1:::� �.J 1. l 1 · •••• ; • '·· 1...1 ! . ..l ::::= .'

;. · ·- !-. i - 1:::· 1 , 1 . , ' '···· =· ·· , '···· · ... · · ... · ' .· ' r==. = .. L) '. ; :·· .

i...: j··:� 1:: �---� ; ;, =:::_ · ; · .. .'
__ : ·::- :··, ; : :····

. ... ··;· -.:': .. :�: 1::::

-·- . -·: .·· : · ... ' : · ... ' : ; ; : ...

The start add ress, A8 1 92 , was chosen arb i t rari ly.

War n i n g
Beware, however-this process destroys anyth ing that was i n t h e reg ion
of memory i nto which the B LOAD command placed the data.

Chapter 9: Binary Fi les

Refer to the Apple II or Apple lie
Reference Manual tor more detai ls
about accessory-card ROM space.

Output rout ine at locat ion $300.

Restore output to console.

Assign slot 2 to slot 1 .

The PR# and IN# Commands

I n add i t ion to sett i ng up the Apple I I to do i n put or output with a
s lot , the PR# and I N # commands are also used to send characters
to a mach ine- language program . The ent i re syntax of these
commands is

PR# snum [,A#] or PR# A#
I N # snum or I N # A#

in wh ich the opt ion can e i ther be the slot n u m ber (sn um) , the slot
n u m ber fo l lowed by the add ress of the rout ine to be associated
with that slot (A#), or just the add ress of a rout ine to be used (A#).

For example , i f a character output rout ine is stored start i ng at
memory locat ion $300, you can use th is command to act ivate the
rout i ne for su bseq uent output :

The f i rst byte of the rout ine start i ng at locat ion $300 must be a
6502 CLD i nstruct ion (2 1 6 , $08) . When you want to stop usi ng th is
rout ine , you can use th is command to restore output to the
console:

r::= r··, , , ..

I n add i t ion , th is same output rout ine can be assoc iated with slot 2
us ing th is command :

Su bseq uent references to s lot 2 are actual ly d i rected to the
rout ine at $300. To restore slot 2 to normal operat ion , use the
command

Use th is form of the PR# command to remap physical slots from
one slot number to another. For example , i f you have pr inters i n
slots 1 and 2 , a n d a program that expects t h e pr inter t o b e i n
slot 1 , you can use t h e pr i nter i n slot 2 with your program b y usi ng
the command

before ru n n i ng the prog ram .

The PR# and I N # Commands

0300: CLD

030 1 : JMP $FDFO

Cont inue BASIC,

Output rout ine at $300.

War n i n g
PR# a n d I N # are both ProDOS commands. W h e n used from with i n a
program , they must be preceded by a (CONTROL) -@). Fai l u re to do so
causes the commands to be ignored .

The Options

snum snum can have any value from 0 to 7 . I f snum is 0 , normal
i n put or output to the console (keyboard and screen) is
restored . I f snum is from 1 to 7 , the Apple I I does
su bseq uent i n put or output operat ions with the device i n
that s lot .

A# # is the add ress of the rout ine that you want to use as the
character i n put or output rout ine . The f i rst byte of the i n put
or output rout ine must be a 6502 CLD i nstruct ion .

For Example

The fi rst i nstruct ion of the i n put or output rout ine to be used m ust
be a 6502 CLD instruct ion . As an example , put a two- l i ne output
rout ine start i ng at memory locat ion $300. I t consists of a jump to
the normal Mon itor output rout ine , located at memory
add ress $FDFO.

With ProDOS started up , enter the Mon itor with the command

and type

Now re-enter BASIC by press ing

(CONTROL) -@J

and then press ing (RETURN) . Enter t h e ProDOS command

Cha pter 9: Binary Fi les

and a l l su bseq uent output wi l l be sent by the rout i ne at
locat ion $300. Th is rout ine jumps i n to the normal character output
rout ine , so characters are pr in ted i n thei r normal fash ion . Type a
few l i nes of BAS IC , such as

. .
L= .L r·· l'"" �:::. r=:. �:::. = ··= •

and you see that characters are indeed pr inted on the screen .

What PR# and IN# Really Do

Th is sect ion expla ins the way the Apple I I normal ly sends and
receives characters; thus you wi l l see how PR# and I N # work . The
Apple I I has two memory locat ions , named CSWH and CSWL, i n
which i t stores t h e memory add ress o f t h e rout i ne that outputs
characters. Together, these locat ions are cal led the monitor
output l in k -they l i n k the mon i tor to an output rout i ne . I t also has
two memory locat ions , named KSWH and KSWL, i n which i t stores
the memory add ress of the rout ine that i n puts characters. These
are cal led the monitor input l i n k .

The mon i tor output l i n k normal ly contai ns the add ress o f the
App le l l ' s standard output rout ine , COUT 1 ; t he mon i tor i n put l i n k
normal ly contai ns t h e add ress o f t h e Apple l l ' s standard i n put
rout ine , KEYI N . These two rout i nes send characters to the screen
and read them from the keyboard , respect ively. When you use
PR# or I N # from BASIC , without ProDOS, the mon i tor l i n ks are
set to i nd icate the ROM on the card in the i nd i cated s lot ($Cn00
for slot n) . Thus , when the Apple I I i n puts or outputs a character, i t
cal ls the i n put or output rout ine i n the card ' s ROM to perform the
transfer.

Wh i le ProDOS is ru n n i n g , the mon itor 1 /0 l i n ks , i nstead of
contai n i ng the add resses of the standard i n put and output
rout i nes, conta in the add resses of the ProDOS i n put and output
rout i nes. ProDOS keeps the add resses of the standard input and
output rout i nes i n the ProDOS i n put and output l i n ks . As you m ight
expect , the ProDOS i n put and output l i n ks normal ly contai n the
add resses of the Apple l l ' s standard i n put and output rout i nes,
KEY IN and COUT 1 .

The PR# and I N # Commands

When you use PR# or I N # with a slot num ber, ProDOS replaces
the contents of the proper ProDOS l i n k with the add ress of the
ROM on the card i n the i nd i cated slot ($Cn00 for slot n) . When you
use PR# or I N # with an add ress , ProDOS s im ply p laces that
add ress i n the proper ProDOS l i n k . When the Apple I I t r ies to
output or i n put a character, the mon i tor output or i n put l i n ks
i nd icate the proper ProDOS rout ine , then the ProDOS rout i ne
does a two-stage t ransfer:

1 . I t moves the add resses of the cu rrent 1/0 rout i nes from the
ProDOS 1/0 l i n ks to the mon itor 1/0 l i n ks . Then ProDOS cal ls
the Apple l l ' s normal 1 /0 rout i nes which use the cu rrent
rout i nes to perform the transfer.

2. ProDOS reconnects itself by p lac ing the add resses of i ts
1 /0 rout i nes i n to the mon itor 1 /0 l i n ks .

Not on ly does ProDOS have i n put and output l i n ks for normal 1 /0 ,
i t also has them for each o f the slots. When you use the PR# or
I N # command with snum and A#, the specif ied add ress is placed
in the l i n ks for that add ress .

ProDOS and the Monitor

I f you l i ke to p lay around with the Apple l l ' s i n ternals , you
occas ional ly f ind yourself (i ntent iona l ly or otherwise) i n the
Mon i tor. The Mon itor is the prog ram with i n the Apple l l ' s Read
On ly Memory that controls many of the Apple l l ' s vital funct ions .

F i rst , to enter the Mon itor f rom BASIC , type

and you see the mon itor prompt

A l l ProDOS com mands st i l l work from with i n the Mon itor. For
example , type

and you see a normal catalog d isp layed on the screen . L i kewise,
the PR# command st i l l starts up a d isk from the Mon itor. An error
in a ProDOS command issued from the Mon itor returns control to
BAS IC .

Chapter 9: Binary F i les

Figure 9-4. ProDOS Date and T ime
Locat ions

Re-enter BAS IC by press ing

(CONTROL) -@]

and then press ing (RETURN) .

Using a Clock/Calendar Card

Each t ime you update a f i le , P roDOS performs a JSR (j ump
su brout i ne) to memory locat ion 48902 ($B F06). Th is is the entry
i n to the DATET I M E rout ine . If there is no DATET I M E rout i ne
i nstal led , there is an RTS i n th is locat ion .

I f , however, ProDOS sees a Thunderclock i n one o f t he slots, i t sets
up a rout ine and p laces a jump i n to the rout i ne for you . I f you want
to use another type of c lock/calendar card with ProDOS, you have
to write your own rout ine , and place it i n memory each t ime you
start up ProDOS.

The rout ine must read the date and t i me from the card and place
th is data in bytes 49040 th rough 49043 ($B F90 t h rough $BF93)
usi ng the fol lowi ng format:

Date

T ime

4904 1 ($BF9 1) 49040 ($BF90)

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

I : : H : : i �oot� : : I : : H : I
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

I : : : H : : i i : : �+·: : : I
49043 ($BF93) 49042 ($BF92)

A jump to the start i ng add ress of the rout i ne must be stored in the
entry to the DATETI M E rout i ne (48902) $BF06.

By t h e Way: The T IME program descr ibed i n Appen d ix D does not
change the t i me i n d icated by a clock/calendar card . I t merely changes
the system date and t ime locat ions descr i bed above.

Using a C lock/Calendar Card

System Programs

By now you have undou bted ly wondered why ProDOS is d ivided
i n to two fi les-PRODOS and BAS IC .SYSTEM-and what the
relat ionsh ip is between these two fi les.

The f i le PRO DOS contai ns the most essent ial parts of ProDOS:
rout i nes that perform com mun icat ion with d isk d r ives i n a
compact and versat i le way. The BAS IC . SYSTEM f i le conta ins
rout i nes that let you comm u n icate with d isk d r ives th rough BAS IC
programs. When you use ProDOS BASIC , both these f i les are i n
memory a n d i n use.

I t is possi b le for other assemb ly- language programs to make use
of the versat i le rout i nes in the PRODOS fi le wi thout the overhead
of havi ng the BAS IC . SYSTEM f i le in memory. Such programs are
known as system programs. P roDOS BAS IC , the ProDOS F i ler,
and the DOS-ProDOS Conversion P rog ram are a l l system
programs.

You can recogn ize a system program by its f i le type , SYS,
d isp layed by the CAT or CATALOG com man d . Every system
program provides some way to switch from itself to another
system program . From ProDOS BAS IC , you run another system
program using the DASH (-) comman d . From other system
programs, you usual ly swi tch to another system prog ram by us ing
the Qu i t comman d .

Starting Up a System Program

When a d isk starts up , the PRODOS f i le is f i rst loaded i n to
memory. Next a system program is loaded into memory. Then
P roDOS scans the d isk for the fi rst f i le havi ng the name
XXX.SYSTEM (XXX can be com b inat ions of letters and n u m bers
that form a val id ProDOS f i lename). I f i t f i nds such a f i le , i t loads it
i n to memory and runs i t . Otherwise i t loads the fi rst f i le of type SYS
on the d isk and runs i t .

I f there is no program of type SYS on the d isk , an error message is
d isplayed .

Cha pter 9 : Bi nary F i les

Summary of ProDOS

167 Featu res of ProDOS
168 F i lenames
1 68 Path names
169 Syntax
170 Sum mary of the Opt ions
173 ProDOS Commands i n P rograms
173 F i l i ng Commands
173 CATALOG and CAT
174 PREFIX
175 CREATE
176 RENAM E
176 DELETE
177 LOCK
177 U N LOCK
178 BASIC Program Commands
178 - (DASH)
178 RUN
179 LOAD
180 SAVE
180 Programming Commands
180 CHAIN
181 STORE
182 RESTORE
182 PR#
183 I N #
184 FRE

Appendix A: S u m mary of ProDOS

184 Text F i le Commands
184 OPEN
185 CLOSE
186 READ
186 WRITE
187 APPEND
188 FLUSH
188 POSIT I ON
189 The EXEC Command
189 EXEC
190 B i nary Commands
190 BRUN
191 BSAVE
192 B LOAD

Append ix A: Sum mary of ProDOS

Summary of ProDOS

Features of ProDOS

Here is a l i st of some of the features of the ProDOS mach i ne
language i n terface . These featu res are fu l ly d iscussed in the
ProDOS Technical Reference Manual. They are the basis upon
which ProDOS is bu i l t .

• A d i rectory-based f i l i ng system

• Up to 5 1 f i les in a volume d i rectory; the num ber of f i les in other
d i rector ies is l i m ited on ly by space on the d isk_

• Up to 32 megabytes per volume

• Up to 16 megabytes per f i le

• 20 d ifferent f i le types (ten of them user-def ined)

• Up to e ight f i les can be open at a t ime

• A def i ned , usable machi ne-language i n terface

• A def ined i n terru pt protocol

• File structu res compat i b le with Apple I l l SOS

• Fast transfer rate-reads about 8K per second from Disk I I

• Supports a l l Apple I I d isk devices

An understan d i ng of these featu res is not essent ia l to the
summary of ProDOS that fol lows.

Features of ProDOS II

Filenames

A ProDOS f i lename is up to 1 5 characters long . I t can contai n
uppercase and lowercase letters (A-Z), d i g i ts (0-9) , and per iods (.) ,
and i t must beg i n w i th a letter. Lowercase letters are automat ical ly
converted to uppercase .

A f i lename must be un ique with i n i ts d i rectory. Some examples are

ANGLOFILE
BALLOON
LETTER . TEXT

Path names

A ProDOS pathname is a series of f i lenames, each preceded by a
slash (/) . The f i rst f i lename i n a pathname is the name of a volume
d irectory. Successive f i lenames i nd icate the path , f rom vol u me
d i rectory to the f i le , that ProDOS must fo l low to f ind that part icu lar
f i le . The maxi mum length for a pathname used i n a command is
64 characters, i nc lud ing s lashes.

Exam ples:

/EMP LOYEES/MARKETI NG/D IV IS I O N . 1
/SPORTS/FOOTBALL/TH E .49ERS/QUARTERBACKS/MONT ANA
/B IGD ISK/RECORDS/MAY I JELLY. BEANS

Any command that req u i res you to name a f i le w i l l accept a
path name or a part ia l path name. A part ial pathname is a port ion
of a pathname that doesn ' t beg i n with a s lash . The maxi mum
length o f a part ia l pathname is 64 characters, i ncl ud i ng slashes.

These part ia l path names are al l der ived from the sam ple
pathnames above :

MARKETING/D IV IS ION . 1
D IV IS ION . 1
THE .49ERS/QUARTERBACKS/MONT ANA

When you use a part ia l path name, ProDOS does one of two th i ngs .
I t usual ly adds the prefix, a pathname that i nd i cates a d i rectory, to
the front of the part ia l pathname to form a complete pathname.
But i f the prefix is em pty, or i f you use either the slot opt ion or the
dr ive opt ion (descri bed i n the sect ion "Syntax") i n the com mand ,
t he name o f t he vol ume specif ied by the slot and dr ive opt ions i s
used i nstead o f t he pref ix.

Appendix A: S u m mary of ProDOS

Table A-1. ProDOS Command Opt ions

For the part ia l pathnames l i sted above to i nd icate val id f i les, the
prefix shou ld be set to /EMP LOYEES/,
/ E M P LOYEES/MARKETI NG/, and /SPORTS/FOOTBALL/ ,
respect ively. The maximum length for a prefix is 64 characters.
You set the prefix us ing the PREF IX comman d .

Syntax

The syntax, or structure , of each ProDOS command is a command
word fol lowed by a l ist of opt ions , as in

SAVE pn [,S#] [, D#]

The command word (SAVE i n th is example) is fol lowed by a l i st of
opt ions . Unbracketed opt ions must be inc l uded each t ime the
command is used . Opt ions i n square brackets, [and] , are
opt iona l , and can be used in any order. Opt ions separated by a
vert ical bar are alternates: use one or the other, not both (i f both
are entered , ProDOS uses the second i n the l ist) .

Uppercase letters and commas ind icate characters that m ust be
typed as shown ; lowercase letters and the n u m ber sym bol , # ,
stand for i tems that you supply.

Tab le A- 1 is a summary of the com mand opt ions . The next sect ion
contai ns a descr ipt ion of each of the opt ions .

Name Syntax M i n i m u m M a x i m u m Exam ples

Path name pn /D ISK/RECORDS/JAN
Slot N u m ber ,S# 7 , S 1 ,S3
Drive N u m ber , D # 2 , D 1 ,D2
N u m ber of F ie lds ,F# 0 * 65535 , F2 , F 1 0
Record N u m ber , R # 0 , R59 , R3982
N u m ber of Bytes , B # 0 ,B2 , B 7
Add ress i n RAM ,A# 0 65535 ,A5 1 2 ,A4096
Length i n Bytes , L # 1 65535 ,L 1 0 , L 1 6384
End Add ress i n RAM ,E# 1 65535 , E776 , E32768
At Line N u m ber ,@# 0 65535 , @ 1 0 ,@322
Slot N u m ber snum 0 7 1 3
F i le Type ,Ttype ,TD IR , TTXT

* See the descr ipt ion below

Syntax

Summary of the Options

Deci mal or Hexadecimal I nteger. # can be replaced by a
decimal i n teger, or it can be replaced by a hexadecimal
n u m ber by preced ing the hexadecimal d ig i ts with a
do l lar s ig n . The perm i tted val ues of # depend on the
opt ion .

pn Pathname or Part ia l Path name. See the sect ion
" Pathnames . "

, S # S lot Num ber. # specif ies an Apple I I s lot that contai ns a
d isk control ler card . # i n i t ia l ly defau l ts to the slot from
which ProDOS was started up. I t su bseq uent ly defau l ts
to the last val ue specif ied for th is parameter. # must be
i n the range 1 th rough 7.

I f # refers to a slot which does not contai n a d isk
contro l ler card , you wi l l get the !··-! Ci ;. ; ; :

! .. >. "·· "·· ' ' . i ... : ! !:::. L.i error message.

, D # Drive N u m ber (e ither 1 or 2) . # i n i t ia l ly defau lts t o one.
I t su bseq uent ly defau l ts to the latest value specif ied for
th is parameter.

I f ,S# is used without th is opt ion , , D # defau l ts to one.

I f # refers to a d r ive that doesn ' t exist on the contro l ler
card in the i nd icated s lot , you get the !··-! Ci , . , : ::::: E::

· (: !·._; ;-.. ; ; ...
'···· · i t::. LJ error.

, F# N u m ber of F ie lds . Used with seq uent ia l and random
access text f i les. # specif ies a f ie ld whose pos i t ion in
the f i le is # f ie lds ahead of the current f i le posi t ion .
defau lts to 0 , wh ich does not change the f i le posit ion .
Note: EXEC always sets the pointer to the start o f the
named f i l e , so # is always relat ive to 0 when used with
EXEC. Although # has a maxi mum value of 65535, if
specif ies a posit ion past the end of the record or the
end of the f i le , the posi t ion pointer stops at the end of
the record or f i le , and the Ci! .i " i ' , i i !· ! error message
is returned .

For DOS compat i b i l i ty, both the opt ions , F# and , R #
i nd icate a n u m ber o f f ie lds when used with t h e EXEC o r
POS IT ION commands.

Appendix A: S u m mary of ProDOS

. R# Record Num ber. Used w i t h t he READ and WRITE
commands for random-access text f i les. # defaults to 0
after OPEN . Thereafter, it defau l ts to the last record
specif ied . # points to an absolute record wi th i n a
random-access f i le . The maximum record n u m ber is
16 megabytes d iv ided by the f i le 's record length ,
or 65535, whichever is smal ler.

