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Preface 

ProDOS™ is Apple 's  Professional  D isk Operat i ng  System . A d isk 
operat i ng  system is a computer program that serves as a 
housekeeper for the i nformat ion stored on d isks. I t  a l lows you to 
p lace i nformat ion on d isks, rearrange the i nformat ion  that is 
al ready on the d isks, and retr ieve i nformat ion  from the d isks.  
ProDOS lets you organ ize and use the i nformat ion stored on al l  
Apple I I  d isks made by Apple Computer, I nc .  

The Parts of ProDOS 

The ProDOS software, or programs, comes on two d isks. The fi rst 
d isk ,  labeled ProDOS User's Disk, contai ns  programs that let you 
arrange i nformat ion on a d isk and move i nformat ion from one d isk 
to another. The programs on the User's Disk are exp la ined i n  the 
ProDOS User's Manual. 

The second  d isk ,  labeled ProDOS BASIC Programming Examples, 

holds the program that lets you run other programs, arrange 
i nformat ion  that is al ready on the d isk ,  and write you r  own BASIC 
programs that use the d isks to store i nformat ion .  Th is  man ual  
exp la ins the program on the Examples d isk .  

The ProDOS Technical Reference Manual expla ins what  makes 
ProDOS t ick .  An experienced programmer can use th is  
i nformat ion to write mach i ne- language prog rams that  use 
ProDOS. 

By t h e  Way: The catalog of  your  Examples d isk may show dates and 
t imes that are  not  the same as those pictu red i n  th is  manual. Don't 
worry-it  is just to show you what these catalogs look l i ke.  

The Parts of ProDOS Ill 



Requirements for Using ProDOS 

To use ProDOS, you m ust have an Apple I I  with at least 64K of 
Random Access Memory ( RAM) ,  and with Applesoft in Read O n ly 
Memory (ROM) .  If you have a standard Apple I I  with I n teger BASIC ,  
you m ust replace the I n teger BAS IC ROM wi th  an Applesoft ROM.  
You must also have at  least one D isk I I  d r ive; i n  add it ion ,  you can 
have any other com b inat ion  of d isk d rives. 

By the Way: I n  th is  manual ,  the name Apple II i m p l ies the Apple I I  Plus 
and the Apple lie.  Because ProDOS d oes not support I nteger BASIC, 
ProDOS wi l l  not work with BASIC on a standard Apple I I .  

Before u s i n g  t h i s  manua l ,  you shou ld be fam i l iar  w i t h  you r  Apple I I ,  
and w i t h  the use o f  Applesoft BAS IC .  You shou ld also work you r  
way through the Applesoft Tutorial before you read th is  manua l .  I f  
you have never used fi les that are grouped i n to d i rectories, read 
the ProDOS User's Manual chapter on f i les, f i lenames, and 
pathnames. 

Remember: Keep the (CAPS LOCK )key depressed when you are typ ing 
any of the ProDOS commands; they must be i n  u ppercase letters. I f  you 
type them i n  lowercase, you wi l l  receive a :::'/i··�n=:::-:; EPF:OF: message. 

If you are experienced with DOS,  the predecessor to ProDOS,  read 
Chapters 1 and 2 of th is  manual  and then sk i p  to the append ix that 
descri bes the d ifferences between DOS and ProDOS.  

This Manual's Organization 

This  man ual is  organ ized to be usefu l  to as many people as 
poss ib le .  Each chapter beg ins  with a sect ion descri b i ng  the topics 
i t  covers. I f  a chapter i n trod uces new ProDOS commands,  i t  also 
has a sect ion cal led 'Th is  Chapter's Commands. " Read th is  
sect ion carefu l ly ;  you can use i ts  command summary to f ind  
commands wi th  which you are u nfam i l i ar. 

N ot ice that most of the command descr ipt ions have th ree 
sect ions .  The f i rst sect ion tel ls you why you wou ld  want to use the 
comman d ,  shows its form ,  or  syntax, and g ives a br ief example.  
The second sect ion ,  "The Opt ions , "  g ives a precise defi n i t ion  of 
the d ifferent ab i l i t ies of the comman d .  The th i rd sect ion ,  " For 
Exam ple, " is a hands-on example of the command . I f  you learn 
best by doing,  t ry these examples. 
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Here is a qu ick  summary of the chapters and append ixes i n  th is  
manual : 

Chapter 1 :  What you shou ld know before usi ng ProDOS.  

Chapter 2 :  What f i les are and how they are n amed . What 
ProDOS commands are and how they are structu red . 

Chapter 3: How to keep track of and man ipu late the f i les on a 
d isk .  

Chapter 4 :  How to use programs that are stored on a d isk .  

Chapter 5 :  How to write BAS IC programs that use ProDOS 
com mands.  

Chapter 6 :  H ow to write BASI C  programs that use seq uent ia l  
text f i les.  

Chapter 7: How to write BAS IC programs that use random
access text f i les. 

Chapter 8: How to make f i les control  the operat ion  of you r  Apple 
computer. 

Chapter 9 :  H ow to use b i nary programs and f i les, and the  
Mon itor. How to use a clock/calendar card . 

Append ix A :  A summary of ProDOS.  

Append ix B :  The d i fferences between DOS and ProDOS.  

Append ix C :  Error  messages. 

Append ix D: Extra programs. 

This Manual's Organization 





Introduction 

3 Before You Start 
3 Make a Spare Copy of Examples Disk 
4 Start i ng  ProDOS BAS IC 
6 The Startup  Process 
6 Other Ways to Start ProDOS BAS I C  
7 The HELP Command 
8 For Example 

10 ProDOS and DOS 
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Introduction 

Before You Start 

This  manual  assumes that you al ready have some experience 
us ing you r  Apple I I .  You shou ld be fam i l iar  with the Applesoft 

Tutorial and at least Chapter 2 of the ProDOS User's Manual. 

As you read th is  manua l ,  you should have i n  front  of you :  

• An assem b led Apple I I  with a t  least o n e  d isk d r ive 

• The ProDOS User's Manual 

• The d isks labeled ProDOS User's Disk and ProDOS BASIC 

Programming Examples, and one b lank  d isk 

• The Applesoft Tutorial (opt iona l ) .  

Make a Spare Copy of Examples Disk 

Whi le you learn to work with ProDOS,  you are asked to do many 
th ings with you r  Examples d isk .  Because the Examples d isk that 
comes with you r  ProDOS package is  write-protected-that is ,  it 
does not have a wri te-enable notch-you can not do one very 
i mportant th i ng  to th is  d isk :  you can ' t  write i nformat ion  on i t .  

Fol l owi ng  the instruct ions i n  the sect ion on back ing  u p  d isks i n  the 
ProDOS User's Manual, transfer a copy of  the i nformat ion f rom the 
or ig ina l  Examples d isk to you r  b lank d isk ,  nam i n g  the new d isk 
/EXA M P LES . (Th is is the form that ProDOS recog n izes-with  a 
slash before the name. You can use u ppercase or lowercase letters 
when you name a d isk . )  Write you r  name and /EXA MPLES on the 
d isk label ; th is  is  you r  personal  copy of  ProDOS.  Now put the 
or ig ina l  i n  a safe p lace; someday you may want to copy i t  agai n .  

B y  the Way: Even i f  someone else has al ready made a copy of 
/EXAM PLES, i t  is  best to make one of your  own . Some of the examples 
in this manual ask you to change the f i les on the d isk; i f  someone has 
a lready done these examples,  the d isk w i l l  not be in i ts or ig i nal  form. 

Make a Spare Copy of Examples Disk 



Figure 1 - 1 .  The ProDOS Tit le 
Screen 

• 

Starting ProDOS BASIC 

Place you r  copy of /EXA M PLES into d r ive 1 and close the d r ive 
door. I f  you r  Apple II is  off , reach your  left hand around to the back 
of the case and turn i t  on. I f  you r  Apple I I  i s  al ready o n ,  reach 
around the back ,  turn i t  off ,  then on agai n .  The d isp lay f i l l s  u p  with 
i nformat ion  that looks someth ing  l i ke F igure 1 - 1  . 

PF'PLE ][ 

COPYRIGHT APPLE COMPUTER, INC. 

This  d isplay tel ls you that ProDOS was just p laced i n  memory. Any 
d isk that conta ins  a ProDOS program shows this d i sp lay when i t  
starts up .  

Chapter 1 :  I ntroduction 



Figure 1 -2. The ProDOS Tit le 
Screen 

What It  Tel l s  You 

The startu p  d isk name.  

The type of Apple I I .  

T h e  amount o f  R A M  i n  
your  Apple I I .  

Applesoft BASIC is  i n  
Read O n ly Memory. 

The contents of each 
of your  Apple l l ' s  slots. 

• 

After a few moments more,  you see a d i sp lay that looks someth ing  
l i ke F igure 1-2 .  I ts exact appearance depends on the type of 
Apple I I  system you are usi ng ,  and the ident ity of the peri pheral 
cards that are connected to you r  system .  

What the Display Says 

**************************�************ 

t PRODOS BASIC PROGRAMMING EXAMPLES 
':!:' 
·.!.• ··!·· 

* * 
*************************************** 

� START DISK: /EXAMPLES/ 
YOUR Apple //e HAS 

64K OF RANDOM ACCESS MEMORY 
APPLESOFT IN ROM 
;:;; L. C! T 1 ; �::; I L E i··� T \' P E 
:::;LOT ? ; E :··1 P T '/ 
SLOT 3. 80-COLUMN CARD 
SL.OT 4: CLOC!< 
:::::L.OT ;:::; · PFOF I L.E 
::;:;LOT 6: DISI< Di:;:�I11}E 
:=.::!....OT ? : E!'·iF'T'/ 

Th is  s ing le  d isp lay of text conta ins  a weal th of i nformat ion .  I t  tel ls  
you that the ProDOS program was brought i nto memory from the 
d isk named /EXA M P LES.  Th is  d i sp lay a lso descr i bes the setu p  of  
you r  system : how m uch memory it  has ,  wh ich vers ions of BAS IC 
you can  use, and the type of  peripheral card i nstal led i n  each of 
you r  Apple l l ' s  peri pheral con nector slots.  

By the Way: ProDOS BASIC requires at least 64K of memory. An 
App le  lie a lways has 64K. Any App le  I I  must have 48K of RAM and a 
Language Card to be able to use ProDOS. 

Start ing ProDOS BASIC 



A complete explanat ion of what 
happens when you start ProDOS is 
g iven i n  Chapter 5 ,  " P rogramming  
Wi th  ProDOS."  

The Startup Process 

When you tu rn  your  Apple I I  o n ,  it t r ies to read i nformat ion from 
d r ive 1 of the d isk contro l ler  card i n  the h ighest n u m bered slot 
(usual ly s lot 6) ins ide your  Apple I I .  I f  the d isk is a ProDOS startup  
d isk ,  the ProDOS program is brought  in to memory. You see the 
two d isplays of  i nformat ion descr i bed above, fo l l owed by the 
BAS IC prompt :  

When you type a few l i nes of BAS IC ,  you see that you r  Apple I I  
behaves just as i t  d i d  without ProDOS o r  the d isk d r ive-or s o  i t  
appears. The startup  process actua l ly added the ProDOS 
commands to the BASIC commands to which you are accustomed . 
There are now 23 new com mands that you can type i n ,  and several 
of the o ld commands have been enhanced . 

War n i n g  
Even though t h e  ProDOS commands l o o k  l i ke BAS IC commands (as you 
w i l l  see), they do not always fol low the same rules.  For example ,  m u l t i p le 
ProDOS commands, separated by colons, cannot be put on one l i ne.  

Other Ways to Start ProDOS BASIC 

On an Apple lie, you can always start the system by press ing the 
th ree keys-@], (coNTROL) , and (RESET)-al l at the same t ime ,  and 
then releas ing them . On any Apple I I  computer, you can start  the 
system by tu rn i ng  the computer off and then on agai n .  

When you see one of the prom pts (::i or :j: ) ,  you can usual ly restart 
the program on the d isk in d r ive 1 ,  s lot 6 ,  us ing the com mand 

Chapter 1 :  I ntroduction 



If you see the mon i tor prompt (:q, and F:·::: !!= ;::; d oesn ' t  work ,  t ry 
typ ing  

(]](CONTROL ) -(E) 

If you r  d isk control ler card is i nstal led i n  another s lot ,  replace 6 
with the slot 's  n u m ber. 

These commands are expla ined later. For now, remem ber that 
usi ng  them is a good way to start over if t h i ngs seem to be 
hopelessly confused . Beware, however-these commands make 
everyth ing  that is i n  memory d i sappear. 

The HELP Command 

If you are us ing ProDOS and can ' t  qu i te remem ber the exact form 
of a command , you can add the HELP command by typ ing  

/ !:::. : . . . : .... �:::: �:::; .... 1 ... ; ;:::· : 

whi le  the Examples d isk is i n  a dr ive. You need to type th is  
command on ly once .  The H E L P  command remains  i n  memory unt i l  
you turn  off you r  com puter or use another program (such as the 
ProDOS Fi ler) .  

After you do this ,  you can get he lp with any ProDOS command by 
s im ply typ ing  

··-· :: .... : .... : :::::::::: r;-= =··· ···. :.·· . . -.! 

whi le  the Examples d isk is i n  a d rive. Replace the word command 

with any one of the ProDOS command words (that you ' re go ing to 
learn) .  I f  you just type 

Hi:::: :. =··· 

you wi l l  see the l ist of com mand words shown i n  F igure 1 -3 .  

The H E L P  Command 



Figure 1 -3. The HELP Select ion 
Screen 

Where Explai ned 
Explanatory d isplays. 
See Chapters 1, 2 ,  9 .  

See Chapter 3. 

See Chapter 4 .  

See Chapter 5 .  

See Chapters 6 ,  7 ,  8 .  

See Chapter 9 .  

• 
What You See 

HELP (a user-added command) 

Te 

i·! ;;-·,. :.,";:: : ·. ::::r- .... ' HELP XXX (XXX's below) 

HELP, SYNTAX, BINARY, 

CAT CA LOG, PREFIX, 
CREAT RENAME, DELETE, 
L.OCK .. U!···!LOCt< 

CHAIN, STORE, RESTORE, 

OPEt··l .. 

The left colu m n  l ists the use for each group of commands.  The 
colu m n  on the r ight l i sts words you can enter i n  p lace of>=>=>=: , the 
name of  the command you want to use.  The fi rst group of 
commands is explanatory because the commands H ELP H E L P, 
HELP SYNTAX, HELP B I NARY, and HELP F I L E  do not g ive he lp 
with specif ic commands;  they d isplay explanatory i nformat ion .  

Each g roup of  commands corresponds to one or more chapters, 
and with i n  each g roup ,  the help commands are l i sted in the order 
they appear in this man ual . 

For the HELP com mand to work ,  the fi les named HELP and 
H ELPSCREENS m ust be on the same d isk .  To get them onto a 
d isk other than /EXAMP LES,  copy them usi ng  the ProDOS F i ler. 
Th is  is  expla i ned in more detai l l ater. 

For Example 

I f  you r  Apple I I  is  tu rned off , make sure /EXA M P LES is  i n  d r ive 1 ;  
then turn  on the computer. 

As soon as the prom pt character appears on the d isplay, type 
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Figure 1 -4. The CATALOG Help 
Screen 

• 

When the BAS IC prom pt returns ,  type 

and you wi l l  see the l ist of commands shown in F igure 1 -3 .  If you 
want to see a typ ical he lp screen ,  type 

and you see the d i sp lay shown in F igure 1 -4 . 

Example CATALOG /BUDGET/JAN 

Th.i::� fir:;;t 

c: !:::! T !:i L 0 G ,I :::: i: • .  : D ;;:: 

lists th files in 
the director� GET/JAN; e second 
lists files in v�lume directory �b, 02, 

This command shows the same items as 
CAT In addition, it shows the date 
the file was created, the logical 
1 .;:; t h o f ·t h e f :i. 1 e, .::J n d :5 o m E:· s '-l b t '::i p e• 

At the top of the d isplay is the name of the com man d ,  c:::::"THL.. C ::C, 

fol l owed by the message < I r;-; :-;-; :::., [}:' +" > . Th is  message tel ls  you 
that the CATALOG command can be used i n  immed iate mode (as 
a command typed from the keyboard) ,  and in deferred mode (as a 
l i n e  i n  a program). 

Next is  a l i n e  that descri bes what the command does; one more 
that shows the form ,  or syntax, of the comman d ;  two l i nes of 
examples;  and then an explanat ion of the command syntax. Al l  the 
abbreviat ions shown i n  the d isplay wi l l  be much c learer after you 
fi n ish Chapter 2 .  

A l l  t h e  he lp screens use t h i s  same format with some variat ions due 
to the req u i rements of each i nd ivid ual comman d .  

T h e  H E L P  Command 



Append ix B, which describes the 
d ifferences between ProDOS and DOS, 
explains how to convert a program from 
one format to another. 

You can remove the HELP command by typ ing  

i -� :·
··.; : :· : : ·  ... :;···iL:.: .... : 

This  shou ld be necessary on ly if you are writ i ng  an extremely large 
BASIC prog ram . 

ProDOS and DOS 

Because there are many programs ava i lab le  that are written us ing 
DOS,  i t  is  im portant that you understand some of  the d ifferences 
between ProDOS and DOS.  

When you start up  a ProDOS d isk ,  the ProDOS program is  p laced 
into memory. The ProDOS program is ab le  to write to and read 
from a l l  d isk d rives made for Apple II computers by Apple 
Computer, I nc .  

When you start up  a DOS d isk ,  the DOS program is  placed into 
memory. The DOS program can wr i te  to and read from D isk I I  
d r ives on ly. 

The i nformat ion that ProDOS places on a d isk can not be read by 
DOS;  l i kewise, the i nformat ion that DOS places on a d isk can not 
be read by ProDOS.  However, i n  some cases you can use the 
program CONVERT on the User's Disk ( /USERS.  D I S K) ,  descri bed 
in the ProDOS User's Manual, to convert i nformat ion  from one 
format to the other. 

Th is  means that you can use you r  exist i ng  DOS programs on ly on a 
DOS-formatted d isk u n less they can be converted from DOS 
format to ProDOS format .  The general ru le is  that programs you 
buy can not be converted , and that programs you write you rself 
can be.  I f  a program uses on ly BASIC and DOS commands,  i t  can 
be converted . I f  i t  does any tr icky PEEKs and POKEs,  or if  i t  uses 
mach ine  la111guage at al l ,  then i t  is  l i kely that i t  can not be 
automatical ly converted . 

Chapter 1 :  Introduct ion 
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The ProDOS User's Manual expla ins 
how to format d isks. 

See Append ix  B for more detai ls on 
DOS and ProDOS.  

Files and Commands 

About This Chapter 

The f i rst part of th is  chapter is  about f i les. I t  explains how ProDOS 
arranges f i les on a d isk ,  how f i les are named , and the term inology 
used to refer to f i les. 

The second part of the chapter exp la ins how ProDOS com mands 
are structu red . These commands let you make use of you r  f i les. 

Some of the i nformat ion i n  this chapter is  expla i ned by example :  
as you read sect ions ent i t led " For Exam ple , " t ry the examples .  For 
these examples to work ,  ProDOS m ust be r u n n i n g ,  as expla i ned i n  
Chapter 1 ,  a n d  t h e  Examples d isk m ust be i n  a d r ive. 

Disks 

The purpose of ProDOS is to let you use the i nformat ion  on d isks. 
I t  can commun icate with al l  d isk d r ives bu i l t  by Apple Computer, 
I nc .  for Apple II com puters. Before ProDOS can use a d isk ,  the 
d isk m ust be prepared for use, or formatted . You can format a 
d isk usi ng the ProDOS F i ler. 

You ' l l  f i nd  it conven ient  always to have an adeq uate su pply of 
em pty ProDOS-formatted d isks on han d ,  and to mark each d isk 
so that you know that i t  i s  ProDOS-formatted . Disks of other 
formats (Apple I I  Pascal , DOS) can not be used by ProDOS.  
App le  I l l  80S-formatted d isks can be used by ProDOS (al though 
the prog rams on them can not) .  

Disks 



Figure 2-1.  F i les in a D i rectory 

Files 

ProDOS lets you organize informat ion into units of d isk storage 
known as f i les. Fi les can contain num bers, phone l i sts, letters, 
p ictures, programs, or any other type of informat ion that you r  
Apple I I  can use. 

When a f i le is  p laced on a d isk ,  i t  is  assigned a name and a type. 
When you want access to the informat ion stored in a part icu lar  f i le ,  
refer to that f i le  by i ts name.  The f i le 's  type ind icates the k ind of 
informat ion that the f i le  contains. For example ,  there are text f i les,  
prog ram fi les,  and a very i m portant f i le  type: d irectory f i les.  

Directory Files 

A d i rectory f i le  is  just  l i ke any other f i le ,  but  instead of contain ing a 
prog ram or text , it contains a l i st of other f i les and the i r  locat ions 
on the d isk .  

DIRECTORY 

.------ -

The d i rectory shown in F igure 2- 1 contains fou r f i les:  F I LE 1 , F I LE2 ,  
F I LE3, and F I LE4. Each of  these f i les can be of  any f i le  type; thus 
al l ,  some,  or  none of  them could be d i rectory f i les.  You can use up  
to 64 levels o f  d i rectories on a d isk ;  however, more than five or s ix  
levels o f  d i rector ies a re  d i ff icu l t  to use. 
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A vol u m e  d i rectory is the main  
d i rectory f i le  for the ent i re d is k .  

CAT i s  the s h o r t  version of CATALOG. 

Volume Directory Files 

When you format a disk us ing the ProDOS F i ler, a specia l  type of 
di rectory f i le  i s  automat ical ly p laced on the d isk .  I t  i s  cal led a 
volume d i rectory, and it is the ma in  di rectory f i le  for the ent i re 
d isk .  

A ProDOS volume di rectory 

• is on every ProDOS-formatted disk .  

• has a name,  ass igned when you format the d isk .  Th is  name,  
bei ng  associated with the ent i re contents of  the d isk ,  is  a lso the 
d isk 's  name.  You shou ld p lace i t  on the d isk 's  label . 

• can conta in  u p  to 5 1  f i les.  

• i s  the on ly f i le that you can not create using the CREATE 
command (or the ProDOS F i ler command, MAKE D I RECTO RY) . 

. • i s  the on ly f i le  that you can not remove from a disk (a l though you 
can remove al l the f i les i n  i t ) .  I t  i s  also the on ly f i le  that you 
cannot protect us ing the LOCK command. 

I f  you have an Apple l ie with an Extended 80-Co lumn Text Card, 
ProDOS places a volume di rectory f i le  i n  the a l ternate 64K of RAM 
on the card. This volume is  named /RAM and i t  can be used just 
l i ke a smal l d isk .  U n l i ke a d isk ,  however, the i nformat ion in /RAM 
disappears when you turn  off you r  com puter. You shou ld use th is  
volume on ly for temporary storage of  i nformat i o n .  An example of 
the use of /RAM is g iven in the fo l lowi ng sect ion .  

For Example 

To see the contents of the vol ume di rectory of the Examples 

master d isk ,  type the ProDOS command 

and the disp lay shown in F igure 2-2 appears. 

By the Way: Your  d isk catalog may show dates and t imes that are not 
the same as those pictured i n  th is manual .  Don't worry-they are just 
to show you what these catalogs look l i ke .  

Fi les 



Figure 2-2. The Main F i les on 
/EXAMP LES 

• .- E ;:.:: H !·1 F L.. r:::: ::;; 
HF!!'!E 

HELP 

PPfiCT ICE 
F'FOGPf1!·1:��; 
DfiTA 

T Y FE BL.OLKb MODIFIED 

•'"·'· ···:::· ·-' ; ··-' 
::;:; \' �:::; 
PFi:=.:; 
�:::: I r1 

DIF 
ure 

[)IF 
D I i;:: 
EF! ·:::; 

1. 

1 

1-:=.:;EF· ·· ··:::::; 

1 --· �=� E F' -·· :;::; 3 
1 · ·-· �:::; E P --· �:: 3 

1 ·- ::; E r.:· ·-·· ::: 3 
:l · ·-· ::;; E F' ..... :::; ::�: 

1 ·- :::; E. p ···- :::: 3 
1. · ···· :::; E P -- ::;; 3 

1 -- :::; E F' · · ·  :::: ::: 

1?3 

Some of these f i les are d i rectory fi les: t hey conta in the names and 
locat ions of other f i les on the d isk .  You can recogn ize a d i rectory 
fi le by the abbreviat ion c: ::: i? to the r ight  of i ts f i lename in the 
catalog . 

If you have an Apple lie with an Extended 80-Co lumn Text Card , 
type the ProDOS command 

ProDOS d isplays i nformat ion s im i lar to that shown above, but  with 
no f i lenames l i sted . /RAM is em pty. 
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Filenames 

Several ProDOS commands cause f i les to be created; each 
req u ires that you ass ign the f i le  a f i lena me. 

A ProDOS f i lename 

• i s  com posed of up  to f i fteen characters . The first m ust be a 
letter; the rest can be any com b inat ion  of uppercase or 
lowercase letters (A-Z) , d ig i ts  (0-9) ,  and periods ( . ) .  Lowercase 
letters are automat ical ly converted to uppercase, thus A and a 

are equ ivalent .  

• must be u n i q ue wi th i n  i ts directory. There can be f i les by the 
same name i n  different  directories.  

Some Legal Filenames 

Here are a few legal f i lenames (assu ming  there aren ' t  already f i les 
of the same name in the same directory) . 

A .LONG. F I LENAME 
z 
A. 1 DERFU L . NA M E  

longest poss ib le  name 
shortest poss ib le  name 
has letters , num ber, and periods 

Note: Although you can ' t  use spaces i n  f i lenames, you can use periods 
to separate words within a f i lename. 

Some Illegal Filenames 

Here are some i l legal f i lenames and the reasons you can ' t  use 
them . 

3 . B L I N D . M ICE 
. P R I NTER 
SPACE RACE 
BOOP, B ETTY 
P EAN UT. BUTTER.AN D . P ICKLES 

Fi les 

beg ins  with a n u m ber 
beg ins  with a period 
contai ns  a space 
contai ns  a comma 
too many characters 



Figure 2-3. The Structure of a ProDOS 
Pathname 

A partial  pathname is a f i le 's  pathname 
with the prefix removed from the front 
of i t .  

Path names 

To f i nd a f i le ,  ProDOS must know the path (from the d isk 's  volume 
di rectory to the f i le) that i t  must fo l low to get  to the f i le .  The ent i re 
pat h ,  from the volume di rectory to the f i le ,  i s  cal led the f i le 's  
pat h name.  For example ,  the pathname of  a f i le  STA N D  i n  a 
di rectory LAST i n  the volume di rectory CUSTER is  
/CUSTER/LAST /STAND . 

A ProDOS pathname 

• is  a series of f i lenames, preceded and separated by s lashes 

• has a volume di rectory f i lename as i ts f i rst e lement 

• i s  no more than 64 characters long,  i nc ludi ng s lashes. 

F igure 2-3 represents the structure of a path name. 

� FILENAME I ) 
F igure 2-4 disp lays the di rectory structure of a disk contai n i n g  f i les 
that document part of the I ndo-Eu ropean fam i ly of languages. 
Below i t  are a few of the many val id pathnames with i n  th i s  
di rectory structure.  

In th is example ,  I N DO .EUROPEAN is  the name of the disk 
contai n i n g  these f i les and also the name of the disk ' s  volume 
di rectory. 

The Prefix and Partial Pathnames 

It is very t i me-consu ming  to type i n  an ent i re pathname every t ime 
you use  a f i l e .  By  set t i ng  the prefix, a path name that i ndicates a 
di rectory f i le ,  you can refer to f i les i n  that di rectory, or to f i les that 
can be reached through that di rectory, by us ing the i r  part ia l  
path names.  

Chapter 2: F i les and Commands 



Figure 2-4. A Sample D i rectory 
Structure 

A Directory Structure 

I N DO. EURO P EAN 

BA LTO.SLAVIC GERMANIC C E LTIC ITALIC H E LLEN I C  

/""' /� I 
BALTIC SLAVIC GOIDELIC B RYTHO N I C  GREEK 

NORTH.GERMANIC WEST.GERMANIC EAST.GERMANIC 

Table 2-1. The P refix and Pathnames 

LAT I N O . FALISCAN 

And Some Pathnames Within  It  

/I NDO.  EUROPEAN/H ELLEN IC/GREEK 

/I N DO.EUROPEAN/GERMANIC/WEST.GERMANIC 

/I N D O . EUROPEAN/ITALIC 

/I NDO. EUROPEAN/BALTO.SLAVIC/BALTIC 

OSCO.UMBRIAN 

Table 2- 1 shows the relationship among path name,  prefix , and 
part ia l  pathname.  

You Wa nt  ProDOS t o  Find C u rrent Prefix Is You Should Type 

/CAROL/GHOSTS/XMAS . PAST /CAROL! GHOSTS/XM AS.PAST 
/CAROL/GHOSTS/XMAS.FUTU R E  /CAROL/GHOSTS/ X M AS.FUTU R E  
/ M Y. D I S K/GA M E S  /YOUR.D ISK/  / M Y. D I S K /GAM ES 

In the third co l u m n  of Tab le 2- 1 ,  GHOSTS/XMAS. PAST and 
XMAS. FUT URE are both part ia l  pathnames; a fu l l  path name is 
formed by adding  the current pref ix .  In the th ird example you want 
to use /MY.DISK/ , but  the prefix is set to /YOUR.DISK/ .  In cases 
like this , you m ust use the fi le 's  fu l l  path name (or change the value 
of  the prefix). 

M ake sure you u nderstand the examples in Tab le 2- 1 .  Once you 
do , you will never have troub le  with pathnames, partial pathnames, 
or pref ixes. 

F i les 
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A ProDOS part ia l  pathname 

• i s  a f i lename, or a ser ies of f i lenames separated by s lashes 

• i s  a pathname m i n us the cu rrent prefix 

• i s  no more than 64 characters long ,  i nc ludi ng slashes. 

You can use the PREF IX command to set the pref ix .  Fol l ow th is  
command by the pathname of  a di rectory. Thus ,  before referr ing to  
several f i les that are  i n  the /EXA M P LES/CATALOG di rectory, you 
can use the command 

/ t::. ,:-:, �---� ! : ;  ... · L.. j·· _. _ _  �-··j L.1 . ..l l .. := _/ 

For Example 

To set the prefix to the name of the di rectory /EXAM PLES/CATALOG 
use the command 

.·! ... ·._.·; ___ ;;-:;: __ :: 

Now look at the contents of the CATALOG di rectory with the 
command 

i ... : j---� l 

Without any opt ions ,  you can use the CAT or CATALOG command 
to display the contents of the prefix di rectory. Now examine the 
contents of the di rectory /EXA M P LES/CATALOG/D I R ECTORY by 
typ ing  the command 

L .Lr':.l:::.= ... - =: ,,.,. 

I n  two commands, you saved 28 keystrokes ! 

The General Form of ProDOS Commands 

Th is  manual  descri bes a l l  the poss ib le  forms of each ProDOS 
command by present i ng a one-l i ne  descr ipt ion of the command. 
Th is  one-l i ne  descr ipt ion i s  cal led the command's general form ,  or 
syntax, and i t  looks someth i ng  l i ke th is :  

com mand [pn ]  [ ,S#]  [ , D#]  

The word command represents any of  the ProDOS commands. 
The expressions [pn ] ,  [ ,S#] ,  and [ , D#]  are the command's opt ions .  
There are many opt ions other  than these th ree . 

C hapter 2: F i les and Commands 



The th ree opt ions shown above are cal led the pathname,  slot , and 
d rive opt ions ,  respect ively; together they determine  the name and 
locat ion of  the f i le  to be accessed . You can specify a f i le  on any of  
you r  d isks us ing on ly the path name opt ion .  The slot and d r ive 
opt ions g ive you add i t ional  control  in accessing  f i les .  

Here is a specif ic i nstance of the CATALOG command t hat uses 
the [pn ] ,  [ , S#] ,  and [ , D#]  opt ions :  

Th is  command tel ls  ProDOS to d i sp lay the f i les contained i n  the 
BOOKS d i rectory ( i n  th is  case pn is  replaced by a part ia l  
pathname),  which is  i n  the volume d i rectory of the d isk i n  s lot 6 ,  
d r ive 1 .  

Note the use of commas i n  the above example .  Commas separate 
the opt ions ;  you can put spaces before or  after the commas if you 
wish . 

Options 

Somet imes an opt ion is shown with brackets around i t ,  somet imes 
not .  I f  an opt ion does not have sq uare brackets around i t ,  you 
must use that opt ion each t ime you use the comman d ,  and you 
must use it i n  the order shown by the com man d ' s  syntax. An 
opt ion  that has square brackets around i t  may be inc l uded or  
omit ted , depen d i n g  on what you want  the com mand to do .  
Bracketed opt ions can  be used i n  any  order. 

War n i n g  
When you use a n  opt ion ,  never type i n  t h e  square brackets; they are only 
there to tel l you that the opt ion is  not req u i red . 

The characters wi th i n  the brackets do th ree th i ngs :  the comma 
separates an opt ion from its predecessor, the capita l  letter 
ident if ies which opt ion you are usi ng ,  and whatever is  after the 
capital  letter (usual ly #) stands for the value you can g ive that 
opt ion .  

The letters p n  should be replaced by  a pathname or part ia l  
pathname,  as expla i ned below, and # should be replaced by an 
i n teger. The value of # can be a decimal  i n teger or a hexadecimal  
i n teger. 
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By the Way: An add i t ional  notat ion is used later i n  the manual . Two 
opt ions separated by a vert ical bar, I , are alternates. Use one or the 
other, not both .  You can read a bar as the Engl ish word or. 

Hexadecimal Notation 

You are never req u i red to use hexadecimal  n u m bers. The i n teger 
in an opt ion ,  represented by # ,  can be expressed i n  hexadecimal 
notat ion by preced ing  the hexadecimal d ig i ts  with a do l lar  s ig n .  
For example ,  t h e  decimal  i n teger 254 can b e  expressed i n  
hexadecimal  notat ion  a s  $FE.  

The Pathname Option-[pn] 

[pn]  Th is  opt ion i n d icates to ProDOS the name of the f i le  that you 
want to use. You can replace pn with a pathname or a part ia l  
path name.  

I f  you use a pathname,  ProDOS looks for the f i le  with that 
path name.  

I f  you use a part ia l  path name without the [ ,S#] and [ , D#]  opt ions ,  
ProDOS looks for the f i le  havi ng  the pathname formed by the 
part ia l  pathname added to the prefix. I f  the prefix is  em pty, the 
name of the volume i nd icated by the last used val ues of  [ ,S#] and 
[ , D#] is  used i n  p lace of the prefix. 

By the Way: You can access any f i le  us ing j ust its pathname. The [ ,S#]  
and [ , D#]  opt ions are pr imar i ly for DOS compat i b i l i ty. They are also 
usefu l  i f  you don ' t  remember a d isk 's  name. 

For Example-[pn] 

Here are a few ProDOS commands that use the pathname opt ion :  

; · •• = .•• : ; ·: 

Did  you t ry these commands? If not ,  t ry them i n  the order 
presented . How they work is exp la ined i n  later chapters. 
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The Slot Number Option-{,S#J 

[ ,S#]  I nc lude th is  opt ion  to tel l ProDOS the s lot that con nects the 
d isk d r ive you want  to access . Replace # with a s lot 
n u m ber from 1 to 7.  

When you use th is opt ion ,  the val ue specif ied by # becomes the 
defau l t  s lot  num ber. 

If you use th is  opt ion without the d rive opt ion ,  d r ive 1 is assumed . 

If th is  opt ion is used after a pathname, ProDOS f i rst looks for that 
path i n  the i nd icated slot .  If th is  opt ion is used after a part ia l  
path name, ProDOS forms a pathname by add i n g  the volume name 
of the i nd icated volume to the part ia l  path name (the prefix is  
ignored) .  

The Drive Number Option-{,D#J 

[ , D#]  I nc lude th is  opt ion to tel l ProDOS the d rive that contai ns 
the d isk you want to access. Replace # with d r ive n u m ber 1 
or 2 .  

W h e n  you use th is  opt ion ,  t h e  value specif ied b y  # becomes t h e  
defau l t  d r ive num ber. I f  you use the dr ive n u m ber opt ion without a 
slot n u m ber opt ion ,  ProDOS looks for the d r ive i n  the defau l t  s lot .  

I f  th is  opt ion is  used after a pathname, ProDOS f i rst looks for that 
path i n  the i nd icated d r ive. If th is  opt ion is used after a part ia l  
pathname, ProDOS forms a pathname by add i n g  the volume name 
of the d i sk i n  the i nd icated slot and d rive to the part ia l  pathname . 

... War n i n g  
I f  you u s e  t h e  slot num ber a n d  d rive n u m ber opt ions to i n d icate a d rive 
that is not there, you wi l l  get the :· m D E '.} I C: E C: C) i· ·H·� E C T E D  error 
message. 
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Table 2-2. How ProDOS Forms a 
Pathname 

For Example-LS#J LD#J 

Here are some ProDOS com mands that use the [ ,S#]  and [ , D#)  
opt ions .  Try them i n  order  now with the /EXA M P LES d isk in  
d r ive 1 .  

C H ! r R O G R A M S . S 6 , n 1  

d isplays the f i les i n  the PROGRAM d i rectory of /EXA M P LES,  the 
d isk i n  s lot  6 ,  d r ive 1 .  

sets the prefix to the name of the vo lume d i rectory, s lot 6 ,  d r ive 1 .  

····· .··· . .. ;:::: ::::= :"··, ,-··· ;:::: ;:::; ;·.·: · . ' ' ' ' ... . 

checks fi rst i n  d r ive 2 for the /EXA M P LES volume ,  then i n  other 
d r ives un t i l  i t  f inds /EXA M P LES.  

In Summary 

Tab le  2-2 shows the path name that ProDOS seeks for each 
poss ib le  com b inat ion  of the pathname,  slot , and d r ive opt ions .  

[pn] [, S#] [, 0#] 

ppn 
ppn + + 
ppn + 
ppn + 
pn 
pn + + 

Key: + = opt ion used 
= opt ion not used 

pn = pathname 
ppn = part ia l  pathname 

Pathname Sought 
See com mand descr ipt ion 
pn = prefix + ppn * 
pn = vn + ppn 
pn = vn + ppn * * 
pn = vn + ppn * * *  
pn = pn 
pn = pn 

vn = volume name of d isk at S# ,  D# 

* If the prefix is em pty, the last used val ues of S# and D# 
are  used to determ ine  a volume name.  

* * When on ly S# is g iven ,  d r ive 1 is assumed . 
* * * When on ly D# is g iven ,  the last value of S# is used . 
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Using Files 

About This Chapter 

Th is  chapter descri bes the ProDOS commands that let you keep 
track of and man ipu late the f i les on you r  d isks.  You can use these 
commands 

• to see what i nformat ion  is  on a d isk 

• to create more room on a d isk by th rowi ng  away o bsolete 
i nformat ion  

• to change the name of  some i nformat ion  so that i t  is  easier to  
locate 

• to protect some i nformat ion  from be ing accidental ly destroyed . 

Because you issue the commands descr i bed i n  th is  chapter from 
the keyboard more freq uent ly than from wi t h i n  programs, they are 
descr i bed here before the chapter that expla ins  the techn ique for 
usi ng  ProDOS commands in prog rams. Remember that they can 
al l  be used in programs. 

This Chapter's Commands 

The ProDOS commands that let you man ipu late f i les are 
summarized below; each affects one fi le at a t ime .  If you want to 
perform operat ions on several or al l  of the f i les on a d isk ,  use the 
ProDOS F i ler, descr i bed i n  the ProDOS User's Manual. 
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CATALOG List a l l  the f i les i n  a d i rectory 

Use th is  com mand to p lace a l ist of a l l  the f i les i n  the d i rectory you 
name onto the screen . It also d isplays other i nformat ion about 
each f i le .  

PREFIX Set a d i rectory to work in  

Use th is  command to set the value of  the prefix, that is ,  the 
pathname that is  automat ica l ly added to the beg i n n i n g  of any 
part ia l  pathname you use. You can also use i t  to d isp lay the prefix. 

CREATE Create a new d i rectory (or other f i le) 

Use this command to create a new fi le with a name and type that 
you specify. A l though there are ways to create other f i le  types, th is  
is  the on ly way you can create a new d i rectory. 

RENAME Change a f i le 's  name 

Use th is com mand to change the name of a f i le ,  but  you can not use 
i t  to move the f i le  from one d i rectory to another. 

DELETE Remove a f i le  from a d isk 

Use th is command to remove a f i le  from its d i rectory. Once you 
delete a f i le ,  it is not possi b le  to get it back .  

L O C K  Protect a f i le  from bei ng  destroyed 

Use th is  command to protect a f i le  from be ing acc idental ly 
destroyed . Once you lock a f i le ,  i t  cannot be ren amed , deleted , or 
otherwise changed un t i l  i t  is  un locked . 

U NLOCK Unprotect a locked f i le  

Use th is  command so you can rename,  delete or  otherwise change 
a f i le  that is  locked . 
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Figure 3- 1 .  Using F i les 

My name is My name is n Prefix is 
/DISKO /MYDISK /DISKO 

RENAME: PREFIX: 

Give a f i le a new name Set a d i rectory to work in 

r------
1 
. I  
I 

r _ _ _  __j_ _ _ _  -, 

I My name is n I I /NEWDI R I I I I I 
L _ _ _ _ _ _ _ _  J 

CREATE: 

Make a 

new d i rectory f i le 

I 
_ _ _ _ _ _ _ _ _  j 

� 1� (§ . �  1 --

I My "'me ;, I 
DELETE: 

Remove a fi le 

from its d i rectory 

n 

L CATALOG: What fi les are 

in  a d i rectory? 

I My "'me ;, I n rs=8· 

LOCK: UNLOCK: 

Protect a f i le  Unprotect a f i le 

The CA T and CA TAL OG Commands 

To view the names and other character ist ics of a l l  the f i les i n  any 
d i rectory, use one of the two forms of the CATALOG command : 

CAT [pn]  [ ,S#]  [ , D#]  
CATALOG [pn]  [ ,S#]  [ , D#]  

D isp lay 40 columns  
Disp lay 80 columns  

CAT d isplays a 40-colu m n  w ide  l ist o f  f i les .  I t  i nc l udes the f i le 's  
name, type , s ize ,  and mod if ied date .  CATALOG d isp lays an 
80-co lumn wide l ist of f i les, wh ich i nc ludes the same i nformat ion ,  
p l us  t he  date that the f i l e  was created , and some techn ical 
i nformat ion .  I f  you d i sp lay the 80-co lumn l ist on a 40-co lumn wide 
screen , each entry in the l ist takes u p  two l i nes.  F igure 3-2 is  a 
comparison of the fou r  d isplays that can be generated by th is  
comman d .  
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• 
Figure 3-2. CAT and CATALOG 

40-co l u m n  CAT 

• 

80-col u m n  CAT 

• 

F' :·-, =-·· ,-, ,-·, ,. ... 

H E L P  

D I P E C T' C) !? '  

D I PECTDR\' n r P  

PF:OC:PHf·1·=: l'"; T p 

DATA n r p  

t� ! �H� D I R  
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• 

40-co lumn CATALOG 

• 

80-co lumn CATALOG 

. .... E :=-:: Fi t··! P L E �:; 
N A M E  T Y P E  B L O C K S  M O D I F I E D 

C R E A T E D  E N D F I L E S U B T Y P E  

0 : 0 0 5 - A U G - 8 3  2 1 : 0 4 
S T A R T U P  R A S  

1 1 :  4 1  �:� :::� ... - ..J U L ·-- :::: :::;: 0 :  0 0  
H E L P  B I N  

H E L P S C R E E N S  T X T  

1 0 2 4 0  
7 1 - ·· :::: E P - ::: 3 
;2 7 5 [1 

5 4  
5 9  1 - S E P - ::::3 

0 : 0 0 2 2 - ..J U L - 8 3  0 : 0 0 1 2 3 5 8 6 5 6  

D I R E C T O R Y  D I R  
0 : 0 0 2 8 - M A R - 8 3  0 : 0 0 
P R A C T I C E D I R  
0 : 0 0 1 6 - ..J U L - 8 3  0 : 0 0 
P R O G R A M S  D I R  

1 7 : 5 1 2 8 - M A R - 8 3  0 : 0 0 
D A T A  D I R  

1 7 : 4 6 2 8 - M A R - 8 3 0 : 0 0 
E X T R A S  D I R  
0 : 0 0 2 8 - M A R - 8 3  0 : 0 0 
F CJ ·:; T A G E , P H T E S  
0 : 0 0 1 7 - ..J U L - 8 3  0 : 0 0 

0 : 0 0 2 8 - M H R - 8 3  0 : 0 0 

T C T Fi L  B L. O C f::: ::; : 2 ::: \:.1 

/E::-::Ri'1PLE::; 
HAt:1E 

STARTUP 

T\'F'E BLOi):S l·10Dl F IED 

i ,-. r- r, .-, ....., 1 -- .:1 c. r -· .::z .. ) 
5 1 ;:::: 

1 1 - ::; E P - ::n 
5 L:: 

3 1 - ::; E P ·-· ::: 3 

1 1 - ::; E P - ::: 3 
5 1 2  
i::' 4 .-1 
._i l c. 

-.. .-. _, _, ·-· ,:._ !  ·-' 

CPEATED 

1 - ::; E P - ::n 

1 -· :=.:; E P - ::: 3 

1 -- ::: E P - ::n 

j 7 7 ,;. ! ·-' 

ErmF I LE '3U8T'r'PE 

HF-:33 11 : 27 22-,JUL-:33 1 i: 27 54 

D I �:ECTOP'l D I P  
PRACT I CE 

D IR  
Liii i h  D I P  

DIP 
POSTAGE , PATE::; BAS 

59 i - :3EP-t:3 ;3 : �30 22-.JUL -:::3 0 :  �30 1235:::656 
1 -:::c:-:-::: .;; �j � ({i 2�::-NRR-S3 �:i : �3e :• l t. 

::: l-:3EP-:33 0 :  ti0 17 -,_ii_!L -:::3 0 :  [uj 
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Display 80 columns.  

· D isplay 40 columns.  

For example ,  to see the f i les of jokes in the d i rectory 
/JO KES/BAD, you can use the command i n  e i ther of the fo l lowi ng  
forms: 

i . ,  . :·· .···- :  , .···. 
; ; ; ; ;  . · ... · ·  - !:::· ····. :··· ;,,,: ; ; ;___: 

The Options 

If you g ive the CAT or CATALOG command without any opt ions ,  
the names and character ist ics of al l the f i les i n  the prefix d i rectory 
are d isp layed .  If the prefix is em pty, a l l  the f i les i n  the volume 
d i rectory i nd icated by  the last used values of  [ ,S#]  and [ , D#]  are 
d isplayed . 

[pn ]  The f i lename used i n  the command must i nd icate a 
d i rectory f i le  or you see the F: .:. L .. t: . · ·. '··· :::. !"'! I '::>c: :::rr

·
c !···! error 

message .  

[ ,S#]  I f  you use the s lo t  and d r ive opt ions without a f i lename,  
[ , D#] ProDOS d isp lays a l i st of the f i les i n  the volume d i rectory 

of the d isk i n  the specif ied d r ive. 

For Example 

To see a l ist of the f i les i n  the volume d i rectory of the /EXA M P LES 
d isk ,  type 

and you see the d isp lay shown in F igure 3-3.  
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Figure 3-3. A Catalog of the 
/EXAMP LES Disk 

• 

B L O C: 

T Y P E  B L O C KS M O D I F I E D 

T >=: T 
D I R  

D I P  
D I P  
D I P  
E: A :;::; 

:L 

1 

1 .. �. :::; E P ···� 8 3  

1 ··-· :::; E P  ;::: 3 
1 -- :3 E P - :;::: :_::: 
1 -·· :3 E P ·- ::: 3 

1 -- :;:; E F' -· · :;::: 3 

1 7 3  -

Now, be sure that you r  /EXA M P LES d isk is i n  s lot 6 ,  d r ive 1 ;  type 

' H  � : :.::; ::: .. . = :.) ·=· 

and you see a 40-colu m n  l i st of the same d i rectory. The f i rst 
example causes a d isplay of the f i les in the vol u me d i rectory of the 
volume named /EXA M P LES,  no  matter which d isk d r ive 
/EXA M P LES is  i n .  The second example causes a d isp lay of the 
names of  the f i les i n  the volume d i rectory of any d isk that is  i n  the 
dr ive connected to s lot  6 ,  d r ive 1 .  

Now look at the f i les i n  another d i rectory. Not ice that one of the 
f i les d isplayed on the screen is  named P ROGRAMS.  Type 

and a new l ist of f i les appears on the screen . These are the f i les 
stored on the /EXA M P LES d isk i n  the d i rectory named 
P ROGRAMS.  
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Figure 3-4. A Catalog of 
/EXAM P LES/DI RECTORY 

• 

What It All Means 

By now you m ust be a l i t t le cur ious about the mean ing  of the 
head ings that appear on the screen each t ime you use the 
CATALOG command . Wonder no  more, for cur ios i ty k i l led the 
CAT. Type 

: .... L .. · ... . .... i 1·::" 1··· 1 .  1 i 

and ,  if you have an 80-co lumn d isplay, you see the catalog shown 
in F igure 3-4 . 

Th is  is the 80-co lumn vers ion of th is  comman d .  If you have a 
40-co lumn d isplay, you see the same i nformat ion ,  but  each entry i n  
t h e  l ist takes u p  two l i nes on the screen .  

The Directory's Name 

The f i lename of the d i rectory whose f i les you see i n  F igure 3-4 
appears i n  the upper- left corner of the catalog . If it is a volume 
d i rectory, i t  is preceded by  a slash ; otherwise i t  is  not .  
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Table 3-1. The F i le  Type Abbreviat ions 

The uses for each f i le  type are expla ined 
later in the manual .  

NAME (Filenames) 

The name of each f i le  i n  the d i rectory is l i sted beneath the leftmost 
head i n g ,  the one labeled i -i ::::: i 'ii::: . I f  the named f i le  is locked , its 
f i lename is  preceded by an aster isk .  

TYPE (File Types) 

The abbreviat ions beneath the head ing  labeled T '  !:::: tel l you the 
type of  each f i le  i n  that d i rectory. The f i le  type that corresponds to 
each abbreviat ion is  shown i n  Tab le 3- 1 .  

Abbreviation 

D I R  
TXT 
BAS 
VAR 
B I N  
REL 

* $F# 
SYS 
SYS 

File Type 

Di rectory 
Text 
Applesott Prog ram 
Applesoft Var iab les 
B i nary 
Relocatable Code 
User Defi ned 
ProDOS System F i le  
ProDOS System Program 

* # is an i n teger from 1 to 8 .  

Not ice that a f i l e  o f  each type is represented i n  t h e  
/EXA M P LES/ D I R ECTORY d i rectory. W i t h  ProDOS started u p  and 
the /EXA M P LES d isk i n  d r ive 1 ,  type 

;···; t::. L.. ;···· : ... .L L.. 1:::. 

to see th is  l ist of f i le  type abbreviat ions .  

BLOCKS (File Sizes) 

A block is a 5 1 2-byte un i t  of d isk space. , · :-··: r·· · l ists the n u m ber of b locks of d isk space that 
each f i le  uses. 

For d i rectory f i les ,  th is  col u m n  l ists the n u m ber of b locks used by 
the d i rectory f i le ,  but not the b locks used by the f i les in the 
d i rectory. 

When you catalog a volume d i rectory, the b lock use of the ent i re 
d isk is d isplayed at the bottom of the scree n .  
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Chapter 7 descri bes random-access 
text files and explains how th is  might  
happen .  

Table 3-2. The SUBTYPE Column 

MODIFIED and CREATED (File Dates) 

These co lumns  conta in  the dates and t i mes at which you created 
and last mod if ied your  f i les.  The f i rst half of the i ' i c: : ; T '  '· , . , .. 
colu m n  is d isp layed by the CAT com man d ;  both co lumns  are 
d isplayed by the CATALOG command .  These d ates and t i mes are 
correct on ly if 

• you have a Thunderclock TM or 

• you have used the T I M E  prog ram , descr i bed in Append ix  D, or 

• you have some other type of c lock/calendar  card , and have set 
it up as exp la i ned in Chapter 9 .  

I f  there is a Thunderclock i n terface card i n  o n e  o f  t h e  Apple l l ' s  
s lots,  P roDOS recogn izes t h e  card a n d  sets itself up  t o  read the 
d ate and t i me from the card . 

ENDFILE (Maximum File Sizes) 

=··· =-· : =  , ;:::· T L.. �:::: l ists the n u m ber of bytes that each f i le  wi l l  use if a l l  the 
d isk space a l lot ted to that f i le  is  f i l led (somet i mes i t  i s  not) .  

SUBTYPE (File Properties) 

::: : '. ' ' ' ;T<:: l ists i m portant propert ies of some types of 
f i les.  A s ing le  letter precedes each n u m ber i n  th is  col u m n .  The 
letters used are shown in Tab le 3-2.  

Letter 

A 

R 

Mea n i n g  

Load Add ress : Th is  is  the memory add ress from 
which a b i nary f i le ( B I N )  was saved . The add ress is 
g iven i n  hexadec ima l .  

Record Length :  Th is  is  the s ize ( i n  bytes) o f  each 
element in a text f i le  (TXT) or  user defi ned f i le  
($F#) .  The length is i n  deci ma l .  