, B # N u m ber o f Bytes. # defau l ts t o 0 . # i nd icates a posi t ion
i n a f i le whose por.i t ion is # bytes ahead of the current
posi t ion . For READ and WRITE i t i s eva luated after the
,F# opt ion , and the maxi mum byte n u m ber is record
length m i n us one. I f i t i nd icates a posit ion past the end
of record or f i le , the posit ion is left at the end of the
record or f i le , and the E::f- F::: C:• F

.
U ::::: T" H error message is

returned .

For B R U N , BLOAD, a n d BSAVE, i t is always used
relat ive to the beg i n n i n g of the f i le . I f i t i n d icates a
posit ion past the end of the f i le , the F' ::::: !· i c: t::: t::: !? F: C:: F::

error message is returned .

,A# Add ress i n RAM . For BRU N , B LOAD, and BSAVE,
i nd icates a start i ng memory add ress for the transfer
of b i nary i nformat ion . I f B LOAD does not specify th is
parameter, the value of A# defau l ts to that used when
the b inary f i le was t ransferred us i ng the BSAVE
command . For PR# and I N # , # specif ies the memory
add ress of a mach ine- language dr iver rout ine . # must
be in the range 0 th rough 65535.

, L # Length i n Bytes. # defau l ts t o 1 . I n t h e OPEN and
APPEND commands with random-access f i les, , L# is
req u i red and specif ies the record length i n bytes. When
used with the BRU N , B LOAD, and BSAVE commands,
specif ies the num ber of bytes to be transferred
between the Apple l l ' s memory and a f i le . # m ust be i n
t h e range 0 th rough 65535. With t h e b inary commands
,E# can be used i nstead of , L # .

,E# End Add ress i n RAM . Th i s is an a lternat ive to the
, L # opt ion fo r BRU N , B LOAD, and BSAVE. # i nd icates
the last memory add ress for the transfer of b i nary data.
Either , L# or ,E# is requ i red for BSAVE. I f neither is
used with BRUN or BSAVE, bytes are transferred un t i l
the end o f t he f i l e . # must be i n the range
0 through 65535.

S u m mary of the Options

Table A-2. The Fi le Type Abbreviat ions

,@#

snum

,Ttype

At L ine Num ber. # i nd icates the n u m ber of the f i rst
program l i ne to be executed by the RUN or CHAI N
command. The defau l t is the f i rst l i ne i n the prog ram . I f
there is no l i ne with the n u m ber # , an error is returned .

S lot Num ber. snum is used wi th the IN# and PR#
commands. I t can have any val ue f rom 0 th rough 7 .
s n u m is t h e slot n u m ber o f t h e device with which
su bseq uent data (e i ther i n put or output) is to be
transferred . An snum of 0 specif ies the Apple l l ' s
normal rout i nes for 1 /0 .

F i le Type. type is a th ree- letter abbreviat ion that
i nd icates the type of f i le specif ied by the com man d . The
poss ib le val ues for type are g iven in Table A-2.

Abbreviation

D I R

F i le Type

Di rectory
Text TXT

BAS
VAR
B I N
REL

* $F#
SYS
SYS

Applesoft P rogram
Applesoft Var iab les
B inary
Relocatab le Code
User Defi ned
ProDOS System F i le
ProDOS System Program

* # is an i n teger from 1 to 8 .

As an example, t he ProDOS command that has the syntax

READ pn [, R#] [, F#] [, B#]

can be i n terpreted as

/ t::; .L l .. := LJ , :· , ; .. . · , , , . ;-:: ; ;/! !." : : ;

by the fol lowi ng process. The command word REA D i s i n
uppercase, a n d must b e typed exactly a s shown . The sym bol for
the path name pn is in lowercase; i t is replaced by the pathname

,__, , , , , ; ; • ; ; : . . . · . :::: ::::; . The opt ion ,R# becomes _, F : ! . :•:': C: i nd icat i ng
that data is to be read from record n u m ber 1 00 o f the random
access text f i le .·< :: ! !>:::: I ':: ; !- • . i ' i i:::: i ' ! C) ' : ; , which m ust al ready be open .
The opt ion , F# is replaced by _, F O::::: i nd icat i ng that the f i rst two
f ie lds in record 1 00 are to be read and d i scarded before any data
is taken from the record . The , B # opt ion is not used .

Appendix A: Sum mary of ProDOS

0$ is set to (CONTROL) -@) .
Pr int the command preceded by
(CONTROL) -@) .

N u l l ProOOS command .

0$ is (CONTROL) -@) .

List f i les i n named d i rectory.

List f i les i n prefix d i rectory.

List f i les in volume d i rectory of slot 6 ,
d rive 1 .

ProDOS Commands in Programs

You can g ive al l ProDOS commands from with i n programs, and
you can issue al l except OPEN , WRITE, READ, APPEND , and
POSIT ION from the keyboard . I f any ProDOS command i n a
program is to be pr i n ted , it m ust be preceded by a pr in ted
(CONTROL)-@) , and the (CONTROL)-@)m ust be the f i rst character on
the pr in ted l i ne . Here is the most common way of pr i n t i ng a
ProDOS com mand preceded by a (CONTROL) -@) .

The WRITE, READ, and APPEND commands are term inated by the
next ProDOS command g iven . I f you want to term inate one of
these commands without us ing a ProDOS command , you can use
the nu l l ProDOS com mand

Filing Commands

Th is sect ion contai ns a br ief descri pt ion of each ProDOS f i l i ng
com mand .

CATALOG and CAT [pn} [,5#} LD#J

Use the CATALOG and CAT commands i n e i ther i mmed iate or
deferred mode.

Exam�les:

The CAT and CATALOG com mands d isplay a l ist of the f i les in the
d i rectory i nd icated by pn , S# , and D# . I f pn is not used , a catalog
of the prefix d i rectory is d isp layed un less the prefix is empty or
S# or D# is used . In these cases the volume name i nd icated by
S# and D# is used instead of the prefix.

CAT d isplays a 40-column l ist contai n i ng the f i rst f ive i tems
expla ined below, whi le CATALOG d isplays an 80-co lumn l ist with
a l l e ight i tems.

F i l i n g Commands

Set prefix to /PROFI LE/WORKFI LES/.

Set prefix to name of volume i n slot 6,
drive 1 .

Make prefix empty.

Display the prefix.

For each f i le in the d i rectory these commands d isplay from left to
r ight on the screen

• an aster isk i f the f i le is locked (see the LOCK command)

• the f i le 's name

• a th ree-letter abbreviat ion of the f i le 's type (see Table A-2)

• the n u m ber of 5 1 2-byte b locks that the f i le occupies

• the date the f i le was last mod if ied (Mo/Da/Yr H r : M n : Sc) (on ly
Mo/Da/Yr is d isplayed by CAT)

• the date the fi le was created (Mo/Da/Yr H r : M n : Sc)

• the logical end of f i le [see sect ion " E N DF ILE (Maximum Fi le
Sizes)" i n Chapter 3 and sect ion "The End of F i le" i n Chapter 7]

• the f i le 's load add ress (i n hexadecimal) if it is a b i nary f i le , or i ts
record length (in decimal) if i t is a random-access text f i le .

When you catalog a vol ume d i rectory, the n u m ber of free b locks,
used b locks, and total avai lab le b locks on that vol ume are
d isplayed .

Possible E rrors:

NO D E V I C E C O N N E C T E D

N O B U F F E R S A V A I L A B L E

F I L E T Y P E M I S M A T C H

PREFIX [pn] [,S#] [,D#]

Use the PREF IX command i n e i ther i mmed iate or deferred mode.

Examples:

woo ow• ••-• ••••• ••• , • I ; ; ; ; ; ; •, ,• r· r::. i::. r· .i. ,· ..

Append ix A: S ummary of ProDOS

Create a new d i rectory.

Create a b i nary f i le i n volume
d i rectory, S6, 02.

This command normal ly sets the value of the prefix, but i f no
opt ions are used , the value of the pref ix is d isp layed . I f the
command is used without opt ions i n a program , the next I N PUT
statement reads the value of the pref ix . I f a slash is used i n place
of pn , the prefix is set to em pty; the vol ume specif ied by the
defau l t slot and dr ive is then used as pref ix. Otherwise the
standard ru les for pn and the slot and dr ive opt ions ho ld . The
maximum length for the prefix is 64 characters, i nc lud ing slashes.

Possible E rrors:

!·· -1 .J !:::� !::.. ·.· .l. : ... · t::.
:···· -···- ··:·· :···· :···. ; ___ . i_..i r·-; r·-! t::. i

' ; : ;:::. r· . : ··. ' : r=:

!···

CREATE pn [, Ttype] [,5#] [,D#l

Use the CREATE command i n e i ther i mmed iate or deferred mode.

Exa m ples:

···. :···. :···· .···. ··:·· :·-·
! __ . j·=:: t::. !···i ; i··· -r· r··. ·:· :···.

'

Creates a f i le of the i nd icated type and name. Table A-2 shows the
d i fferent f i le types. Th is command is pr imar i ly used for d i rectory
f i les. You must create a d i rectory before savi ng a f i le i n i t .

Possible E rrors:

:···. ·:· ::::· !/ : ... : .
· ... · : :.

: ;___; ·._.· · ... · : : : : : : : .
:···. : : ;-··. :
; .. : ... : ; ; . .L l ... ;···; ! t::. :· . . · · : · : :. : : :

F i l i n g Commands

Delete EXPLETIVE f i le .

RENAME pn 1,pn2 [,S#] [,0#]

Use the RENAME command i n e i ther im med iate or deferred mode.

Example:

!? �--- r-.: i···i 1 ' 1 :--- · · ,. · ;-·· , ._ ; ; ; , . . ;:::: ::::· = ... : : ; · .. ; ; ; ; ···-, ::.;.

Changes the name of the f i le i nd i cated by pn 1 , S# , and D# to the
name i nd icated by pn2, S# , and D# . Th is command can not move
a f i le from one d i rectory to another ; it can on ly change the name of
a f i le wi th i n its d i rectory. You can not rename a f i le that is locked .

Possible Errors:

!< ;---; :· : � ... : :

:;: .· �J ;:::. 1

r· -� . . , , · i . .J F··' , _,_ ... ' ;· · .;

DELETE pn [,S#l [,D#l

; :_..: : ... · : ·.· .l. = ... - 1:::.

;L L.. �:::. �--·· ; __ _i 1 __ _. �< !:::. LJ

··- ;:::: : : .··
.:. : :

Use the DELETE command i n e ither i m med iate or deferred mode.

Example:

Removes the fi le i nd icated by pn, S#, and D# from its d i rectory.
The f i le must not be open or locked . If the f i le is a d i rectory f i le , i t
m ust be em pty. You cannot delete a vol ume d i rectory.

If a program tr ies to delete a nonexistent f i le , ProDOS returns the
F ' i· ·! . . . F C: i .. .i i T:: error message. To prevent th is , open the f i le
(wh ich creates i t i f i t doesn ' t yet exist) , c lose i t , then delete i t .

Possible Errors:

i·=:: ;···i r·-i -- =··· , ... ,.,. ,.,. =

: .. · ·

F
. . , . .

. . :
l L .. :. · l : L.'

Appendix A: Sum mary of ProDOS

. : .···. ;···, ;:::· ; --
;. ; .···. ·····

: ...
' .· '··-' ' ·: : : : · i t::. LJ

:.... } l �-: .. : , _ __!

LOCK pn [,5#} [,D#}

Use the LOCK command i n e i ther immed iate or deferred mode.

Example:

1··· � ... : . . . : j j·:: � L. .
..,.

.

This command protects the f i le i nd icated by pn , S# , and D# from
being accidental ly deleted , renamed , or changed . A locked f i le is
i nd icated i n the catalog by an aster isk (*) .

Possible Errors:

!::> : ... : :-. : : · : ... : !-:-' i ... ' i i i .. '

UNLOCK pn [,5#} [,D#l

' ._, , = r··= ;:··· ' ' ' : . !-·· !... ..J l ! ! -� E:: �-- . : '··· ' '
:·· · ... : : ___ : ;···! L.:

··· r··. ; l : :.: ; 'i L. . . :. : ... : i ! !-··' ; ; ; : r-.:

Use the U N LOCK command i n e ither i mmed iate or deferred mode.

Example:

I f the f i le i nd i cated by pn, S#, and D# is locked , you m ust un lock i t
before you can al ter, rename, or remove it .

Possible E rrors:

i i i : ; ; ... :, ,
: ; ; . ;···

: : :·-. ·:· ··:·· :···· ···· :··· . . ···. ··:·· :··· ;.=.; ;·=:: J i j··· ;---· ;-: • • •

j, / : ___ : t::. ;-:� ;-::� : ___ : ; -�

F i l i n g Commands

Run program in f i le /ANY/PROGRA M ,
regard less o f program type.

Load BASIC program from file AMOK i n
prefix d i rectory and run i t .

Load BASIC program from f i le
TWO . I N . O N E i n pref ix d i rectory, and
run it start ing at l ine 1 000.

BASIC Program Commands

This sect ion contai ns a br ief descr ipt ion of the BAS IC program
commands.

- (DASH) pn [,S#] [,D#l

Use the DASH command i n e i ther immed iate or deferred mode.

Example:

This command, cal led the DAS H command , can be used i n p lace
of RUN , B RU N , and EXEC; it is the on ly command that runs a
system program . Thus, it can be used to run programs of types
BAS, B I N , TXT, and SYS (XXX.SYSTEM f i les). Note that everyth ing
currently i n memory is lost when a system program is i nvoked .
(See the RUN , BRUN , and EXEC commands for more detai ls .)

Possible E rrors:

: l l l l l ··-' '····

N u D E V I C E C O N N E : T E C

····· ···· ·-· �:::. !··:� !< i..J 1<

RUN pn [,@#] [,S#] [,D#l

;:::- ;:::; --� �---i : : . ···. ··:·· :···· ;
···' : ... : !·· -! i:::;

�-- J: L.. ;:::: ·-:-· '·:' �:::: �::: ; · ; .L :::- , , r··; ; -... : �--;
. : : ... · ..
'···' ' : ! '·!

Use the RUN command i n e ither immed iate or deferred mode.

Examples:

·r ! . ..! c:; . I ; - .; . . ___ . , ., , ____ _ ,

Loads the Applesoft program i n the f i le i nd i cated by pn , S# ,
and D# (see the d iscussion of LOAD, below), and then runs i t .
I f @# is used , then the program starts runn ing at the specif ied l i ne ;
i f that l i ne is not found , the next h ighest l i ne is run . Without @#,
execut ion starts a t the program's f i rst l i ne .

Appendix A: S u m mary of ProDOS

Br ing BASIC program in f i le
DOW. J O N ES i n prefix d i rectory into
memory.

The RUN command , without any parameters, causes the BASIC
program current ly i n memory to be ru n .

Possible E rrors:

' =-·-= , , =···� �--·· T t_ : . . . -�- i ... : ; ·.:

; ; · •• = • ..: = .. := : · : : · .

BASIC Error:

. , , , , , '··· �-··! E r·-� �

LOAD pn [,S#J [,D#l

··. ; ·; : . : ... '·' .:. '·· · '· · ... · · ... · : : : : : ... · .. · : ;

, , .•. , , , , r = r··i

:.- : ... · : ... · ·
. .. · : ·.

Use the LOAD command i n e i ther immed iate or deferred mode.

Example:

r ,···· ::::· =
···.

This command tel ls ProDOS to search for the Applesoft program
fi le (type BAS) with the name i nd icated by pn, S#, and D#. I f there
is such a f i le , i ts program is loaded i n to the Apple l l ' s memory. The
program can then be changed , l i sted , run, or saved . LOAD closes
any open fi les (except EXEC fi les), and erases any BASIC program
in memory before p lac ing the new program in the Apple l l ' s
memory.

The i nstruct ion LOAD, without any parameters, attem pts to load a
prog ram from cassette tape.

Possible Errors:

BASIC Program Commands

i··· .L •....

. . : ··
. . : ;, : .

: . : : : ·: ; ·: ; •••• = ••• · ; ;,,,, ;,,,:

Save current BASIC program in f i le
BABY. SEALS.

SAVE pn [,S#J [,0#]

Use the SAVE command i n e i ther immed iate or deferred mode.

Exam ple:

-· ' '···

If the i nd icated f i le does not exist , a f i le with the pathname
i nd icated by pn, S# , and D# is created , and the current Applesoft
program is stored in that f i le . I f the f i le is locked , the ::::· I L .. :::::

L.. C:":::: �---: i:::: !> error is returned .

War n i n g
I f a f i l e with t h e i n d icated pathname al ready exists, i t s contents are
replaced without warn ing by the current BASIC program . Always lock all
valuable files.

The i nstruct ion SAVE, without any parameters, attempts to save a
program onto cassette tape.

Possible Errors:

!:::: ;:::; !- ' ····. :···· , , ... _ , ... _ , ... _ , ...
; ·._ ; ; ; ·; :,.:= : : .. .

; _ ; ;-··, .,. 'T" i:::·
1-'-: ; ·-. . :. ; :

. L .. ·· : . ..:

:··· . . -··, ··; , ... r=:. : . ..:

F" I L.. E� L. ; : : · L- _ !:::. L..l

.··· . . ···. : : : : :···· .···- ··:·· :··- :··· :-. : ; 1 ' ! !--- · . .' i ' 1:::. ' ' ' i '·l i '·: r·· ' 1 i:::. L.l

i ! ; ·--. :-: !··· .

Programming Commands

This sect ion provides a br ief descr ipt ion of each of the BASIC
programming commands.

CHAIN pn [,@#] [,S#] [,0#]

Use the CHA IN command i n e i ther i m med iate or deferred mode.

Example:

···- ;...; :··· . . , . .
i ..

Append i x A: S u m mary of ProDOS

Store a l l BASIC variables.

Used from with i n a BAS IC program , i t loads and runs the BASIC
program specif ied by pn , S# , and D#, leav ing the names and
val ues o f al l the current var iables i n memory. Th is means that a
program can operate on the resu l ts of the previous program , and i t
can leave data for any su bsequent ly chained program .

If the @# opt ion is used , execut ion of the i nd icated f i le beg ins at
the specif ied l i ne ; if that l i ne does not exist , the next h ighest l i ne i s
run .

Possible E rrors:

NO D E V I C E C O N N E C T E D

F I L E T Y P E M I S M A T C H

P R O G R A M T O O L A R G E

BASIC E rror:

U N D E F � S T A T E M E N T E R R n P

STORE pn [,S#J [,D#J

Use the STORE command i n e ither i m med iate or deferred mode.

Example:

C 'T :""": !:::= c:·
· ... · : · ... • : ·. ;._, / G A M E S / B I N G O . V A R S

This command packs a l l the current ly def i ned BASIC var iables,
and wri tes them to the f i le (type VAR) i nd icated by pn, S#, and D# :
These var iables may be retu rned to memory us ing the RESTORE
command .

Before stor ing Applesoft variab les, ProDOS compacts the
Applesoft str i ng space. Th is may resu l t i n a delay of two to four
seconds before the d isk is actual ly accessed .

Possible Errors:

NO D E V I C E C O N N E C T E D

F i � E T Y P E M I S M A T C H

Progra m m i n g Commands

Load BAS IC variables.

Send output to slot 1 .

Send output us ing rout ine at $300.

Designate the ROM i n slot 2 as the
output rout ine for slot 1 . Does not
red i rect output .

RESTORE pn [,S#ll,D#l

Use the RESTO RE command i n e ither immed iate or deferred
mode.

Exam ple:

... · ····· .··· . . :-·· , .,. ;, ; ,···. ···
. . . : ... · .:. , : · ... · · ... · . ·, ,· r··; r=: :··,

Th is com mand clears the cu rrent BASIC var iab les from memory,
u n packs the var iab les stored i n the var iab le f i le (type VAR)
i nd icated by pn, S#, and 0#, and puts the var iab les in the BASIC
var iab le storage space i n memory.