For  example ,  b i nary f i les are  usual ly p laced i n  the same par t  of 
memory each t ime they are used . For a b i nary f i le  the property i n  
the ::::; : :: : ' ' ' ' ' !: colu m n  starts with a n  A (for load Add ress) fo l l owed 
by the memory add ress at which that b i nary f i le  was last p laced . 
Th is  type of att r i bute is d iscussed i n  Chapter 4 ,  " BASIC Prog rams 
in F i les . "  
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The other type of property beg ins  with an R (for Record length) .  I t  
specif ies the size of  each e lement  of the f i le .  Th is  att r i bute is  
expla i ned i n  Chapter 6 ,  "Text i n  F i les . "  

The Bottom Line 

When you d isplay the catalog of a d i rectory, the bottom l i ne of the 
d i sp lay descr i bes how space on the volume is used . 

' ' ! F :: · : :  is the n u m ber of u n used b locks on the 
d isk ,  !3 L.. C: !:>· :: :: ! . .<::: : :  L !  i s  the n u m ber of fu l l  b locks on the d isk ,  and 

'··"···· '··· C> · ::: i s  the maxi mum n u m ber of b locks of i nformat ion  
that the d isk can  hol d .  

The PREFIX Command 

If you are go ing  to be referr i ng  to several f i les i n  a s ing le  d i rectory, 
the PREF IX command can save you some t ime .  Use the PREFIX 
command to set  the prefix to the name of  the d i rectory the f i les are 
i n ;  you can then refer to the f i les by f i lename a lone.  

To assig n  a new value to the prefix, or  to see the cu rrent val ue of  
the pref ix ,  use the com man d :  

/PREFIX [ p n ]  [ ,Stt] [ , D#]  

For example ,  i f  the prefix is  set to /EXAM P LES/,  and you want  to 
use the f i le  named / M A M M ALS/RODENTS/BEAVER you must 
refer to i t  by its fu l l  path name. I f  you use the command 

r·· r==. !:::. r·· 
, ;.,.; ;.,.; ,···, ; . ; ,: ; ; ;  

you can then refer t o  the f i le  s im ply as BEAVER,  and t o  the other 
f i les in the d i rectory as M OUSE,  SQU I RREL ,  RAT, and so o n .  

When you start u p  /EXA M P LES or a n y  other ProDOS d isk ,  the 
prefix is  left empty, and the slot and d r ive defau lts are set to 
i n d icate the d r ive contai n i n g  that d isk .  Whenever the prefix is  
empty, ProDOS looks for f i les on the d isk i n  the i n d i cated slot and 
d r ive. 
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The Options 

I f  you use the PREF IX command without any opt ions ,  the cu rrent 
value of the prefix is  d isplayed on the screen .  

[pn ]  pn must be the path name or part ia l  pathname of  a 
d i rectory f i le .  U n l i ke a normal  pathname or part ia l  
pathname, i t  may end with a s lash .  I f  i t  is  not val i d ,  you wi l l  
get a ::::0 I Loo ::::: OT" '/ :: :. ::::: i 'i I ·:::: !'! ::::: T" C:: ! !  or F

o 
I moo :: : 0 ' ;00, , 0 0 0 0 0 L.i error. 

If you use a slash i nstead of a path name, the value of the 
prefix is  left em pty. 

[ ,S#]  I f  you do not specify a f i lename, but  you d o  use the 
[ ,D#]  slot and d r ive opt ions ,  the volume name of  the i nd icated 

d isk is ass igned to the prefix. If you have a contro l ler for a 
s ing le  d isk d r ive i n  a s lot ,  refer to it as d r ive 1 of that s lot .  

For Example 

With ProDOS started up ,  and the ProDOS d isk i n  d r ive 1 ,  set the 
prefix to i nd icate the /EXA M P LES volume d i rectory us ing the 
command 

; ;  ·! F  : .... ;·· ... 

and then make sure the command worked r ight  us ing  the 
command 

Not ice that the value of the prefix is  pr i nted out as 

I f  the prefix value that you ass ign doesn ' t  end in a slash , ProDOS 
automat ical ly adds one.  I t  d oes th is  so, when the prefix is  attached 
to a f i lename or  part ia l  pathname, a proper pathname is formed . 
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Refer to Chapter 5, " Programming 
With ProDOS, "  for  detai ls on read ing 
the prefix. 

Verify that you can enter the prefix with a trai l i ng slash by typi ng 

: ;::: :. ... 
E::: �:::: .·· 

and check ing  the resu l t  usi ng  the com mand 

... r 

If you want to set the prefix to the name of the volume d i rectory of 
one of you r  d isks,  but  you can ' t  q u ite remem ber the d isk 's  name,  
use the s lot and d r ive opt ions to i nd icate the d isk 's  locat i o n .  For 
example ,  

.. ... · ... · · ... · : ' ·' .:. 

sets the prefix to the value /EXA M P L ES/ .  Try i t .  If you r  d isk has a 
long name, th is  form may be shorter than typ ing  i n  the ent i re 
vol u me name.  

I f  you want to look at or use some of the programs that are 
suppl ied with you r  /EXA M P LES d isk ,  type the com mand 

/ 1::;_ ,:-:, ;···; J  ; ;  ... · ; 

You can now see a l i st of the programs i n  th is  d i rectory by typi ng 

and you can refer to any one of them by f i lename a lone ,  as i n  

; ; ;  ; -;- ···: 
' ' i i"''[ ) .·· ;···, ; ; ;  ; : · ·  

When You Use PREFIX in a Program 

When you use the PREFIX command with no  opt ions from wi th i n  a 
program,  the value of the prefix is not d isp layed ; it is set u p  so the 
next I N PUT statement i n  the prog ram reads i t .  
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The CREA TE Command 

The pr imary purpose of the C REATE com mand is to create 
d i rectory f i les wi th i n  which you can p lace other f i les .  A l though you 
can use th is  com mand to create f i les of a l l  types , most of the other 
f i le  types are created automat ical ly by other ProDOS commands .  

A volume d i rectory f i le  can store the names and locat ions  of  u p  to 
51  f i les.  I t  isn ' t  real ly necessary to create more d i rectory f i les 
u n less you r  d isk wi l l  contai n more than 5 1  f i les .  However, a wel l  
p lanned set o f  d i rector ies can make you r  f i les much eas ier  t o  f i nd  
and use. 

Be Prepared: Create you r  d i rectory f i les before you have f i les to p lace 
with i n  them. I t  is  m uch easier to p lace new f i les in a d i rectory than to 
m ove exist i n g  f i les from one d i rectory to another. I f  you m ust do th is ,  
use the f i le  copy opt ion of the ProDOS F i ler. 

You create a f i le  by us ing the command 

CREATE pn [ ,Ttype] [ ,S#]  [ , D#]  

Not ice that the CREATE command uses a new opt i o n ,  Ttype , that 
determ i nes the type of f i le  to be created . If you do  not use th is  
opt i o n ,  a d i rectory f i le  is  created . To create a f i le  of  any other  type , 
you m ust use th is  opt ion .  

For example ,  you can  create a d i rectory f i l e  named 
/BUDGET /C H I LDREN by using the command 

Directory File Size 

The n u m ber of f i les that f i t  i n to  a d i rectory other than a volume 
d i rectory is l i m i ted on ly by the amount  of  space on the d isk .  The 
s ize of a d i rectory f i le  is  determ i ned by the n u m ber of f i les i t  
conta ins .  

The fi rst b lock of  d isk space used by a d i rectory can ho ld  u p  to  
1 2  f i les .  Each su bsequent b lock used by a d i rectory can ho ld up  to  
13  f i les.  Thus a d i rectory with 27  f i les i n  i t  i s  th ree b locks long 
( 12  f i les i n  b lock 1 ,  13  i n  b lock 2 ,  2 i n  b lock 3 ) .  
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Chapter 2 d iscusses the d i rectory f i le 
type; the other types are explai ned as 
you need to know about them. 

Table 3-3.  The F i le  Type A b b reviat ions 

The Options 

pn pn is the pathname or the part ia l  path name of the f i le  to 
be created . The f i le  m ust not exist .  

[ ,Ttype] type is a th ree- letter abbreviat ion that determi nes the 
type of f i le  to be created . The abbreviat ions of the 
var ious f i le  types are g iven i n  Tab le  3-3.  You can see 
these abbreviat ions by usi ng the H E L P  F I L E  com man d .  

Abbreviation 

D I R  
TXT 
BAS 
VAR 
B I N  
REL 

* $F# 
SYS 
SYS 

F i le Type 

Di rectory 
Text 
Applesoft Program 
Applesoft Var iab les 
B i nary 
Relocatab le  Code 
User Defi ned 
ProDOS System F i le  
ProDOS System Prog ram 

* # is an i n teger from 1 to 8 .  

[ , S#] The slot opt ion has i ts usual mean i n g .  

[ , D#]  The d r ive opt ion  has i ts usua l  mean i n g .  

For Example 

With ProDOS runn ing  and the /EXA M P LES d isk i n  d r ive 1 ,  set the 
prefix to /EXA M P L ES/P RACTICE/ with the com mand 

:···. :···· :···· ·:· : :  
' . . ·.· =···' : ' '  : ... · L .. �--· . 

We want to create a d i rectory named 
/EXA M P LES/P RACTICE/ N EW D I R .  Type the com mand 

and l i sten to the /EXA M P LES d isk wh i rr i ng  away. Now type 

to see that the new d i rectory exists.  Not ice that the catalog of f i les 
shows that ! ! E ! ·.! ! : I !::" uses up 1 b lock of d isk space. 
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The RENAME Command 

To change the name of a f i le ,  use the RENA M E  com mand : 

RENAME pn 1 , pn2  [ , S#] [ , D#]  

Th is  command changes the name of  a f i le  f rom the name i nd icated 
by pn 1 to the name i nd icated by pn2 .  The new name m ust be in the 
same d i rectory as the o ld name.  Thus you can use the com mand 

;:;:= �::: . . . ' '  '··· _... 
;·::: 1:::. l ... · . L  �--·· t::. ::::: . ...- . ..... . - l:::· ; : r- ·; l"·:: ;:::· . / j·=:: t::. l ... · .L j···· t::. ::::= . ...- , : .... · ... · . 

to change the name of a test rec ipe from FUDGE to BROW N I ES ,  
but  you cannot use the command 

;:::: ::::· ] .. ] C ;  ]·:] ;:··· .· ::::: ;::·· ,···. ... .... ..... ... . .... ..... ···. : .· , ... : ;:;:· �--·� �-=-� � --� -�- F �---; . / h:' !··· ; : 1 f···' i··· 

...- F� 1) ;  . . . . . . .  
-

... . 

to move your  BROWN I ES rec ipe from the TEST d i rectory to the 
E D I B L E  d i rectory. To move a f i le  f rom one d i rectory to another, use 
the ProDOS F i ler. 

You cannot rename a f i le  that is locked . Refer to the sect ion "The 
LOCK Comman d "  i n  th is  chapter for further deta i ls .  

The Options 

pn 1 ,pn2  When  you g ive a f i l e  (pn 1 )  a new name (pn2 ) ,  the new 
name must be u n i q ue .  If it a l ready exists,  you get the 

.,. · · ' '  · · - r -· name error message.  If pn  1 
does not exist , you get the F:· I L .. :

::: :· . .: ····, · ··· ::::· r·: : ! !·· ! L:t error 
message.  I f  the two pathnames, pn  1 and pn2 ,  d o  not 
i nd icate f i les i n  the same d i rectory, you get a ::::; , , , , , , 

[ ,S#]  The s lo t  opt ion has i ts  usua l  mean i n g .  

[ , D#]  The d r ive opt ion has its usua l  mean i n g .  
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For Example 

With the /EXA M P LES d isk i n  d r ive 1 ,  set the prefix to the name of 
the d i rectory contai n i ng pract ice f i les by typ ing  

..... . , ; ; ;  ; ;  . 

Now look at the f i les i n  the d i rectory /EXA M P L ES/PRACTICE by 
typ ing  

! .... �--·; ; 

The l i st of f i les d isp layed on the screen inc l udes the f i les 
RENAME. M E . 1 , RENAM E. M E. 2 , and RENAM E . M E . 3 . To change 
the name RENAME. ME . 1 to RENAM E . M E .4 , type 

and ProDOS swiftly and s i lent ly changes the f i le 's  name.  Now type 

to verify that the name was i ndeed changed . Now rename the f i le  
LOCKED .UP. 1 with the command 

-- ····· · . ... . . ..... . ... ... . ... ..... ... . 
1·· . ::::. 1···! �---� r·� ::::. � . ... . .. . .  t:::. L.1 , = . ..: ;···· , 1 .= .L r·-1 1 = 1 !···; ! t::. 

Whoops! Th is  f i le  is locked ; i ts name cannot be changed un t i l  you 
u n lock i t .  If you have val uab le f i les that you don ' t  want  to alter or  
rename accidental ly, l ock them . The sect ions on the LOCK and 
U N LOCK commands i n  th is  chapter descr ibe th is  method of  f i le  
protect ion .  

The DELETE Command 

To remove a f i le  from a d isk ,  use the command 

DELETE pn [ ,S#]  [ , D#]  

For example ,  you can remove the f i le  /RESU ME/DRAFT 1 2  from i ts  
d isk with the command 

!··· ; ; ... 

The f i le  i n d i cated by pn m ust be u n locked , and if it is a d i rectory 
f i le ,  it m ust be empty. After you delete a f i le  there is no  way to get i t  
back agai n .  
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I 
The Options 

pn A pathname or  part ia l  path name, p n ,  m ust be i nc l uded in  
the comman d ;  the i nd icated f i le  m ust exist or  you get  a 

: :  : 
r· .!. : .•.. !:::. , .; , ··. ··· ·· ·· .:: , , , i c: message.  

[ ,S#]  The s lo t  opt ion  has  i ts usua l  mean i n g .  

[ , D#]  The d r ive opt ion has its usual mean i n g .  

For Example 

With ProDOS started up ,  and the /EXA M P LES d isk i n  d r ive 1 ,  set 
the prefix to /EXAMP LES/ P RACTICE/ with the command 

.. ·.· : ... : : : : : ... · : : ... =: .. . - !:::: ;:::- : ... : : 

To see the f i les i n  the P RACTICE d i rectory, type the com mand 

I nc luded i n  the l isted f i les are the fi les DELETE. M E . 1 , 
DELETE. M E . 2 , and DELETE. M E . 3 . 

Now delete the f i le  /EXA M PLES/P RACTICE/DELETE . M E. 1 us ing 
the command 

u 1:::: L.. �:::: ·r �:::: L.! 1:::. � .... !:::. i 1::: . . . : :.... . . .. 

Try delet i ng  the other DELETE.  M E  f i les us ing a fu l l  pathname,  and 
by set t i ng  the prefix to someth ing  e lse ,  /EXA M P LES/ for example ,  
and usi ng  a part ia l  pathname.  

Use the CAT command to verify that the deleted f i les are no longer 
on the d i sk .  

The L OCK Command 

At t i mes you w i l l  want to protect i nd ividua l  f i les from be ing 
accidenta l ly renamed , deleted , or altered . You can do th is  usi ng  

LOCK pn [ , S#] [ , D#] 

For example ,  you can lock the f i le  / I NVENTORY / N OTE.  PADS by 
typ ing  

! :··, ,···. : .· ! ; : : : :···· : : ··:·· .···. :··· · : : --: ' '· r·· : · -: : ; : r=: ·.. · ·: -___ . , ,____ , �--·. f···f L..i ::::' 
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Whi le  a f i le  is locked , it can not be renamed , deleted , or al tered . 
Any at tempt to change a locked f i le  causes the F: T :  

error message to be d isp layed . To alter a locked f i le ,  you must fi rst 
u n lock i t  with the U N LOCK com man d .  

When you catalog t h e  f i les i n  a d i rectory, t h e  locked fi les are 
marked by aster isks to the left of the i r  f i lenames. 

You can not lock a volume d i rectory f i le .  You can , however, protect 
an ent i re f lex ib le  d isk by cover ing its wri te-enab le notch .  

The Options 

p n  pn is t h e  path name or t h e  part ia l  pathname o f  the f i le  
to be locked . You can not lock a volume d i rectory. 

[ ,S#] The slot opt ion has its usual mean i n g .  

[ , D#]  The d r ive opt ion has its usua l  mean i n g .  

For Example 

With Pro DOS started up  and the /EXA M P LES d isk i n  d r ive 1 ,  
d isp lay a l ist of the f i les i n  the PRACTICE f i le  us ing the com mand 

Not ice that the f i les LOCKED .UP. 1 and LOCKED . U P. 2  both have 
asterisks by the i r  f i le  types , i n d icat i n g  that they are locked . Fi rst 
set the prefix to /EXA M P L ES/P RACTICE usi ng  the com mand 

;:::: ;:;:: j:::· ;:::· T : . / �:::: :=-:: ; : : · : :··· : :::: .·· ;::: : 
· . . 

Next lock the f i le LOCK. M E . 1 i n  the prefix d i rectory with the 
command 

L i_.) ; __ : ;-:· = , ,  . , · •• , , · i L. , .•. 

Use the CAT command to verify that the f i le  is now locked . 
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The UNL OCK Command 

Before you can delete, rename,  or otherwise change a locked f i le ,  
you m ust U N LOCK i t  us ing the command 

U N LOCK pn [ ,S#] [ , D#]  

For example ,  to un lock the f i le  / I NVENTO RY /N OTE.  PADS so that 
you can update the i nformat ion  it contai ns ,  use the command 

.... ..... . ' : :  ... ' ·· ' 

You can U N LOCK any f i le  except a volume d i rectory f i le .  Volume 
d i rectory f i les can not be locked . 

The Options 

pn pn is  the path name or the part ia l  path name of the f i le  to be 
u n l ocked . 

[ , S#] The s lot opt ion has i ts usual mean i n g .  

[ , D#] The d r ive opt ion has i ts usual  mean i n g .  

For Example 

With ProDOS started u p  and the /EXA M P LES d isk i n  d r ive 1 ,  
d isp lay the l i st of the f i les i n  the PRACTICE f i le  by usi ng  the 
command 

····. :··· . . ··· . . ···. ··:·· ·:· .···. :···· 
;-··; ; · ; ;···· = : ... · .... / !···" i·::· ;···; ; . ; .L ! ___ . !··· 

Not ice that the f i les LOCKED .UP. 1 and LOCKED . U P. 2  both have 
asterisks by the i r  f i le  types , i nd icat i n g  that t hey are locked . F i rst 
set the prefix to /EXA M P L ES/P RACTICE/ us ing the com mand 

j···' !. : : ..... T '·-:' ./ t::_ ,:-:. :···! ' ' ' '  

Next u n lock the f i le  LOCKED .UP. 1 i n  the prefix d i rectory with the 
command 

! ! 1 . !·:. . .  : ... · . · : ... · 
! .... ' .. .' ' ... · ! '·. L ... L.' : ' .. .' ! 

Use the CAT command to verify that the f i le  is now u n locked . 
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BASIC Programs in Files 

About This Chapter 

This  chapter descr i bes the ProDOS commands that let you use the 
BAS IC programs on you r  d isks.  I f  a l l  you want  to d o  is run 
programs that are al ready on you r  d isks,  pay specia l  attent ion to  
the - (DASH )  com man d .  Th is  command moves any type of 
program from a f i le  on a d isk i n to memory, and then starts i t  
ru n n i n g .  

You c a n  use t h e  commands i n  t h i s  chapter 

• to br ing  a program into memory and run it 

• to br ing  a prog ram into memory without run n i ng it 

• to store the program that is  current ly i n  memory on a d isk .  

These commands are most usefu l  when you are wr i t i ng  programs 
or mod ifyi ng programs that al ready exist .  

BA SIC Program Files 

Although the Apple I I  can use two d i alects of the BASIC 
language-Applesoft and I n teger BASIC- ProDOS supports on ly 
Applesoft . To use ProDOS,  you r  Apple I I  m ust have Applesoft 
BASIC in Read O n ly Memory (ROM) ,  and at least 64K of Random 
Access Memory (RAM) .  

When you start up  /EXA M P LES,  i t  d isplays the message 

: : : . . .  

tel l i n g  you that the Applsoft language i s  i ndeed i n  Read On ly 
Memory. 
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The EXEC command is described in  
Chapter 8 .  

B inary program execut ion :  see also t h e  
DAS H  command.  

EXEC program:  see Chapter 8 .  

This Chapter's Commands 

Th is  chapter' s commands are summarized below. Each causes the 
transfer of a program between memory and a d isk f i le ;  the 
d i rect ion  of  the transfer and the type of  f i le  transferred are 
determ i ned by the command you use. 

- ( DASH} Run any type of program 

Use this command as a short form of the R U N ,  B R U N ,  and EXEC 
commands .  I t  causes a BASIC ,  b inary, EXEC, or  system program 
to be transferred from a d isk f i le into memory and then executed . 
Th is  i s  the command you use to run the ProDOS F i ler  without 
start i n g  u p  /USERS. D ISK .  

R U N  Run  a BASIC program from a f i le  

Use th is  command to copy a BASIC program , type BAS , from a 
d i sk f i le  in to  memory to be executed automat ical ly. 

LOAD Get a BASIC program from a f i le  

Use th is  command to copy a BASIC program , type BAS, from a 
d i sk f i le  i nto memory. O nce the program is i n  memory, you can run  
i t ,  mod ify i t ,  or  save i t  i n  a d i sk f i le .  

SAVE Save a BASIC program i n  a f i le  

Use th is  command to save the BASIC program that i s  current ly in  
memory as a BASIC d i sk f i le ,  type BAS. 

The - (DA SH) Command 

One of the more usefu l  featu res of ProDOS is the - (DASH) 
comman d .  With  th is  command you can br ing  in to  memory and run :  
a BASIC program , a mach ine- language program , an EXEC 
program , or  a system program such as the ProDOS F i ler. 

To run  a program of any one of these types, use the command 

- pn [ ,S#] [ , 0#] 
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Figure 4- 1 .  BASIC in F i les 

To learn more about the way programs 
run, read the sect ions "The RUN 
Command" i n  th is  chapter and "The 
BRUN Command" i n  Chapter 9 .  

BASIC prog ram i n  memory BASIC program 

in a d isk f i le  

Both RUN and - cause 

a program to be 

loaded , then executed 

When you run  a system prog ram , everyth i ng  else in memory is 
destroyed . I f  you are writ i ng  a BAS IC program , be sure to save it 
before ru n n i n g  a system program . 

For example ,  to run the ProDOS Fi ler, p lace the d isk /USERS.  D I S K  
i n  o n e  o f  you r  d isk d rives a n d  type 

The Options 

pn pn is the pathname or part ia l  pathname of the f i le  
contai n i ng the program you want  to run .  The f i le  must be 
of type BAS, B I N ,  TXT, or  SYS. I f  the f i le  is  a b i nary f i le ,  i t  is  
loaded to the add ress from which i t  was last saved . A l l  
other f i le  types cause the F :  T : ; . .  L. '  !:::. , , :: ::: , :· ·1 ::: : T" c:: 1···1 error. 

[ ,S#]  The s lo t  opt ion  has  i ts  usua l  mean i n g .  

[ , D#]  The d r ive opt ion has i ts usual mean i n g .  

The - DASH Command 



The - (DASH)  command is descri bed 
ear l ier  in  this chapter. 

For Example 

With ProOOS ru n n i n g ,  set the prefix to i n d icate the P ROGRA M S  
d i rectory w i t h  the command 

Look at the programs i t  conta ins  by typ ing  

Now t ry runn i ng  a b i nary prog ram (type B I N) ,  a BAS IC program 
(type BAS),  and an EXEC program (type TXT) by typ ing  a d ash (-) 
fol lowed by the f i lename of the program you want  to run . 

To run the F i ler  program (type SYS), p lace /USERS . O I S K  i n  a d r ive 
and type 

To return  to ProOOS from the F i ler, be sure that /EXA M P LES is i n  
a d r ive, type @]from the main  men u ,  type the pathname 
. , , , , . , , , ; ;: \ : < : .  ;:::, ::: : : :: , and press (RETURN ) . 

By the Way: If you want easy access to the F i ler, use the F i ler program 
to copy the fi le /USERS.  D ISK/F ILER to a d isk that you usual ly have in a 
d rive. Then you can use the F i ler  by typ ing  the DASH command rather 
than start i ng  up  /USERS . D ISK .  

The RUN Command 

To run  an Applesoft program that is stored on a d isk ,  use e i ther of 
the commands 

RUN pn [ ,@ft] [ ,Sft] [ , Oft]  
- pn [ ,Sft]  [ , Oft]  

O n ly the RUN command is descr i bed here. 

When ProOOS sees the RUN com man d ,  i t  f inds the f i le i n d icated 
by p n ,  b r i ngs i t  i n to memory, and then runs i t  (beg i n n i n g  with 
l i ne @ft if you use that opt ion) .  For example ,  to run  the BASIC 
prog ram named C H ECKBOOK on a d isk named /ACCOU NTS , 
use the command 

- - - · - - - ···. .· , , ... , , . . .  �< E: c� f··� �...-
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When a prog ram ends ,  you can run i t  agai n by us ing  the BASIC 
com mand 

!·:-' ! : :·. : 

Not ice that i n  the general form of the RUN com man d ,  the f i lename 
is  not opt iona l .  When you type i n  a command , ProDOS checks to 
see i f  i t  is  a ProDOS command . I f  i t  isn ' t ,  ProDOS g ives the 
com mand to BASIC.  I n  th i s  case, RUN wi thout  a f i lename is  not a 
val id  ProDOS comman d ;  the command is  passed to BAS IC ,  and 
BASIC runs the program i n  memory. 

The Options 

pn pn i n d i cates the f i le  to be ru n .  The f i le  to be run must  be of 
type BAS {Applesoft BASIC) .  

[ ,@#)  I f  you use  th is  opt i o n ,  the program beg ins  runn i ng  a t  the  
l i n e  n u m ber specif ied by # .  I f  you omi t  th i s  opt i o n ,  
execut ion beg ins  a t  t h e  lowest num bered l i ne i n  the 
program . 

[ ,S#)  The s lo t  opt ion  has  i ts usual  mean i n g .  

[ , D#]  The d r ive opt ion has i ts  usua l  mean i n g .  

For Example 

With ProDOS started up ,  and the /EXA M P LES d isk i n  d r ive 1 ,  set 
the prefix to i n d icate the /EXA M P LES/PROGRA M S  vo lume 
d i rectory us ing the command 

: ... : : . : : ·· . . : , .... ..... . 
- !:::· =··· .. . 

Look at the f i les i n  the PROGRA M S  d i rectory with the command 

Do you see a prog ram named T !.'.! :  

typ ing  

and the screen d isp lays the words 

The RUN Command 

! ! ! :: !; ' ? Run  the program by 



The STORE command is descri bed in  
Chapter 5 .  

But  i f  you run part of the program us ing the command 

you just see 

I = ; , .L r·-! t::. ,:::. =::.= . 

: ,.; · .. : : :.::: :: ••• ': •• = 

If you examine the program by typ ing  

L. '· · ... = '  

you ' l l  d i scover that l i n e  20 contai ns  that sentence. 

The L OAD Command 

To transfer a BASIC program from a f i le  to memory, use the 
command 

LOAD pn [ ,S#]  [ , D#]  

Th is  command is  usefu l  i f  you want  to examine or  mod ify a 
program . I t  i s  not necessary to load a program before you run i t ;  
the RUN command automat ical ly loads a program i nto memory. 

War n i n g  
When a new program is  loaded i n t o  memory, a l l  records of t h e  previous 
program are erased from the Apple l l ' s  memory. I f  you want to save the 
var iab les that were set by a previous program , use the STORE comman d .  

When you LOAD the contents o f  a f i le  i n to memory, the f i le  on the 
d isk remains  u nchanged . 

Once a program is  loaded i nto memory, you can run  it by s im ply 
typ ing  F i.J!··L 

The Options 

pn pn must i n d icate an Applesoft program f i le  (type BAS).  

[ ,S#]  The s lo t  opt ion has  i ts  usua l  mean i n g .  

[ , D#]  The d r ive opt ion has i ts usua l  mean i n g .  
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For Example 

With ProDOS started up ,  and the /EXA M P LES d isk  i n  d r ive 1 ,  set 
the prefix to i n d i cate the /EXA M P LES/PROGRA M S  volume 
d i rectory us ing  the command 

Type i · ! E: ! .: to remove any BASIC program from memory, then type 
L I ·:::: -:- j ust to prove that there i s  no  BASIC program in memory. 
N ow, br i ng  a new program i nto memory with the command 

L. i . .J j···! L} ; . . ; ;  l .L : . .... .. : · ... . . 

You hear the d isk  d r ive work i n g  away, then the BASIC prompt 
returns .  To see the program t hat was just l oaded , type 

L . :! ::::= i 

It i s  i m portant to real ize that when you load a f i le ,  a copy of the f i le  
is  transferred f rom the d isk to memory, but  the or ig i n al copy of the 
f i le  rema ins  u nchanged on the d isk .  For example ,  even though you 
have al ready loaded WH IZBOO M ,  type the command 

i .... ;···; ! 

and you see that the f i le  is st i l l  on the d isk .  To p lace the BAS IC 
program that i s  cu rrent ly i n  memory i n to a f i le ,  use  the SAVE 
com man d .  

The SA VE Command 

To transfer the BASIC program that is cu rrent ly i n  memory to a f i le  
on a d isk ,  use the command 

SAVE pn [ ,S#] [ , D#]  

The f i le  i s  saved as an Applesoft f i le  (type BAS).  

For example ,  to save the cu rrent program i n  a f i le  named 
/ BEDTI M E. STO R I ES/A. F R I E N D LY. OGRE , use the command 

: : l ,;, ; . , ... �-::: ; i··· :·. : . . 

I f  you save a program to a f i lename that al ready exists,  the f i le  
m ust not be locked , and i t  m ust be of the same type as the 
program (type BAS).  

The SAVE Command 



War n i n g  
I f  you are work ing  w i t h  several d ifferent program f i les a t  once, a n d  there i s  
a chance you wi l l  save a program to t h e  wrong f i l e ,  L O C K  each f i l e  after 
you save to it, and then U N LOCK i t  before you save to i t  agai n .  Th is  is the 
best way to protect valuable BASIC programs. 

By the Way: You can use the SAVE command to rearrange program 
f i les. I f  you use the LOAD command to br ing a program i nto memory, 
you can then use the SAVE command to save i t  on a d ifferent d isk (you 
wou ld  then have two copies of the same f i le}. Remem ber that when you 
load a BASIC program from a f i le ,  the file itself does not change.  

The Options 

pn pn is  the path name or the part ia l  pathname of the f i le  in  
which you want to save the current program . I f  pn  al ready 
exists,  i t  must be un locked . 

[ ,S#]  The s lot  opt ion has i ts  usua l  mean i n g .  

[ ,D# ]  The  d r ive opt ion  has i t s  usual  mean ing .  

For Example 

With ProDOS started up ,  and the /EXA M P LES d isk  i n  dr ive 1 ,  set 
the prefix to /EXA M P LES/PROGRA M S  with the command 

;··, .···. :··· . .  ···. : . .  : .···. 
: ·-. =  ... = =  •• := !·=:: i•••i ! ' i :·:·: ..

.. 

Now load a very short  program in to  memory with the command 

i . . . . : .... __ _; r-·! L.i ::::· L.l f"": i:::: ·T· 
: • ••• : ; : = ••• : ; ·-. : 

To see how short th is  program is ,  type the com mand 

L.. I -:::= i 

and you see before you a s ing le  l i ne of program which reads 
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Even if you aren ' t  a prog ram mer, you m ight  guess that th i s  
program does one and on ly one th i ng :  i t  p r i n ts  the words ::: : . ... 
. .. .  " , ,.,. · , ... . . ... ... :·,:' !·· : : ! onto the screen .  To see it do i ts very short  
t h i n g ,  type 

Remember that the RUN command without a f i lename is not a 
ProDOS com man d ;  it is a BAS IC command that causes the 
prog ram that i s  current ly i n  memory to be run .  

N ow for  the fun part . Save the program to a d i fferent d isk f i l e ,  say 
/EXA M P LES/PROGRAMS/O N E . L I N ER ,  with the command 

. · ·· · : .. . = ••• = : ·: :  ....
. . 

You can see that the program has found its new home by typ ing  

Not ice that the f i rst copy of the program , VERY. S H O RT, i s  st i l l  on 
the d isk .  Not ice also that a program , even after a SAVE,  rema ins  in  
memory. Use ! ' i . .  F !  or  L ··· ··· ····· to see that the program is  st i l l  there .  

I f  you have an Apple l ie  with an Extended 80-Co lumn Text Card , 
you can also save th is  program to a f i le  on  the volume named 
/ RA M .  Type the command 

You can see that th is  vers ion of the program has been saved by 
us ing the command 

Not ice how much faster /RAM is  than a normal  d isk volume .  I t  is  
most usefu l  when you are deve lop ing a large BASIC program and 
you wish to save i n termed iate vers ions of i t  freq uent ly. 

The SAVE Command 
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Programming With ProDOS 

About This Chapter 

Th is  chapter conta ins an overview of programm i n g  with Pro DOS.  I t  
descr i bes 

• the startup  process and how to make a startu p  d isk 

• how to use ProDOS commands from with i n  a program 

• how to read the prefix from wi th i n  a prog ram 

• how a program can hand le  errors 

• how you r  programs can com mun icate with devices i n  s lots .  

You should have some experience with Applesoft BAS IC .  I f  you d i d  
a l l  t h e  exam ples i n  t h e  Applesoft Tutorial, you know enoug h .  I f  you 
d i d n ' t ,  you shou ld work your  way through i t  before cont i n u i ng with 
th is manual . 

If you know I n teger BAS IC ,  but  not Applesoft , read the append ix i n  
t h e  Applesoft BASIC Programmer's Reference Manual that 
summarizes the d ifferences between the two . 

This Chapter's Commands 

The commands descr i bed i n  th i s  chapter are summarized below. 
Th is  is not meant to be a complete descri pt ion  of each com man d ;  
i t  s im ply g ives you an idea o f  t h e  use o f  each command a n d  o f  the 
way the commands are i n terrelated . 

CHAIN Run a program , but  save the var iab les 

Use this command to run a new program . U n l i ke R U N ,  i t  does not 
cause the var iab les that are al ready i n  memory to be th rown away. 

This Chapter's Commands 



Figure 5- 1 .  CHAIN  

Figure 5-2. STOR E  and RESTORE 

BASIC 

Program 

Replaces 

CHAI N :  

Loads new program 

BASIC 

Var iab les 

No change 

--, l 

Disk-
Memo� 

( 00 ° ') ,_ _/ 

STORE Save the var iab les i n  memory to a f i le  

Use th is  command to save i n  a f i le  a l l  the BASIC var iab les th?t are 
cu rrent ly in memory. You can retr ieve these var iab les by us ing the 
RESTORE comman d .  

RESTORE Get BASIC var iab les from a f i le  

Use th is  command to d i scard the var iab les that are cu rrently i n  
memory, a n d  to br ing  i n  new var iab les from a f i le .  

No change 

BASIC 

Program 

Replaces 

BASIC 

Var iab les 

�------------�------� 
No change No change 

RESTORE:  

Load var iab les 

- - -.......... 

-+--- Memory /� '\.\ /I \ 
\ 00 J 

Disk -----+- \, 0 // 
......_ -/ 

STO RE:  

Save variables 
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Chapter 9 expla ins  how to use PR# to 
send output to a program . 

Chapter 9 expla ins  how to use I N #  to 
get i n put from a prog ram . 

Figure 5-3. PR# and I N #  

Keyboard 

PR# Send output to a slot 

Use this command to cause the characters that are normal ly 
pr in ted on the screen to be sent to a device, such as a pr in ter, i n  a 
s lot .  

I N # Get i n put from a s lot 

Use th is  command to cause characters to be read from a device, 
such as an external  term ina l ,  in a slot i nstead of from the 
keyboard . 
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Write characters j 
to slot N 
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A ProDOS startup disk contains a l l  the 
i nformat ion needed to br ing ProDOS 
into memory and start  i t  runn ing .  

Examples of  STARTUP programs are 
g iven later i n  this chapter. 

What Is a Startup Disk? 

Every Apple I I  system has a part icu lar  d isk d rive known as the 
system ' s  startup dr ive. The startup  d rive is  connected to d rive 1 
of the d isk contro l ler  card i n  the h ighest n u m bered s lot .  Th is  
chapter assumes that you r  startup  d rive is  connected to s lot  6 .  

When you p lace a d isk i n  the startup d rive and turn  on  you r  
Apple I I ,  some d i sks cause t h e  system t o  start up ,  other d isks j ust 
spi n .  The d isks that cause the system to start up are known as 
startup d isks. A startu p  d isk contai ns  a l l  the crucia l  i nformat ion  
that the App le  I I  needs to br i ng  a program from a d i sk in to  the  
App le  l l ' s memory and start a program run n i ng .  

To make a n y  ProDOS-formatted d isk i n t o  a ProDOS startu p  d isk , 
you m ust copy the f i les contain i n g  the ProDOS program onto that 
d isk . When you turn  on the Apple I I (or type F F: #  6 from BASIC) 
with a ProDOS startup d isk i n  the startup d rive, the ProDOS 
program is  automat ical ly transferred from d isk to memory and 
run .  

Once you have made other  startup d isks, you wi l l  no  longer  need 
to use the /EXA M PLES d isk each t i me you use ProDOS.  Al l the 
vital  parts of ProDOS are stored on each startu p  d isk . In add it i on ,  
by  copyin g  the f i les H ELP and H ELPSCREENS on to  the  startup  
d isk , you can  use  the he lp  featu re w i th  other startup  d isks. 

You can des ignate any program to be automat ical ly run  when a 
ProDOS d isk is started . You d o  so by putt i n g  the program i n  a f i le  
n amed STARTUP. Th is  f i le ,  wh ich may contain a b i nary, BAS IC ,  or  
EXEC program , can contain a program that p laces a g reet i n g  
message on t h e  screen ,  a favor ite game, budget i n g  program , o r  
other program of  you r  choice .  

The Anatomy of a Startup Disk 

A Pro DOS' startup d isk has th ree character ist ics:  

• I t  is  formatted using the ProDOS Fi ler. 

• I t  has the f i le  PRODOS i n  i ts volume d i rectory. 

• It has a f i le  named BASIC. SYSTEM i n  i ts volume d i rectory. 
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To make a ProDOS startu p  d isk :  

1 .  Use the Pro DOS F i ler  to format a d isk .  

2 .  Use the ProDOS F i ler to copy the f i les PRODOS and 
BAS IC . SYSTEM from the /EXA M P LES d isk to the newly 
formatted d isk .  

3 .  I f  you want  a specif ic program to be run when you start up  that 
d isk ,  p lace it on the startup d isk and name it STARTU P. 

4 .  If you wish to use the he lp com mands after you start u p  from 
that d isk ,  copy the f i les HELP  and H ELPSCREENS from the 
/EXA M P LES d isk to the new startu p  d isk .  

The Startup Process 

When you start u p  you r  Apple I I  with a proper ProDOS startu p  
d isk ,  here is  what happens:  

1 .  The f i le  named PRODOS,  contai n i n g  the most soph ist icated 
parts of ProDOS,  is  transferred from the startu p  d isk i n to 
memory and run .  

2 .  ProDOS exami nes the per ipheral con nector s lots and t r ies to 
ident i fy the type of device in each s lot .  I t  does th i s  to determ ine  
wh ich  s lots conta in d isk d r ives tha t  i t  may need to com m u n icate 
wi t h .  I f  one of the devices is  a Thunderclock ,  ProDOS sets itself 
up to read from the Thunderclock.  

3 .  I t  then loads the prog ram i n  the f i le  named BAS IC .SYST E M .  
T h i s  port ion  o f  ProDOS conta ins al l t h e  ProDOS commands .  
Th is  part  of the program is  ru n .  

4 .  ProDOS BASIC looks for a f i le  named STARTUP on t h e  startup  
d isk .  I f  i t  f inds one ,  i t  runs i t .  I f  i t  does not  f ind one ,  i t  d isp lays 
the fo l lowi ng message :  

W h a t  Is a Startup Disk? 



Figure 5-4. The Startup P rocess F igure 5-4 i l l ust rates the steps in the startu p  process. 

II 

G) ProDOS attaches rout i nes 
for d i sk d r ives, Th u n derclock,  
and /RAM ( i f  128K) .  

DIIIW 
User's RAM 

ROM 

2 ProDOS checks to see 
which cards are i n  
t h e  slots,  how much 
RAM there is ,  and 
i f  Applesoft is  i n  R O M .  

4 If there is a f i le  named STARTU P  
on t h e  start up d i sk ,  t h e  program i n  t h i s  
f i le  is  automat ica l ly p laced 
in memory and r u n .  

1 A boot d isk  m ust have the f i les 
ProDOS and BASIC. SYSTEM on i t .  
These f i les contai n i n g  ProDOS are 
brought i nto memory (RAM) and r u n .  
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Using ProDOS From Within a Program 

Very often i t ' s  usefu l  to be ab le  to use a ProDOS command from 
with i n  a BAS IC program . For example ,  you can use P roDOS 
commands i n  a program 

• to pr int out a d isk 's  catalog from a STARTUP program 

• to save you r  budget records in a f i le 

• to save the cond i t ion  of a game program for next t i me .  

To use a ProDOS command f rom with i n  a prog ram , you m ust pr in t  
a st r i ng  consist i n g  of  a (coNTROL ) -@] as the f i rst t h i ng  on  a pr in ted 
l i ne ,  fo l lowed by the com man d .  Usi ng  the CATALOG command as 
an example ,  here is one way to put  (coNTROL ) -@] i n  a str i n g :  

There i s  a (CONTROL)-@] between " · ·· · 
and C.  

CHR$ (4) returns (CONTROL ) -@]. 

D$ contains (CONTROL ) -@]. 
Pr int  a t i t le .  

Pr int  a date. 

Then l ist the volume d i rectory. 

Right  after you type the f i rst q uotat ion  mark ,  type (coNTROL ) -@] . 
Although you can ' t  see i t ,  i t ' s  there .  

Here is  another way to put (coNTROL ) -@] i n  a str i ng :  

I n  th i s  example ,  C H R$ is  an Applesoft funct ion  that returns  the  
character whose code is  i n  parentheses. The n u m ber 4 is  t he  
App le  l l ' s  code fo r  (coNTROL)-@] . Note the sem icolon after 
C H R$ (4). I t  is  an opt iona l  separator between e lements of a P R I N T  
l i st ,  a n d  you may leave i t  o u t  i f  you want .  

I f  you set the value o f  a st r i ng  var iab le ,  say D$,  to (CONTROL ) -@] at 
the beg i n n i n g  of a prog ram , s im ply pr in t  !: ' =:= before each P ro DOS 
com mand i n  the prog ram . Th is  is  the method used th roughout  the 
man ual  (see l i ne 40 i n  the example below). 

For Example 

Here i s  a vers ion of a STARTU P program that pr ints  a message on 
the screen ,  and then pr i nts out  a l i st of the f i les on that d isk .  Type 
. ... .  ! .! , and then enter th i s  program . 

..... ···- ;'··, ;-::· ·r 

; ; ;···, ;···, ,···, ;···, ,···, ;··. 

j:::: �:;:: . . .. 

····. : ·: ;___, ; ·: · 
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D$ is (CONTROL ) -@]. 
Semicolon prevents ('-'R=ET;:;-u=R;:-;,N). 
So th is  doesn ' t  work .  

N ow type F( F !  to see how i t  works.  I f  you want to preserve th is  
program , put a ProDOS-formatted d isk i n  dr ive 1 ,  and type 

... . : : : ·. ; : ... : : 

Debugging Your Programs 

I f  you are a former DOS user, you wi l l  be p leased to d iscover that 
the Applesoft commands TRACE and N OTRACE work with 
ProDOS. 

Use the TRACE command to cause the l i ne n u m ber of each BASIC 
program l ine that is  executed to be pr in ted on the scree n .  Use the 
NOTRACE command to stop the pr in t ing of  l i ne  n u m bers. 

Things to Watch Out For 

Th ree th i ngs you shou ld watch out for wh i le  us ing  ProDOS are 
descri bed in the fol lowi ng sect ions .  

Print Each ProDOS Command on a New Line 

I n  a ProDOS command g iven from with i n  a program ,  
(CONTROL)-@] must be preceded by (RETURN ) ;  that i S ,  (r=C-::-0:-:-:NT=R=o-,-,L)-@J 
m ust be the f i rst character on  a pr in ted l i ne .  Thus ,  the fo l l owing 
program wi l l  not work .  

:···. t· : ; : : .. · : : . : · • . : : : :  : ••• · ··:· : ••• · : ; ; ;  ; :  •••• = ••• = =  •• := 

I n stead of l i st i n g  the vo lume d i rectory, th i s  program pr in ts 

If you r  program is  unexpected ly pr i n t i ng  ProDOS commands on  
the screen-and never at  the beg i n n i n g  of a new l i ne-th is  i s  
probably why. 

Notice: If you r  program conta ins a statement l i ke th is ,  with (RETURN)  
preced ing  (CONTROL ) -@]: 

you r  program wi l l  o n l y  work w i t h  D O S  a n d  n o t  w i t h  ProDOS. 
Remember that (CONTROL ) -@] must be the f i rst th ing  on a pr inted 
l i ne.  
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Display WRITE help scree n .  

You Can't Copy Control Characters 

When you use E) to copy a BASIC statement ,  i nv is i b le  control  
characters are not copied . 

Some ProDOS Commands Work Only In Programs 

M ost ProDOS com mands can be g iven from the keyboard as 
i m med iate commands or from wi t h i n  programs as deferred 
com mands .  Some can on ly be used from wi t h i n  programs. They 
are 

A P P E N D  
OPEN 
POS IT ION 
READ 
WRITE 

I f  you aren ' t  sure i f  a ProDOS com mand can be used from 
i m med i ate mode, s im ply use the HELP  comman d .  The upper-r ight  
corner of each he lp  screen tel ls  how that command can be used 
(as I M M [ed iate] or  DEF[erred] commands) .  For exam ple ,  type 

!-··; :··· ' . . : . : :  ... · :  : : ... 

and you see that th i s  com mand can on ly be used i n  a program . 

Intercepting Messages to the Display Screen 

You can use several P roDOS commands to cause ProDOS to send 
i nformat ion to the screen .  The CATALOG command prod uces a 
l ist of f i les ,  the P R EFIX com mand without opt ions d isp lays the 
prefix, and ,  i f  you use any command i ncorrect ly, an error message 
is  sent to the screen .  

P roDOS provides a way for  you r  program to read the value  o f  the  
prefix or  the n u m ber o f  an error message;  these are  expla i ned 
below. 

D i rectory f i les can be opened and read as expla i ned i n  
Append ix D .  

Intercept ing Messages t o  t h e  Display Screen • 



CH R$(4) is (CONTROL) -[[). 
Command to d isplay prefix .  

Read the prefix into PR$.  

Restore prefix to or ig ina l  value.  

Table 5- 1 .  Memory Locat ions for Error 

Reading the Prefix 

When you g ive the PREF IX command without opt ions  from the 
keyboard , the cu rrent value of the prefix is  d isplayed . When you 
use the PREFIX command from with i n  a program , ProDOS d oes 
not d isp lay the value of the prefix. I n stead , ProDOS p laces the 
value of the prefix so the next I N PUT statement i n  you r  program 
wi l l  read it .  

You might  use this feature ,  for example ,  i f  you r  program changes 
the value of the prefix, and you want to restore the prefix to its 
former value before the program ends .  Here i s  a program port ion 
that does that .  

Rest of program which changes the value of the prefix 

Not ice the way th is featu re works:  You g ive the pref ix command 
without any opt ions ,  and i n put  the prefix in to any str ing  var iab le ,  in  
th is  case , P R$.  When you want  to restore the pref ix ,  the o ld value 
is i n  the str i ng .  

Handling Errors in a Program 

An error i n  an Applesoft program normal ly causes an error 
message to appear on the d i sp lay screen .  I f  you r  prog ram uses the 
O N E R R  GOTO statement ,  Applesoft puts an error n u m ber i n  
memory, a n d  then goes t o  t h e  l i n e  specif ied i n  t h e  O N ER R  GOTO 
statement .  

ProDOS fol lows the same proced u re.  When i t  encounters an error, 
it p laces the error n u m ber i n  memory, and then tel ls  Applesoft that 
i t  found  an error. ProDOS uses error n u m bers not used by 
Applesoft . Tab le 5- 1 l i sts the num bers that are usefu l  to a program 
tryi ng  to catch ProDOS or Applesoft errors. 

Handl ing N u m ber How to Read I t  

PEEK (222)  Error  N u m ber 

Line N u m ber PEEK (2 1 8) + PEEK (2 1 9) * 256 
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D$ is (CONTROL )-@) . 

Error hand led at l i ne  1 00 .  

Read a f i lename i nto F$ .  

Read the new name into N$ .  

G ive the RENAME command . 

No error; program ends.  

I f  i t  is not a F ILE LOCKED error ( 1 0) ,  go 
to l i ne  200. 

No ,  don't  rename the f i le .  

Yes, un lock the f i le ,  rename i t ,  and then 
lock i t  agai n .  

A l l  done.  

For example ,  you can not rename a fi le i f  i t  is  locked . The error 
n u m ber for F I L.. !::: !. c: c> :E:: c: i s  1 0 . This smal l program lets you 
rename a f i le  whether or not it is locked . Usi ng  O N E R R  GOTO , i t  
detects the F: I L.. E: L.. c: c !< !:::: c: error, g ives you a chance to u n lock the 
f i le ,  then i t  t r ies to rename the f i le  agai n .  I t  also d isp lays the error 
n u m ber and l i n e  n u m ber of any other error that m ight  occu r. 

r:::· 

.:' !_.·i 

: · = -:i:· .. . . . . .  

.L r·-; ;·· i.J ; 
' '  , .... . ,. ' 

F
. 

: : : : ... -::·· 

. .  ' r-.; ·.:. 

:;:: : : · 

L ine  20 causes l i n e  1 00 to be cal led if there is any error. 

i i ;";"� .:. .:. :-_. 
i -· .i. ::,_ :-_: 

i .·i ;7� 

i . ; �- : 

-� - -·· ··- ·-· ;... �--' �- i-· k' .: ,·-� •-:- I : :-· . 
. L =::.= , n c  . .  

.,. ' ' C• '  ; -:-

c �  , ,-. 
L. ;  i ;_: 

;; �=- T ; C" T ::· ; ,-, ,-. ; ,.· C t: 
J. '-- '- .l. ._: ;_ :_: :_. ; ·  •• :.._;_: : 

. .  �- . :.... ·-· ·-·· 

;; : k 
. .  

t:. r·-; u  

L i n e  1 00 cal ls  l i ne 200 i f  there's a n  error other than F: ' '  
! ; ; ;  :.· : ... : . 

.. - : ,. .  

; ; ; \' $ 

Th is  program is saved with the name 
/EXA M P LES/PROGRAMS/O N ER R . D E M O  . Try i t  on a few of you r  
locked f i les .  

I ts operat ion is  q u ite s imp le .  L ine  30 reads the name of a f i le  to be 
renamed i n to F$. I n  l i ne  40 i t  reads the new name into N$ .  I n  
l i n e  5 0  t h e  RENAME command i s  g iven .  I f  there i s  no error, t h e  f i le  
is  renamed , and the program ends .  I f  there is  an error, the O N E R R  
statement i n  l i n e  20 says that the prog ram shou ld l o o k  to l i ne 1 00 
for the part of the program that t reats the error. 
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A complete l ist of the ProDOS and 
Applesoft errors is i n  Append ix C.  

Refer to the Applesoft BASIC 

Programmer's Reference Manual for 
more detai ls on ONERR GOTO. 

This O N E R R  fixing rout ine  is more fu l ly 
expla ined in the Applesoft BASIC 
Programmer's Reference Manual. 

II 

L ine  1 00 checks locat ion 222 to make sure that a F T L.. E u:<: t: : E: C)  
error (error n u m ber 1 0) occurred . I f  i t  was not a F I L .. E: L. C<>::: E:: c:: 
error, the program goes to l i nes 200 and 2 1 0 , which d isplay the 
n u m ber of  the error  and the n u m ber of the l i ne where i t  occurred . 

If the f i le  was locked , l i n e  1 30 un locks i t ,  l i n e  140 renames i t ,  and 
l i ne 1 50 locks i t  u p  again-under its new name. 

Turning Off ONERR GOTO 

On occasion you wi l l  use O N E R R  GOTO to detect one error, and i t  
wi l l  be tr iggered by another error. To prevent  th is ,  you m ust turn  
off the ONERR GOTO feature.  To do th is ,  use  the statement 

in you r  program when you want  O N E R R  GOTO to be d isabled . I t  is  
a good idea to use ONERR GOTO i n  the statement preced ing  the 
one that m ight  generate the error, and to turn  i t  off i n  the fol l owi ng  
statement .  

Problems With ONERR GOTO 

As descr i bed i n  the Applesoft BASIC Programmer's Reference 

Manual, ONERR GOTO does not work q u ite as it shou ld .  If you 
encounter apparent problems with O N E R R  GOTO, inc lude the 
fo l l owi ng l i nes i n  you r  program : 

--: .··· .···- . .,. 
( 1:::: ;:::; ··i j_ .' :: .•. :: ... 

r,.· ,. .. :.--= = = :::: • • :::. 

Then , with i n  you r  error-han d l i n g  rout i ne,  use the cal l 

to act ivate th is  l i t t le ONERR f ixer. Of course, you can change the 
n u m bers of any of these l i nes. J ust make sure that l i ne  1 i s  run  
before l i ne 200 is .  
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1/0 From BASIC Programs 

The rema inder of the commands i n  th is  chapter en hance you r  
Apple l l ' s  ab i l i ty t o  comm u n icate with other BAS IC programs and 
with devices such as pr i nters and d isk d rives that are i n  the 
Apple l l ' s peri pheral con nector s lots .  Such comm u n icat ion  is  
referred to as the i n put  of i nformat ion  and the output of  
i nformat ion ,  col lect ively known as i nput/output or, more 
s imp ly, 1 /0 .  