Possible Errors:

. .. ,;, ; ·; .· : : : :. : ... · '
···

' ' : .:. · ... · : .

PR# snum l A# I snum ,A#

. . ,_,: .L � ... : !::: .

· . . · :. :
:··, :

... ; ; ;-::

;:::. :·=·. r=: ; , ,.,.

Use the PR# command i n e ither immed iate or deferred mode.

Examples:

. .
. . . .

!:::· =···. : : .
r==. ·!t .L , r··j .:;:- : ,:::. :::! !:::l

This command is used to send output to a s lot ; to send ouput to an
add ress in memory; or to reass ign the output add ress associated
with a s lot . It operates by chang ing the add ress of the current
output rout ine (stored in memory locat ions $36 and $37) . A l l
su bsequent non-f i le output is sent , a character a t a t ime , by the
rout ine a t the specif ied add ress. I f snum (a slot num ber) is used ,
the add ress of the current output rout ine is set to i nd i cate the fi rst
byte of ROM on the card in that slot ($Csnum00) . I f A# is used , the
add ress is changed to # , and the byte at th is add ress must be a
6502 CLD (clear decimal) i nstruct ion .

Appendix A: Sum mary o f ProDOS

See the descr ipt ion of PR# i n
Chapters 5 and 9 f o r more detai ls ; also
see the Apple II Reference Manual.

Get input from slot 2 .

Get i n put us ing rout ine at $300.

See the descr ipt ion of I N # in
Chapters 5 and 9 for more detai ls ; also
see the Apple II Reference Manual.

Once the add ress of the output rout ine is changed , ProDOS
performs a jump to th is new add ress. The f i rst port ion of the code
at that add ress normal ly performs i n i t ial izat ion (such as start i ng
up the d isk i n that slot) . The code then resets the output rout ine
add ress to i nd icate the t rue add ress of i ts output rout i ne .

I f both snum and A# are used , the specif ied add ress is ass igned
as the output add ress for that slot. I t does not red i rect output : a
su bseq uent PR# snum m ust be used for th is purpose.

Possible Errors:

···· :·:· :·: . : ·. · ... · : ·. r· -! .J ' , ,... . .· .:. · ... �:::: '::: · 1::1 !· · : 1· · , ::::. = ... - 1 ••••• __ _

; i i···' ' T i , ;. l !:: .. !·=·· ;.,.· ; ; ;.,.·

IN# snum i A#

Use the I N # command i n e i ther immed iate or deferred mode.

Exam ples:

This command tel ls the Apple I I to take its i n put from a slot or from
an add ress in memory. I t operates by chang ing the add ress of the
current i n put rout ine (stored in memory locat ions $38 and $39) . A l l
su bseq uent non-f i le i n put is taken , a character at a t ime, by the
rout i ne at the specif ied add ress. I f snum (a s lo t num ber) is used ,
the add ress of the current i n put rout ine is set to i nd icate the f i rst
byte of ROM on the card in that slot ($Csnum00). I f A# is used , the
add ress is changed to # , and the byte at th is add ress m ust be a
6502 CLD (clear decimal) i nstruct ion .

Once the add ress o f the i n put rout i ne is changed , ProDOS
performs a jump to th is new add ress. The f i rst port ion of the code
at that add ress normal ly performs i n i t ial izat ion (such as start i ng
up the d isk i n that slot) . The code then resets the i n put rout i ne
add ress to i nd icate the t rue add ress o f i t s i n put rout ine .

Possible Errors:

1:;:. , ... ; ;-.. ; : ' . ; ·; : __ _: ;___: ;,,,

::::; '· · · ·.: ; ;-··; .-·-

Progra m m i n g Commands

.....

.···- ,···, kJ r-.: �::. = ... · r E U
··:: r=:

.
! !·=:'

Open seq uent ia l f i le on d r ive 2 i n
defaul t s lot .

Open random-access f i le with record
length of 1 00 .

O p e n a d i rectory f i le .

FRE

Use the FRE command i n e ither immed iate or deferred mode.

Exa m ple:

c:= =-··. ·=· = ,
...

This command removes any data remai n i ng from former programs
from the memory area used to store your prog ram 's str i ng
var iab les; that is , i t c leans house.

Possible Error:

Text File Commands

This sect ion contai ns a br ief descr ipt ion of each text f i le
command .

OPEN pn [,L#l [, Ttype] [,5#] [,D#l

Use the OPEN command on ly i n deferred mode.

Exa m ples:

! ! � - - . . ; . : ;,,, : .. : ; :

:. ·
. : : .· : ·. : · = ... : ; · .. : ... · ... ' : : :. =: .. : :: .. :

This command a l locates a memory buffer to the f i le i nd icated by
pn , S# , and D# , and prepares the system to write or read from the
beg i nn i ng of the f i le . I f the f i le d id not previously exist , a text f i le is
created . L# specif ies the f i le 's record length ; i f omit ted , the record
length defau l ts to the record length with which the f i le was opened ,
or to 1 for a new f i le .

Usi ng Ttype you can open non-text f i les for read ing and wri t i ng .
Non-text f i les must be created before they can be opened . You
must be carefu l when us ing th is feature: the contents of non-text
f i les can be d iff icu l t to deal with when us ing BASIC str ings .

Appendix A: Sum mary of ProDOS

Close al l open f i les.

Close /P/NOSE.

The effect of CLOSE on an EXEC f i le :
see the sect ion "The EXEC Comman d . "
For comparison , see t h e FLUSH
command.

Up to eight f i les can be open at a t ime. The commands OPEN , CAT,
CATALOG, and EXEC-and - (DASH) when you use it to execute
(EXEC command) a f i le-al l open a f i le. On ly OPEN leaves the f i le
open .

The memory buffer for an open f i le is 1 024 bytes long . If there is
not enough free memory for a f i le 's buffer to be a l located , the f i le
cannot be opened .

War n i n g
A program must c lose a l l t h e f i les i t opens. I f i t doesn ' t , data written to the
f i le may be lost .

Possible Errors:

-:::· Y r·-i 1 ; •.. ; ·:-. • .•.. , . __ '·=:: C! !��:

CLOSE[pn]

, ; ·._. .:. -·-· �:::: c: C:i ! j !··-! j:::
·
: . 'T E. L)

!···' !···! ! !--·! . .. ; ;

;· -� : _ _.! b ! __ � ;--· ; ... ····· ·· ··· r : '·' r .. , .:. : : : ;::.• : ;:::.

L.i .L 1< 1:::_ 1 __ : i

:···. -:· :···: ::::: ::::: ; : ... : j·:: � : :·· -... · : :

Use the CLOSE command i n e i ther immed i ate or deferred mode.

Exa m ples:

1 ..• : 1 .• ! >-·, t:: .
... . . ··· . . ···. :···· , __ . L._ u ::::: t:. · ···· .. ·· r·-i ' = : ••••

The CLOSE com mand without opt ions closes a l l open f i les (with
the except ion of EXEC f i les: see EXEC). I f pn is used , on ly the
specif ied f i le is c losed . When a f i le is c losed , any characters i n the
output part of the f i le buffer are wr i t ten to that f i le , and i ts f i le
buffer memory is released for other uses.

War n i ng
A program must close a l l f i les it opens. Fai l u re to c lose an open f i le can
resu l t in loss of data. I f a program terminates because of an error,
because a (CONTROL 1-@)was pressed , or for any other reason , enter the
CLOSE command from the keyboard before you do anyth ing else.

Possible E rrors:

·::- :. · ;_ , ! !···! :-: ·-.' ; ; ·; . . ;:::: :

Text F i le Commands

:;: ;·- ! i · : ... : · _ __i ;"''; !:::: ··;·· T :··; i-_ l

Prepare to read record 1 0 from
/EXA M P LES/HELPERS.

Sk ip 1 00 f ie lds of the f i le BOOK and
prepare to read .

For more detai ls on READ, see the
sect ion " Read ing From ProDOS
D i rectories , " Append ix D .

Prepare to write to start of record 29 .

Prepare to wr i te to current posi t ion i n
f i le .

READ pn [,R#] [,F#] [,8#]

Use the READ command i n deferred mode on ly.

Exa m ples:

�;:= ' . . ···. r··,
, r· ·

; ·._ ;_ : : : : .:. =:

This command al ters the current pos i t ion and prepares i n put to be
taken from the i nd icated fi le. I f R# is used , the current f i le posit ion
is moved to the beg i nn i ng of the specif ied record . I f F# or B# is
used , the cu rrent posi t ion is moved forward the specif ied n u m ber
of f ie lds and bytes.

Once th is command is g iven , all characters asked for by I N PUT or
GET statements in the program are taken from the specif ied f i le
start i ng at the f i le 's current posi t ion . Each I N PUT statement is
ended by a carr iage return character (ASC I I code 1 3) or 224 bytes,
whichever comes fi rst . The READ command is term inated by the
next ProDOS command , or by the nu l l ProDOS comman d , that is ,
pr int ing (CONTROL) -@].

War n i n g
D u e to t h e l i m itat ions o f BASIC str i ngs, t h e read ing o f non-text f i les may
not work as you expect it to.

I f you open and read a d i rectory f i le , you get back str ings that are
ident ical in format to the l i nes returned by CATALOG.

Possible Errors:

. : ; ; ·l l . . :: t::.

WRITE pn [,R#] [,F#] [,8#]

Use the WRITE com mand on ly i n deferred mode.

Examples:

Append ix A: Sum mary of ProDOS

Prepare to write to end of f i le
MORE. I N FO.

This command al ters the current pos i t ion , and prepares output to
be sent to the i nd icated f i le . I f R# is used , the cu rrent fi le posi t ion
is moved to the beg i nn i ng of the specif ied record . I f F# or B # is
used , the current posi t ion is moved forward the specif ied n u m ber
of f ields and bytes .

Once th is command is g iven , a l l characters output by the program
or by BAS IC are placed in the specif ied f i le start i ng at the f i le 's
current posi t ion . The WRITE command is term inated by the next
ProDOS com mand .

A l though you can open d i rectory f i les (type CAT), and read from
them , you cannot write to them .

Possible Errors:

J . . ·· · ... · j:::
·
j:;:: .,.· ; ; ;.,.·

:i t .. : i-:
. . . . '···· ' ••• = ! i ! " l i"""! . .

F. :: : ;. ; ; :

l...i .L -:··, ;·.

.:. r·-, ,_, i···l :.. . . : , ·

. . :·· :·- : : . .

APPEND pn [, Ttype] [,L#l [,S#] [,D#l

Use the APPEND command on ly i n deferred mode.

Example:

..... : · ... · : ·. : : _;_ ;·· : !·· ...

This com mand opens the f i le specif ied by pn , S# , and D# , moves
the current posi t ion to the end of the f i le , and issues a WRITE to
that f i le . If L# is used (and is the same as the f i le 's or ig i nal record
length) , the current pos i t ion is set to the beg i nn i ng of the record
i mmed iately fol lowi ng the last record in the f i le .

Once th is command is g iven , a l l characters output by the program
or by BASIC are p laced i n the specif ied f i le start i ng at the f i le 's
cu rrent posit ion . The WRITE part of the APPEND command is
term inated by the next ProDOS command .

War n i n g
Be sure that your program closes a l l appended f i les. Fai l u re t o do s o may
resu l t in loss of data.

Text F i le Commands

Read and d iscard 227 f ields.

Possible Errors:

,.. .. ,
r=:. r··; r·-; = .. := c:. r·-; ; 1 , ___ . , ____ ___ _ , _ ___ . , ___ _

;:::· .:. : :

T l-. i i i C• ' ; ·; '
·
' ; ; ;,,,, ,;, ;..,: '···' ' , _,_ . .J r

·-;
....

r ·i 1 . .J ___ • =··· ;··· =··· 1••· • • .• : , , = • ..= �---� .L L.. !···i !:::� 1:::. (.j 1_.) 1 L.
· ... - · ... · : : : : : , ; · , L.-

1:::_ ;---·
: ..

· ·

FLUSH[pn]

Use the FLUSH command i n e ither immed iate or deferred mode.

Example:

F ! -... · ·--· · : -· F·l .L ; ; ; .·

The FLUSH command without opt ions causes a l l open fi les (with
the except ion of EXEC f i les : see EXEC) to be f l ushed . I f pn is used ,
on ly the specif ied f i le is f lushed . When a f i le is f l ushed , any
characters in the output part of the f i le butter are written to that
f i le , and updated i ndex and a l locat ion buffers are copied to the
f i le 's d i rectory .

... War n i ng
The FLUSH command is useful for preservi ng the i ntegrity of the data on a
d isk . A program that may stop unexpected ly-whether due to power
surges or l i tt le k ids-should f lush its buffers frequent ly. Th is way you can
prevent much data from being lost.

Possible E rrors:

POSITION pn ,F# I ,R#

Use the POS IT ION command on ly i n deferred mode.

Example:

;:: : :

POSIT I ON causes # f ie lds to be read and d iscarded . For
compat i b i l ity with DOS 3 .3 , the F# and R# opt ions are
funct iona l ly equ ivalent .

Appendix A: S u m mary of ProDOS

Execute commands start ing with the
fourth f ie ld of the f i le PR IV I LEGE.

Other uses of EXEC are explained in
Chapter 8.

POSIT ION scans forward from the current posi t ion , character by
character, un t i l i t encounters the #-th (RETURN)character fo l l owi ng
the current posi t ion . I t then p laces the current posit ion at the f i rst
byte fo l l owing th is (RETURN)character. I f , i n th is search , it f inds any
byte in wh ich no character has ever been stored (normal ly an end
of record or end of f i le) , the message E>E::: U ! · U !· : : r--: i s g iven .

Possible Errors:

N O T D I R E C T C O M M A N D

The EXEC Command

··-· ·-· ··-· ·- ·- ·-·· .·-�=- r··! � ... : -·' , •.. !··! ! i·-i

The format and a descr ipt ion of the EXEC command are g iven i n
t h e sect ion below.

EXEC pn [,F# I ,R#] [,S#] [,D#J

Use the EXEC command i n e i ther i mmed iate or deferred mode.

Example:

Th is command causes the Apple I I to take al l (non-f i le) i n put from a
sequent ial text f i le i nstead of from the keyboard . Th is a l lows you to
use a text f i le contain i ng BAS IC or ProDOS commands, or i nput to
a run n i n g program to control the operat ion of your Apple I I .

The f i le i nd i cated b y p n , S#, and D# must b e a sequent ial text f i le
(hereafter referred to as an EXEC fi le) . ProDOS opens the EXEC
f i le , reads and d iscards the n u m ber of f ie lds specified by F#
or R#, and then starts read ing commands at tha� posi t ion . When
the end of f i le is reached , the EXEC f i le is c losed .

There can on ly be one EXEC command i n effect at a t i me. If the
EXEC f i le contai ns an EXEC command , the or ig i na l EXEC f i le is
c losed and the new EXEC f i le i s opened and executed . The CLOSE
command , when issued from with i n an EXEC f i le , does not cause
the EXEC fi le to close. I f an EXEC fi le contai ns a RUN command ,
EXEC waits un t i l the program ends; then the next command i n the
EXEC f i le is executed .

The EXEC Command

• War n i ng
If a program is runn ing whi le an EXEC f i le is open, an I N PUT statement i n
the program reads i t s i n put from the EXEC f i l e . Worse yet , i f that response
is an i m med iate-execut ion ProDOS comman d , the command is executed
before the program cont inues.

By the Way: I f you type (CONTROL)-@Jto stop an Applesoft program
that is runn i n g whi le an EXEC f i le is st i l l open, the remain i n g
commands i n t h e EXEC f i l e a r e usual ly n o t executed .

For compat i b i l i ty with DOS 3 .3 , the F# and R# opt ions are
funct iona l ly eq u ivalent .

Possible Errors:

Binary Commands

:. : :"': :·�- : : :···· :-··· , :•--. . ···. .·-. : : .···- ·:· : .··· . .. -. : ,. ... j '•j = . ..: !---: ! ; =··· ;.-- t::. i·=:: :--· ''''i \:' j···j .L L.. i'''l t::; L.. t:.

The b inary commands are br iefly descr i bed i n the next sect ions .

BRUN pn [,A#] [,8#] [,L# I ,E#] [,S#] [,D#]

Use the BRUN command i n e i ther im med iate or deferred mode.

Example:

The BRUN command loads the b inary f i le (type B I N) i nd icated by
pn , S# , and D# i nto the Apple l l ' s memory as specif ied by A#, 8# ,
and L# or E#. B# is the num ber of the f i rst byte i n the f i le to be
loaded . A# is the fi rst memory add ress in to wh ich data is to be
loaded ; L# is the number of bytes to be loaded , and E# is the last
memory add ress i nto which data is to be loaded (either L# or E#
shou ld be used , not both) . I f A# is omi tted , the f i le is loaded
start i ng at the add ress from which i t was saved . Once loaded , the
fi le (wh ich must be a mach i ne- language program) is started by a
mach ine- language jump (J M P) to add ress A#.

Appendix A: S u m mary o f ProDOS

BASIC and ProDOS cont i nue funct ion ing if the mach ine- language
program ends with a 6502 RTS i nstruct ion .

Possible Errors:

-·- .-·. : : : : :···· .··· --
; = i r·-i i ! t::. i ... · , ;:::. L.i

.l. ;,,,, L ... j '(j···· t::.
. ·. ' ' j j : : l ;···j

BSAVE pn ,A# ,L# I ,E# [,8#} [, Ttype} [,S#J [,D#J

Use the BSAVE command i n e ither immed iate or deferred mode.

Examples:

1:::: T r· ····· ! 1 !-,-' 1-� : .:. · ... · ; · ... · : ·. :--- .= ;··-; .L =:::= :::�: ::::: ,::j.
·
' L :::' ::. �::·'

The BSAVE command stores the contents of a segment of the
Apple l l ' s memory i n to a f i le with the name i nd icated by pn, S#,
and D#, and the type i nd icated by Ttype . The defau l t f i le type is
b inary (B I N) . I f the f i le does not yet exist , i t is created . The segment
is specif ied by the star t ing add ress A#, and either the n u m ber of
bytes to be stored L# or the end add ress E# . B# specif ies the
start i ng f i le posi t ion .

The exam ples shown above both store a h igh-reso lut ion p icture
from the second h igh-reso lut ion p icture area of memory. They
have the same effect, but the second example u�es hexadecimal
notat ion and the E# opt ion i nstead of the L# opt ion .

Possible E rrors:

Binary Commands

: : : · ;_.: .:. · ... : ; ·.

!··-' i··:� i.J

;.,. = _; ; ____ !..._

····· ··-· -·- ···-· ··--· ···· ... : ! !:::. LJ

' ' •···· 1 .L ... = : ·:

See the sect ions " H i gh-Resolut ion
Graphics With ProDOS" and " I nstal l i ng
Mach ine-Language Rout ines" i n
Chapter 9 f o r s o m e important
restr ict ions on memory usage.

BLOAD pn [,A#] [,8#] [,L# I ,E#J [, Ttype] [,S#] [,D#J

Use the B LOAD commmand i n e i ther immed iate or deferred
mode.

Exa m ples:

The B LOAD command f i l l s a segment of memory with data taken
from the f i le with the name i nd icated by pn, S#, and D#, and with
the type i nd icated by Ttype. The data is taken start i ng at f i le
posit ion 8#, and is p laced i n memory start i ng at add ress A#.
L# is the n u m ber of bytes transferred , and E# is the end add ress;
one or the other, but not both , can be used . I f A# is omi tted , the
f i rst byte is placed at the add ress from which the f i le was or ig ina l ly
saved (us ing BSAVE). If L# and E# are om itted , the last byte
transferred is the last byte in the f i le .