You can  use  the CHAI N command to le t  one program run another 
without destroyi ng  the var iables that are currently i n  memory. 
Using  CHAI N ,  two programs i n  separate f i les can use the same set 
of var iab les, or one very large program can be d iv ided in to  more 
than one part .  

With the STOR E  command you can save the names and val ues of 
al l  you r  program 's  var iab les. I f  a program stores al l  i ts var iab les 
before end ing ,  the next t ime you run i t  you can use RESTORE to 
start u p  exactly where i t  left off . 

You can use the PR# and I N #  commands to let BASI C  
comm u n icate with devices that are i n  a n y  o f  t h e  Apple l l ' s s lots.  

F ina l ly, you can use the FRE command to access the fast 
housekeep ing rout i nes that ProDOS has. 

The CHAIN Command 

If a BAS IC program is too b ig  to f i t  ent i rely i n  memory, you can use 
the CHA IN  command to br ing  parts of the program in to  memory 
and then run each part ,  one at a t i me.  A l l  var iab les used , and a l l  
f i les opened (see the next chapter) by the current par t  of  the 
program are ava i lab le to the parts of the program connected by 
the CHAI N comman d .  

To run part o f  a program without th rowing  away t h e  current 
var iab les or c losi ng  the open f i les, use the command 

CHAI N pn [ ,@#]  [ ,S#]  [ , D#]  

When you cha in  from one part  of  a program to another, the f i rst 
part of the program is  removed from memory. To use the f i rst part 
of the program agai n ,  use the CHAI N command agai n .  

The CHAIN Command 



Bring PART1 i nto memory. 

Display i t .  

D$ is (CONTROL)-@). 

Set the prefix. 

Set a string value 

and say that i t 's  been set. 

Chain to l i ne  35 of PART2 . 

Execut ion of the second program beg ins  at the l i ne i n d i cated 
by [ ,@#] ,  the l i ne n u m ber parameter. I f  you don ' t  use [ ,@#] ,  
execut ion beg ins  at  the lowest n u m bered l i n e  i n  the program . 

.A. War n i n g  
A chained port ion o f  t h e  program cannot d i mension an array used by a 
previous part of the program. 

The Options 

pn pn i nd icates the f i le  contain i n g  the BASI C  program you 
want to run next . 

[ ,@#] If you use th is  opt ion ,  the new program beg ins  run n i n g  at 
the l i n e  n u m ber specif ied by # .  If the specif ied l i n e  does 
not exist ,  the next h ighest l i ne in the program is  run .  I f  you 
omi t  th is  opt ion ,  execut ion beg ins  at the lowest n u m bered 
l i ne in the program . 

[ , S#] The slot opt ion  has its usual mean i n g .  

[ , D#]  The dr ive opt ion has i ts usual  mean i n g .  

For Example 

Here is  an example of a program , PART 1 , that uses the CHA IN  
command w i th  the l i ne n u m ber opt ion  to con nect a secon d  
program part ,  PART2 . Both parts are al ready typed i n  f o r  you .  Set 
the prefix to /EXA M P LES/PROGRAMS usi ng  the command 

P R E F I X  / E X A M P L E S / P R O G R A M S /  

Look at PART 1 and l ist i t  us ing the commands 

L I ::::: T 

You see 

2 ��i F= F: I l ··i T �:) :�:: .: : ' F e E F I ;:-:, . ...- E:: :·< !:i J··� F: : : ! c ·:::· ·· r.::= 1:;;� c; :::�; !? !:::i !·=; :-·: = = 

�3 ��J I :�:: :::: ' '  T H E:: =:::: ·r F;� I !··� C I ::!� I ::::; 1:::= F� E� ::::; E F;� 1) E !J , ' ' 
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Br ing PART2 i nto memory. 

D isplay i t .  

Th is should n ' t  be pr in ted . 

If it is ,  sk ip  35. 
This  should be pri nted 

and so should th is . 

An example us ing the STORE command 
is  at the end of the sect ion  on the 
RESTORE command .  

The exper iment  here is  to see if  the var iab le  1 $  reta ins the value set 
by PART 1 when i t  is  pr in ted out by PART2 . N ow type 

and you see 

'···· ;·==: .L r·.; ' · · ; ; ;···, ,···, ;, ; :··. ; ;  ; ;-,-; ;···, :-··· ;···. 

::::. -.. .i 

· .. .' · ... ' '···' '···' : r·.J ;  ' ' l...' '  = ·  !? '! : .. :---: ·T T !·.j i:::· !·-.! ! ; ;·:; r··, :···· 

: ••• : ;,,.; 1 t· .. ; � : . . ; .L .:;·. 

If the C H A I N  command i n  l i ne 50 of PART 1 works properly, l i ne 35 
should be the f i rst l i n e  that is  executed , and the statement 
. . · · r:::= T 1"":: ; ... ; ·-r T �--.l r::· t··-! U l  . ;:::= : .... : ·- shou ld be pr in ted on the 
screen .  I f  the l i ne n u m ber opt ion does not work properly, the f i rst 
l i n e  in the program ( l i ne 1 5) wi l l  be executed f i rst , and the 
statement ,  F< :: ::::· T , .. : : :  ; :)! :; : :: ! .... , ; • · · wi l l  be d isp layed .  

L ine  4 5  d i sp lays the l i n e  F<::: ::::· .. : ..... . . ..... ·:::; ·r ::;:: T !< :" :· . . 

. . . ;:::· .:::: :::: ::: · • · ... · if the var iab les are preserved , and s im ply d isp lays 
i "  i f  the var iab le 1$  i s  not preserved . 

P lace you r  bets on what wi l l  be pr in ted out ,  and then type 

The STORE Command 

The STO RE command a l lows you to save to a d isk f i le  the names 
and val ues of a l l  the var iab les that are used by a BASIC prog ram . 
You can ret r ieve the variab les usi ng the RESTORE com man d .  

A game prog ram , for example ,  can contai n t h e  STO RE command 
to save the cond i t ion  of a game when you stop p layi ng .  The next 
t ime  you p lay the game,  the program can RESTORE the var iab les 
from the f i le ,  and you can cont i nue  where you left off. You can also 
use the STORE command to create a set of i nformat ion  that is  
used by more than one program . 

To store the current var iab les i n  a f i le  use the command 

STORE pn [ ,S#] [ , D#] 

The STORE Command 



The STO RE command creates and p laces the variab les i n  a f i le  of 
type VAR .  

War n i n g  
Because ProDOS puts t h e  var iab les i n  a com pact f o r m  before i t  stores 
them , there may be a considerable t ime delay from when you issue the 
STORE command to when the d isk d rive starts spi n n i n g .  

The Options 

pn pn i s  the pathname or part ia l  pathname of the f i le  i n  wh ich 
to store the var iab les .  I f  the f i le  doesn ' t  a l ready exist ,  a f i le  
of type VAR is  created . 

[ ,S#]  The s lo t  opt ion has  i ts usua l  mean i n g .  

[ , 0#]  The d r ive opt ion has i ts usua l  mean i n g .  

The RESTORE Command 

The RESTORE command a l lows you to get from a d isk  f i le  the 
names and val ues of  a set  of var iab les to be used by a BAS IC 
program . O n ly a f i l e  created by the STORE command can  be  
ret r ieved by the RESTORE comman d .  

To ret r ieve a set o f  variab les from a f i le ,  use t h e  com mand 

R ESTO RE pn [ , S#] [ , 0#]  

Th is  command c lears a l l  current ly defi ned var iab les f rom memory 
before br i ng ing  i n  the new ones.  

The Options 

pn pn  i s  the pathname or part ia l  pathname of the f i le  
contai n i ng the BASIC var iab les .  The f i le  m ust be of type 
VAR .  

[ ,S#]  The s lo t  opt ion  has  i ts usua l  mean i n g .  

[ , 0#] The d r ive opt ion has i ts usual  mean i n g .  
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For Example 

You r  /EXA M P LES d isk has a n u m ber guess ing  program cal led 
E . S . P. on i t .  Set the prefix to /EXAM P LES/PROGRAMS by typ ing  

Then  run the program by typ ing  

P lay w i th  i t  fo r  a wh i le ,  and then  type @) to qu i t .  Type 

again ,  and guess a n u m ber. Not ice that the overal l score starts 
at 0 agai n .  You are go ing to use the STOR E  and R ESTOR E  
commands to make th is  program remem ber you r  overal l score 
from one game to the next . Type @) to exi t  the game. 

D isp lay the program on the screen usi ng  the BASI C  command 

You r  task is  to add the STOR E  and R ESTOR E  commands to the 
program . S ince RESTORE c lears a l l  the var iab les that are current ly 
defi ned , it is a good idea to use th is  command as the f i rst l i n e  i n  a 
program . H owever, before inc lud i ng  the R ESTOR E  command i n  
t h e  program , you m ust create a f i le  from which i t  can read 
var iab les. 

Look at the last l i n e  in the program 

Th is ,  the last l i n e  executed before the program ends ,  is  the best 
p lace to place a STOR E  comman d .  Type 

and then l i st the program aga in  to be sure that the new l i nes are 
correct . Now when you run the program , the STOR E  command wi l l  
create the new f i le  ESPVARIABLES.  Then you can add the 
R ESTOR E  command to the program . Type 

The RESTORE Command 



and p lay the game for as long as you l i ke ;  then press @]. Not ice 
that the d isk d r ive wh i rs as the var iab le  f i le i s  p laced on  the d isk .  
Type 

to verify that the new fi le was created . N ow look at the f i rst few 
l i nes of the program by typ ing  

Add the l i ne 

Once aga in  type 

to p lay the game.  Press any n u m ber, then look at the overa l l  score . 
The game now remem bers the total score of al l the previous t i mes 
you p layed the game. To save th is  game in the PROGRAMS 
d i rectory, use the command 

Do you have ESP? 

The PR# Command 

You r  Apple I I  usual ly sends characters to the d isp lay scree n .  You 
can use the PR# command to change the dest i n at ion  of 
characters, send ing  them to a device i n  one of the Apple l l ' s  
per ipheral con nector s lots i n stead o f  to t h e  scree n .  T h e  syntax i s  

PR# snum 

i n  wh ich  snum is  a s lo t  n u m ber f rom 0 to 7 .  For exam ple ,  i f  you r  
Apple I I  has an i nterface card f o r  a pr in ter i n stal led i n  s l o t  1 ,  t h e  
command 

!···= ;  .. : .;.·. 
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Refer to Chapter 9 for more detai ls on 
us ing the PR# command to output 
characters. 

causes su bseq uent pr in ted characters to be sent to the pr in ter. To 
restore the screen as the dest i nat ion for pr in ted characters,  use 
the command 

War n i n g  
I f  you are u s i n g  a n  80-co lumn card , make sure i t  is turned off before you 
issue another PR# comman d .  On an Apple l ie ,  type (ESC ) 
(CONTROL ) -@]to turn off the 80-co lumn card . For other types of 80-
col umn cards, refer to the card 's  documentat ion to d i scover how to turn i t  
off. 

War n i n g  
Always remem ber to precede t h e  PR# command with a (CONTROL ) -@] 
when you use it i n  a program . If you don ' t ,  ProDOS ignores the command 
ent i rely. I f  you th ink that your  prog ram isn ' t  carryi ng out the PR# and I N #  
commands correctly, th is  could b e  the reason .  

Starting Using PR# 

I f  your  Apple I I  has a d isk control ler card i n  one of i ts s lots ,  you can 
start up  the d isk i n  that card 's  dr ive 1 wi th the command 

P R #  snum 

i n  which snum is  the num ber of the s lot contai n i n g  the card . I t  may 
seem to you that th i s  command on ly sets u p  the d isk to receive 
future characters, but P R #  actua l ly does a l i t t le  more.  

When you use the PR# command to send output  to  a per i pheral 
card in a slot ,  ProDOS tr ies to run the program i n  t hat card 's  Read 
On ly Memory chip (most cards have them). The program in the 
ROM of a d isk control ler card automat ical ly t r ies to read 
i nformat ion  from the d isk ;  th i s  is, of course, exactly what start i n g  
u p  the system i s .  

You c a n  also use the PR# command to cal l a mach i ne- language 
program that is  to perform the output of characters.  

The PR# Command 



The Options 

snum snum is  the num ber o f  the s lo t  to wh ich  you want  to wr i te .  
I f  snum is  i n  the range 1 to 7 ,  i ncl us ive ,  future characters 
are sent to the device in that s lot .  I f  snum is  0, future 
characters are sent to the scree n .  A l l  other val ues of snum 
are  i nval id  and  must not be used . 

For Example 

Fi rst save any BASIC program that m ight  be i n  memory, then p lace 
your  /EXA M P LES d isk in dr ive 1 ,  c lose the door, and type 

replac ing  snum with the n u m ber of the slot (probably 6) to wh ich 
you r  D isk I I  contro l ler card is  connected . D isk d r ive 1 wh i rs and 
c l icks and then ProDOS starts u p  as if you just  tu rned the Apple I I  
o n .  

I f  a pr i nter is  connected to o n e  o f  the Apple l l ' s  s lots ,  you can try 
th i s  example too.  F i rst , tu rn  on the pr in ter. Then , replac ing  snum 
with the n u m ber of  the s lo t  to wh ich your  pr i nter is  connected , type 

The pr i nter makes a l i t t le  c l i ck ing  noise .  L ike the d isk contro l ler 
card , the pr inter 's  card has a ROM ch ip  that contai ns an 
i n i t i a l i zat ion  prog ram . The pr i nter card 's  program i n i t ia l izes the 
pr i n ter to a previously set cond i t i on ,  p lac ing  the head or  
pr in twheel to the beg i n n i n g  of the l i ne ,  and do ing whatever else 
needs to be done .  Now type 

and the contents of the /EXA M P LES vo lume d i rectory are pr in ted . 
P lay arou nd with a few BASIC com mands .  You wi l l  f i nd  that 
everyth i ng  that is normal ly pr in ted to the screen is now pr i n ted on 
the pr in ter. To return  output  of characters to the screen ,  type 

I f  you r  system has an 80-co lumn card , you can now turn  i t  back on .  
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Refer to the sect ion on PR# for more 
detai ls on start i ng  up. Chapter 9 
conta ins an explanat ion of us ing I N #  to 
i n put characters. 

The IN# Command 

You r  Apple I I  usual ly reads characters from the keyboard . You can 
use the I N #  command to change the sou rce of characters from the 
keyboard to a device i n  one of the Apple l l ' s  per ipheral connector 
s lots .  The syntax of the command is  

I N #  snum 

i n  which snum is  a s lot n u m ber from 0 to 7 .  For example ,  i f  your  
App le  I I  has  an external  term i nal  connected through s lo t  3 ,  the 
command 

causes su bseq uent characters to be read from the term ina l .  To 
restore the Apple l l ' s  keyboard as the sou rce for i n put  characters, 
use the command 

War n i n g  
Always remember to precede t h e  I N #  command with a (CONTROL ) -@) 
when you use i t  i n  a program . I f  you don ' t ,  ProDOS ignores the command 
ent i rely. 

You can start up the d i sk i n  dr ive 1 of s lot snum by typ ing  the 
command 

IN# can a lso be used to cal l a mach i ne- language program that is  
to perform the character i n put operat i o n .  

The Options 

snum snum is  the n u m ber of the s lo t  f rom wh ich  you want to  
read . I f  snum is  i n  the range 1 to 7 ,  i nc l usive, future 
characters are read from the device i n  that s lot .  If snum 
is  0 ,  future characters are  read f rom the Apple l l ' s 
keyboard . A l l  other val ues of snum are i nval id  and m ust 
not be used . 

The I N #  Command 



The FRE Command 

To g ive access to the fast housekeep ing  rout i nes that ProDOS has, 
you can use the FRE com mand i n  this  form 

j·· : ·. : ...• 

For Example 

You can use the FRE com mand i n  a program i n  the same format as 
any d isk  1 /0 command 

F' l:;:: T : . j ___ . j···j ;·=:: ::l:· ; ,· : · .. . ; ; F ;,,,: ;... : · 

By the Way: The Applesoft command F' i;: I !··rr F F: E: < ::.:· ·, st i l l  works,  but  
i t  uses the s low Applesoft housekeeping  rout ines i n stead of the faster 
ProDOS rout ines. 
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Text in Files 

About This Chapter 

Th is  chapter i n t rod uces you to the use of ProDOS text f i les .  I t  
descr i bes how to create them,  how to p lace i nformat ion  i n  them , 
and how to take i nformat ion from them.  

The f i rst par t  of  the chapter is  an i n trod uct ion  to the two types of 
text f i les :  sequent ia l-access text f i les,  and random-access text 
f i les .  The next part of the chapter teaches you how to write 
programs that use seq uent ia l -access text f i les .  The last part of the 
chapter is  a descr ipt ion of the text f i le commands as used with 
seq uent ial -access text f i les .  

The next chapter teaches you how to write programs that use 
random-access text f i les .  I t  is  a con t i n uat ion  of th i s  chapter, so 
read th is  chapter f i rst . 

You m ight  use the commands descr i bed i n  th is  chapter 

• in a program that keeps a l i st of words for a guessi ng  game 

• in a program that saves and ret r ieves text 

• in a prog ram that saves and analyzes experi mental  data.  

This Chapter's Commands 

The commands i n  th i s  chapter are summar ized below. These are 
al l the commands you need to use ProDOS text f i les .  

OPEN Prepare to use  a f i l e  

You must use  th is  command before you use  a text f i le .  I f  the fi le 
ment ioned does not exist ,  a text f i le  i s  created . I f  the f i le  does 
exist ,  OPEN checks to see that the f i le  is  a text f i le .  
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CLOSE Stop us ing a f i le  

Use th is  command to tel l ProDOS that you have f i n i shed read i n g  
from and wr i t i ng  to a f i l e .  Before end i n g ,  you r  program m ust close 
al l  the f i les that i t  opened . 

WRITE Prepare a f i le  for wr i t i ng  

Use  th is  command to tel l P roDOS the f i l e  you want  to write to and  
where i n  the f i le  you want to start wr it i n g .  You can  use  the WR ITE  
command on ly after the f i le  i s  opened ; i t  rema ins  i n  effect un t i l  you 
g ive the next P roDOS com mand . 

READ Prepare a f i le  for read i n g  

Use th i s  command to tel l ProDOS the f i l e  you want  to read a n d  
where i n  the f i l e  you want to start read i n g .  You c a n  u s e  the READ 
command on ly after the f i le  is  opened ; i t  rema ins  i n  effect unt i l  you 
g ive the next ProDOS com man d .  

APPE N D  Prepare t o  write to t h e  e n d  o f  a f i le  

Use th is  com mand to wr i te  data start i n g  at the end of a text f i le .  I t  
opens  the f i le ,  posi t ions  to the end of  the f i le ,  and then writes to 
the f i le .  

FLUSH Send al l u nwritten data to the f i le 

ProDOS wri tes characters to f i les i n  groups ,  not one by one .  
FLUSH causes a l l  characters that are not yet wr i t ten to a f i le  to be 
sent .  After you use FLUS H ,  you can be sure t hat the characters i n  
t h e  f i le  are ident ical to those that t h e  program has pr in ted . The 
CLOSE command does a FLUSH before i t  actual ly c loses a f i le .  

POSITIO N  Read and d i scard f ie lds i n  a f i le  

A field is a seq uence o f  characters that Th is  command lets you sk ip  a specif ied n u m ber of f ie lds in the text 
ends with a carriage ret u r n .  f i le  before you read or  write more i nformat i o n .  

O f  These Commands: Only CL OSE and FLUSH can b e  used in 
immediate mode. Al l  can be used i n  programs. 
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I n  th is  sect ion ,  a scroll models a 
sequential  text f i le .  

F igure 6- 1 .  Print ing to a Scro l l  

Sequential-Access Text Files: 
An Introduction 

You can t h i n k  of a d isk fu l l  of seq uent ia l-access text f i les as a 
col lect ion of scro l l s .  Each scrol l ,  l i ke the seq uent ia l  text f i le  i t  
mode ls ,  can  conta in  an u n l i m ited n u m ber of l i nes of text . The 
analogy is  appropr iate because i n  both cases you m ust search 
th rough l i ne  by l i ne to locate a part icu lar  l i n e  of text-there are no 
pages or  markers to make the search faster. 

As you read t hese ru les ,  bear i n  m i n d  that a scro l l  represents a 
seq uent ia l  text f i le ,  the scro l l ' s  name represents the f i le 's  name,  
and a l i ne on the scro l l  represents one l i ne ,  or  f ie l d ,  of text with i n  
t h e  text f i le .  A f ie ld i s  s imp ly a st r i ng  o f  characters that ends with a 
carr iage ret u r n .  There is also a poi n ter to keep track of you r  
current posi t i on  i n  the scrol l .  

To pr in t  new l i nes onto a scrol l ,  use these commands i n  th i s  order :  

1 .  OPEN name.  Th is  selects the named scrol l ,  opens i t ,  and points 
the poi nter to the f i rst l i ne .  I f  a scro l l  by that name is  not i n  the 
col lect i o n ,  one i s  created . You m ust use OPEN before you can 
read f rom or wr i te  to a scro l l .  

2 .  W R I T E  n a m e  [ , n u m ber o f  l i nes] .  Th is  starts a t  the po i nter o f  t h e  
named scro l l ,  a n d  sk ips l i nes,  o n e  b y  o n e ,  u n t i l  i t  h a s  sk ipped 
n u m ber of l i nes.  You m ust use WRITE before you can use P R I N T  
(step 3) .  

3 .  P R I N T  phrase. This p laces phrase on  the l i ne po in ted to .  Phrase 
can be a character, a n u m ber, a word , or  an ent i re l i ne .  P hrases 
are pr in ted one after another u n less you use WRITE to select a 
new l i n e  n u m ber. P R I N T  destroys anyth i ng  that was prev iously 
on  the l i ne .  You can repeat th i s  step as often as necessary. 

4 .  CLOSE name.  Th is  rol ls  the scro l l  back u p ,  and returns  i t  to the 
col lect ion .  

O P E N  SCROLL 

CLOSE SCROLL 
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I n  th is  sect ion ,  a notebook models a 
random-access text f i le .  

Here are the commands you use to read l i nes from a scrol l :  

1 .  O P E N  name.  Th is  selects t h e  named scro l l ,  opens i t ,  a n d  poi nts 
the po inter to the f i rst l i ne .  I f  a scro l l  by that name is  not i n  the 
co l lect ion ,  one is  created . You must use OPEN before you can 
read from or  wr i te to a scro l l .  

2 .  READ name [ , n u m ber o f  l i nes] . T h i s  starts a t  t h e  poi nter o f  the 
named scro l l ,  and sk ips l i nes,  one by one ,  unt i l  i t  has sk ipped 
n u m ber of l i nes.  You must use READ before you can I N PUT 
ph rases f rom the scro l l  (step 3) .  

3 .  I N PUT ph rase. Th is  reads a ph rase from the cu rrent l i ne of the 
scro l l .  I f  there are no more phrases on  the current l i ne ,  i t  reads 
the f i rst ph rase from the next l i ne .  You can repeat th i s  step as 
often as necessary. 

4 .  CLOSE name.  Th is  rol ls  the scro l l  back u p ,  and returns  i t  to the 
col lect ion .  

You can  have up  to e igh t  scrol ls  s imu l taneously open . That i s  why 
you m ust always refer to them by name.  

The phrase used with the P R I N T  and I N PUT statements can be any 
exrress ion or  l i st of express ions a l lowed by BAS IC .  

Random-Access Text Files: An Introduction 

You can t h i n k  of a d isk contai n i n g  random-access text f i les as a 
col lect ion  of notebooks.  Each notebook,  l i ke the text f i le  it models ,  
has a name and an u n l i m i ted n u m ber of pages.  Each of a 
notebook ' s  pages ho lds the same n u m ber of characters, but  s i nce 
l i nes can be of d i ffer i n g  lengths ,  there i s  n o  specif ic n u m ber of 
l i nes on a page. 

This analogy is  appropr iate because in both cases you can flip to a 
certai n page before read i n g  or wr i t i ng  l i nes of text . 

As you look th rough these ru les ,  remem ber that a notebook 
represents a random-access text f i le ;  the notebook 's  name 
represents the f i le 's  name;  each page i n  the notebook represents 
one record in the f i le  (each record in a f i le  holds the same n u m ber 
of characters); and a l i n e  on  a page represents a f ie ld in a record . 
There is also a po inter to keep track of you r  cu rrent pos i t ion  on the 
current page of the notebook.  
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Figure 6-2. Pr int ing to a Notebook 

To write i nformat ion  on a page of a notebook ,  you use these 
com mands in th is  order :  

1 .  OPEN name.  Th is  selects the n amed notebook ,  opens i t ,  and 
po ints  the poi n ter to the f i rst l i ne of the f i rst page.  I f  n o  
n otebook b y  that n a m e  exists ,  one is  created . You m ust use 
OPEN before you can read from or write to a notebook.  

2 .  WRITE name [ , page n u m ber] [ , n u m ber of l i nes] .  Th is  q u ick ly 
opens the n amed notebook to page n u m ber. If the page with 
that n u m ber i s  not yet i n  the notebook,  that page is  added to the 
notebook .  I f  a n u m ber of l i nes i s  g iven ,  t hat many l i nes are 
sk i pped , one by one. You m ust use WRITE before you can use 
P R I N T  (step 3) .  

3 .  P R I N T  phrase. Th is  adds phrase to the cu rrent l i n e  on  the 
current page. P hrase can be a character, a n u m ber, a word , or  a 
l i ne .  P hrases are p laced one after another u n t i l  you use WRITE 
agai n ,  so you m ust be carefu l  not to pr in t  past the  end of the 
page .  You can repeat th i s  step as often as necessary. 

4 .  CLOSE name.  Th is  c loses the named notebook and returns  i t  to 
the col lect ion .  

CLOSE B O O K  

O n ce 
upon 
a t ime 

20 

OPEN B O O K  

WRITE B O O K ,  page 20 ,  0 l i nes 

--.......,,..-

2 1  

2 1  II 

P R I N T  " O nce" 
P R I N T  "upon"  
PR INT "a  t i me" 
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To read from a page i n  one of you r  notebooks,  use these 
commands in the fol l owi ng order :  

1 .  OPEN name.  Th is  selects the named notebook,  opens i t ,  and 
poi n ts the po inter to the f i rst l ine of the f i rst page.  I f  no 
n otebook by that name exists ,  one is  created . You must use 
OPEN before you can write to or  read from a notebook.  

2 .  READ name [ , page n u m ber] [ , n u m ber of l i nes] .  I f  you use page 
n u m ber, th is  q u ick ly opens the named notebook to page 
n u m ber. I f  a n u m ber of l i nes is  g ive n ,  t hat many l i nes are 
sk i pped , one by one. You can next use I N PUT to read from t hat 
page. 

3 .  I N PUT phrase. You read each phrase from the page with an 
I N PUT statement .  P hrases and characters are read seq uent ial ly 
from the page u n t i l  you use READ agai n ,  so you m ust be carefu l 
not to read past the end of the page. You can repeat th i s  step as 
often as neces�ary. 

4 .  CLOSE name.  Th is  c loses the named notebook and returns  it to 
the col lect ion .  

You can  have u p  to e igh t  n otebooks open  a t  any  g iven t i me.  That is  
why you must always refer to them by name.  

A random-access �ext f i le  has an u n l i m ited n u m ber of records 
(pages); each ho lds a fixed num ber of characters. With i n  each 
record , you can pr in t  as many f ie lds ( l i nes) as wi l l  f it . As ment ioned 
above, a f ield is a st r ing  of characters that ends with a carr iage 
retu rn .  

Sequential- and Random-Access Text Files 

As the scro l l  analogy i l l ustrates, you can use the i nformat ion  i n  a 
seq uent ia l -access text f i le  i n  a seq uent ia l  manner  on ly, that is ,  
start i ng  at the beg i n n i n g  of the f i le  and work ing  towards the end .  
Because of th is ,  seq uent ia l  f i les are  best su i ted for  appl icat ions  
t hat read the ent i re contents of the f i le  a t  the beg i n n i n g  of  the  
program , and that write the mod if ied contents back  to the f i le  at 
the end of the program . 

The records (pages of a notebook) i n  a random-access text f i le ,  
however, can be used i n  any order ;  a program can mod ify a s ing le 
record of the f i le  without affect i n g  the others .  Thus random-access 
text f i les are best for programs that keep track of a large n u m ber 
of p ieces of i nformat ion  that are about the same s ize.  
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The current position is the character 
fol lowing the last read or written 
character. 

So how do  you decide which type of text f i le  to use? I t  is a matter 
of preference, but  you m ight  want to consider the fo l l owi ng  
aspects of text f i le  use:  

Disk space: The fi rst t ime you write to a record i n  a random
access text f i le ,  the ent i re record is  p laced on  the d isk .  Thus i f  you r  
records are each 2 0 0  characters i n  s ize,  a n d  i f  you write on ly o n e  
character to each o f  t h e m ,  you are wast i ng  1 99 characters o f  d i s k ·  
space p e r  record . Because records aren ' t  usual ly ent i rely f i l led , 
random-access text f i les use u p  more d isk  space than do  
seq uent ia l  text f i les .  

Amount of data:  I f  you are going to read a l l  the i nformat ion  i nto 
memory at the beg i n n ing  of the program , i t  i s  faster to read i t ,  f ie ld 
by f iel d ,  from a seq uent ia l  text f i le .  

Use of data:  I f  the i nformat ion  won ' t  a l l  f i t  i n  memory, and you 
won ' t  use it i n  any part icu lar  order, it is much faster to use a 
random-access text f i le .  

Seq uent ial text f i les are best  for l i sts of var iab le length 
i nformat ion ,  such as l i sts of words or  l i nes of text .  In  fact , many 
word processors store their  text _i n seq uent ia l  text f i les .  Later in 
the chapter you wi l l  write programs that p lace text i n ,  and read text 
fro m ,  seq uent ia l  text f i les .  

Random-access text f i les are best for stor i ng many p ieces of 
i nformat ion  that are of the same size,  and that wi l l  change 
freq uent ly. You might  use random-access f i les to store month ly 
i nventory records,  a l ist of names and add resses , or  even a f i le  of 
he lp  screens  ( the text for each ProDOS he lp  screen is stored i n  
o n e  record o f  a random-access text f i le) .  You wi l l  write a program 
that uses random-access f i les to keep a l i st of names and 
add resses. 

Position-in-the-File Pointer 

I n  the scro l l  and notebook ana log ies there was a po in ter that kept 
t rack of the current posi t i on .  Every open text f i le has one too.  As 
you read from a f i le ,  the current posi t ion  i s  the character fol l owi ng  
the last character read . L i kewise, when you wr i te  to a f i le ,  the 
current posi t ion  becomes the spot  i n  the f i le  immed iately fo l l owing 
the last character writte n .  When you f i rst open a f i le ,  the po inter 
i n d i cates the f i rst character posi t ion  i n  the f i le .  

In  the rest of th is manual ,  the posi t ion- in -the-fi le  po in ter is  referred 
to as the current posit ion . 
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To see a complete descr ipt ion  of the 
text f i le  commands and the i r  opt ions ,  
refer to Append i x  B,  the s u m m ary of  
ProDOS commands .  

Sequenffa/ Text Files 

The text f i le  commands have many opt ions .  Because you wi l l  use a 
few of them most of the t i me ,  and most of them on ly once i n  a 
wh i le ,  the com mands and thei r opt ions are exp la ined by example ,  
with emphasis on the most freq uent ly used opt ions .  

Work th rough the examples i n  the order  g iven . Exp lanat ions of 
concepts that have al ready been presented wi l l  be br ief .  

The Field 

The basic un i t  of a seq uent ia l  text f i le  is  a field .  A f ie ld , l i ke a l i ne of 
text on the screen ,  is  a series of characters that ends with a 
carr iage return  character. When you pr in t  a l i ne to the screen us ing  
the BASIC statement PR I NT, w i thout  a term i nat i ng  semicolo n ,  the 
l i ne is  ended with a carr iage ret u r n ,  and the cursor goes to the next 
l i ne .  L i kewise, when you pr in t  to a f i le  us ing the BASIC statement 
P R I N T, without a term i nat i ng  sem ico lon ,  the f ie ld i s  term inated 
with a carr iage retu rn ;  su bseq uent pr i n ted characters go i n to the 
next f ie ld i n  the f i le .  

The fol lowi ng  BAS I C  statement cou ld be used to wr i te  a l i ne to the 
screen ,  or  a f ie ld to a text f i le .  

The fo l lowi ng l i ne ,  however, wri tes j ust part  of a l i ne to the screen ,  
or  part o f  a f ie ld to a f i l e ;  the sem icolon a t  the end prevents a 
carr iage return  character from end ing  the cu rrent f ie l d .  

;._.; ,-··, : .· ····· 

A su bseq uent P R I NT statement adds characters to the same l i ne 
on  the scree n ,  or to the same f ie ld i n  a text f i le .  A seq uent ial text 
f i le  can conta in  any num ber of f ie lds .  
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Character sequence: 

Field n u m ber: 

D$ is (CONTROL ) -@]. 
Set t h e  prefix to i n d icate the 
/EXA M P LES/ DATA d i rectory. 
Open L I S T F I L E ;  create it if it does n ' t  yet 
exist .  
Prepare L I S T F I L E  for wr i t i n g .  
Put the progra m ' s  l ist i n g  i n  L I STF I L E ;  
l i n e  40 d i rects i t  there.  
CLOSE a l l  open f i les .  

Storing Characters in Fields 

Here is  an example that shows the way characters are stored i n  the 
f ie lds of  a seq uent ia l  text f i le .  Assume that you have al ready g iven 
the OPEN and WRITE com mands .  You can p lace six f ie lds i n  an 
open seq uent ia l  text f i le us ing these BAS IC statements .  

A program wou ld  normal ly use the CLOSE command to c lose the 
f i le .  Here is  how the characters generated by l i nes 40 th rough 90 
wou ld  be stored i n  a f i le .  A carr iage return  is  represented by the 
sym bol > .  

GREE N >  YELLOW > ORANGE> RED> V I O LET> BLUE> 
{ FO }{  F 1  }{  F2 }{  F3  }{  F4  }{  F5 } 

Th is  seq uent ia l  text f i le  has s ix f ie lds ,  and con tai ns 36 characters. 

Note the Fact: The f i rst f ie ld i n  a sequent ia l  text f i le is  f ield n u m ber 0. 

A Simple Sequential Text File 

To create a new seq uent ial text f i le ,  use the OPEN command with a 
f i lename that does not yet exist .  Here is a short  program that 
p laces each of i ts l i nes i n  a seq uent ia l  text f i le .  
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EXEC command :  see Chapter 8 .  

Th is  program is  very s im ple .  I t  opens L ISTFILE ( l ine 30) ,  uses 
WRITE so that L ISTF I LE can be written to ( l i ne  40), and then g ives 
the BASIC command L IST. Not ice that L IST is not a ProDOS 
comman d ,  and is  not preceded by a (coNTROL ) -@). Because the  
WRITE command red i rects output  to a f i le ,  the L IST command 
p laces the l i nes of the program , one by one ,  in to  the seq uent ia l  
text f i le  named L ISTFI LE , rather than on  the screen .  The last l i ne 
of the program closes the f i le .  

Type i n  the program , and with the /EXA M P LES d isk  i n  a dr ive, type 

. ... ; ·.; 

The d isk  d rive wh i rs as the text f i le  is p laced on the d isk .  When a 
new prompt appears on the scree n ,  type 

and look for L ISTF I LE in the DATA d i rectory. 

H ow can you check to see what i s  i n  the new f i le? Here's a l i t t le 
secret . The EXEC command tel ls  you r  Apple I I  to take commands 
from a seq uent ia l  text f i le  rather than f rom the keyboard . When 
you type i n  l i nes of a BASIC program from the keyboard , they are 
entered as a BASIC program . Thus ,  i f  you use the EXEC command 
to enter  l i nes of a program from a sequent ia l  text f i le ,  t hey too 
m ust be entered as a BASIC program . Type 

i '•; ;:::. : 

to remove the program from memory. N ow type the command 

···· .··· . . · r··, ::::, ·r ::::: .· i T = 
... ' T"  ;:::· ··· ' r::-· ..•.. ... .•. ; ; .l. L. .. ; •.•. 

One prompt sym bol  appears on the screen for each l i n e  i n  the 
BAS IC program . When the d isk  stops spi n n i n g ,  and the prompts 
stop prompt i n g ,  type 

and you ' l l  see that the program has reappeared in memory. The 
EXEC program is  descr i bed in Chapter 8; there you w i l l  see that 
th is  techn ique of l i st i ng  a program to a f i le  i s  a valuab le  tool . 
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Writing to a File Using PRINT 

There are several ways that the P R I N T  command can be used to 
A carr iage ret u r n  is  represented by t h e  place characters i n to a text f i le .  I n  the exam ples i n  Tab le  6- 1 A$ 
sym bol  > . has the value DOG, and 8$ has the value CA T. 

Table 6- 1 .  P r i n t i n g  to a Text F i le  
PRINT 

Statement 

P R I N T  
"TEXT" 

P R I N T  
"TEXT" ; 

P R I N T  A$ ; 8$ ;  

PR INT A$ , 8$ 

P R I N T  
A$; " , " ; 8$ 

Adds 
Characters 

TEXT> 

TEXT 

DOGCAT 

DOGCAT >  

DOG, CAT >  

Com ments 

Completes current f ie ld . 

Adds to cu rrent f ie ld . 

Adds to cu rrent f ie l d .  

U n l i ke P R I NT to t h e  scree n ,  
spaces a r e  n o t  added 
between elements 
separated by commas.  
Completes current  f ie ld . 

Adds two e lements to the 
cu rrent f iel d ,  and 
completes the f ie ld . See 
second example ,  Tab le  6-2 .  

The examples i n  Table 6- 1 are i n tended to show th ree bas ic 
tech n i q ues: add i n g  characters to the current f iel d ,  complet i n g  the 
cu rrent f ie ld (su bseq uent characters wi l l  go to the next f ie ld ) ,  and 
add i n g  e lements to a f ie ld . 

E lements,  each written and read by a s ing le  var iab le ,  are str i ngs of 
characters that are separated by commas.  They deserve specia l  
ment ion because you may need to use some specia l  techn iq ues to 
retr ieve them i n tact from f i les.  

Reading Characters From a File 

There are several ways to read characters from a text f i le :  I N PUT is  
best for  some types of  data ,  and GET is  better for  others.  
Tab le  6-2 shows some of the ways to read characters.  
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Ta ble 6-2. Read i n g  From a Text F i le  

D$ i s  (CONTROL ) -@). 
Set t h e  prefix t o  /EXA M P LES/DATA. 
C reate the f i le  FOUR.  FRUITS ,  i f  
necessary, and OPEN i t .  
Before WRITE is  used , characters st i l l  
go t o  t h e  scree n .  
P repare F O U R .  F R U I T S  f o r  wri t i n g .  
Put  f i e l d  0 i n  the f i le .  
Put  f ie ld 1 i n  the f i le .  
Put  f ie ld 2 i n  the f i le .  
Put  f ie ld 3 i n  the f i le .  
C lose FOUR. FRUITS .  

The sym bol  > means ffigfQRJi). 

Input  Statement 

I N PUT A$ 

I N PUT A$ , 8$ 

GET C$ 

Effect 

Reads one e lement of a f ie ld . I f  there is more 
than one e lement i n  the f ie l d ,  the rest of the 
f ie ld is  d i scarded . 

Reads two elements of a f ie ld . If there are 
more than two elements in the f ie l d ,  the rest 
of the field is  d i scarded . I f  there are not two 
elements in the f ie l d ,  e lements are read from 
the next f ie l d .  

Reads t h e  next character from t h e  f i l e .  The 
GET statement reads al l characters,  
i nc lud ing  com mas and colons. This is  a good 
way to read f ie lds with varyi ng n u m bers of 
e lements .  

As i l l ust rated by the f i rst two examples i n  Tab le  6-2 ,  an I N PUT 
statement m ust conta in one var iab le  for each e lement i n  a f ie ld if  i t  
is  to read a l l  the e lements from the f ie ld . I f  a carr iage return  i s  read 
before characters are ass ig ned to al l var iab les ,  characters are 
automat ical ly taken from the next f ie l d .  

One Element Per Field 

Here i s  a program that wri tes four f ie lds ,  each contai n i n g  one 
e lement ,  to a seq uent ia l  text f i le .  

: •... ; _.; 1:::= ;:::= T k i  'T" r··: .:i:· : : = ' ' : : ... 

···· r=: l i·-J l 

Not ice that even after FOUR.  FRU ITS is open , you can st i l l  P R I N T  to 
the screen ( l i n e  40) .  However, after the WRITE statement i n  l i ne 50, 
al l  P R I N T  statements send their characters to the f i le .  Here is  how 
the characters are stored i n  FOUR. FRU ITS . 
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Character sequence: 

Field n u m ber: 

D$ is jCONTROL ) -@). 
R$ is Carriage Return .  

Set the prefix to /EXAMPLES/DATA. 

Prepare FOUR.FRU ITS for use. 

Prepare FOUR. FRUITS for read ing .  

For  f ields 0 through 3, read f ie ld  I from 
the fi le, and print i t  on the screen .  

Then do the next f iel d .  

Close FOUR.FRU ITS when done. 

When there are no elements left i n  a 
f ie ld ,  I NPUT reads from the next f ield .  

P r i n t  the  four  fruits on the  screen ,  one 
fru it per  l i ne .  

D$ is jCONTROL ) -@). 
Set t he  prefix to /EXAMPLES/DATA. 

Create the f i le VERB .L IST, if necessary, 
and prepare to use i t .  

Prepare to write to VERB. L IST. 

Pr int th ree elements in f ie ld 0 .  

Pr int th ree elements in  f ie ld 1 .  

Close VERB .L IST. 

A P P L E >  BANANA> CANTALOU P E >  DATE> 
{ FO }{  F 1  }{  F2 }{  F3  } 

Here is a program that reads the fou r  f ie lds out of the seq uent ia l  
text f i le  FOU R . FRU ITS , and i nto successive e lements of an array. 
I t  a lso pr i nts them onto the screen so you can see that i t ' s  work i n g .  

1·::' 1··· :·,·: 

:!. 1? . .  ·:·. C: ! , :··._ .. ,. 

, ... : ·· 

l :· · 

. . . 
r=:_ .L j ··= , . .  : ... .... · : .. . ; __ _: .:�:. . ; --- ; .· .. 

'··-· ;·=:: .L r·-! = LJ ::t·- ' · · ' ' '···· t::. r·-= : ... l . ..l l.) i••:: : ;··· '
-. -... - -· 

L. 1·:;' j ;. : . 
L. .:j:· _; 

. . .  : .•.. ; _ _.; ;-=:. .:. . . . -.::· 

' '  ' , __ ,_. ·-. . L .. -

'··· 1_.) 1 ... �< : �-- j·::� j_) j 

: ... . . .. j _ _f ::j:: : = = ;:::. , ____ , ___ ... = :  •••• 

Th is  prog ram uses the I N PUT statement once for each f ie ld i t  
reads f rom the f i le .  I f  you wanted to read al l four  f ie lds  with a s ing le  
I N PUT statement ,  you cou ld replace l i nes 60 th rough 90 wit h :  

: : · ... · ··:· : ..... -; -:!:· . ; ; ,; ___ .:;:- :···: . . . 

,. ·; 

;-··, ;-··, T ;, ; ··:·· 

The str i ng  var iab le R$ was set to carr iage return  i n  l i ne 20 .  When i t  
i s  pr in ted , a carr iage return  is  pr in ted on  the scree n .  

Multiple Elements Per Field 

Here is  a prog ram that p laces th ree e lements i n  each of two f ie lds .  
Fol lowi ng  i t  are programs that read the e lements i n  d ifferent  ways . 

.... .... ... . . ..... . ... :·:: ; ; ·-; ;  

,::j. L--; 

···:: ,·::: ;::: ;:;:: 

····- -=-- • ' = c:= r;�· F 
:,: ;,,,, ; ·., ;,,,: : : .... : . . 

L.: r•: . . L 1 , ,  ·. , : ... · : ·. :  , ,  , ,  ·. , : ... : ;-,.
: ; ; ;._ ; ;_.· , . 

; ;  ··;·· ; ; T ; . . .  ; ; ... ; ;  ; ;._ ; ;  .. · : :  
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Character sequence: 

Field n u m ber: 

D$ is (CONTROL ) -@ } 

R$ is Carriage Return .  

C$ is Comma. 

Set the prefix to /EXAMPLES/DATA. 

Prepare to use VERB.  L IST. 

Prepare to read from VERB. L IST. 

Read three elements from f ield 0, and 
three elements from f ield 1 .  

Pr int a l l  six elements 

on two separate l i nes. 

Close VERB .L IST. 

D$ is (CONTROL ) -@) . 

R$ is Carriage Return .  

Set  the prefix to /EXAMPLES/DATA. 

Prepare to use VERB. L IST. 

Prepare to read from VERB. L IST. 

Read fi rst element from f ield 0.  

Read fi rst element f rom f ie ld 1 .  

Display the two verbs. 

Close VERB.  L IST. 

The commas between the verbs i n  l i nes 50 and 60 are actual ly 
wr itten to the f i le .  When an I N PUT statement with m u l t i p le 
var iab les reads these commas,  i t  t reats them as markers for the 
end of the e lement current ly bei ng read . Here is  the character 
seq uence for the f i le  VERB .  L IST (The sym bol  > means (RETURN ) } . 

DR I N K , DRAN K , D R U N K >  T H I N K ,THAN K,TH U N K >  
{ F O  } {  F 1  } 

H ere i s  a program that reads each verb from the f i le  i n to a 
separate var iab le .  

: ... = : ... r:1 

.:::: v= ;·=:: ::;:-

. .. ... ! ... : ::!:: ..... 

====: c:, 

. .  : :. : : · 
· ... · ·  ... · : .... : . . .. . 

:··· . . : .. . l l l:::• l:::: ;:::· ;:::· ·;o : .
. . 

: : : ... i·:;' j···: . ; 

;:::• ;:;:: T : . . . .... . . . . :·· . . . 
.. ·" i_.·i .,. :. : ,. .. , '  ' . .,.. !:::! J .:::· , r··; ,::: . . :::· , , , · ... · .. ,. , . ' .:.:. ·.;._ 

: ... �---; ,.
.. L.J l···� j ; ... j , , 

; · .. : . . : · ... · :!:: : ;-··; :.--' .:;:. : '···· ·+' : �--·j . -=: -:;:· . . . 

.·:·· ;-··; : .. ; . . :;:. : ; . . :::- : ; . .  ; ,:;:- . ... . . · 

�? I �-..j T' : ... · ··:· 

Not ice that l i n e  70 s im ply reads consecut ive e lements from the 
f i le .  When a l l  the elements are read from one f ie ld , e lements are 
automatical ly taken from the next.  

L ine 80 pr ints out  the e lements so that they look just l i ke they d i d  
i n  t h e  orig i nal program . Note t h e  use o f  C $  to p r i n t  a comma,  and 
R$ to pr int  a carr iage retu rn .  

The next program reads on ly the present  tense verbs .  

; j. l . . . . ' L. L.l ;  

· ... ;···j , ._: .. ;:. : ::.:. : 

;:;:= -:; .. 
: .... ::.: 

;:::· ;:;:: r \! ·r · -... , , ,  �--·. �-:·· ····· , .... 
·'· , 

, 

' . 

.L ; ; ;  

. . . . 

/ i_.·; T kj �:::= ! ... · , 
; ... ; ; .. : '···· ; . .. . : 

::::= ::J 

. . .... · ' '  1·=:� 1:::. 1···1 L.1 

:...; ·: .  
: ; · .. .. ;.· 

: .. .' .. ;.· 
. . ! ... · L.. ! . .J ::::: t::. 
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Data element:  A str ing of characters 
separated by commas.  

In this example ,  as exp la ined in Table 6-2, each I N PUT statement 
causes an ent i re f ie ld to be read , regard less of the n u m ber of 
e lements used i n  the I N PUT statement .  Thus l i ne 60 causes the 
st r ing  " DR I N K" to be ass igned to A 1 $ , and l ine 70 causes the 
str i ng  "TH I N K" to be ass igned to A2$.  F ina l ly, the verbs D R I N K  
a n d  T H I N K  are d isp layed .  

GET Characters From a File 

The I N PUT statement has its l i m itat ions .  I t  i s  designed to read 
data elements-str ings of characters separated by commas.  If 
you want to read in st r ings of characters that may contai n 
commas, co lons ,  or other control  characters, or if you want to 
detect part icu lar  characters as they are read , you must use the 
GET statement to read the characters one by one .  

The GET statement works the same whether you are read ing  
i nformat ion  f rom the keyboard or from a text f i le .  

You can use the GET statement to read a var iab le n u m ber of  
e lements f rom a f iel d .  I f  you have been work ing th rough the 
examples,  you have al ready used the prog ram CONJUGATE to 
create the f i le  VERB . L IST . I f  you haven ' t  done th is ,  use the 
command 

: :  . ···· ;·:: ; ; ; ., ;-:: ;···; ; · ; :··, .. · ; . ; ; ; ·.; , ; : . 

and a text f i le  named /EXA M P LES/DATAIVERB . L IST is created . 

A l though we know that there are th ree elements i n  each f ie ld of 
VERB . L I ST , there are s i tuat ions  i n  which you r  program w i l l  not 
know how many elements to read from a f iel d .  Let ' s  write a 
subrout ine  that uses the GET statement to read any n u m ber of 
e lements,  separated by commas, from one f ie ld of a f i le .  

The fo l lowi ng subrout ine  reads e lements ,  separated by commas,  
and then p laces them into consecut ive elements of st r ing  array A$. 
The element i n  use at any t ime is i n d i cated by A$( 1 ) .  

The GET statement returns  one character. Th is  su brout i ne  reads a 
character into the var iab le  C$,  and if the character is not a comma 
or a carr iage retu rn ,  adds i t  to A$( 1 ) .  Because a com ma separates 
two elements,  the subrout i ne  u pon read ing  a comma adds 1 to the 
var iab le I ,  causi ng I to i n d icate the next e lement  of the array, and 
then cont i n ues read ing  characters.  I t  repeats th is  process unt i l  i t  
reads a carriage retu r n ,  which marks the end of the f ie l d .  
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R$ is Carr iage Retu r n .  

Start w i t h  array element 0 .  
U s e  next array e lement .  
Read the next character. 

I f  comma,  use next e lement .  
I f  carr iage return ,  you ' re done.  

Otherwise, add C$ to e lement .  

D$ i s  (CONTROL ) -@].  
Set t h e  prefix t o  /EXA M P LES/ DATA . 
P repare V E R B .  L I ST for use. 
P repare V E R B .  LIST for read i n g .  
Read a l l  e lements f r o m  a f ie ld . 
Close V E R B . L I ST. 
N ow pr int  the I e lements of A$ onto the 
scree n .  

: ... · :  ... 1···1 = : 

The next prog ram uses th is  subrout ine  to ret r ieve the e lements 
from the fi rst f ie ld of the f i le  VERB . L I ST . Recal l that you use a 
subrout ine by sayi ng  GOSUB fo l l owed by the num ber of the l i ne on 
which the subrout ine  starts (see l i ne 60 below). When the RETU R N  
statement i n  t h e  subrout i ne  is executed ( l i ne  1 040 above) , t h e  l i n e  
fo l lowi ng t h e  GOSUB statement is  executed ( l i ne 70 below). 

· ... · ·  

=:::: :·:, = ••• : :· · 

· .. .: = ..• = :  , , ._ ' . ; ; ·.; r  .. 

:···. :···. ·:· : : ··:·· :··· . . : .. : :  :··· 

.... .:�:. . ; 

; ·.; ::::_ ;. -.; 1 

: ·. :  .... : . .... ·.· : .... : : t::; : 1 

. .. . ... ... .... . 
' ' ' ' ···· =··· ·.· , . i·=:: t::; ,  L . .t :···. ' 

. 

To test th is  program , type i n  the l i nes of the program and the l i nes 
of the subrout ine ,  and then type 

You see the th ree words in the fi rst f ie ld of the f i le  VERB . L IST 
pr i nted on the scree n ,  one word per l i ne .  

I n  th is  exam ple on ly the f i rst f ie ld  was read f rom the f i le .  A 
techn ique for read ing  a var iab le  n u m ber of f ie lds from a f i le  is i n  
t h e  program GET.TEXT below. 

Chapter 6: Text in Fi les 



Al low enough room for 1 00 l i nes of text. 
Ask for next l i n e  of text with a l i n e  
n u m ber fol lowed by a col o n .  
Cal l a s u b r o u t i n e  t h a t  reads a l i n e  o f  
characters i nto array element A$( 1 ) .  

I f  A$( 1 )  i s  not em pty, then go to l i n e  1 1 0 ,  
which prom pts for the next l ine of text . 

Entering and Reading Text 

You are now go ing to write two short programs: one that reads text 
from the keyboard and then saves i t  to a f i le ,  and another that 
reads text from a f i le  and then pr i nts it on the scree n .  

A s  you read through t h e  fo l lowi ng explanat ions  o f  the programs, 
don ' t  bother typ ing  i n  the l i nes of the programs. You can f ind these 
programs in the /EXA M P LES/PROGRAMS/ d i rectory as the f i les 
MAKE.  TEXT and GET. TEXT. 

A Program for Entering Text 

Th is  prog ram is stored i n  the f i le  
/EXA M P LES/PROGRAMS/MAKE.  TEXT . I t  lets you type i n  up  to  
one h u n d red l i nes of text and save them i n  a f i le .  I t  asks for  l i nes of  
text , reads them from the keyboard , and p laces them in to  
consecut ive elements of the array A$. The program stops read i n g  
l i nes a s  soon a s  i t  encou nters an em pty l i ne .  Th is  port ion  o f  the 
prog ram is :  

Th is  par t  of the program uses a coup le  of l i t t le t r icks .  S i nce the 
value of a var iab le is  0 the f i rst t ime i t  is  used , the f i rst t ime 
l i n e  1 1 0 is  executed , I is  set to 1 ,  and the prompt 

is  pr in ted on the screen .  Next , l i n e  1 20 reads a l i ne of text into 
array element I .  Thus the l th  l i ne of text i s  p laced i n  array 
e lement I .  I f  that array e lement is not em pty-that is ,  i f  it d oes not 
have a length of zero-then l i ne 1 30 goes to l i n e  1 1 0 ,  wh ich asks 
for the next l i ne of text.  
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D$ is (CONTROL) -@). 
Open the  named f i l e  (N$) .  