For the examples, assume the f i le P ICTURE has at least two h igh
reso lut ion pictu res i n i t , each 8 1 92 bytes long . The f i rst example
shown above places the fi rst 8 1 92 bytes of P ICTURE into the f i rst
h igh-reso lut ion p icture area, which starts at memory locat ion 8 1 92
(dec i mal) . The second example moves the second p icture, start i ng
a t byte posit ion $2000 (8 1 92) i n t he f i l e , i nto the second h igh
resolut ion p icture area, wh ich starts a t memory locat ion $4000
(1 6384), and ends at memory locat ion $5FFF (24575) .

Possible Errors:

· · : ... · T :-··: 1- ' ; .:. = ... : ; ·:
: . : · .
i : . ..: =._.; •.... r··= =·=· ' ·· =···

... '-·-' t::. !·=:" j·: : : : ·.

Appendix A: S u m mary of ProDOS

DOS, ProDOS, and
Applesoft

197 About Th is Append ix
197 DOS Disks and ProDOS D isks
198 Convert i n g F i les
199 The D i fferences Between DOS and ProDOS
200 Fi le Organ izat ion and Names
201 DOS Commands That Went Away
201 FP and I N T
201 I N I T
201 MAXFI LES
202 M O N and N O M O N
202 I m proved DOS Commands
202 APPEND
202 B LOAD
202 BRUN
203 BSAVE
203 CATALOG
203 CHAI N
203 CLOSE
203 I N # and PR#
203 OPEN
204 POSIT ION
204 READ
204 RUN
204 WRITE

Appendix B: DOS, ProDOS, and Applesoft

204 New ProDOS Commands
205 CAT
205 CREATE
205 FLUSH
205 PREFIX
205 STORE and RESTORE
206 - (DASH)
206 FRE
206 Changes to Applesoft
206 H I M EM
206 HGR, HGR2, and TEXT
207 I N PUT
207 I N # and PR#
207 TRACE and N OTRACE
207 FRE

Append ix B: DOS, ProDOS, and Applesoft II_

The ProDOS Technical Reference
Manual explains the many s imi lar i t ies
between ProDOS and Apple I l l SOS
(Sophist icated O perat ing System).

DOS, ProDOS, and
Applesoft

About This Appendix

This append ix summarizes the d ifferences between DOS and
ProDOS. I n so doing , i t responds to th ree part icu lar q uer ies :

• How do I tel l what types of d isks each of my programs can use?

• How do I tel l which f i les can be converted from DOS to ProDOS
and which can be converted from ProDOS to DOS?

• I a l ready know about DOS. What 's so d ifferent about ProDOS?

The f inal part of th is append ix l ists the effects of ProDOS upon
some of the Applesoft commands.

DOS Disks and ProDOS Disks

The f i rst q uest ion , " How do I tel l what types of d isks each of my
programs can use?" is a good one. I t i s not the program , but the
way the program is stored on a d isk , that determ ines the types of
d isk d rives the program can use.

I f a d isk is formatted using the DOS command I N I T, the programs
on that d isk use DOS, and DOS can use on ly Disk I I Dr ives.

I f a d isk is formatted us ing the ProDOS Fi ler, the programs on that
d isk use ProDOS, and ProDOS can use al l d isk d rives made by
Apple Computer, I nc . for the Apple I I .

The q uest ion becomes: " H ow do I tel l i f a d isk i s DOS-formatted ,
ProDOS-formatted , or other?"

DOS Disks and ProDOS Disks

This problem on ly exists for D isk I I d isks: a D isk I I d isk could be
formatted for ProDOS, DOS 3 .3 , DOS 3 . 2 . 1 (or an earl ier version) ,
Apple I I Pascal , or i t cou ld be unformatted . (I f you have an
Apple I l l , the d isk could be SOS-formatted . In this case i t is
i nterchangeable with ProDOS d isks.)

• I f i t is a Disk I I d isk , and the name on the label beg ins with a
s lash, it is ProDOS-formatted .

• If it is a D isk I I d isk , and the name on the label doesn ' t beg i n
with a s lash , fol low the proced ure g iven below.

Run the ProDOS F i ler and t ry the opt ion L.. I ::::; T !: :' !? U L>:::<::;

[:! J:i? E:: c:: ·r c:! F: \' . If that works, it is a ProDOS-formatted d isk .
I f i t doesn ' t work , t ry us ing the DOS-ProDOS Convers ion P rogram .
Set the d i rect ion to DOS -> ProDOS and then t ry to t ransfer f i les . I f
the program reads i n a l ist of f i les, i t is a DOS d isk . I f that doesn ' t
work , the d isk could be b lank , copy-protected , or i t cou ld be an
o ld vers ion o f DOS that used yet another method o f storage.

I f you can ' t l i st or catalog the f i les , t ry start i ng up the d isk . I f i t
doesn ' t start up , the program was probably stored on the d isk
us ing an o ld version of DOS. To use th is d isk , you need to use the
DOS 3 .3 d isk labeled BASICS (wh ich you get when you buy DOS)
and fo l l ow the i nstruct ions i n The DOS Manual. I f the d isk st i l l
doesn ' t start u p , e ither t h e d isk isn ' t formatted , or t h e i nformat ion
on the d isk is damaged and is not readable .

I f you aren ' t able to l i st a d isk 's f i les, but the d isk starts up , the
d isk cou ld be an Apple I I Pascal d isk , some other language, or i t
could be copy-protected . You probably have an i nstruct ion manual
that tel ls about the f i lenames the program can use. I f i t ment ions
pathnames or prefixes, i t is wr i t ten usi ng ProDOS; i f i t uses s ing le
f i lenames, i t could be a DOS d isk .

By the Way: O n c e you deter m i n e a d isk's type, label t h e d isk w i t h its
type for future reference. Always use a soft-t i pped pen when wri t i n g on
a d isk's label .

Converting Files

ProDOS programs and data can use a l l types of d isks made by
Apple Computer, I nc . for Apple I I computers, whereas DOS
programs can use on ly Disk I I d isks. In add it ion , programs written
using ProDOS read i nformat ion from d isks and write i nformat ion
to d isks considerably faster than the i r DOS equ ivalents.

Appendix B: DOS, ProDOS, and Applesoft

Table B- 1 . Fi le Conversion

Using the DOS-ProDOS Convers ion P rogram , descr i bed in the
ProDOS User's Manual, you can convert f i les from DOS format to
ProDOS format, and back agai n . Tab le B- 1 shows the
correspondence between DOS and ProDOS f i les .

Contents of F i le DOS Type ProDOS Type

Text T TXT
B inary B B I N
Applesoft Program A BAS
I n teger BASIC Program I NT
Relocatable Code F i le R REL
Other (ProDOS on ly) B <-- XXX

When converted , text and b i nary fi les are i m med iately usable by
programs of the other type. Applesoft f i les usual ly have to be
mod if ied before they can be used . The fo l l owi ng sect ions expla in
the changes you must make when mod ifyi ng a DOS program .

The Differences Between DOS and ProDOS

There are th ree main areas of d ifference between DOS and
ProDOS. F i rst , ProDOS is an ent i rely d ifferent program from DOS:
i t uses d ifferent code and d ifferent parts of the Apple l l ' s memory.
Any DOS program that makes use of specif ic locat ions or rout i nes
in DOS wi l l not work i f converted . L i kewise, programs that p lace
assembly-language rout i nes in memory may have to be changed
so they don ' t overwrite parts of memory used by ProDOS. Detai ls
on the parts of memory used by ProDOS, and on the use of a l l the
ProDOS rout i nes , are g iven i n the ProDOS Technical Reference

Manual.

The second major d ifference is the confl ict i ng f i lename
convent ions and f i le organ izat ions used by DOS and ProDOS. I t is
l i kely that you wi l l have to mod ify both when convert i ng a program .
I n add it ion , ProDOS does not support volume n u m bers. If you r
program uses them , you wi l l have to mod ify i t to use volume names
i nstead .

The th i rd d ifference is the command structure. S ix DOS
commands no longer exist , fourteen DOS commands have been
improved , and e ight ProDOS commands are new. Of these
changes, on ly the commands that have been el im i nated wi l l affect
the programs that you are convert i ng .

T h e Differences Between DOS and ProDOS

The PREFIX command is expla ined i n
Chapter 3 .

File Organization and Names

This sect ion assumes that you are fam i l iar with the organ izat ion
and names of ProDOS f i les . I f you are not , read Chapter 2 of th is
man ual .

If a program refers to other f i les - for example , if it creates and
uses a random-access text f i le , or if i t cha ins to another program
- then i t is l i kely that you wi l l need to change the way that the
program names these fi les.

F i rst, the f i lenames i n a converted program m ust al l be changed to
ProDOS f i lenames: they can be no more than 1 5 characters long ,
consist on ly of letters, d ig i ts , and per iods, and m ust beg i n w i th a
letter.

Second , when the prefix is em pty, ProDOS and DOS can use
f i lenames in exactly the same way: each fi le has a f i lename, and the
d isk contai n i ng that f i le can be specif ied us ing the slot and d rive
opt ions . Thus , i f a converted program uses ProDOS f i lenames, i t
can work without further mod if icat ion to the f i lenames, but on ly i f
the prefix is empty. The prefix is em pty immed iately after you start
up ProDOS, and i t also is empty after you use the command

However, i t is preferable not to wr i te or use programs that use fi les
in th is manner. Such programs place al l f i les into a d isk 's volume
d i rectory. Because a d isk 's vol ume d i rectory can hold no more
than 5 1 fi les, it soon f i l l s up if programs don ' t use d i rector ies of
the i r own . You should revise each program so that i t , and a l l i ts
f i les , are stored in a separate d i rectory.

DOS lets you ass ign a volume num ber to a d isk when you i n i t ia l ize
it . ProDOS does not support volume num bers. To mod ify a
program that uses volume num bers, ident ify each d isk by its
vol ume name, not num ber.

Appendix B: DOS, ProDOS, and Applesoft

See the ProDOS Technical Reference
Manual for more detai ls on open f i les.

DOS Commands That Went Away

Six DOS commands are not supported by ProDOS. They are

FP
I N T

FP and /NT

I N IT
MAXFI LES

M O N
N O M O N

Because ProDOS supports on ly Applesoft BAS IC , i t has no need
for commands that switch from one vers ion of BAS IC to another. If
you use these commands, you get a ·:::: \ ' ! · !

/NIT

Because of the d i fferent types of d isks that m ust be i n i t ial ized , i t
wou ld take up too much memory space for ProDOS to have a bu i l t
i n formatt i ng command l i ke I N IT. Thus , I N IT is replaced by a
command i n the ProDOS F i ler. Because you can no longer format
a d isk from with i n a program , it is now essent ia l that you always
have an adeq uate supply of b lank formatted d isks.

Us ing I N IT you could ass ign any name to the g reet i ng program on a
d isk ; with ProDOS, a greet i ng program must be named STARTU P.
However, ProDOS lets you use a BASIC , mach ine- language, or
EXEC program as the STARTUP program ; with DOS, on ly BASIC
g reet ings were possi b le .

I f ProDOS encounters the I N IT com mand i n a program , i t g ives you
:···· :···. :··· . . ···. :··· a :::. Y r··l l j···j ,:·:, t:

MAXFILES

With DOS, the maximum n u m ber of f i les that could be open at
once was th ree by defau l t ; th is could be raised as h i gh as 1 6 by
usi ng the MAXFI LES comman d . With ProDOS, any program can
have up to e ight f i les open s imu l taneously. A 1 024-byte f i le buffer
is a l located to each fi le (or 5 1 2 bytes to a d i rectory f i le) when i t is
opened .

The MAXFI LES com mand is not supported by ProDOS, but it wi l l
not cause a n error.

The maxi mum BAS IC program size for a 64K Apple I I is

$AOOO - $400 * Maxi mum n u m ber of open f i les

The Differences Between DOS and ProDOS

Refer to the specific command
summary i n Append ix A for the new
syntax.

MON and NOMON

With DOS, the commands M O N and N O M O N a l lowed you to
d isplay al l d isk commands, d isk i n put , and d isk output without
pr i n t ing them . These commands are not supported by ProDOS.
MON has been completely removed . I f you r program uses M O N ,
you wi l l get a �:: ·/ r ru:r.,: ::::T: !;:: c r::: . N O M O N is ignored b y ProDOS,
but wi l l not cause an error.

Improved DOS Commands

Fou rteen DOS commands received face l i fts. A l l can be used i n the
same manner as with DOS, so you don't have to change them
when convert i ng a program , but each has added featu res. The
fol l owi ng sect ions descr i be the new capab i l i t ies of these
commands.

The improved commands are

APPEND
CATALOG
PR#
RUN

APPEND

B LOAD
CHAI N
OPEN
WRITE

BRUN
CLOSE
POSIT ION

BSAVE
I N #
READ

The APPEND command has two new uses. You can now use i t to
append new data to any type of f i le. You can use i t also to append
data start i ng at the beg i nn i ng of the record i m med iately fol lowing
the last log ical record i n a random-access text f i le .

BLOAD

The B LOAD command has th ree enhancements. You can now use
i t to load the b i nary i mage of any type of fi le, not j ust b inary f i les.
With DOS you had to load an ent i re b inary fi le i nto memory. With
ProDOS you can load any port ion of a f i le . I n add it ion , you have
the opt ion of specify ing the n u m ber of bytes to be transferred as a
start add ress and an end add ress i n memory, or as a start add ress
and the number of bytes to be transferred .

BRUN

As with B LOAD, you can load any port ion of a b inary f i le i nto
memory and run i t . The number of bytes can be specif ied using a
start and an end address, or as a start add ress and the n u m ber of
bytes to be transferred .

Append ix B: DOS, ProDOS, and Applesoft

BSAVE

You can now transfer (us ing BSAVE) i nformat ion stored i n memory
i nto any type of f i le . The n u m ber of bytes to be saved can be
specif ied us ing a start add ress and an end add ress, or as a start
add ress and the num ber of bytes to be transferred .

CATALOG

You can now abbreviate the CATALOG com mand as CAT.
CATALOG shows you an 80-co lumn d isplay of f i le i nformat ion , and
CAT shows you a 40-co lumn d isplay of i nformat ion . Both show you
the contents of a s ing le d i rectory; thus you m ust specify the name
of the d i rectory whose contents i nterest you . I f you omit a
f i lename, you see the contents of the prefix d i rectory.

I n add i t ion , CATALOG now d isplays i nformat ion about the f i le 's
log ical end of f i le , the f i le 's record length (random-access text
f i les); the f i le 's last load add ress (b i nary f i les); and the dates when
the f i le was created and last mod if ied .

CHAIN

The CHAI N command now works for Applesoft programs (wi th
DOS i t d i d not) . I n add it ion , one program can chai n to any l i ne of
another program , not just to the beg i nn i ng of a program as before.

CLOSE

Now you must close a f i le from with i n a program . Fai l u re to do so
can resu l t i n loss of data.

IN# and PR#

You can now use these commands to des ignate mach ine- language
rout i nes stored in memory as the character i n put and output
rout i nes. You can also use them to set the add ress of a s lot 's
1 /0 rout i nes.

OPEN

You can now use the OPEN command to open any type of f i le for
access. Fi le buffers are now a l located when the f i le is opened ,
i nstead of i n response to the MAXFI LES com mand , as with DOS.

The Differences Between DOS and ProDOS

Append ix A contains summaries of
these commands.

POSITION

The POSIT I O N command now uses either the F# opt ion or the
R# opt ion to read and d iscard the specif ied number (#) of f ie lds
from a f i le . The F# opt ion is consistent with the ProDOS def i n i t ion
of f ields ; the R# opt ion is for DOS compat i b i l ity.

The ProDOS vers ions of READ and WRITE al low you to specify the
n u m ber of f ie lds and bytes to be read and d iscarded . Thus , the
POSIT I O N command is not requ i red by ProDOS; i t is reta ined for
compat i b i l i ty with DOS.

READ

With DOS, the READ command a l lowed you to use the B# opt ion
to posi t ion forward a num ber of bytes before performing a read .
The ProDOS vers ion of READ al lows you to use the F# and
B# opt ions to posi t ion forward a number of f ie lds and bytes. This
makes the POSIT ION command unnecessary for READ (and also
for WRITE).

RUN

The ProDOS vers ion of the RUN command a l lows you to specify
the l i ne number at which the program is to start runn i ng .

WRITE

The ProDOS vers ion of the WRITE command al lows you to use the
F# and B# opt ions to posi t ion forward a n u m ber of f ie lds and
bytes.

New ProDOS Commands

I n add it ion to the usual DOS commands, ProDOS su pports e ight
new commands. They are

CAT
STORE

CREATE
RESTORE

FLUSH
- (DAS H)

PREF IX
FRE

The fol lowing sect ions g ive br ief summaries of each of these new
commands.

Appendix B: DOS, ProDOS, and Applesoft

CAT

CAT d isplays 40 columns of d i rectory f i le i nformat ion , wh i le
CATALOG d isplays 80 columns . Both commands d isplay
f i lenames, the i r types, lengths , and last mod if ied dates. CATALOG
add it iona l ly d isplays the date the f i le was created , each f i le 's
logical end of f i le , and add i t ional storage i nformat ion (record
length for random-access text f i les, and last load add ress for
b inary f i les).

CREATE

The CREATE command a l lows you to create a f i le of any type, but
i t is pr imar i ly used to create d i rectory f i les. BASIC (type BAS) , text
(type TXT), and b inary (type B I N) f i les are automat ical ly created by
the SAVE, OPEN , and BSAVE commands, respect ively. Text f i les
can also be created by the APPEND comman d . Var iab le f i les
(type VAR) are created by the STO RE command .

You do not have t o specify t h e size of a created fi le. Additional blocks
are added to a tile as they are needed .

FLUSH

The FLUSH com mand causes al l data that may be tem porari ly
stored i n a f i le 's buffer to be written to the f i le . Usi ng the FLUSH
command after every statement that pr in ts data to a f i le ensures
that no data wi l l be lost i f the program is acc idental ly stopped . I t
also s lows down a prog ram s ign i f icant ly.

PREFIX

The PREF IX command al lows you to set the name of the d i rectory
that contai ns the f i les with which you are work i ng . With the prefix
set , all f i les you name are assumed to be in that d i rectory.

I f the prefix is empty, f i les are assumed to be i n the main d i rectory
of the d isk i n the last referenced s lot and d rive. I n th is case,
ProDOS f i lenames work exact ly l i ke DOS f i lenames.

STORE and RESTORE

The STO RE command places the names and val ues of a l l the
var iables currently defi ned by a BASIC program i n to a var iab le f i le
(type VAR). The RESTO RE command adds the contents of a
var iab le f i le to the var iab les that are cu rrently i n memory.

The Differences Between DOS and ProDOS

FRE command : see the sect ion
"Changes to Applesoft . "

U s i n g H I MEM to place machine
language rout ines safely i n memory:
see the ProDOS Technical Reference

Manual.

Refer to the sect ion " H ig h-Resolut ion
Graphics With ProDOS" i n Chapter 9 .

- (DASH)

This command , consist i ng of a s ing le character, is cal led the DAS H
command . I t is a gener ic RUN command , a l lowing you to run a
BASIC , b i nary, EXEC, or system program . It does not let you use
any of the specif ic opt ions afforded by the RUN , BRU N , or EXEC
commands.

FRE

The FRE command lets you use the fast housekeep ing rout i nes
that ProDOS has.