Prepare to wr i te to the f i le .  

For each l i ne of text , 

pr int the l i ne to the f i le 

and cont inue to the next l i ne .  

Close the f i le when done. 

Once al l  the text is  in the array, the program asks you for the name 
of the f i le i n  which i t  is  to p lace the text : 

... ::;. ; .. -� 

.l. :::·: vi 

: : ;__; ; ;., : 

. ' 
. . 

.L : ··1 r·· .... · , 

: ... ' ··:·· : 
: : ;,,,: ;,,,: ;,,, : ... .L ;:-:; 

; ;  : 1·.) -:i·· 

and reads that name in to the var iab le  N$ .  L ine  1 60 g ives you a 
chance to end the prog ram without savi ng the text to a f i le .  If the 
name of the f i le  has a length of zero-that is ,  i f  you pressed 
(RETURN )before typ ing  any other characters-the program goes to 
l i ne 230 which is the end of the program . (Not ice the d ifferent 
techn iques used by l i nes 1 60 and 1 30 to detect em pty st r ings . )  

Next comes the task of savi ng the contents of  the array to the 
named f i le .  The last l i ne that the program read i n  is  l ine I ,  and i t  i s  
an empty one (used to i nd icate the end of the text) .  Therefore, now 
pr int  l i nes 1 through I - 1 to the f i le .  Do th is  as fol lows: 

:· : .:. : 

; ·. · · ·· 

.; :·· .··:: 
··: ;.- ; 

... = ·.··' L-·! 

; ·.; ;-·· .···. ;  

r== . .L ; ·-; = 

r·· � :t , ' , .... 

: : . · · ; . i  i i >··, i··· . . . . .. . 

F inal ly, end the program with the l i n e  

T h e  purpose o f  the TEXT com mand is  exp la ined below. 

If you type in the program as presented so far, i t  works.  The 
fo l lowi ng  l i nes pr in t  the i nstruct ions  for us ing the program onto 
the scree n ,  and freeze them there. 

·r �::· '· , .... 

�:::: ; .. ·i ;,,,: '···' 1 ]·. j 1 
... ;. · ·  . . .L ] '·i ': :" '''' 

c � :  :··· ; ; ; ·; :. .• = 
... ;. · : . 
; ; ·.; ·,,: r·· 

: ··1 ; __; r•· · 

�-·; �-·; 
p ;:::: ·;· : : ..... 

F· =···, ., . . 

: ... : :... ; i ; :;�: j· .. j ; ; 
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Sett ing the text window is d iscussed i n  
an append ix o f  t he  Applesoft BASIC 

Programmer's Reference Manual. 

Al low enough room for 1 00 l i nes of text . 

D$ is (CONTROL ) -@). 
R$ is Carriage Return .  

L ine  40 causes the Apple I I  to swi tch the d isp lay to fu l l  screen text 
mode,  to clear al l characters from the scree n ,  and to move the 
cursor to the upper-left corner of  the screen .  L ines 50 th rough 90 
p lace the i nstruct ions  for the program on the scree n ,  some in  
normal  letters, and some i n  i nverse letters. L ine  1 00 freezes the 
u pper six l i nes of the screen so they remain  on  the screen even if  
you enter more l i nes than the screen can ho ld .  This is  cal led 
sett ing the text window. 

Run this program a few t i mes, creat i ng  text f i les of d ifferent  
lengths .  Exper iment with the d ifferent featu res of the program to 
become fam i l iar  with the way they work .  

For example: You can  enter a blank l i ne of text by  putt i n g  spaces on 
t hat l ine; s ince the l i ne  conta ins characters, the length of the l i n e  is  
not 0 .  

A Program for Retrieving Text 

Th is  program is  i n  the f i le  /EXA M P LES/PROGRAM S/GET. TEXT . 
Load the program so you can look at the l i nes as they are 
descr i bed below. 

F i rst the program sets up the var iab les it is go ing  to use. I t  
d i mens ions the array A$ to ho ld  u p  to 1 00 e lements ,  and i t  ass igns 
the val ues RETUR N  and CONTROL-D to R$ and 0$, respect ively. 

-·::: : :: ... =:..= ; T ;-.-: ' , .. ,. ·. ·'· · ... · · ... · .· 

. · .·· : .. .: --;-· ..... ! ... - l l l·=:_ .;!:: · .. ''T .· 

I n  l i ne 60 ,  the program asks for the name of the f i le  from which it i s  
to read text , and reads the f i lename in to the var iab le  N$ .  

E ntering and Read ing Text 

! l:::_ ,· ·· j j·-· .L L.. i:::. : 



Open the text f i le .  
P repare to read from the f i le .  
For  each l ine that could be i n  the text 
f i le ,  

read the l ine into array element I 
and then pr int  it on the scree n .  

T h e n  do the next l i ne .  
C lose the f i le .  
Restore text mode,  and end.  

Havi ng  read the name of the text f i le, the program can n ow read 
consecut ive l i nes from the f i le :  

.!. •::.; ;.· : 

·i .. 

:··· . .  : .. : : .···. :··· 
: .... : ·; 

. . � r· 
-� .,. 

There is a smal l problem with th is  part of the program . If the text 
f i le  contai ns fewer than 1 00 l i nes,  the program reads the last l i n e  
o f  t h e  text f i l e ,  a n d  then h a s  no more characters to read . The 
prog ram tr ies to read a character anyway, fai ls ,  and pr i nts out the 
error message 

To prevent th is  occurrence, use the O N E R R  GOTO statement 
descr i bed i n  Chapter 5 .  I f  you inc lude the l i n e  

t h e  program , u p o n  encounter ing  an error, s im ply closes t h e  f i le  
( l ine 1 60) and ends .  

Note: This  is not  the best way to use the ONERR GOTO statement.  
Before tak ing any act ion ,  a better version of th is  program wou ld  check 
to see which error occurred . Refer to the sect ion on the O N  ERR GOTO 
statement i n  Chapter 5 to see how to d o  th is .  

The subrout ine  that reads l i nes of text is ,  as before 
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The l i nes presented so far comprise a complete program ; if you 
type them i n ,  they wi l l  r un .  As before, you can add a few l i nes that 
permanently p lace i nstruct ions for usi ng the program on the 
screen . 

-r· -···. ,-·. ·-r· ,--. , T k i =-·· : :  
! ! ___ , -::: ; :.) 1"" : .... . :. · ... : ; .l 

� r-· i:::. . · ... · .... : ' : : .. · ... : i 

; ... ; ;-_ : • . . · ..... ··:·· :·· ····- :··: j. l "''" L. ! !  r· = i = . ..: = ••• · '···' ' ·: : .:. : , ••• ••••• 

. j 'T 
! ; ·-. . : ;---· u ;·= .. t::. ---· T , '-·-' 

L ine  50 causes the Apple I I  to switch to fu l l  screen text mode,  to 
clear al l characters from the screen , and to move the cu rsor to the 
u pper- left t:orner of the screen .  L i nes 70 and 80 p lace i nstruct ions 
for  the program on the screen .  L ine 90 freezes the upper s ix l i nes 
of the d i sp lay so they rema in  on the screen even if  you enter more 
l i nes than the screen can hol d .  

The OPEN Command 

You can use the OPEN command on ly i n  deferred mode.  

Before you r  program can wr i te to or read from a sequent ia l  text 
f i le ,  it must open the text f i le  us ing th is  command 

OPEN pn  [ , S#] [ , D#]  

F i les that you open m ust be c losed (usual ly at the end of  the 
program) .  I f  you don' t  c lose a f i le  that you open and wr i te to ,  you 
may lose some of the written data.  

When a program opens a text f i le ,  ProDOS designates a space in 
memory, cal led the f i le buffer ,  to ho ld al l im portant i nformat ion  
about  the f i le ,  and prepares the system to read or write start i ng  at 
the beg i n n i n g  of that f i le .  Up to e ight  f i les can be open at once. 

I f  the f i le  des ignated by pn does not yet exist ,  a f i le  with that name 
is  created , and is added to the proper d i rectory. I f  the f i le  exists,  
and is  a l ready open , you get the F. :: L.. ::::: :::::: .<::; '·,-' error. You (or the 
program) must c lose the f i le  before open ing  i t  agai n .  

War n i ng 
When you open a f i le ,  the pathname or part ia l  path name with which you 
opened the f i le  becomes that f i le 's  identifier.  In a l l  su bsequent references 
to that f i le ,  you must use exactly the same pn-even i f  you change the 
pref ix .  See the example which fol lows. 
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Assume the prefix is current ly set to I APP LE/ (a popu lar  fru i t ) .  I f  
you open the f i le  I APP LE/STRUDEL us ing the BAS IC l i n e  

; ;  :··, ;-··, ;···· ;, ; 

you must always use the name STRU DEL when referr ing to that 
f i le .  For example ,  if you su bseq uent ly use the com mands 

c· .·
· ::::: ·r �:;:: ! ! ;···, , .... 

you get the :::: ' ' 
· ·· · · · · · ···· : :: 1  1 error. Even though the prefix has 

changed , you shou ld st i l l  use the same fi le ident i f ier :  

. . :�; j .. •! : .... :.... ; ;· . .; i 
.... . . . . . . 

The OPEN command has other opt ions  that are not appl icable to 
seq uent ial text f i les. They are d i scussed e lsewhere. 

The Options 

pn pn i nd icates the name of the f i le  to be opened . I f  the f i le  
a l ready exists,  i t  must not be open . I f  the f i le  d oes not yet 
exist ,  a f i le  of type text (TXT) is created . 

( ,S#]  The s lo t  opt ion  has  i ts  usua l  mean i n g .  

[ , D#]  The d r ive opt ion has its usual  mean i n g .  

For Example 

Several exam ples of the OPEN com mand have al ready been 
presented . The fo l lowi ng sect ion expla ins  a new aspect of OPEN .  

Delete Before Opening 

Suppose you r  program rout ine ly replaces an o ld text f i le  with a 
new one with the same name. If the new one is shorter than the o ld 
one ,  then u n less the program deletes the o ld  f i le  f i rst , the new one 
has part  of the o ld  f i le  hanging on the end . I f  you don ' t  want al l th is 
extra text at the end of the f i le ,  you must delete the o ld f i le  before 
wr i t i ng  to the new one. This is  usual ly easy, but what if i t  is  the f i rst 
t ime you have run the program , and the old file doesn ' t  yet exist? 
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D$ is (CONTROL ) -@). 
N$ i s  t h e  n a m e  o f  t h e  f i le .  
Open the f i le .  I f  i t  does not al ready exist ,  
i t  i s  created . 
Close the f i le  before delet i n g  i t .  
S ince the f i le  def in itely exists,  the f i le  
can be deleted . 

For example ,  suppose a game creates and uses the f i le  
/GA M ES/DI NGER , and you wish you r  program to de lete that f i le  at 
the start of each new game. The l i ne 

causes the error message 

if the fi le d oesn ' t  exist ,  and the program halts .  Here 's a q u ick way 
to delete a f i le  and open it for new data,  whether or not the f i le  
al ready exists:  

; ; : �·. 3 . :l·· 

The rest of the prog ram goes here.  

S im ply open and c lose the f i le  before de let i ng i t .  This ensures that 
the f i le  exists and can be deleted . 

The CLOSE Command 

You can use the CLOSE command i n  e i ther immed i ate or deferred 
mode.  

After a program f in ishes wri t i ng  to or  read ing  from a f i le ,  i t  must 
c lose the f i le .  P roper c losure of every f i le  is  necessary to ensure 
that a l l  characters are written to the i r  f i les,  and that the f i le  buffers 
are properly released . CLOSE takes the form 

CLOSE [pn] 

War n i n g  
A program must always close a f i l e  that it  opened . I n  some ci rcumstances, 
however, a prog ram that contai ns an error wi l l  stop before i t  can c lose al l 
open f i les.  When th is  happens, issue the CLOSE command from the 
keyboard to close al l open f i les. 
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The Options 

The CLOSE command without any opt ions  c loses al l open f i les .  

[pn ]  pn i n d icates the name with which the f i le  was opened . 

The WRITE Command 

You can use the WRITE com mand i n  deferred mode on ly. 

You must use the WRITE command before you can use the P R I N T  
staterp�nt to p lace characters i n  a f i le .  T h e  W R I T E  command 
ident i f ies to ProDOS the f i le  to which you want to wr i te characters, 
and the posit ion  i n  the f i le where the f i rst character wi l l  be placed . 
The WRITE command remains  i n  effect un t i l  the next ProDOS 
command is  g iven .  Th is  command takes the form 

WRITE pn [ , F#)  [ , B#]  

The Options 

Use the F# and B# opt ions to choose the posi t ion  of the f i rst 
character to be written to the f i le .  I f  you don ' t  use these opt ions ,  
the f i rst character is  written to the f i le 's  current posi t ion .  

pn pn i n d i cates the name of the f i le  to be wr i t ten to .  I t  must be 
ident ical to the name with which the f i le was opened . 

[ , F#)  # is the num ber of f ie lds past the cu rrent posit ion  that 
ProDOS is to read and d iscard . P roDOS d oes th is  by 
read ing  characters, start i ng  at the current posi t i on ,  un t i l  i t  
has read the specif ied n u m ber of carr iage returns .  Th is 
opt ion  changes the f i le 's current posi t i on .  

[ , B#)  # is  the num ber of  bytes , or characters, that ProDOS must 
read and d iscard . The new current posi t ion  is  the sum of # 
and the previous cu rrent posi t i on .  
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The READ Command 

You can use the READ command on ly i n  deferred mode.  

You must use the READ statement before you can use the I N PUT 
and GET statements to read characters from a f i le .  The READ 
command ident if ies to ProDOS the f i le  from which to read 
characters and the pos i t ion  in the f i le  from which to read the f i rst 
character. The READ com mand remains  in effect un t i l  the next 
ProDOS command is g iven .  Th is  com mand takes the form 

READ pn [ , F#] [ , B#]  

The Options 

Each t ime you use the READ command you m ust ident ify a f i le  by 
name (pn) .  

Use the F# and B #  opt ions to choose the pos i t ion of the f i rst 
character to read from the f i le .  I f  you don ' t  use these opt ions ,  the 
f i rst character is  read from the f i le 's  current posi t ion . 

pn pn i nd icates the path name or part ia l  pathname of the f i le  
you want to read fro m .  I t  must be ident ical  to the value 
of  pn with which the f i le  was opened . 

[ , F#] # is the n u m ber of f ie lds which ProDOS is  to read and 
d i scard . ProDOS does th is  by read ing  characters, start i ng  
a t  the cu rrent posit ion , un t i l  i t  reads the specif ied n u m ber 
of carr iage returns .  This option changes the f i le 's  cu rrent 
posi t ion . 

[ , B#]  # is  the n u m ber of bytes , or  characters, that ProDOS is to 
read and d i scard . The new cu rrent posit ion  is the sum of # 
and the previous cu rrent posit i on .  
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See the descr ipt ions of the OPEN,  
POSITION ,  and WRITE commands for 
more informat ion on the operat ion and 
use of the APPEND command .  

The APPEND Command 

Use the APPEND command on ly i n  deferred mode.  

The APPEND command lets you add data to the end of a 
seq uent ia l  text f i le .  I t  is l i ke th ree commands i n  one:  i t  opens the 
f i le  (see the OPEN command) ,  posit ions to the end of the f i le  (see 
the POSIT ION command) ,  and then wri tes to that f i le  (see the 
WRITE command) .  Th is  command has the form 

APPEND pn [ ,S#] [ ,D#] 

After g iv ing the APPEND command ,  your  program can send data 
to the fi le us ing the PR INT  command .  

The Options 

pn pn i nd icates the f i le  to be appended . I t  m ust not be open . I f  
the i nd icated f i le does not yet exist ,  the f i le  is  created . 

[ ,S#]  The s lot opt ion  has its usua l  mean i ng .  

[ , D#]  The dr ive opt ion  has i ts  usua l  mean i ng .  

For Example 

You can mod ify the prog ram MAKE.  TEXT -wh ich creates a 
sequent ia l  text f i le-so it adds l i nes to the end of a text f i le .  

With the /EXA M P LES d isk i n  d rive 1 ,  and with ProDOS started up ,  
load /EXAMP LES/PROGRAMS/MAKE.TEXT in to memory and 
d isplay i t  on the screen w i th  the commands 

.· · t ... : ·- · 
.···

. :···,
.···. : : · ... . · : : : ; ... : · ·  .---, .. · r·· r==. = . ..: = .. := r=:_ :···= · 

T 

Do you remem ber how MAKE.  TEXT works? F i rst it reads l i nes of 
text in to the array A$, then it asks you for a f i lename, and then i t  
opens the f i le and pr ints the l i nes of text to the f i le .  
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To append l i nes of text to the end of a f i le ,  a l l  you need to do is 
replace the OPEN and WRITE statements with an APPEND 
statement .  Replace l i nes 50,  1 70 ,  and  1 80 by  enter ing  the 
fol lowi ng  l i nes: 

::::· -···. : ... = : •.. ' ; j·.j ; 

J. : 
··-

..... , ... ;::·, r··· : .... .. ,.. ·' : : :  ; : .... : ·; ;  

1 l:::. ;:< ! 

If you want to keep th is  program , you can save it by typ ing  

: .... :" ·, ; ; ; , , ; r·· . , . · · : ... ' !·=: � ! ... � ; . .  := ; • •• ; ; ; ; ; ... :.· . 

The APPEND command , l i ke the OPEN comman d ,  creates a new 
f i le  if the f i le  you t ry to append does not al ready exist .  

The FL USH Command 

Use the FLUSH command i n  e ither i mmed iate or deferred mode.  

As a program writes to a text f i le ,  ProDOS stores a b lock of 
5 1 2  bytes , or characters, of data before any of the data is  placed 
on the d isk .  I f  you use the FLUSH command ,  al l the characters that 
are currently stored are transferred to the f i le .  After you use the 
FLUSH command ,  you can be sure that every character wr i t ten to 
a f i le  is actual ly placed i n  that f i le .  The FLUSH command takes the 
form 

FLUSH [pn] 

The Options 

The FLUSH command without any opt ions f lushes a l l  open f i les .  

[pn]  pn i nd icates the f i le to be f l ushed . I t  must be ident ical to 
the pn with which the f i le  was opened . 

For Example 

This command can be usefu l  i f  you wanted to make a program 
absolutely foo lproof. I f  you use the FLUSH command after each 
statement that pr in ts to a f i le ,  you can be sure that every character 
actual ly reaches the f i le .  Your  programs wi l l  be a l i t t le longer and a 
l i t t le s lower, but  a lot more rel iab le .  
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This  command is also of g reat value for data col lect ion 
appl icat ions i n  wh ich there are freq uent power outages. I f  you r  
appl icat ion program is  named STARTUP, t he  program wi l l  restart 
after each power outage. Usi ng  FLUS H ,  you can maxi m ize the 
amount of data col lected . 

Note: Frequent use of the FLUSH command slows d own you r  program . 
You must decide the i m portance of speed versus data i n tegrity. 

The POSITION Command 

Use the POSIT ION command i n  deferred mode on ly. 

With the POSIT I ON command ,  you can access the i nformat ion i n  
a n y  f ie ld or  byte with i n  a f i le .  Th is comman d ,  which takes t h e  form 

POSIT ION pn , F# 

starts at the current posit ion , and reads and d iscards the n u m ber 
of f ie lds ment ioned in F#. The f i le  must be open .  

For example,  if  t he  current posit ion is  with i n  the  fourth f ie ld o f  a 
f i le ,  and you want to read from the tenth f ie ld i n  the f i le ,  sk ip  six 
f ie lds using the POSIT ION command with the opt ion , F6 .  

The Options 

pn pn i nd icates the f i le  whose current posi t ion  is  to be al tered . 
It must be ident ical to the pn with which the f i le  was opened . 

, F# # ind icates the number of f ie lds to be read and d i scarded .  
I f  you t ry t o  posi t ion past t h e  e n d  o f  t h e  f i le ,  you get the 
F i-E:: U F :::: ::::: T H  error message.  
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Random-Access Text Files 

About This Chapter 

Th is  chapter i n t roduces you to the use of ProDOS random-access 
text f i les. It descr i bes how to create them,  how to p lace 
informat ion  in them, and how to take i nformat ion  out of them . 

Because random-access text f i les are so s im i lar to sequent ia l 
access text f i les ,  th is  chapter assumes that you are al ready fam i l iar 
with the mater ia l  i n  the preced ing  chapter. 

The f i rst part of th is  chapter expla ins the structure of random
access text f i les and how you can make use of i t .  The next part  of  
the chapter leads you through a typical program that uses 
random-access text f i les .  The remai nder of the chapter contai ns a 
descri pt ion of the commands you use to man ipu late random
access text f i les. 

By the Way: Notice that although the commands descri bed i n  th is  
chapter are the same as those i n  Chapter 6, the opt ions that 
accom pany them are d ifferent .  Append ix A contai ns a summary of the 
commands with a l l  their  options.  

Random-Access Text Files 

As i l l ust rated by the scro l l  versus notebook analogy i n  Chapter 6 ,  
there is  a fundamental d ifference between seq uent ia l  and random
access text f i les: a seq uent ia l  text f i le is  a s ing le  un i t ,  com posed of  
a series of f ie lds;  a random-access text f i le  consists of mu l t i p le 
u n its ,  or records, al l the same size, each composed of a series of 
f ields. F igure 7- 1 i l l ustrates this com parison .  
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Figure 7- 1 .  Sequent ia l and Random
Access Text F i les 

Record length is the number of 
characters a record can ho ld .  A l l  
records i n  a s ing le random-access text 
f i le are the same length. 

0 

Sequent ia l Random-Access 

Record Length 

When you open a random-access text f i le  for the f i rst t i me,  you 
m ust ass ign it a record length . For example ,  to open a random
access text f i le  named /MUSIC/CLASSICAL that has a record 
length of 33, use the command 

·= = ··= ····· r=: . .1: 1··-! ·T .... ···· · ' '  ;:::; F· �::: :···i 
·' : .... .. : ·-' 

The length of a record is the num ber of characters it can ho ld .  
Each record i n  the f i le  /MUS IC/CLASSICAL is  33 characters long .  

Not ice that when you open a random-access text f i le ,  you don ' t  
need to specify the n u m ber of records that the f i le  is  go ing  to ho ld .  
ProDOS takes care of  such detai ls  for  you .  

Writing to a Record 

When you use the WRITE command with a random-access text f i le ,  
you m ust specify the n u m ber of the record to which you are going 
to wr i te (j ust l i ke writ i ng  to a page of a notebook) .  I f  the specif ied 
record does not yet exist ,  ProDOS reserves enough space on the 
d isk for that ent i re record . Thus, even if  you are on ly go ing to p lace 
one character in a record of the CLASSICAL f i le ,  that record wi l l  
use 33 characters' worth o f  d isk space. 
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Stor ing  characters is expla i ned in the 
sect ion  on f ie lds i n  C hapter 6 .  

For example ,  before wr i t i ng  to record 10 of the f i le  you j ust 
opened , use the com mand 

, .... ·'·· · ' ' L :J  �) T .. 

The su bseq uent PR I NT statements you use place characters i n to 
record 1 0  of th is  f i le .  

Inside a Record 

The storage of characters i n  a record is j ust l i ke the storage of 
characters i n  a seq uent ia l  text f i le .  The d i fference is that there is a 
maxi mum n u m ber of characters that wi l l  f i t  i n to each record . 

War n i n g  
You must be carefu l  n o t  to p r i n t  more characters to a record than i t  can 
ho ld .  I f  you do, ProDOS s im ply pr i nts the extra characters i nto the 
beg i n n i n g  of the next record . For this reason ,  a f i le 's  record size must be 
at least as great as the largest n u m ber of characters to be stored i n  any of 
its records.  Don ' t  forget that the carriage return at the end of each f ie ld is 
counted as a character too. 

Reading From a Record 

When you use the READ command with a random-access text f i le ,  
you must specify the number of the record from which you want to 
read . For example ,  to read the seventh record from the 
CLASSICAL f i le,  u�e the command 

�-·· '···: ; ;. ' . : ... : · .. . ; : -... = ·  ... = .:. = ... · : ; : 

fol lowed by the appropr iate I N PUT or GET statements.  If the 
record does not exist ,  the READ statement is  al lowed , but  the f i rst 
I N PUT or GET statement causes the ! . !"-! !.-' f i !:::

· 
L.: i···i T" ' : error message.  

A Sample Program 

To i l l ust rate the use of random-access text f i les, here is a short 
program that you can use to keep t rack of an add ress l i st .  The 
program has two mai n tasks: to enter new add resses and to look 
up add resses that are al ready entered . Each of these two parts is  a 
subrout ine ;  a ma in  program cal ls these subrout i nes as needed . 
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Figure 7-2. Five Addresses in the F i le 

Record 
Number 

5 

4 

3 

2 

0 
5 

The f i rst add ress you g ive the program is stored i n  record one of 
the f i le ,  the second i n  record two , and so on .  The total n u m ber of 
records i n  the f i le  is stored i n  record zero of the f i le .  F igure 7-2 
represents the structure of the f i le when i t  contai ns f ive add resses. 

Joe's Mama � 
� 

B i l l  Smith 
29 1 1  Main St . 
Los Al tos, CA 

Addresses 
(5 of them) 

Total Number of Addresses 

D$ is (CONTROL ) -@} 
Open the  f i le .  

Write to record 0 .  

Put a 0 there. 

Close a l l  f i les. 

The total n u m ber of add resses in the fi le is  i n i t ia l ly 0 .  F i rst write 
and run a l i t t le program that places the i n i t ia l  total n u m ber i n  
record 0 .  

' ' C• ·: 
�-.; 1 • • :. : :.. •• 

:-. ...- .·-. .  ···· ;:::· :-·. ,-.. 
r:: t. 1 ... ... : ; ·  .. :...: ::_: 

:-·· .-. :··· . .  ··· . ..,. . . -. 
... ,_ , , , , ,  i t-·· t__ :_ ._, ... · · �--= � �-; .. ·- �::: ;_ __ H �.-- 1·:

· 

·-= =: .. = 
. . . . r·.: : �..:.i 

;::;- .···. .···. : .···. ·=:· [.�' : :  
: · ' · · '···' ··-' '-· 

L ine  20 opens the f i le  B LACK. BOOK,  i n  which add resses are to be 
kept,  with a record length of 200. Thus ,  add resses stored by the 
prog ram can have no more that 200 characters in them . L ine  30 
specif ies that data wi l l  be wr i t ten to record 0 of the f i le .  L ine 40 
pr ints a 0 to that record , and l i ne  50 closes the f i le .  
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Figure 7-3. Writ ing an Address to 
Record F ive 

Type i n  th is  program and run i t .  The d isk d r ive spi ns as the new f i le  
B LACK. BOOK is created (OPEN causes a new f i le  to be created if  
i t  does not al ready exist) ,  and the 0 i s  p laced i n  i t .  Then type 

to remove th is  program from memory. You no longer need i t .  