Changes to Applesoft

I n order to keep a congenia l work ing relat ionsh i p between
ProDOS and Applesoft , i t is necessary for ProDOS to i ntercept
and perform some of the com mands usual ly performed by
Applesoft . The fol lowi ng sect ions expla in the new en hancements
or restr ict ions upon these ten com mands:

H I M EM
I N PUT
N OTRACE

HIMEM

HGR
I N #
FRE

HGR2
PR#

TEXT
TRACE

Each t ime a f i le is opened , ProDOS uses the H I MEM set t i ng to
determ ine where i t should p lace the f i le 's 1/0 buffer. Because
ProDOS manages memory in 256-byte chunks, you must always
make sure that H I MEM ind icates a 256-byte ($ 1 00) boundary i n
memory.

HGR, HGR2, and TEXT

Because the Apple l l ' s two h igh-resol ut ion pages take up a
considerable port ion of the Apple l l ' s memory, ProDOS normal ly
uses them as Applesoft program memory. I f , however, you use the
HGR or HGR2 command (or both) , the Applesoft program (i f any) is
cleared out of the correspond ing g raph ics page. The g raph ics
pages remain reserved for g raph ics un t i l the TEXT command is
issued .

Appendix B: DOS, ProDOS, and Applesoft

INPUT

The Applesoft I N PUT command has been made more usefu l . Th is
command always reads an ent i re l ine of text , f rom either the
keyboard or a f i le . As before, mu l t i ple var iab les i n an I N PUT
statement are ass igned st r ings of characters that are separated by
commas i n the i n put str i ng . When you use ProDOS, the last
var iable in the I N PUT l ist is ass igned a l l the remai n i ng characters
in the l i ne , i nc lud ing commas and colons. Th is means that you can
now use a s ing le I N PUT statement , such as

to read in any arb i t rary str ing of characters.

IN# and PR#

If you use one of these commands from immed iate mode, it is a
ProDOS comman d . L i kewise, if you use one from wi th i n a
program , preceded by (coNTROL) -@), i t is a lso a ProDOS
comman d . I f you use IN# or PR# f rom with i n a program wi thout a
lead ing (CONTROL) -@), i t is an Applesoft comman d , and wou ld
cause ProDOS to become d isconnected if i t were executed . Thus ,
ProDOS i ntercepts these Applesoft commands and ignores them .

If you f ind that a PR# or I N # command from wit h i n a program is not
havi ng the proper effect, you probably forgot the (CONTROL) -@) .

TRA CE and NOTRA CE

These Applesoft commands d i d not work with DOS. They now
have the i r normal effect , descr i bed i n the Applesoft BASIC

Programmer's Reference Manual, on ProDOS commands as wel l
a s Applesoft commands.

FRE

I f you use the FRE command with i n a program preceded by a
(coNTROL) -@), i t is a ProDOS comman d . I t is an Applesoft
command if you use i t in a program without the lead ing
(CONTROL)-@) . I n th is case , housekeep ing takes p lace us ing the
s low Applesoft rout i nes.

Changes to Applesoft

I :

Error Messages

21 1 Hand l i ng Errors From Applesoft
214 Discussion of ProDOS Errors
214 RANGE ERROR (Code 2)
214 NO DEVICE C O N N ECTED (Code 3)
215 WRITE PROTECTED (Code 4)
215 END OF DATA (Code 5)
217 PATH NOT FOU N D (Code 6 or Code 7)
217 1 /0 ERROR (Code 8)
218 D ISK FULL (Code 9)
218 F ILE LOCKED (Code 1 0)
218 I N VAL ID OPTI O N (Code 1 1)
218 N O BUFFERS AVA I LABLE (Code 1 2)
219 F ILE TYPE M ISMATCH (Code 1 3)
220 PROGRAM TOO LARGE (Code 1 4)
220 N OT D I RECT CO M MA N D (Code 1 5)
220 SYNTAX ERROR (Code 1 6)
220 D I RECTORY FULL (Code 1 7)
221 F ILE NOT OPEN (Code 1 8)
221 DUPL ICATE FI LENAME (Code 1 9)
221 F ILE BUSY (Code 20)
221 F ILE(S) STI LL OPEN (Code 2 1)

Append i x C : Error Messages

Table C - 1 . Error Message Formats

Refer to Chapter 5 of this manual and
to the Applesoft BASIC Programmer's
Reference Manual tor more detai ls
about ONERR GOTO.

Error Messages

When ProDOS detects an error caused by one of its commands, i t
normal ly stops the program that is runn ing and d isplays a
message descri b ing the error. These messages are i n add it ion to
the usual messages generated by Applesoft . The source of an
error messages is i nd icated by the character that precedes the
message. Tab le C- 1 i l l ustrates these characters.

Applesoft Message ProDOS Message

I f a ProDOS message occurs when you are us ing the Mon i tor, the
system is reset to BASIC before the message is d isp layed .

Handling Errors From Applesoft

Using Applesoft 's ON ERR GOTO command , you can write
Applesoft error-hand l i ng rout i nes to correct ProDOS and
Applesoft errors that wou ld normal ly i nterrupt your program .

When a ProDOS or Applesoft error occurs fo l l owing an O N ERR
GOTO command i n an Applesoft program , a code number for the
type of error is stored i n decimal memory locat ion 222 . The
statement

.· .···, .···, .·-, · ..

sets the value of t::. to the code of the offend i n g error. The n u m ber
of the Applesoft program l i ne being executed at the t ime of the
error can be found i n decimal locat ions 2 1 8 and 2 1 9 . The
statement

sets the value of L . . to that l i ne num ber.

Hand l i n g Errors From Applesoft

Table C-2. ProDOS Error Codes

The ProDOS error messages, the i r codes, and the most common
cause for each are descr i bed i n Table C-2. Table C-3 shows which
error messages are caused by each of the ProDOS commands.
The P roDOS error messages are d i scussed i n g reater detai l later
i n this append ix . The Applesoft error codes and the i r
correspond ing messages are shown i n Table C-4.

Code

2
3
4
5
6
7
8
9

1 0
1 1
1 2
1 3
1 4

1 5
1 6
1 7
1 8
1 9

20
2 1

ProDOS Message
.... . -. : : .-. :- -.
;..· H:-.: : . r- r- ;.,.· rr· : ; r:-·

-. ,... : : .,. .-. ,... .-. ,-, � : � : ,... .-. ... ,... ,..,
·-· �:c ·

.. : � :_. c ._ .. _. , " , _. ,
. ,.., .,. ... ,... .-. .-. . -........ . -. ... ,...

�·�f:: l 1 t i' f::U l t.L i t.U

p.:n r:� f"iHTH :... : 1:..: ._. , : .. : : : · :

.,. .-. ,... ,.., ,.., ,-, ,.., 1 .: :_: :... : ··, ; '·. '-' ! '·.

,... .,. , ,... : .-. . -, , .. ,... ,.., r l Lt. LU iJ .. tu

· .-. ,.., , , ,... ,... ,... ,..,.-, .-. : : .-. ... , .-. .-. : ,... N� bUi i t�� HVH l LHbLt

'' ' C• c ··· : ,-, ,, • . .: : : " · '-' .l. i \ !.. '-· i '- ·. i ; '-' !... !..

!.. i i i.. i..' l i '-"·' ; .l. L !.. ;_::_: ._: ;

!- i i i- :' '-: ': ·-: = ; ; ;
. - - - · - · - · - - - - · - ·

Most Common C�use

Command opt ion too smal l or large.
No device found i n specif ied slot .
Write-protect tab on d isk .
Read beyond end of f i le or record .
No f i le with i nd icated pathname.
No f i le with i nd icated pathname.
Door open , or d isk not formatted .
Too many f i les on a d isk .
Attempt to wr i te to a locked f i le .
Opt ion inappropriate for command .
Memory fu l l , f i le can ' t be opened .
D isk f i le wrong type for command .
Apple l l ' s memory too smal l
(CHAIN) .
Command m ust be i n a program .
Bad f i lename, opt ion , or comma.
Volume d i rectory has 51 f i les .
Attempt to access a closed f i le .
RENAME, CREATE name al ready
used .
F i le al ready open .
Last program d idn ' t c lose f i le(s).

Appendix C : Error Messages

Table C-3. Errors by ProDOS Command

02 03 04 05 06 07 08 09 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 20 2 1

APPEND X X X X X X X X X X X X

BLOAD X X X X X X X X X

BRUN X X X X X X X X

BSAVE X X X X X X X X X X X X

CAT X X X X X X X X X X

CATALOG X X X X X X X X X X

C H A I N X X X X X X X X X X X

CLOSE X X X

C REATE X X X X X X X X X X X

DELETE X X X X X X X X X X

EXEC X X X X X X X X X

FLUSH X X X X

FP X X

FRE X

I N T X X

I N # X X X X

LOAD X X x X X X X X X

LOCK X X X X X X X X

OPEN X X X X X X X X X X X X X

POSITIO N X X X X X X X

PREFIX X X X X X X X X

PR# X X X X

READ X X X X X X X

RENAME X X X X X X X X X X X

RESTORE X X X X X X X X X

R U N X X X X X X X X X X X

SAVE X X X X X X X X X X X X

STORE X X X X X X X X X X X X

U N LOCK X X X X X X X X

WRITE X X X X X X X X X

- X X X X X X X X X X X X X

Hand l i n g Errors From Applesoft

Table C-4. Applesoft Error Codes

Refer to the Applesoft BASIC

Programmer's Reference Manual for
more i nformat ion about the Applesoft
error codes.

Code Error Message or Descript ion

0 , ., , .:· . i
..

! ·.! T ·:· !· : ::: , ! ; · : ···· , , , ,

1 6 ·:::· '· ' '
. ! .. ::::: :· ·' :::. : · . '···: : ... ' '··'

22 ::::: i:::: ·r : . . .: i? i···i i ·.: .t � � i ' ' '·..i , ,-·:: ; <:: : ; ;:::·

42 ; l i . ..i j ::::: ;···· ::: .. , : : : :

53 I ! ···· , ., ,. .. , ' - " , , ... , ,. .. ! ; · ·

69 ' "· ;:::· ::;:· ::::· : . . , .
77
90

1 07

...
i_) : __ _; i :_..: ;-·· i ' i i:::. i · ; :_..: ;-:·

... ! ;-··; ; :···

i::.: : : : : · ... ' ' ... ; ; ' '··· ; · .. ,;, ;

1 20 i? E C '· , , ' r:; : :·, , .. ,.
1 33
1 63
1 76
1 9 1
224

: : ; ... :·. ·

i:::· :. :

254 Bad response to an I N PUT statement .
255 (coNTROL) -@) i n terrupt attem pted .

Discussion of ProDOS Errors

The fo l l owi ng sect ions l ist the ProDOS errors, the i r probable
causes, and possi b le cu res.

RANGE ERROR (Code 2)

Occurs when the value of an ProDOS command opt ion is too large
or too smal l . Table A- 1 shows the maximum and m in imum values
for each opt ion .

Note: T h e u s e o f val ues outside t h e i n d i cated ranges d oes n o t always
cause the F: H i ··i C F f::: G:Y: C; G:: message. Any ProDOS command opt ion
that is less than 0 or greater than 65535 causes the ·:: ';' !· i T A >: f::: i? i? C F
message, not the :;:: t=H· ; c; r.::: ::::: ::::op c F: message.

NO DEVICE CONNECTED (Code 3)

Occu rs when you specify a slot that doesn ' t contai n a card ; a slot
that contai ns a card not con nected to its device; or i f there is no
d isk in the d r ive (some d rives on ly).

Append ix C: Error Messages

If you get th is error when us ing a device for the f i rst t ime, go
through the device's i nstal lat ion i nstruct ions agai n . I f you have
used the device before and you get th is error :

1 . You might have specif ied the wrong slot ; try the command
agai n .

2 . Turn off you r Apple I I , open i t , a n d gent ly rock t h e device' s card
back and forth unt i l i t is f i rm ly seated . Close the Apple I I , start
up ProDOS, and try again .

3 . I f the problem persists, consu l t you r dealer.

WRITE PROTECTED (Code 4)

Occurs when ProDOS attempts to store i nformat ion on a d isk , and
the d isk d rive does not detect a write-enable notch or cutout on
the d isk 's outer case. These are the most l i kely causes:

• There is an ad hesive label p laced over the d isk 's write-enable
notch to prevent the writ i ng or delet ion of i nformat ion on the
d isk . Remove th is label , and the d isk is no longer protected .

• There is no write-enable notch on the d isk . Th is i s true of the
or ig i nal copy of the /EXA M P LES d isk , for example. I f you are
sure you no longer need the or ig i nal d isk , you can cut a notch i n
t h e d isk 's case you rself. Use another d isk 's notch a s a template.

END OF DATA (Code 5)

Occurs when you try to retr ieve i nformat ion from a port ion of a
text f i le where no i nformat ion has ever been stored . Any byte
beyond the last f ie ld in a sequent ia l text f i le , or beyond the last
f ie ld of any record of a random-access text f i le contai ns the
value 0 . Zero is the ASC I I code for a nu l l character, a nothing; any
command that causes the retr ieval of th is character resu lts i n the
E i·-; u C+ u :=rr H message. The message usual ly occurs after an
I N PUT or a GET command; i t can ar ise i n several d ifferent ways:

• Too many successive I N PUTs or an I N PUT with too many
var iab les. Each I N PUT statement causes at least one add it iona l
adjacent f ie ld to be read i nto the Apple I I . Each I N PUT variab le
causes one add it ional adjacent e lement to be read into the
Apple I I .

• Too many successive GETs . Each GET reads one add it iona l
adjacent byte or character i n to the Apple I I .

D iscussion of ProDOS E rrors II

II

• The B# (Byte) opt ion i n a READ or POSIT ION command is too
large. In sequent ia l f i les , this opt ion must not specify a byte
beyond the last (RETURN)character in the f i le . In random-access
f i les, the B# opt ion must not specify a byte beyond the last
(RETURN) character i n the current ly selected record . Remem ber,
the f i rst byte i n a f i le or a record is byte 0 .

• The F# (F ie ld) opt ion i n a READ or POSIT ION command is too
large. In seq uent ia l f i les , this option m ust not specify a f ield
beyond the last exist i ng f ie ld in the f i le. In random-access f i les,
POSIT I ON 's F# opt ion m ust not specify a f ie ld beyond the last
exist i ng f ie ld in the currently selected record .

READ and POSIT ION scan forward th rough the contents of the
f i le , byte by byte, look ing for the F#-th (RETURN)character. I f
e i ther encounters a 0 byte (the nu l l character) before f i nd i ng the
requ i red (RETURN)character, the E r -! L) :::>:: f.:i H T !4 message is g iven
i m med iately: i t is not necessary actual ly to I N PUT or GET the
nu l l character.

• The F# (F ie ld) opt ion i n an EXEC command is too large. Th is
opt ion can specify the f i rst f ie ld beyond the last exist i ng f ie ld in
a f i le , but attem pt i ng to specify the second f ie ld beyond the
f i le 's end causes the E:: r·-! Ci Ci F-- [) i:::! "T. H message. Remem ber,
RO specif ies the f i rst f ie ld i n a f i le .

• The R# (Record) opt ion in a READ command specif ied a
random-access f i le record i n which noth i ng is yet stored . Before
you can READ from a part icu lar record in a random-access f i le ,
you m ust f i rst WRITE some i nformat ion in to that record . RO is
the f i le 's f i rst record , and so on .

ProDOS uses the OPEN command 's L# opt ion for calcu lat i ng
where t he R#-th record beg ins , so t he OPEN preced i ng READ
m ust use the same L# opt ion value as the OPEN that preceded
WRITE for that f i le . I f no L# opt ion is specif ied , the L# with which
the f i le was or ig ina l ly opened is used .

Appendix C : Error Messages

PATH NOT FOUND (Code 6 or 7)

Occurs when a ProDOS com mand specif ies a val id pathname that
does not i nd icate an exist i ng f i le , or when it specif ies an i nval id
pathname.

Th is message may arise i n var ious ways:

• You acc idental ly m isspel led an element of the path name.

• You used a part ia l pathname that doesn ' t apply to the current
prefix.

• You used a partial pathname, and the d isk i nd icated by the
prefix is no longer on l i ne .

• The specif ied f i le does not yet exist .

1/0 ERROR (Code 8)

Occurs after an unsuccessfu l attempt to store data or retr ieve data
(ProDOS tr ies 96 t imes, then g ives up) . This message can occur i n
t h e fol lowing ways :

• The selected or defau l t d r ive 's door is open . Close the door of
the d isk dr ive.

• There is no d isk i n the d isk dr ive i nd icated by S# and D#. Put a
d isk i n to the d r ive and close the d rive door.

• The d isk i n the selected or defau l t d isk dr ive is not formatted .
Use the ProDOS Fi ler to format the d isk .

• The d isk is i ncorrectly seated i n the d isk dr ive. Open the dr ive
door, pu l l the d isk out , put it back i n , c lose the door, and t ry
agai n .

• T h e ProDOS command 's D# (Dr ive) opt ion specif ied a non
existent d isk d rive. The defau l t d r ive is now the non-existent
d r ive. J ust specify the correct D# option with the next ProDOS
command to reset the defau l t .

• The system is t ryi ng to access a 1 3-sector d isk . Use the
DOS 3.3 program MUFF IN to update your d isk to 16 sectors.

• A ProDOS command 's S# (S lot) option specif ied a slot that
does not contai n a d isk control ler card , or the snum opt ion of
PR# or I N # specif ied a slot that contai ns no card .

D iscussion of ProDOS Errors

Refer to Append ix A to see what
options go with which commands.

The defau l t value of S# now i nd icates a slot that doesn ' t exist .
F i rst , you m ust get a prompt back , then you m ust reset S#. To
reset the slot correctly:

1 . Press (coNTROL)- (RESET) .

2 . I f you see a Mon itor prompt (*) , press (coNTROL)-@)(RETURN) .

3 . Type c: :=: T H_ U C :::; :fi: .. D i* . T h i s t ime use a val id slot n u m ber.

DISK FULL (Code 9)
Occurs when ProDOS attempts to store i nformat ion on a d isk and
f inds that no more storage space is avai lab le on that d isk . The
n u m ber of free b locks on a d isk is i nd icated when you d isp lay the
catalog of the d isk 's volume d i rectory. I f you receive the [l I :=.:y:

F U L L. message, rest assured that al l f i les are c losed , and
that ProDOS saved for you al l i t cou ld (leaving you with some
port ion of you r f i le not on the d isk) . I f you receive th is message
whi le savi ng a f i le called STUFF, the f i rst th i ng you shou ld do is

and then save your program on another d isk that has u nused
room.

FILE LOCKED (Code 10)
Occurs when you t ry to APPEND , BSAVE, DELETE, RENAME,
SAVE, STORE, or WRITE a locked f i l e . Check the CATALOG
d isplay: the names of locked f i les are preceded by an aster isk (*) .
F i les are locked to prevent the i r being acc idental ly overwritten .
Use another d isk or un lock the desi red f i le .

INVALID OPTION (Code 1 1)

Occurs when you use an opt ion that is e ither non-existent or that
i s i nappropr iate for the g iven comman d .

NO BUFFERS AVAILABLE (Code 12)

When a f i le is opened by the APPEND , CAT, CATALOG, EXEC,
OPEN , or - (DASH) comman d , a 1 K buffer in memory is ass igned
for the temporary storage of data and f i le i nformat ion . There can
be a maximum of eight f i les open at a t i me. This error can occur i f
one of these commands is used when e ight f i les are al ready open ,
or i f there is not enough free memory for a buffer to be ass igned .

Appendix C: Error Messages

The CATALOG, EXEC, and - commands a l locate buffers, use
them , and then release them; the OPEN command creates a buffer
that exists un t i l i t is released by a CLOSE comman d . F i les are not
automatical ly c losed when a program comes to an end .

I f you get th is error, you can not use any o f these commands un t i l
you close one o f the open f i les.

This error also occurs i f you t ry to B LOAD a f i le into the port ion of
memory used by the system (above H I M EM or below LOM EM) .

FILE TYPE MISMATCH (Code 13)

Occurs when a ProDOS command expects to use one type of f i le ,
and the specified f i le is of another type. Th is message ar ises from
several d i fferent i ncorrect com b inat ions of ProDOS commands
with exist i ng f i le types. Here are the correct com bi nat ions :

Command

CATALOG pn , PREFIX pn

LOAD pn , RUN pn , SAVE pn,
CHAIN pn

RESTO RE pn , STO RE pn

EXEC pn

OPEN pn , APPEND pn

BRUN pn

B LOAD pn , BSAVE pn

- pn

Fi le Type
pn must be a d i rectory f i le (D I R).

pn m ust be an Applesoft program
fi le (BAS).

pn m ust be an Applesoft var iable
f i le (VAR) .
pn m ust be a text f i le (TXT).

pn m ust be a text f i le (TXT) un less
Ttype is used , then f i le type must
match Ttype.
pn m ust be a b inary f i le (B I N) .

pn m ust be a b i nary f i le (B IN)
un less Ttype is used , t hen f i l e type
must match Ttype .
pn m ust be type BAS, B I N , TXT,
or SYS.

The f i le named STARTU P i n the vol ume d i rectory of a startup d isk
m ust be of type BAS, B I N , TXT.

D iscussion of ProDOS Errors

PROGRAM TOO LARGE (Code 14)

Occurs when a ProDOS command attempts to p lace a d isk f i le in to
the App le l l ' s memory, and f inds the ava i lab le memory i nsuff ic ient
to conta in the ent i re f i le . Th is error can be caused by the CHAI N ,
LOAD, RESTORE, RUN , or - commands. You (o r a previous
program) may have set H I M E M too low for the new program to f i t .

I f you get th is error, you can spl i t the program i nto smal ler port ions
and use the CHAIN command to transfer between one port ion of
the program al\d the other.

Remem ber that a program requ i res an add it ional 1 K of memory
for each f i le that i s s imu l taneously open .

NOT DIRECT COMMAND (Code 15)

Occurs when you t ry to use one of the text f i le commands
APPEND , OPEN, POSITI O N , READ, or WRITE from i rr.med iate
execut ion mode. These ProDOS commands can be used on ly from
with i n P R I NT statements in program l i nes.

SYNTAX ERROR (Code 16)

Occurs when ProDOS encounters a syntax error i n a ProDOS
comman d . Check the manual or the he lp screens for the exact
syntax requ i red for the command in q uest ion . The problem may
be a pathname with i l legal characters i n i t , an i ncorrect opt ion
sym bol , a m issing opt ion , or a m issing or i ncorrect separator
(usual ly a comma). This message also ar ises if an opt ion value or
command q uant ity is a negat ive n u m ber or i s g reater than 65535.

I f a l l ProDOS com mands i nexpl icably cause the ·::: ··! ' i· ·! T !=i ::< !:: !? f::· u f::·

message, ProDOS is not started u p or is "d i scon nected " from
i n put and output. To restore, type C:: f=! U.... J. (}:;) ;:� from BASIC (from
the Mon itor, press (coNTROL)-@)to enter BASIC , then type
C fiL . . L.. :!. !::! (:! ;:�) . I f th is doesn ' t work , start up the d isk again .

DIRECTORY FULL (Code 17)

A ProDOS vol u me d i rectory f i le can hold u p to 5 1 f i les. If a BSAVE,
CREATE, OPEN, SAVE, or STORE command i nd icates a f i le i n a
vol u me d i rectory that al ready conta ins 5 1 fi les, you get th is error.
To correct the error, save the fi le i nto another d i rectory or onto
another d isk , then use the Copy F i le u t i l i ty to move some f i les from
the vol u me d i rectory in to another d i rectory.

Appendix C: E rror Messages

FILE NOT OPEN (Code 18)
Occurs when a command is issued that can on ly act upon an open
f i le . This error can be caused by the POSIT I O N , READ, and WRITE
commands . You must open a f i le before us ing any of these
commands.

DUPLICATE FILENAME (Code 19)
Occurs when you CREATE or RENAME a f i le us ing a pathname
that al ready exists.

FILE BUSY (Code 20)

Occurs when you CAT, CATALOG, DELETE, or RENAME a f i le that
is a l ready open . You m ust close a f i le before us ing one of these
commands on that f i le .

FILE(S) STILL OPEN (Code 21)

Occu rs when program execut ion is i nterrupted whi le one or more
f i les are st i l l open (for example , by another error or !coNTROL)-@)).
You m ust close a l l open f i les before you issue another LOAD or
RUN statement .

Discussion of ProDOS Errors

Extras

225 About Th is Append ix
225 Using the System Date and T ime
226 Using T I M E
226 Read ing From ProDOS D i rectories
227 The Applesoft Programmer's Assistant (APA)
228 Start i ng APA
229 Automatic L ine N u m beri ng
230 Turn i ng Off Automatic L ine N u m ber ing
230 Renu m ber ing a Program
233 Putt ing a Program On Hold
233 Merg ing Two P rograms I nto One
236 Delet i ng Remarks From a Program
236 Disp laying Control Characters
236 Suppress ing Control C haracters
237 Calculat i ng a Program 's Length
237 P rod uc ing a Cross-Reference L ist i ng
238 Convert ing Decimal to Hex and Hex to Dec imal
238 Clear ing the APA Program From Memory

Appendix D: Extras

Extras

About This Appendix

This append ix descr i bes the usefu l programs that are stored i n the
d i rectory /EXA M P LES/EXTRAS. They perform the fo l l owi ng
funct ions :

• TIME a l lows you to read and set the system date and t ime so
that you r f i les are marked with the proper date.

• READ. D I RECTORY is an example of how to read from a
d i rectory f i le .

Using the System Date and Time

ProDOS has two memory locat ions that contain the current date
and t ime . I f you have a clock/calendar card , i nstruct ions for
mak ing i t work with ProDOS are in the sect ion "Us ing a
Clock/Calendar Card " i n Chapter 9 .

I f you don ' t have a clock/calendar card , ProDOS takes whatever
d ate and t i me are stored in the system date and t ime locat ions ,
and marks a l l created and mod if ied f i les with that t i me. The
program T I M E is an Applesoft program that a l lows you to read and
set the system date and t ime locat ions so that you r f i les are
marked with the current date and t ime .

Using t h e System Date and Time

To set the t ime on a clock/calendar
card , refer to the manual for the card .

D$ is (CONTROL) -@].
O p e n d i rectory.

Prepare to read

d i rectory name,

t i t le l i ne ,

b lank l i ne ,

l i nes of d i rectory,

unt i l a b lank is read .

Pr int block use and close d i rectory.

Using TIME

With the /EXA M P LES d isk i n any d rive, type the command

and the values of the d ate and t ime locat ions i n memory are
d isplayed . I f there is no t i me current ly set, the messages
< 1··-! C) L>:rrT: > and < r -! C:i

·
r I :·•: ::::: : are d isp layed . The program asks

you if you want to update the system date and t i me. I f you say yes,
you m ust enter the date i n the form

(where D O = 01 to 3 1 , M M M = JAN to DEC, YY = 00 to 99)

and the t i me i n the form

(where HH = 01 to 1 2 , MM = 00 to 59 , A M = A M or P M)

When enter ing days, hours , or m i n utes less t h a n 1 0 , you m ust type
in the lead ing 0 .

I f you have a c lock/calendar card , th is program d oes not set the
t i me on the card .

Reading From ProDOS Directories

L ike a l l other ProDOS f i les, d i rectory f i les can be opened and read .
When you read from a d i rectory f i le , ProDOS automat ical ly
i nterprets the i nformat ion in that f i le , and passes i t to you in an
u nderstandable and fam i l iar form-it g ives you the same l i nes of
text d isplayed by the CATALOG command . For example , to l ist the
/EXA M P LES d i rectory, you can use

.
:: :.

i :;_:

-· · .
.

... .
· -···

..;. : ;

T ;. ; :-··, ; l "T"
.;. ; : ; · : ... :

.!. 1-· L_ '··;· •. ;.·

L. J. :f :

L. . . ::j. :�:: ;

8 0 I N P U T � � � : P R I N T L 5 $

Appendix D : Extras

•

Table D- 1 . Di rectory L ine Composit ion

The f i rst l i n e returned is the name of the d i rectory being read . I f i t
is a volume d i rectory, i t is preceded by a s lash . The next l ine read
is the t i t le l i ne , shown below. The th i rd l i ne is always em pty.
Su bsequent l i nes, un t i l the next b lank l i ne , are the f i les i n the
d i rectory. The b lock cou nt is the last l ine read . Th is program is
stored i n the f i le /EXA M P LES/EXTRAS/READ . D I RECTO RY.

If you want to do i nterest i ng th i ngs with the st r ing you have just
read (such as write a program that lets you look th rough a d isk 's
d i rector ies) , you need to know the exact format of the returned
str i ng . A sam ple l i n e from a d i rectory looks l i ke th is

The specif ic contents of each character of a l i ne read f rom a
d i rectory are l i sted i n Tab le D- 1 .

Col u m n Use

2- 1 6
1 8-20
23-28
3 1 -39
4 1 -45
48-56
58-62
64-7 1
73

75-79
76-79

Locked or u n locked
F i lename
F i le type
B locks used by f i le
Date f i le was last mod if ied
T ime of last mod if icat ion (24 hour clock)
Date f i le was created
T ime f i le was created (24 hour c lock)
Logical end of f i le
Su btype ident i f ier : A = load Add ress

R = Record length
Load add ress (hexadeci mal)
Record length (dec imal)

The Applesoft Programmer's Assistant (APA)

The Applesoft Prog rammer's Assistant is a b i nary program named
APA. I t is i n the EXTRAS su b d i rectory on the ProDOS BASIC

Programming Examples d isk .

APA can save a lot of t ime when you wr i te or change Applesoft
programs. The table below l i sts APA's funct ions and the
commands you use to perform them. Each command is d i scussed
on the pages that fol low.

The Applesoft Progra mmer's Assistant {APA)

Function

Automat ic L ine N u m ber ing
Tu rn i ng Off Automat ic L ine N u m beri ng
Ren um beri ng a Program
Putt i n g a Program On Hold
Merg i ng Two Programs I nto One
Delet i ng Remarks From a Program
D isp layi ng Control Characters
Suppress ing Control Characters
Calcu lat i n g a Program 's Length
Prod uc ing a Cross-Reference L ist i ng
Convert i n g Dec imal to Hex and Hex to Dec imal
Clear ing the APA Program From Memory

Starting APA

Here is how to start u p the APA prog ram :

Command

AUTO
MANUAL
R E N U M BER
H O L D
M E RGE
C O M P R ESS
S H OW
NOSH OW
LENGTH
XREF
CONVERT
EXIT

1 . I n sert the ProDOS BA SIC Programming Examples d isk i n
d r ive 1 , a n d close t h e d rive door.

2 . I f the computer 's power is not yet o n , tu rn it on and go to Step 3 .

O R

I f t h e computer 's power is al ready o n , press
@) (CONTROL) - (RESET) .

3 . When t h e d isk d rive 's l igh t goes o u t and t h e ProDOS BASIC
Programming Exam ples startup d i sp lay appears, type

and press (RETURN) .

T h e d r ive wh i rs for a moment , whi le ProDOS relocates, loads, and
i n i t ia l izes APA.

By the Way: APA is loaded just below H I M E M , and H I M E M is reset to
just below APA. A l though they are both i n memory at the same t i me ,
APA and any Applesoft program you load are kept separate and can ' t
i nterfere with each other. I f you r program is extremely large, you may
need some of the memory taken up by the APA, but th is wi l l rarely be a
problem.

Append ix D: Extras

•

The space after A U T O is opt ional . The
start i ng l ine n u m ber and i ncrement
must be n u meric i ntegers i n the range
from 1 to 63999.

After APA is loaded , the APA startu p d i sp lay appears:

A P P L E S O F T P R O G R A M M E R ' S A S S I S T A N T

C O P Y R I G H T A P P L E C O M P U T E R , 1 9 7 9 - 8 3

]_

With the Applesoft ::! prompt on the screen , you can use any of
APA's commands. APA's commands can be used on ly i n
immed iate mode-they can not b e part o f another program .

Automatic Line Numbering

The AUTO command makes i t easier and faster to enter programs.
I t lets you specify

• what l i ne n u m ber to beg i n with

• the i ncrement between l ine n u m bers.

To specify a start i ng l i n e n u m ber of 1 00 and an i ncrement of 1 0 ,
type

and press (RETURN) . When you then press (sPACE) , t h e l i ne
n u m ber 1 �:'! !::: appears automat ical ly.

After you type the rest of the Applesoft program l i n e and press
(RETURN) and (SPACE) , t h e next l i n e n u m ber, J. j ::;:: , appears.

To specify a start i ng l i ne n u m ber of 1 00 , without specifyi ng an
i ncrement, s im ply type

i._: : : : : :
i : • ... : i · ... · .:. • ... · · ... ·

and press (RETURN) . T h e APA sets t h e i ncrement t o 1 0 .

If you wish to leave a l i n e n u m ber u n used , press (RETURN) and
then (SPACE) without typ ing an Applesoft program l i n e-the next
l i ne n u m ber appears, and no statement is entered u nder the
previous one.

I f you want to use a l ine n u m ber that the AUTO funct ion doesn ' t
provide (for example , to use t h e l i ne n u m ber 1 5 when t h e start i n g
l i ne n u m ber is 1 0 a n d the i ncrement is 1 0) , just type :!. 1::': i nstead of
press ing (sPACE) .

The Applesoft Programmer's Assistant (APA)

If you change you r m ind about a statement wh i le you are typ ing i t ,
press (coNTROL)-(8] . When you then press (SPACE) , t h e same
n u m ber reappears without the statement .

A l i ne n u m ber appears on ly if you press (SPACE) after the :J

prompt, so you can type a run-t ime command any t ime you see the
prompt , as long as you don ' t beg i n i t with a space. Th is means you
can RUN or L IST you r prog ram , or SAVE it and LOAD another,
clear the screen with H O M E , or see the CATalog-j ust as if APA
weren ' t there.

£. War n i n g
I t is poss ib le to overwrite APA w i t h run-t ime commands. When APA is
loaded , don ' t run a program that changes H I M E M or the 1 /0 hooks . And
don't press (RESET) .

Turning Off Automatic Line Numbering

To turn off automat ic l i ne n u m beri ng , type

!·.· : . ; ;

and press (RETURN) . MANUAL is t h e defau l t when you load APA. To
get automat ic l i ne n u m beri ng , you m ust use the AUTO comman d .

Renumbering a Program

The R E N U M B E R command renum bers the l i nes i n a l l or part of a
program i n memory. You specify the start i n g l i ne n u m ber and
i ncrement.

Even better, th is command also changes l i ne references in GOTO,
GOSU B, and O N E R R statements! So i f the program runs correctly
before ren u m beri ng , i t runs correctly after renu m beri ng-un less
you change the order of the l i nes. REN U M BER does not , however,
change l i ne references in REM statements, so check these
you rself .

By the Way: If a RENU MBER command would cause interleaving of
lines or dupl ication of l i ne numbers, APA does not execute it. This
would happen if a range of l ines were renumbered so that its new
num bers overlapped the num bers of another range of l ines. The
result ing error message is I r·H E P U:: :=i i) f [) O P D U P L I C i=i T E L I [j E
f·� U !··1 B F P .

Appendix D : Extras

•

•

•

Let ' s start with an example . F i rst , type 1 -i!:}r to clear memory (th is
won ' t affect the APA program). Then enter th i s s im ple program at
the keyboard :

;::;; !:::� r::= F;:� I N T ' ' L ! <

!:::; i;�1 P P I 1··-� ·r ;; t::: = =

SAVE the program by typ ing ::::; : :i ;y :·

To ren um ber you r SAM P LE prog ram , type

;-··, ;···· :. : : i i·.·i

... :: and press [RETURN) .

and press (RETURN) . You r whole program is ren u m bered , start i ng
w i th l i ne n u m ber 1 00 and i ncrement i ng by 1 0 . Try L I STi ng i t :

I f you don ' t want to start with l i ne n u m ber 1 00 and i ncrement
by 1 0 , type, say:

Th is resu l ts i n

T h e Applesoft Program mer's Assistant (APA)

•

Load the SAM PLE program you saved ear l ier. To ren u m ber on ly
part of th i s prog ram , you can specify the f i rst and last o ld l i ne
n u m bers to be changed . For example , if you type

(where the start i ng l i n e n u m ber i s 1 00 , the i ncrement is 1 0 , and the
f i rst and last o ld l i ne n u m bers are 30 and 40) , the resu l t is

�::� i:::i F' 1:�� I l··-1 ·r · · !···J l '

::::; 0 F P I r·-! l '1 L. = =

On ly the l i nes previously n u m bered 30 and 40 have been
ren u m bered . Not ice that the l i nes are i n a new seq uence, i n
keep ing with the i r new l i n e n u m bers. You can use R E N U M B E R t o
move su brout i nes around i n a prog ram .

You can specify the f i rst one , the f i rst two , the f i rst t h ree, or al l four
R E N U M B E R parameters. R E N U M BER uses a defau l t value for
omit ted parameters. The defau l t val ues are:

< start i ng l i ne n u m ber> 1 00
< i ncrement> 1 0
<fi rst l i ne> 0
< l ast l i n e > 63999

Thus, these two l i nes are equ ivalent :

.. . : : : . · ·
. : •••• : ·; :,,,: ; : : •.• = : •••• : ·-

The RENUMBER command d oes not let you g ive two l i nes the
same n u m ber or i n ter leave two sets of l i nes. I nstead , you see the
message I !

··-! ·T ::::. ;·=:: L. E: 1:::! !) �:::: r··1 1 = ••••• • • • • ••••· = • = - - .. 1 F� E::: j? . For
example , if you load SAM P LE and type

you see the error message: th i s com mand wou ld not on ly put
l ine 50 between l i nes 10 and 20 , but i t wou ld also put l i nes 40
and 60 on top of l i nes 10 and 20 .

Appendix D: Extras

•

•

Putting a Program On Hold

Use the H O L D com mand to shelter a prog ram above H I M E M ,
where i t can ' t b e erased b y the load ing o f another program . Th is
lets you load a second program i n to memory, then use the M E RGE
command (descr i bed i n the next sect ion) to com b ine the two
programs.

With a program i n memory, type

: : r··; ; ; :

Merging Two Programs Into One

After putt i ng one program on ho ld , you can use the M ERGE
command to com b ine i t with another.

Let ' s work with the SAM PLE program you created ear l ier. Fi rst ,
load SAM P LE and l ist it on the screen :

�=� t�� P !:�: I J··-! T
3 C3 P P I !··1 T

�) �) F P I H T
i::; 0 P P I !;·1 T

" .
.. :::

i ! fi ii

i; r•! j j
l! F:: n

i! l ;; !

Now delete l i nes 1 0 , 30 , and 50 by typ ing

.L ,.. ,

and press ing (RETURN) after each l i ne n u m ber.

When you l i st the program , you have

The Applesoft Programmer's Assistant (APA)

•

•

•

Save th is shorter program under the name APE . N ow type

L.i :''', '
l l ' .

to put APE on ho ld .

Now reload SAM PLE , and delete l i nes 20 , 40 , and 60 from i t . Th is
l ists as

Save th i s program under the name S M L . Now type

and press (RETURN) ; then type

T c· ·····

and press (RETURN) . T h e resu l t :

P resto ! The prog ram you carved up so d i l igent ly is now whole
agai n , and sorted by l ine num ber.

If you had ren um bered S M L before merg i n g , for example , by
typ ing

�-::; �-·· ;

so that S M L looked l i ke th is

Appendix D: Extras

•

•

•

•

you wou ld have gotten a d ifferent resu l t . If you typed

r=: : : ·· =-··. ·····

you ' d get

�� o P P :r. r-.; T
4 12! F l�� I f·-1 T

6 0 F �� I f·-1 T

:l Q i! l l
!i i:) H '

The M ERGE comman d , u n l i ke the R E N U M B E R command , can
create dup l i cate l i n e num bers. For example , put APE on HOLD ,
t hen LOAD S M L . Ren um ber i t by typ ing

and the l i st i n g is :

��� 0 P P I !···! T ;; �::; ; ;
�� 0 P P i f·-! T ' ' !.,1 ; :
40 PP I f·-! T ' ' L . l !

Both APE and S M L now contain l i nes n u m bered 20 and 40 . Now
type

i ' i l""' i·::' j
.; j-··

and you see the message

D U P L I C A T E L I N E NU M B E R
�� 0
4 ,;;�

I f you press CYJ to cont i n ue i n spite of the dup l icate l i n e n u m bers,
the l i n e from the HOLD area has pr ior i ty, and the other l i ne wi th the
same num ber is deleted . The l i st i ng is then :

c.. :::.1 P F:� I !··� T '' f:i
3 r::: F i? I i···i T ' ' :··1 "

H L� il 1-••

The Applesoft Prog rammer's Assistant (APA)

Control characters are characters
produced when you press (CONTROL)
together with some other key.

If you t ry to use M ERGE when there is no program on ho ld , you get
the message ! ' ' ' '

The M ERGE command can perform wonders, and save you a lot of
t i me . But it can also wreak havoc . Before typ ing the M ERGE
comman d , SAVE each of the prog rams to be merged .

Deleting Remarks From a Program

The C O M P RESS command removes documentat ion remarks
(program l i nes that beg i n with REM) from the prog ram in memory.
C O M P RESS lets you mainta in two vers ions of a program . The one
that contai ns REM l i nes is easier to maintai n , and the compressed
vers ion runs faster and uses less memory.

To use th is featu re, load a documented program , then type

C: () �·=! F · · =··· · ···

and press (RETURN) . The program i n memory i s compressed , and
you can then save i t under a d ifferent name. A message tel ls you
how many bytes are saved . If you later revise the program , change
the documented vers ion and make a new compressed vers ion
f rom i t .

Displaying Control Characters

Use the S H OW command to make the control characters i n you r
program vis i b le . Type

and press (RETURN) . I f t h e program contai ns any control
characters, they are d isp layed i n inverse v ideo when you L I ST.

Suppressing Control Characters

After us i ng S H OW to make control characters vis i b le , use the
NOSHOW command to make them i nvis i b le agai n . Type

and press (RETURN) . Control characters are no longer d isp layed .

Append i x D: Extras

Calculating a Program's Length

Use APA's LENGTH command to determ ine the length of the
program i n memory. Type

and press (RETURN) . T h e program 's length i n bytes is d isp layed , i n
both decimal a n d hexadecimal form .

Producing a Cross-Reference Listing

The XREF command prod uces an a lphabetical cross-reference
l ist i ng of. the Applesoft program in n\emory. The l ist i ng shows each
variab le i n the program , together with the n u m bers of a l l l i nes i n
which the var iab le appears.

Load the program you wish to cross-reference; then type

and press (RETURN) . After a pause that depends on t h e length of
the program , the var iab les and the i r l i n e n u m bers are l isted on the
screen . Note that a l l variab le names are shortened to two
characters (Applesoft d ist i ngu ishes on ly the f i rst two characters of
a variab le name) .

F ive k inds of var iab les are ident if ied by a suffix:

:�::

:: ··

represents a str i ng
represents an array
represents a st r ing array
represents an i n teger variab le
represents an i n teger array

You can i n terrupt the cross-reference l ist i ng by press ing
(coNTROL) -(]] . To resume an i n terrupted l ist i n g , press
(CONTROL) -(]] agai n .

The Applesoft Progra m mer's Assistant (APA) II

Converting Decimal to Hex and Hex to Decimal

Use the CONVERT command to convert decimal n u m bers to
hexadecimal and hexadeci mal n u m bers to dec ima l .

For example , to convert dec ima l 255 to hexadec ima l , type

and press (RETURN) . T h e program i mmed iately responds by
d i sp layi ng

:.: ... ·- ·' - . : : ::t:: ;.-·; �--·; i··- :.. .

where !? ! : :: : : is the hex equ ivalent of decimal ,255 .

To convert hexadeci mal 2 8 to dec ima l , type

and press (RETURN) . T h e program responds with

where . :: 3 is the decimal equ ivalent of hex 2 8 .

Clearing the APA Program From Memory

To u n l i n k APA commands and return to the system a l l the memory
that was bei ng used by APA, type

and press (RETURN) . Once you 've used t h e EX IT com man d , typ ing
any more APA commands resu l ts i n a '? �:::: =.,.· ;. : ···· ··· · · ··--- �··:- �·-:· : . . ·: :··:: .

To reload APA , type

..... : ... ':.:' i ;.,.= ; . . . ; ···, _.· ;-··; ;··· :

and press (RETURN) .

Append ix D : Extras

II

Glossary

This g lossary defi nes the terms used i n th is manual as they apply
to ProDOS. Refer to other sources for more complete defi n i t ions .

address A n u m ber that specif ies a s ing le byte of memory.
Add resses can be g iven as dec imal i n tegers or as hexadeci mal
i ntegers. A 64K system has add resses rang ing from 0 to 65535 (i n
dec imal) or from $0000 to $FFFF (i n hexadecimal) .

APPE N D Attach to the end of. The APPEND command is used to
write new data to the end of an exist i ng f i le .

ASCI I An acronym for the Amer ican Standard Code for
I nformat ion I nterchange. Th is code assigns a u n ique value from
0 to 1 27 to each of 1 28 num bers, letters, specia l characters, and
control characters. I t is the code with which the Apple I I represents
the characters entered at the keyboard .

back up To make a spare copy of. It is a good hab i t to back u p
i m portant f i les a n d d isks freq uent ly.

binary Encoded us ing the base-two n u m ber ing system
consist i ng of the two d ig i ts , 0 and 1 . A s ing le b i nary d ig i t , a 0 or
a 1 , is cal led a bit .

b inary f i le A f i le whose data are to be i n terpreted i n b i nary form .
Machi ne- language programs and pictu res a re stored i n b i nary
f i les. In comparison , the data in a text f i le are i nterpreted as a set
of characters. A ProDOS b inary f i le is i nd icated i n a catalog by the
abbreviat ion BIN.

BLOAD B i nary load . The BLOAD command causes the b i nary
form of a f i le to be p laced in memory. I f the f i le is not a b i nary f i le ,
i ts u n i nterpreted image is p laced i n memory.

block 5 1 2 bytes of data. Th is is the u n it of storage used by
ProDOS. ProDOS regards the i nformat ion stored on d isk and i n
memory a s collect ions o f b locks.

BLOCKS When you use the CAT or CATALOG comman d , the
colu m n on the screen labeled E:: i C:H::>·::>:; l ists the n u m ber of b locks
of d isk space occupied by each f i le i n that d i rectory.

Glossary

B R U N B inary run . The BRUN command causes a b i n ary program
to be brought i nto memory and ru n .

BSAVE B inary save. The BSAVE com mand causes t h e b i nary
data i n a port ion of memory to be saved i n a d isk f i le . If the f i le is
not a b i nary f i le , the data is not automat ical ly encoded before
bei ng p laced in that f i le .

buffer A tem porary storage area. ProDOS uses a f i le buffer as a
temporary rest i ng p lace for the characters be ing read from or
wr i t ten to the f i le .

byte A unit of com puter memory. A byte is e ight b i ts (B i nary
d ig iTS) long , and is thus capab le of express ing a range of n u m bers
from 0 to 255 (2 to the 8th power is 256). Each character in the
ASC I I code is represented with i n a s ing le byte.

CAT or CATALOG These commands cause a l ist of the names
and characterist ics of al l the f i les i n a d i rectory to be d isplayed .
Both are ident ical . Th is d isplay of i nformat ion is often referred to
as a catalog . CAT d isplays a 40-colu m n l ist ; CATALOG, 80.

CHAIN The CHA IN command runs a BAS IC program without f i rst
eras ing the var iab les current ly in memory.

C H R$ Th is Applesoft funct ion , when g iven an ASC I I code,
returns the character represented by that code. CH R$(4) returns a
(CONTROL) -@) .

CLOSE Th is com mand m ust be issued when you f i n ish us ing a
f i le . I t wri tes a l l u nwritten data to the f i le , and it releases the f i le
buffers a l located to that f i le .

CREATE Th is command creates a new f i le . When used , i t p laces
a new f i le of a designated type i nto a designated d i rectory.

(cONTROL)-@ This character must precede every ProDOS
command used i n a program . (coNTROL) -@) has the ASC I I code 4 ,
thus i t c a n be generated u s i n g the Applesoft funct ion cal l ,
C H R$(4).

(cONTROL) -(RESET) Th is com b i nat ion of keystrokes usual ly causes
an Applesoft program or command to stop i m med iately. If a
program d i sab les the (coNTROL)- (RESET) feature, you need to turn
the App le I I off to get the program to stop .

DASH (-) This command runs a BAS IC , mach ine- language,
EXEC, or system program .

DELETE Th is command removes a f i le from its d i rectory. A
deleted f i le can not be recovered .

G lossary

d i rectory f i le (type DIR) A f i le that contai ns the names and
locat ions on the d isk of other f i les. Related f i les shou ld be g rouped
together in to a s ing le d i rectory f i le . See also volume d i rectory.

d isk A f lat c i rcu lar p iece of p last ic or metal , d i pped i n to g l ue and
coated with a f ine metal l i c powder, onto which i nformat ion is
magnet ical ly recorded .

d isk d r ive A device that can read i nformat ion from and record
i nformat ion on a d isk . ProDOS lets the Apple I I comm u n icate with
a l l d isk d r ives man ufactu red by Apple Computer, Inc . for the
Apple I I .

element As def i ned i n th is manua l , a st r i ng of characters,
term inated by a comma or a carr iage retu rn , that can be read
usi ng the BASIC I N PUT statement . For example , I N PUT A$, 8$
reads two elements.

E N DFILE End of f i le . When you d i sp lay a d isk 's catalog , the
column of i nformat ion labeled 1::1 1 1:::: : : I L.. 1:: tel ls the n u m ber of bytes
that each f i le wou ld occupy i f a l l the d isk space al located to that
f i le were f i l l ed . Refer to Chapter 3 for more detai ls .

/EXAM PLES The volume name of the d isk that contai ns the
ProDOS program and the exam ples for th is manual . Th is d isk
contai ns the vers ion of the system f i le that must be on every
ProDOS startu p d isk .

EXEC This command causes i n put to be taken f rom a seq uent ia l
text f i le rather than from the keyboard . When you use EXEC, you
control the operat ion of the Apple I I by usi ng commands t hat are
stored in a text f i le .

f ie ld I n a f i le , a st r ing of characters preceded by a carr iage return
character, and term inated by a carr iage retu rn character. A f ie ld is
written to a f i le by each P R I N T statement not term inated by a
sem ico lon . The I N PUT com mand reads an ent i re f ie ld from a f i le .

f i le A f i le is a named , ordered col lect ion of i nformat ion on a d isk .
When you use ProDOS to p lace i nformat ion on a d isk , you g ive the
f i le a name and a type. The f i le 's type determ ines how i nformat ion
is encoded i n that f i l e .

f i lename The name that ident if ies a f i l e . A ProDOS f i lename has
a maxi mum of 1 5 characters. I t can contai n letters, d i g i ts , and
per iods , but i t must beg i n with a letter.

FLUSH Send u nwritten data to i ts f i le . Use th is command to
ensure that the data in a f i le is ident ical to the data written to the
f i le . FLUSH is l i ke CLOSE, except the f i le remains open .

G lossary

format To prepare the magnet ic su rface of a d isk for the storage
of i nformat ion . The ProDOS F i ler lets you format al l types of d isks.
This u t i l ity replaces the DOS command I N IT, which was used to
format Disk I I d isks.

FRE This command is used to access the ProDOS fast
housekeep ing rout i nes .

HELPSC REENS A f i le , stored on the /EXA M P LES d isk , that
contai ns a l l the he lp screens. Each screen is stored i n a s ing le
5 1 2-byte record of a random-access text f i le . For the HELP
command to be usab le , th is f i le must be on the d isk f rom wh ich
ProDOS was started up , and the command ····· ! · ! E:: Ly:· m ust have
been previously issued .

hexadecimal Encoded us ing the base- 1 6 n u m ber ing system .
Hexadecimal num bers are formed usi ng the ten d i g i ts 0 th rough 9
and the six capital letters A th rough F. A l l hexadecima l n u m bers
used with ProDOS must be preceded by the sym bol $.

I N # Th is command des ignates the source of su bseq uent i n put
characters. I t can be used to des ignate a device i n a slot or a
mach ine- language rout ine as the source of i n put .

input rout ine A mach i ne- language rout ine that performs the
read i n g of characters. The standard i n put rout ine reads
characters from the keyboard . A d i fferent i n put rout i ne m ight , for
exam ple, read them from an externa l term ina l .

language card An Apple I I i nterface card that , when p laced i n
s lot 0 o f a 4 8 K Apple I I , g ives t h e Apple I I access t o a total of
64K of memory. I f you have an Apple II or Apple I I P lus , you need a
language card , or the eq u ivalent , to use ProDOS.

LOAD Th is command br ings a BAS IC prog ram i nto memory from
a f i le. I t clears the current BAS IC program and var iab les from
memory and br ings in the new prog ram .

load address The f i rst add ress i n memory from which data was
BSAVEd i n to a f i le . When that f i le is B LOADed or B R U N , it i s
placed i n memory start i ng at the load add ress u n less you specify
otherwise. The load add ress of a b i na.ry f i le is l i sted i n the column
labeled ·::;; i T<T" \' F<:: when you d isplay a catalog o f f i les .

LOCK Th is command protects a f i le from being acc idental ly
renamed , deleted , or al tered .

machi ne-language i nterface (M L I) The set of machi ne
language rout i nes , stored in the f i le named PRODOS, with wh ich
ProDOS talks to d isk d r ives. The ProDOS Technical Reference

Manual contains a fu l l explanat ion of the ProDOS mach ine
language i n terface.

G lossary

NAME When a catalog of f i les is d isplayed on the screen , the
r i : =: r·E colu m n contai ns the names of the f i les i n the l isted
d i rectory.

OPEN This command a l locates space i n memory for a f i le 's
buffers, and i t sets the f i le pos i t ion po inter to the beg i n n i n g of the
f i le . The next f i le-related command to be issued m ust be a READ
or a WRITE. A l l f i les opened m ust be closed .

option An item i n the syntax of a ProDOS command that
determines a s ing le aspect of the command 's act ion , such as a
pathname or a f i le type. U n bracketed opt ions m ust be i nc luded
each t i me the command is used , bracketed opt ions can be
specif ied as needed , and two options separated by a vert ical l i n e
are alternates.

output rout ine A mach i ne- language rout ine that performs the
sen d i n g of characters. The standard output rout i ne wri tes
characters to the screen . A d ifferent output rout i ne might , for
example , send them to a pr inter.

partial pathname A port ion of a pathname. A part ia l pathname
does not beg i n with a slash , and i t does not have to (but may)
beg i n with the name of a vol u me d i rectory. When you use a part ia l
pathname i n a command , the pref ix is usual ly attached to the front
to form a ful l pathname. A part ia l pathname can be n o more than
64 characters long .

path name A series of f i lenames, preceded and separated by
s lashes, that i nd icates the ent i re path , f rom volume d i rectory to
f i le , that ProDOS m ust fol l ow to fi nd that f i le .. A pathname used i n a
command can contai n no more than 64 characters, s lashes
inc luded . (The pathname formed by the prefix and a part ia l
pathname can be u p to 1 28 characters long .)

POSITION This command causes a specif ied n u m ber of f ie lds to
be read and d i scarded from an open f i le . I t is used to move the
posit ion of the f i le poi nter forward in the f i le .

PR# Th is command sends output to a s lot or to a mach ine
language program . I t specif ies an output rout i ne i n the ROM on a
peri pheral card or i n a mach ine- language rout i ne i n RAM by
chang ing the add ress of the standard output rout i ne used by the
Apple I I .

prefix A pathname set t o i nd icate a specif ic d i rectory f i le . When
you use a part ia l pathname, the pref ix is added to the front of i t .
You set the value of the pref ix using the PREFIX comman d . A
prefix can be no more than 64 characters long , i nc lud ing s lashes.

G lossary

ProDOS com mand Any one of the 28 commands recog n ized by
ProDOS. Each has its own syntax, al l can be used with i n
programs, a n d a l l b u t f ive (text f i le com mands) can b e used from
i mmed i ate mode. ProDOS commands used from wi th i n programs
m ust be issued as part of a P R I N Ted str i ng , and m ust be preceded
by (CONTROL) -@].

/ R A M The volume name of a smal l volume automat ical ly p laced
by ProDOS in the a l ternate 64K of an Apple l i e with an Extended
80-Co lumn Text Card . I t can be used just l i ke a d isk volume ;
however, the i nformat ion stored on i t d isappears when the
com puter is tu rned off.

Random Access Memory (RAM) Th is is the readab le and
writable memory of the App le I I . I ts contents are usual ly f i l led with
programs from a d isk , and they are lost when the Apple I I is tu rned
off. An Apple I I m ust have 64K of RAM to use ProDOS.

random-access text f i le A text f i le that is part i t ioned into an
u n l i m ited n u m ber of u n iform- length com partments cal led records.
When you open a random-access text f i le for the f i rst t ime you
m ust specify its record length . No record is p laced i n the f i le un t i l
written to . Each record can be i n d ividua l ly read from or written to ,
hence the name, random-access.

READ This comman d , when used after the O P E N com man d ,
prepares a f i l e to be read . I t c a n also select t h e posi t ion i n t h e f i le
(record , f ie ld , and byte) of the next p iece of i nformat ion to be read .
Unt i l the next ProDOS command is issued , su bseq uent I N PUT
statements are sat isf ied by data from the f i le .

Read O n ly Memory (R O M) I n the context of th is manua l , ROM
refers to sem icond uctor ch ips i n the App le I I or on peri pheral
cards that conta in programs essent ia l to the system 's operat ion .
The contents o f ROM are permanent and u nalterable. The Apple I I
comes w i th ROM ch ips that conta in the system Mon itor and a
vers ion of BASIC , and the ROM on a d isk control ler card conta ins
programs that le t the App le I I comm u n icate with one or two d isk
d rives.

record A un i t of storage in a random-access text f i le . Every
random-access text f i le can contai n a very large n u m ber of
records; each record ho lds the exact same n u m ber of characters .
A program specif ies a f i le 's record length (i n bytes) when the f i le is
f i rst opened ; i t m ust su bseq uent ly read and wr i te d ata i nto specif ic
records with i n the f i le .

record length The length of a random-access text f i le 's records
in bytes. The maxi mum record length is 65535 bytes; the m i n i m u m
is 1 .

Glossary

RENAME Th is command a l lows you to change the name of a f i le .
You can not use th is com mand to move the f i le f rom one d i rectory
to another, on ly to change its name within a d i rectory. A f i le must
be u n locked to be renamed .

RESTORE This command c lears the BAS IC var iab les currently i n
memory, a n d i t reads i n a new set o f var iab les from a var iab le f i le
(type VAR) . See a lso STORE.

R U N This command clears the cu rrent BASIC program and
var iab les f rom memory, br ings a BAS IC program into memory
from a f i le , and runs i t . An opt ion lets you specify the f i rst program
l i ne to be run .

SAVE This command lets you save the BAS IC prog ram current ly
i n memory as a BASIC program f i le (type BAS).

sequentia l-access text f i le A text f i le made up of a seq uence of
f ie lds. A f ie ld is a str ing of characters term i n ated by a carr iage
return character. Seq uent ia l text f i les are best used for types of
data that wi l l be stored and retr ieved seq uent ia l ly.

start up To get the system ru n n i n g . I n the context of ProDOS,
start i ng u p is the process of read ing the ProDOS program (i n the
f i les PRODOS and BAS IC .SYSTEM) from the d isk , and ru n n i n g i t .

startup d isk A d isk that conta ins a l l the i nformat ion needed to
get the computer runn i ng . A ProDOS startu p d isk must be
formatted us ing the ProDOS Fi ler, and i t must contai n the f i les
PRODOS and BASIC. SYST E M .

STORE T h i s command causes t h e BAS I C var iab les current ly i n
memory t o b e arranged i n a compact form a n d then placed i n a
BAS IC var iab le f i le (type VAR). The var iab les so stored can be
returned to memory using the RESTO RE com man d .

S U BTYPE I n a catalog , t h e colu m n labeled ·::: : : E::: ·r · ;T<::: contains
two types of i nformat ion : for a random-access text f i le , the f i le 's
record length (R) i n deci ma l ; and for a b i nary f i le , the f i le 's load
add ress (L) in hexadec imal .

syntax A representat ion of a command that specif ies al l the
poss ib le forms the com mand can take. The syntax of each
ProDOS command is g iven as a com mand word fo l lowed by a l ist
of opt ions .

SYSTE M A f i le with a name of the form XXX.SYSTEM m ust be in
the volume d i rectory of every startu p d isk ; i t conta ins the system
program that is run when the d isk is started up. On the
/EXA M PLES d isk , BAS IC .SYSTEM contai ns the ProDOS BASIC
prog ram ; on the d isk named /USERS .D ISK , F ILER .SYSTEM
contai ns the ProDOS Fi ler.

G lossary

text f i le (type TXT) A f i le whose contents are i n terpreted as
characters encoded usi ng the ASC I I format. ProDOS defi nes two
types of text f i les: seq uent ial , a grou p ing of seq uent ia l ly access ib le
f ie lds of text ; and random-access , a col lect ion of equal-s ized , and
i ndependently accessi b le , groups of characters.

TYPE In a catalog , the colu m n with th is head ing names the type
of each fi le l isted . Types are g iven as th ree- letter abbreviat ions .
There is a l i st of f i le type abbreviat ions i n Tab le A-2 .

U NLOCK Th is command reverses the effect of the LOCK
command . A f i le must be un locked if i t is to be renamed , deleted ,
or al tered .

/USERS.DISK The /USERS . D I S K d isk conta ins u t i l i t ies
programs with which you can format d isks, perform al l f i le
ma intenance (create, rename, delete, copy), and convert f i les
between DOS 3 .3 format and ProDOS format . These programs are
exp la ined in the ProDOS User's Manual.

volume A source or dest i n at ion of i nformat ion . As used i n th is
manua l , volume always refers to a d isk . I t cou ld a lso , for example ,
refer to a mag net ic tape or a locat ion i n a network .

volume d irectory The main d i rectory of a vol u me. On a d isk , the
volume d i rectory is a f i le that contai ns the names and locat ions on
that d isk of up to 51 other f i les, any of which may themselves be
d i rectory f i les.

WRITE This comman d , when used after the OPEN command ,
prepares a f i le to be written to . Un t i l the next ProDOS command is
issued , a l l su bseq uent P R I N T statements send characters to th is
f i le .

write-protected A d isk d r ive that uses f lex ib le d isks can on ly
write on a d isk that has a smal l notch i n the proper locat ion . If th is
notch is covered , or i f the notch does not exist , the d isk is wri te
protected . The notch i tself is referred to as a wri te-enable notch .

G lossary

Index

A
ADDRESS program 1 20 , 1 29
APA 227-238
APPEND 86 , 1 1 0 , 1 28 , 1 87 , 202
APPEND.TEXT 1 1 1
Apple I l l SOS compat i b i l ity 1 67
Applesoft

BAS IC 49, 52, 6 1
error codes 2 1 4
errors 2 1 1
N OTRACE command 68
P R I N T FRE command 82
P rogrammer's Assistant

227-238
TRACE command 68

APP LESOFT STARTUP 67
array 237
assembly- language

programs 1 62
asterisks 45 , 1 7 4
AUTO 229-230
automatic l i ne n u m ber ing

229-230
AWAY 1 38

8
back ing up d isks 3
BASIC

program
commands · 1 78- 1 80
f i les 49
to create EXEC f i le 1 38

programming commands
1 80- 1 84

reenter ing 1 6 1
BASIC . SYSTEM 65 , 1 62
BASICS d isk 1 98
b inary

commands 1 48 , 1 90
f i lenames 1 50
f i les 1 47

I ndex

BLOAD 1 45 , 1 48 , 1 52 , 1 92 , 202
with non-b inary f i les 1 53

block 35
boot d isk 66
bracketed opt ions 2 1
BRUN 1 45 , 1 50 , 1 90 , 202
BSAVE 1 46 , 1 48 , 1 55 , 1 9 1 , 203
bytes 1 48

c
CAPTURE 1 40
carr iage return character 92
CAT 29 , 1 73 , 205
CATALOG 28 , 29 , 1 73 , 203

commands 29
help screen 9

catalog of /EXA M P LES 33
CHAIN 6 1 , 73 , 1 80 , 203

1 /0 from BASIC programs 73
changes to Applesoft 206
C H R$, CONTROL-D 67
clock/calendar card 1 6 1 , 225
CLOSE 86 , 1 07 , 1 25 , 1 85 , 203
com b i n i n g BAS IC

programs 1 35
subrout i nes 1 35

C O M PRESS 236
CONJ UGATE 97
CONJUGEAT 98
CONJUGEATEN 98
control characters

d isplay ing 236
suppress ing 236

CONTROL-C 1 42 , 1 6 1 , 1 90
CONTROL-D 67 , 1 38 , 1 58 , 1 73

C H R$ (4) 67
i n a str ing 67

CONTROL-S to stop l is t ing 1 05
CONVERT 238
convert ing fi les 1 98
COUT 1 1 59
CREATE 28 , 40 , 1 75 , 205

creat ing an EXEC f i le us ing
BAS IC 1 38

cross-reference l ist i ng 237
current pos i t ion 9 1

D
DASH (-) command 49, 50 , 1 48 ,

1 62 , 1 78 , 206
date, updat ing 226
DATET I M E rout ine 1 6 1
debugg i n g programs 68
deferred mode 9
DELETE 28 , 43 , 1 06 , 1 76
delet i ng remarks 236
d ifferences between DOS and

ProDOS 1 97
d i rectory

f i le 1 4
l i ne composi t ion 227

D I R ECTORY FULL (Code 1 7) 220
DISK FULL (Code 9) 2 1 8
d isks

back ing up 3
BASICS 1 98
ProDOS-formatted 1 98

d i splayi ng control characters 236
DOIT. EXEC 1 38
DOS 3 .3 d isk BASICS 1 98
DOS

and Pro DOS 1 0 , 1 97
commands

improved 202
not su pported by ProDOS 2 0 1

d isks 1 97
DOS-ProDOS Conversion

Program 1 62 , 1 98 , 1 99
d r ive n u m ber opt ion 23
DUPL ICATE F I LENAME

(Code 1 9) 2 2 1

E
80-column

CAT 30
CATALOG 3 1
text 1 54
text card

turn ing off 79
elements 95

m u l t i p le 97
END OF DATA (Code 5) 2 1 5
eq u i pment needed xvi i i , 3
error(s)

by ProDOS command 2 1 3
from Applesoft 2 1 1
messages 2 1 1

I ndex

example of STARTUP prog ram 67
/EXA M P LES d isk 3 , 64 , 65

catalog 33
/EXA M P LES/EXTRAS 225
/EXA M P LES/EXTRAS/

REA D . D I R ECTORY 227
EXEC

com b i n i n g programs with 1 4 1
command 94, 1 35 , 1 40 ,

1 42 , 1 89
demonstrat ion 1 36
f i lenames 1 35
f i les 1 35 , 1 38

creat ing with BASIC 1 38
maker program 1 39
program 1 35 , 1 4 1

EXEC . D E M O 1 36
EXIT 238
Extended 80-Co lumn Text

Card 1 5 , 57

F
features of ProDOS 1 67
f ie ld 86 , 92
f i le(s) 8 , 1 4

BAS IC .SYSTEM 64
b inary 1 45 , 1 47
buffer 1 05 , 1 24
convert ing 1 98 , 1 99
cu rrent pos i t ion i n 9 1
dates 36
HELP 65
H ELPSCREENS 65
names 200
organ izat ion 200
PRODOS 64, 1 62
propert ies 36
sizes 35
STARTUP 64
types 35

abbreviat ions 35 , 1 72
F ILE BUSY (Code 20) 22 1
F I L E LOCKED (Code 1 0) 2 1 8
F I L E NOT OPEN(Code 1 8) 2 2 1
F I L E(S) STI LL O P E N (Code

2 1) 2 2 1
F I L E TYPE M I S M ATCH (Code

1 3) 2 1 9
f i lename(s) 1 7 , 35 , 1 68

d i rectory 34
maxi m u m characters per

f i lename 1 68
f i l i ng commands 1 73
FLUSH 86, 1 1 1 , 1 3 1 , 1 88 , 205

formatt ing a d isk 1 3
with DOS command I N IT 1 97
with ProDOS Fi ler 1 97

40-col umn
CAT 30
CATALOG 3 1

F P 20 1
FRE 73, 82 , 1 84 , 206, 207

G
GET 95

statement 99
GET. FRUIT 97
GET.TEXT 1 03 , 1 37
graph ics page, protect ing 1 54

H
HELP 7 , 8, 64 , 69

select ion screen 8
H ELPSCREENS 8, 64
hexadecimal 238

notat ion 22
HGR 1 54 , 206
HGR2 1 54 , 206
h igh-resolut ion

graph ics
screen 1 49
with ProDOS 1 54

pictu res 1 48 , 1 52
H I M EM 1 54 , 206, 228 , 233
HOLD 233

I
ident i f ier 1 05
i mmed iate mode 9 , 229
improved DOS commands 202
I N # 63, 73 , 8 1 , 1 46 , 1 83 , 203, 207
I N IT 20 1
I N PUT 95 , 207

l i m itat ions 99
instal l i ng machi ne- language

rout i nes 1 54
I N T 20 1
i nteger

array 237
var iable 237

I nteger BASIC 49, 6 1
I NTERLEAVED O R DUPL ICATE

L I N E N U M BER 230, 232
I N VA L I D OPTION (Code 1 1) 2 1 8
1 /0 ERROR (Code 8) 2 1 7
1 /0 from BASIC programs 73

J, K
KEV I N 1 59

I ndex

L
LENGTH 237
l i ne n u m ber ing , automat ic

229-230
l ist ing

BAS IC program to a f i le 1 40
/EXA M P LES d i rectory 226
program to a f i le 94

L I STI N G . EXEC 1 40
L ISTSELF 93
LOAD 50 , 54 , 1 79
LOCK 28 , 44, 1 77
log ical end of f i le 1 74

M
MAC H I N E LANGUAGE

POKER 1 4 1
mach ine language 1 45

programs 1 48 , 1 57
rout i nes 1 52 , 1 54
to BASIC 1 4 1

MAKE.DOIT 1 38
MAKE.FRUIT 96
MAKE.TEXT 1 0 1 , 1 29 , 1 39
MANUAL 230
MAXFI LES 2 0 1
maxi mum

f i le sizes 36
fi les per volume d i rectory 1 67
length for

part ia l pathname 1 68
prefix 1 69

megabytes
per f i le 1 67
per volume 1 67

num ber of open f i les 1 67
record

n u m ber 1 26
size 1 1 7

memory
add resses 1 48

opt ions 1 48 , 1 50
locat ions 1 48

for error hand l i ng 70
M ERGE 233
MON 202
M on i tor 2 1 1

commands 1 42
program 1 60

monitor
i n put l i n k 1 59
output l i n k 1 59
prompt 1 60

mu l t ip le elements per f ie ld 97

II

N
new ProDOS commands 204
N O BUFFERS AVAI LABLE

(Code 1 2) 2 1 8
N O DEVICE PROTECTED

(Code 4) 2 1 5
N O HOLD F ILE 236
N O H ELP 1 0
N O M O N 202
NOSHOW 236
NOT D I R ECT COM MA N D

(Code 1 5) 220
notat ion 22

alternate opt ions 22
N OTRACE 68 , 207

0
O N E R R . D E M O 7 1
ONERR GOTO 70, 1 04 , 2 1 1

d i sab led 72
problems 72

OPEN 85 , 93 , 1 05 , 1 24 , 1 84 , 203
opt ions 2 1 , 32 , 4 1 , 42

p

APPEND 1 1 0 , 1 29
BLOAD 1 52
BRUN 1 5 1
BSAVE 1 55
CAT 32
CATALOG 32
CHAI N 74
CLOSE 1 08 , 1 25
CREATE 4 1 , 42
DASH (-) 5 1
DELETE 44
EXEC 1 42
FLUSH 1 1 1 , 1 3 1
I N # 8 1
LOAD 54
LOCK 45
O P E N 1 06 , 1 24
POSIT ION 1 1 2 , 1 32
PR# 80
READ 1 09 , 1 28
RESTO RE 76
RUN 53
SAVE 56
U N LOCK 46
WRITE 1 08 , 1 26

PART1 74
PART2 74, 75
part ia l pathnames 1 8 , 20
PATH NOT FOUND

(Code 6 or 7) 2 1 7

Index

pathname(s) 1 8 , 1 68
format ion 24
maximum length 1 68
opt ion 22
part ia l 1 8 , 20

POKER. EXEC 1 4 1
POSIT ION 86 , 1 1 2 , 1 3 1 , 1 88 , 204
posi t ion- in-the-fi le 9 1
PR# 63, 73 , 78 , 1 46 , 1 57 , 1 82 ,

203, 207
PR#O 1 57
prefix 1 8 , 28, 1 68 , 1 74 , 205
PREFIX 20

wi thout opt ions 70
P R I N T 95
pri nter 78
pr int ing to a text f i le 95
ProDOS

and DOS, d ifferences 1 0
BASIC 1 62

command(s)
from keyboard 1 73
i n programs 1 73
new 204
opt ions 1 69
summary 27
us ing f i les 27
wit h i n a BASIC program 67

start i ng 4
BASIC Programming Examples

d isk xvi i , 3
Date and T ime locat ions 1 6 1
error(s) 2 1 4

codes 2 1 2
hand l i n g 70

F i ler 27 , 50 , 52 , 65 , 1 62
f i les 65
i n put rout i nes 1 59
output rout ines 1 59
startup d isk , creat ing 64
text fi les 85
User's Disk xvi i , 3

ProDOS-formatted d isks 1 98
program(s)

APA 227-238
Applesoft P rogrammer's

Assistant 227-238
CONVERT 1 0
E . S . P. 77
/EXA M P LES/PROGRAMS

/ O N E R R . D E M O 7 1
MAKE.TEXT 1 1 0
to enter text from

keyboard 1 0 1
t o read text 1 03

P ROGRAM TOO LARGE
(Code 1 4) 220

program ming with ProDOS,
overview 6 1

protect ing the graphics page 1 54

Q
Quit command 1 62

R
RAM 1 5 , 57
random-access text f i les 88, 90 ,

9 1 , 1 1 5 , 1 1 8
RANGE ERROR (Code 2) 2 1 4
READ 86 , 1 09 , 1 1 7 , 1 86 , 204
REA D . D I RECTORY 225
read ing

f rom a text f i le 96
from ProDOS d i rector ies 226
records 1 2 1

records 90
length 1 1 6

reenter ing BASIC 1 6 1
remarks, delet ing 236
RENAME 28 , 42 , 1 76
RENUMBER 230
renum bering a program 230
RESTORE 62, 75 , 76 , 1 82 , 205
RUN 50, 52 , 1 78 , 204

without f i lename 57

s
sample program 1 1 8
SAVE 50 , 55 , 1 80
seq uent ia l text f i les 87 , 90, 9 1 ,

92 , 94 , 1 35
creat ing 93

SHOW 236
S H OWOFF. EXEC 1 37
S H OWOFF f i le 1 37
slot n u m ber opt ion 23
SOS, compat i b i l ity 1 67
SOS-formatted d i sks 1 3
standard

i n put rout ine 1 59
output rout ine 1 59

start ing
ProDOS BAS IC 4
system programs 1 62

STARTU P 65, 65 , 67
startup

d isks 64
d rive 64

STORE 62 , 73 , 75 , 1 8 1 , 205
stor ing characters i n f ie lds 93

I ndex

str ing 237
array 237

structure, random-access text
f i les 1 1 5

subrout i nes 1 00
summary

of opt ions 1 70
of ProDOS 1 67

suppress ing control
characters 236

syntax 20 , 1 69
SYNTAX ERROR (Code 1 6) 220
SYS f i le type 1 62
system date and t i me,

updat ing 226
system programs 50 , 1 45 , 1 62

T
TEXT 1 54 , 206
text f i le(s)

commands 1 84
random-access 1 1 5
seq uent ia l 87 , 90 , 9 1 ,

92 , 94 , 1 35
creat ing 93

Thunderclock 1 6 1
T I M E 1 6 1 , 225
t ime , updat ing 226
tokens 1 53
TRACE 68 , 207
transferr ing

b inary i nformat ion 1 48
non-b inary f i les 1 52

,Ttype 1 53 , 1 72
turn ing off the 80-co lumn text

card 79

u
U N LOCK 28 , 46 , 1 77
updat ing system date and

t ime 226
/USERS . D I S K 5 1
User's Disk xvi i , 3

v
volume d i rectory 1 5

w
WRITE 86, 1 08 , 1 1 6 , 1 26 , 1 86 ,

204

X
XREF 237
XXX. SYSTEM 1 62

Y, Z

------------------------------------ -=� "

---------------� ·

Tuck end flap
inside back cover
when using manual .

()

::J"'

---------------�
0

0
------------------------------------m_

20525 M ar i a n i Aven u e
C u pert i n o . C a l i forn i a 95014

(408) 996-1010
TLX 1 7 1 - 576 030-0362-A

	BASIC Programming With ProDOS
	Table of Contents
	List of Figures, Tables, and Programs
	Preface
	Chapter 1: Introduction
	Chapter 2: Files and Commands
	Chapter 3: Using Files
	Chapter 4: BASIC Programs in Files
	Chapter 5: Programming With ProDOS
	Chapter 6: Text in Files
	Chapter 7: Random-Access Text Files
	Chapter 8: EXEC: Control From a Text File
	Chapter 9: Binary Files
	Appendix A: Summary of ProDOS
	Appendix B: DOS, ProDOS, and Applesoft
	Appendix C: Error Messages
	Appendix D: Extras
	Glossary
	Index