Writing a Record 

You m ust now decide how i nformat ion  is  arranged with i n  each 
record . Each record contai ns a name, an add ress, a c i ty, a state, a 
z ip  code, and a phone num ber. P lace each p iece of i nformat ion i n  
a separate f ie ld ; that i s ,  use a separate pr in t  statement t o  place 
each p iece in the record . To improve the c lar i ty of the program , use 
a separate var iab le for each p iece of the add ress. F igure 7-3 
shows the BAS IC statements that p lace an add ress in record f ive 
of a f i le  named BLACK.BOOK . 

PR INT D$ ;"0PEN BLACK.BOOK,L200" 

PR INT D$,"WRITE BLACK.BOOK,RS" 

PR INT N$ 

PR INT A$ 

PR INT C$ 

PR INT S$ 

PR INT Z$ 

PR INT P$ 

PR INT D$; "CLOSE BLACK.BOOK" 

To write a new record to a f i le  

NAME ") 
ADDRESS ") 
CITY ") 
STATE ') 
Z IP CODE ) 
PHONE ) 

Record 5 

1 .  Read i n  the new add ress to be entered . Store it i n  the var iab les 
N$,A$,C$,S$,Z$ , P$ .  

2 .  Add 1 to the total num ber of records stored (TR = TR +  1 ) . Th is  
is  the n u m ber of  the new record . 

3 .  Use OPEN and WRITE to prepare that record to be written . 

4 .  Pr in t  the new i nformat ion  to the f i le .  

5 .  Pr in t  the new total n u m ber to record 0.  

6 .  Close the f i le .  

A Sample Program 



Read name to be entered . 
Read add ress. 
Read c ity. 
Read state. 
Read zip code.  
Read phone n u m ber. 

Open the fi le with record length of 200. 

Read tota l  records.  
Get total  records;  add 1 .  

P repare to write to record n u m ber T R .  
P lace each p a r t  o f  add ress i n  a 
separate f ie ld .  

P repare to wr i te  record n u m ber i n  
record 0 .  

Pr in t  new record n u m ber. 
C lose the f i le .  
End of s u b rout ine .  

Store records i n  f i le  
/EXA M PLES/DATA/BLAC K . B O O K .  
C a l l  the s u b rout ine ,  over and over 
aga i n .  

Here is  a subrout ine  that does th is .  L i nes 1 0 1 0  through 1 060 
gather the i nformat ion  for an add ress . 

_;_ =: . .= -.. .= =: •• : 

: : : : : : ; ; : ... = :  ... : 

;· .. ; ;  .. ; ; ,··· . ... 
... 

:. : :  : · : : = •• : ; ;,,,; ; : ••• 

�-) F' ; : ..... : :  : ... L..l ,..., ;, : :···· : : : ;,,,: ::�:: 

L ines 1 070 through 1 1 20 open the f i le  whose name is stored i n  F$ 
and write i nformat ion  to a new record ( record TR) i n  that f i le .  

; ; ,.; ; ... : : . 

.t. =::_; .:::: ;.· :  
. .. . · ···· · · ····· . . . . .... i,) ; 

; ; ,···, ;-··, ;-··· ;, ; : : T· . 

,.... .... . ' '  F� �:::: ,···= , . 

; ;  . ;-··· . .;. . . ; : 

L i nes 1 1 30 th rough 1 1 60 pr in t  to record 0 the total n u m ber of 
add ress records that are now i n  the f i le ,  c lose the f i le ,  and end the 
subrout i ne.  

; ; -:;:· : : : 1.: - i  i·::
: � 

These l i nes are al ready typed i n  and stored as part of the program 
in the fi le /EXAMP LES/PROGRAMS/ ADD RESS . I f  you want to 
test j ust th is  subrout ine ,  load 
/EXA M P LES/P ROGRAMS/ ADDRESS , and add the l i nes 

: ... · : : ... · ... .  .. .. 
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Figure 7-4. Read ing an Address From 
Record Five 

When you want to stop the program , press (coNTROL) -@)and then 
press ( RETURN ) . These keystrokes, as descr i bed i n  the Applesoft 

Tutorial, stop a lmost any prog ram . If you typed i n  l i nes 1 1 - 1 3 , type 

J. : t 
J. ::::. 

l :::�: 

to remove them from the program . 

Reading a Record 

You al ready know how i nformat ion is stored i n  the records. Your  
new task is  to f ind a way to ask wh ich  record (add ress) is to be 
d isplayed . To do th is ,  d i sp lay the name f rom each record , together 
with its record num ber, and then ask for the n u m ber of the desi red 
add ress. F igure 7-4 shows the BAS IC statements that read an 
add ress from record f ive of the fi le BLACK.BOOK . 

NAME ') 
ADDRESS ) 
CITY') 
STATE ) 
ZIP CODE ) 
PHONE ) 

Record 5 

To read a record from the f i le  

PR INT D$ ;"0PEN BLACK. BOOK, L200" 

PR INT D$; "READ BLACK.BOOK, R5" 

I NPUT N$ 

I NPUT A$ 

I NPUT C$ 

I NPUT S$ 

I NPUT Z$ 

I NPUT P$ 

PR INT D$ ;"CLOSE BLACK.BOOK" 

1 .  Use OPEN and READ to prepare the f i le  to be read . 

2 .  Read the total n u m ber of entr ies from the f i le .  

3 .  Pr in t  a num bered l i st of the entries on the screen .  

4 .  F ind  out wh ich  entry to d isplay. 

5 .  Pr in t  the selected record on the screen .  

6 .  Close the f i l e .  

A S a m p l e  Program 



Open the f i le .  

Read from record 0. 

Get the number of records. 

Check for no records. 

Clear the screen .  

For each record I ,  posi t ion to record I ,  
and read the stored name. 

Here is  a su brout i ne  that does all t hese th i ngs .  F i rst i t  reads the 
total number of add resses from record 0 of the f i le .  Then i t  reads 
the name from each add ress and pr in ts al l of them on the screen . 

:: ... •: .. = :: ... •:.,: ,;, ; ·; ;  '···' ;  

! ; ,···, ;.. r··; : . ..: ; · ; t::. 

: :  . r··· .+· _; r· .:;:· _; , L. . . : ... �:.:l U , ,  
! !  . r··· .. ; .. . ; : :···. :·:, ; ;  

-' r· .:;:· -' , , ·. · ... · 

' ' : ' LJ ;-; C L:;" ;.·� ; ! ,_, ·-' ;.._ ; ; ;_,: ;,, ; · .. ;_ ·-' ·-·' L' :_: 
= 

i...l -+· ; 

l f.j ! ... • ; ; : j·-.j ::i:: 

1 U ; r•:. 

! '·. !  .... ; ; ;,,,• : ; .. ;.· : , F� · -� 1 

= = c.: k = ·r =::· l···' l-:-' ; r-� ; 

Pr int the record number and the name .::: :.:; ::; :.:. . .... ,.,.· ' ,. .. , ! .!. .. !··n:: 
on the screen .  

Repeat for a l l  records. ·;:. ·: ;:::; ;:::, i··F::: :: :: ··:·
· 

-'
· 

Empty ProDOS command; turns off 
READ. 

Get numeric value of answer. 

If bad number, try again .  

Because the READ statement causes ProDOS to read characters 
from the fi le rather than from the keyboard , you m ust cancel the 
READ statement 's  act ion before read ing  anyth i ng  from the 
keyboard . A READ or  a WRITE is  canceled by a ProDOS 
command ;  one way of do ing th is  is  by us ing the em pty ProDOS 
command in l i ne 2 1 1 0  below. 

L ine  2 1 20 asks for a n u m ber and then reads it i n to  the st r ing  R$. 
S i nce the q uest ion asks for a numeric answer, i t  cou ld have read 
the answer in to a regu lar var iab le ,  but then the accidental press ing 
of  a letter key wou ld cause an error. L ine  2 1 30 converts R$ to a 
n u m ber (R) ,  and the next l i ne  compares the n u m ber to the val id  
add ress num bers. An i nval id  response causes the q uest ion to be 
red isplayed . 

.. · ; ; ;,.·; 

:: ... . :. ·  ... • •: .. : 
. . .  

:::: . .:. ···: ::..: 

; ... · ;.,. : ·.: :  ;,,,: .. ;.· . 

.:. : ·: : L� ! ' ' 1 '{ !···' t:. !i 

,-, c· _;_ :_: ; ·.. . . 

1'1 :_: ; ; ;,,,: ;_ ; ·  .. 
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Clear the screen .  

Prepare to read record R. 

Read address. 

Pr int  name and address. 

Put c i ty and state on the same l i ne. 

Print z ip code and phone number. 

Close the f i le .  

Posit ion the cursor. 

Preserve the screen .  

D$ is (CONTROL )-@). 

F$ is the f i le of addresses. 

Clear the screen .  

Convert response to number. 

If bad entry, try again .  

Enter a new address. 

Look up an address. 

The last part of th is  subrout i ne  places an add ress on the screen .  I t  
uses READ to pos i t ion to the requested record and uses I N PUT to 
read the s ix f ie lds f rom the record . Then i t  pr in ts  the six f ie lds on 
the screen .  L ine  2230 prevents the add ress from bei ng  erased 
before you have a chance to read i t .  

� �  J .  6 !�� P F;�� I f··! T iJ ::�: .: 
i i  F;�� E:: f:� [i i i  

.: F :$: .: = � .. F�� : i  .: F 

2 1 7 0 I N P U T  N $ , A $ , C $ , S $ , Z $ , P $ 

2 1 8 0 P R I N T N $ : P R I N T A $  

2 1 9 0 P R I N T C $ , P R I N T S $  

P R I N T Z $ : P R I N T P $  
r.:= i::: T k i T  i j "· • • 1. ! 1 ! 

2 2 2 0  V T A B  2 3 : H T A B  8 

Controlling the Program 

j j  .: F :�: 

The remainder of the program is s imple .  Here is the main part of 
the program that lets you choose between enter ing  a new address, 
read ing  an exist i ng  add ress, or  end ing .  

[:> i::• T k i T  
j i '• . .i. ! 1 ! 1 C:' k ! T C i::: Ci k ! C i . i  C.i i: i: C: C C =:· : :  i- ! 1 j :.._ : ··. j j i 1 i.- i-'-i ! i i. .. ' :,._: : ··. i.... ·-' ··-' 

::; �J I t·� P U T 
i i  

T \' P E  A t·-! U l=i t: E f;:� Fl f·� D F P E �:; �:; F E T U F f·� 
! !  .

: C $  

9 �J �=: = !) l4 L < c �� > 
1 0 0 I F  C < 1 O R  C ; 3 T H E N  G O T O  3 0  
1 1 0 I F  C - 1 T H E N  G O S U B  1 0 0 0  
1 2 0 I F  C - � T H E N  G O S U B  2 0 0 0  
1 3 0 I F  C - 3 T H E N  E N D  

Li nes 80 through 1 00 use the same techn ique that you used earl ier 
to choose a record to be d isplayed . They read i n  a letter, convert i t  
to a num ber, and then check to see that the n u m ber fal ls  i n  the 
expected range. I f  i t  is  a bad entry, the program repeats the 
q uest ion .  A good entry causes the proper su brout i ne  to be cal led . 

See if you can mod ify the program to delete and change entr ies.  
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The OPEN Command 

Use the OPEN command i n  deferred mode on ly. 

Before a program can write to or read from a random-access text 
f i le ,  it must open the text f i le  us ing th is  command 

OPEN pn [ , L#] [ ,S#]  [ , D#] 

When you open a random-access text f i le  for the f i rst t ime ,  you 
must open it with the length opt ion ,  L# .  # is the n u m ber of bytes, 
or characters, that each record can hold . Each su bsequent t ime 
you open the f i l e ,  the or ig i nal  record length  is  assumed . 

If you open a random-access text f i le  with a record length other 
than that with which i t  was created , the new record length is  used 
as long as the f i le  is  open ,  but  the or ig ina l  record length remai ns as 
the defau l t .  

F i les that are  opened m ust be closed , usual ly at  the end of  the  
program . I f  you don ' t  c lose a f i le  that you open and write to ,  you 
may lose some of the written data. 

When a program opens a text f i le, ProDOS des ignates a space i n  
memory, cal led t h e  f i le buffer ,  t o  ho ld a l l  i mportant i nformat ion  
about  the f i le .  I t  also prepares the system to read o; write start i ng  
a t  t he  beg i nn i ng  o f  the  f i l e .  Up  to e igh t  f i les can  be open a t  a t i me.  

War n i ng 
ProDOS uses the name with which you opened the f i le  as the f i le 's  
ident if ier. Always use the exact same name, even i f  you change the prefix. 

The Options 

pn pn i nd icates the name of  the f i le  to be opened . I f  the f i le  
al ready exists, i t  m ust not be open . I f  the f i le  does not yet 
exist ,  it is created as a text f i le .  

[, L#] You m ust use the length opt ion the f i rst t ime you open the 
f i le ,  that is ,  when the f i le  is  created . I f  you create a f i le 
without the length opt ion ,  the f i le  is  g iven a record length of 
one.  The record length , # , m ust be i n  the range 1 to 65535.  
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War n i n g  
Be sure that a f i le 's  record length is  g reater t h a n  t h e  maxi mum n u m ber o f  
characters that you wi l l  ever p u t  i n  o n e  o f  t h e  f i le 's  records. I f  you 
accidental ly write past the end of a record , data is written onto the 
beg i n n i n g  of the next record i n  the f i le ,  destroying any data that might be 
i n  that next record . 

[ ,S#] The slot opt ion has its usual mean i ng .  

[ , D #] The dr ive opt ion has its usual mean ing .  

The CL OSE Command 

Use the CLOSE command i n  e i ther immed iate or deferred mode. 

After a program fi n ishes wri t i ng  to or read ing  from a f i le ,  i t  m ust 
close the f i le .  Proper closure of every f i le is  necessary to ensure 
that a l l  characters are written to the i r  f i les ,  and that the f i le  buffers 
are properly released . CLOSE takes the form 

CLOSE [pn] 

War n i n g  
A program must always close a f i l e  that i t  opened . I n  some c i rcumstances, 
however, a program conta ins an error and stops before i t  can close a l l  
open f i les. When th is  happens, issue the CLOSE command f rom the 
keyboard to c lose a l l  open f i les .  

The Options 

The CLOSE command without any opt ions closes a l l  open fi les. 

[pn]  pn i nd icates the name of the f i le  to be closed . I t  must be 
ident ical to the name with which you opened the f i le .  
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The WRITE Command 

Use the WRITE command on ly i n  deferred mode. 

You must use the WRITE statement before you can use the PR INT  
statement to p lace characters i n  a record o f  a random-access f i le .  
The WRITE command tel ls  ProDOS the f i le ,  the num ber of the 
record , and the pos i t ion with i n  the record of the f i rst character to 
be written .  The WRITE command remains in effect un t i l  another 
ProDOS command is  g iven . This command takes the form 

WRITE pn [ , R#] [ , F#] [ , 8#] 

You must use the WRITE command each t ime you want to write to 
a record other than the current record . I f  you use the WRITE 
command wi thout  the R# opt ion ,  ProDOS defau l ts to record 0 .  

The Options 

pn pn i nd icates the f i le  to be wr itten to.  I t  m ust be ident ical to 
the name with wh ich the fi le was opened . 

[ , R#] # is the number of the record to wh ich characters are to be 
sent .  I f  th is  opt ion is  omitted , record 0 i s  assumed . The 
maximum record num ber is  1 6  megabytes d iv ided by the 
f i le 's  record length ,  or 65535,  whichever i s  smal ler. 

If # is larger than any previous record num ber, the 
E:: i"·D F J :  u:: column i n  the catalog changes. Refer to the 
sect ion on the End of F i le  for more deta i ls .  

[ , F#] # is  the number of f ie lds that ProDOS is  to read and 
d iscard . ProDOS does this by read ing  characters, start i ng  
a t  the current posit ion ,  unt i l  i t  has  read the specif ied 
num ber of carriage returns .  This opt ion changes the f i le 's  
current posit ion .  

[ , 8#] # is  the number of bytes, or  characters, that ProDOS is to 
read and d iscard . This new current posi t ion is  the sum of # 
and the previous current posit ion .  
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The End of File 

Each f i le  l i sted by the CATALOG command has a n u m ber under  
the E:l -E::H : ·  I L.. C: head i ng .  For al l types of  f i les except random
access, th is  n u m ber i nd i cates the n u m ber of  bytes i n  the f i le .  For 
random-access f i les, th is  num ber represents the n u m ber of bytes 
that wou ld  be in the f i le  i f  every record , from 0 to the h ig hest 
num bered record written to,  were used . 

For example ,  assume that a random-access text f i le  has a record 
length of 50, and that data is  written to records 0, 1 56 ,  756 ,  
and 1 890 .  This f i le  has data stored i n  four b locks on the d isk .  
However, E: ! -! C: F · I L..E :: i s  calcu lated by mu l t i plyi ng the total poss ib le  
num ber of  records by the record length  ( 1 89 1  * 50 = 94550) .  Th is  
num ber is used by ProDOS to determ ine  the locat ion  on the d isk 
of the last record i n  the f i le-needed , for example ,  i f  you want to 
append a record to the f i le .  

The READ Command 

Use the READ command on ly i n  deferred mode.  

Before you can read from a record , you m ust use the READ 
command to i nd icate the n u m ber of the record you want to read . 

Th is  command takes the form 

READ pn [ , R #] [ , F#]  [ , B#] 

When used with random-access text f i les, the READ command 
tel ls ProDOS the f i le  from which the next I N PUT or  GET statements 
wi l l  take characters (pn) ,  the record wit h i n  the f i le from which 
characters are to be read (R#) ,  and the pos i t ion  wi th i n  the record 
from which the f i rst character is  to be read (F# and B#). The READ 
command remai ns i n  effect un t i l  the next ProDOS command is  
g iven . 
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The Options 

pn pn i nd icates the name of the f i le  to be read . I t  must be 
ident ical  to the name with which you opened the f i le .  

[ , R#] # is the n u m ber of the record from which you are go ing  to 
read . I f  you don ' t  use th is  opt ion ,  record 0 i s  assumed . 
If R# i nd icates a record that doesn ' t  exist ,  you don ' t  get an 
error ;  the fi rst I N PUT or GET statement from a non-existent 
record causes an error. The maxi mum a l lowab le record 
n u m ber is  1 6  megabytes d iv ided by the record length 
or 65535,  whichever i s  smal ler. 

[ , F#] # is the n u m ber of f ie lds past the beg i n n i n g  of the 
i nd icated record which ProDOS is  to read and d iscard . 
ProDOS does th is  by read ing  characters, start i ng  at the 
cu rrent pos i t ion , un t i l  i t  has read the spec if ied n u m ber of 
carr iage returns .  Th is  opt ion  changes the f i le 's  cu rrent 
pos i t ion . 

[ , B #] # is the n u m ber of bytes, or characters, that ProDOS is  to 
read and d iscard . The new cu rrent pos i t ion  i s  the sum of # 
and the previous current posi t i on .  

The APPEND Command 

Use the APPEND command i n  deferred mode on ly. 

You can use the APPEND com mand to add data to the end of a 
random-access text f i le .  It i s  l i ke three com mands i n  one :  it opens 
the f i le ,  pos i t ions to the beg i n n i n g  of the record that fol lows the 
last record i n  the f i le ,  then i t  wri tes to that f i le .  This com mand has 
the form 

APPEND pn [ , L#] [ ,S#] [ , D#] 

After g ivi ng the APPEND com mand , you r  prog ram can send data 
to the f i le  us ing the P R I NT com man d .  
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The Options 

pn pn i nd icates the f i le  to be appended . I t  m ust be open . I f  the 
i n d i cated f i le  does not yet exist ,  i t  is  created . 

[ , L#] # i nd icates the length of the f i le 's  records .  If # is the same 
as the record length ass ig ned when the f i le was created , 
the next character written is the f i rst character fol lowi ng  
the last record i n  the f i le .  I f  not ,  see the fol lowi ng  
descri pt ion .  

F i rst ProDOS posit ions to the last character i n  the f i le  (the 
character i nd icated in the :: :: : :r ·, , T L.. :: : col umn  in a 
CATALOG). It d iv ides : :: i· F ' '  T L.. : :  by the record length ;  the 
remai nder  is  the offset i nto the current record . F i na l ly i t  
uses :: . : : : . : :  T U to f i nd  the pos i t ion of the f i rst character i n  
t h e  next record 0 . , , . . , T L.. ! - Offset + Record 
Length + 1 ) .  Thus ,  i f  you use a record length of 1 when 
appen d i n g  to a random-access text f i le ,  the next character 
written is the character fol lowi ng  ::::: : :::;: T L.. : :: ; that is, i t  is  
the same as appen d i n g  a seq uent ia l  text f i le .  

[ ,S#] The s lot opt ion has its usual  mean i ng .  

[ , D #] The d r ive opt ion has its usual mean i n g .  

For Example 

You can change the ADD RESS program so i t  uses APPEN D i n  the 
subrout i ne  that wri tes new records.  

With the /EXA M P LES d isk i n  d r ive 1 ,  and with ProDOS started up ,  
set the prefix to the /EXA M P LES/DATA/ d i rectory 

Now load ADD RESS i n to memory and d isp lay part of it on the 
screen with the com mand 

The APPE N D  Command 



Open the f i le  wi th  record length of 200. 

Read total records.  
Get total  records;  add 1 .  
P repare to wr i te to record n u m ber TR. 

Place each part  of add ress i n  a 
separate f ie ld . 

P repare to write record n u m ber i n  
record 0 .  

P r i n t  n e w  record n u m ber. 
C lose the f i le .  
End of subrout ine .  

Add after last  record . 

Delete these l i nes.  

Put  new add ress at e n d .  
P lace e a c h  part o f  add ress i n  a 
separate f ie ld .  

Read tota l  records.  
Get total  records;  add 1 .  

P repare to write record n u m ber i n  
record 0 .  

P r i n t  new record n u m ber. 
C lose the f i le .  
End of s u b rout ine .  

You now see these l i nes: 

. ' . .  L. -� .;, :; ,: : 

1 ... . 

. · · .: 
.: . .  : : .... · ... · 
:L .L -.::· =:· :  

.i. -. ..: =::.: 

J. :i i , ;.-1 

j ••• , . __ _  ;_ ; , ,  r·) ::i:: , ,, i •.... • . . .  , 1·- ::;:- , = = 1 .. = ; .. ·; !.-·! 

····· ;·=.: _;: l -; ·
r 

r··. ' ; , •.. r=: . . t ; ··; ; 

, ... .  :. ; ; ; : ... 
' ::!:: · 1 •• : •••• •• ..l ::::· t:.. _: F· ::!:: 

:···, ; ;  

::i:-

The pu rpose of l i nes 1 070 th rough 1 1 00 is to d i scover the n u m ber 
of the last record , and to prepare to write to i t .  The APPEND 
command does just that .  Replace those four l i nes with 

·; !.-·' '· ' '  

J. C:; ... ; ; .. : 

After the subrout ine  writes the new add ress to the record 
( l i nes 1 1 1 0 and 1 1 20), i t  saves the new n u m ber of records i n  
record 0 o f  t h e  f i le .  Before t h e  program can do  t h i s  i t  m ust 
d iscover the total n u m ber of records,  as was previously done i n  
l i nes 1 080 a n d  1 090 .  Just p lace t h e  same two l i nes somewhere 
between 1 1 20 and 1 1 30 (say, 1 1 24 and 1 1 26) ,  as shown below, 
and the revis ion of the subrout ine  is com plete. It shou ld now look 
l i ke th is :  

: :· : : ::J 
i :::.: 

:1 . ... ... . 

·: : .: 
.:. .!. '··j· l::.: 

; · .. .  ;, ; ·: . 
, ___ ; ::1:: . . , ... , , ... · ;···· , .. ... _, : , , : !··· :�:: _; , ,  , L :···, ;-··, ·: 

, .  _ _  ,_ , . .  r·-j ::;:- . ;::·= r i-. = ··=·· ;· : · . .  : : : : i .. ::�-

' ' , F· .:;:-

L= i:::= r :  i '•! i 
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The FL USH Command 

Use the FLUSH command i n  e i ther i mmed iate or deferred mode.  

As a program writes to a text f i le ,  ProDOS stores a b lock of 
5 1 2  bytes, or characters, of data before any of the data is  p laced 
on the d isk .  I f  you use the FLUSH command ,  a l l  the characters that 
are current ly stored are transferred to the f i le .  After you use the 
FLUSH comman d ,  you can be sure that every character written to 
a f i le  is  actual ly p laced i n  that f i le .  The FLUSH command takes the 
form 

FLUSH [pn]  

The Options 

The FLUSH command without any opt ions f lushes al l open f i les .  

[pn ] pn i nd icates the f i le  to be f lushed . I t  m ust be ident ical to the 
name with which the f i le  was opened . 

The POSITION Command 

Use the POSIT I O N  command on ly i n  deferred mode.  

When used with random-access text f i les ,  the POSIT I O N  
command works exactly as i t  does with sequent ia l  text f i les.  You 
can use i t  to sk ip  f ie lds with i n  the current  record ; you cannot use i t  
to posit ion  to another record . Th is  command takes the form 

POSIT I O N  pn [ , F#] [ ,8#]  

Start i ng  a t  the current posi t ion , ProDOS reads and d iscards the  
n u m ber of  f ie lds specif ied i n  F# ,  then  i t  reads and d i scards the  
n u m ber of  f ie lds specif ied i n  8# .  The f i l e  m ust be open .  

For example ,  i f  the current pos i t ion is  with i n  the four th  f ie ld o f  a 
record , and ybu want to read from the tenth f ie ld i n  that record , 
sk ip  six f ie lds usi ng  the POSIT I O N  command with the opt ion  , F6 .  

The POSITIO N  Command 



The Options 

pn pn i nd icates the f i le  whose pos i t ion is  to be al tered . 

, F#  # ind i cates the  n u m ber o f  f ie lds to be read and d iscarded . 
If you t ry to pos i t ion past the end of the f i le ,  you get the 

[ , 8 #] After sk ipp ing the num ber of f ie lds specif ied by the f ie ld 
opt ion ,  ProDOS reads and d i scards the n u m ber of bytes, 
or characters, specif ied by # in the byte opt ion .  
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EXEC: Control From 
a Text File 

About This Chapter 

This chapter exp la ins how you can use the EXEC com mand to 
cause the Apple I I  to take its commands from a seq uent ia l  text f i le  
rather than from the keyboard . Th is seq uent ia l  text f i le  can contai n 
ProDOS commands,  l i nes of BASIC program , or even l i nes of i n put 
to a BASIC program-nearly any com mand that you can type from 
the keyboard . 

Because the var ious uses of EXEC are not always obvious,  
exam ples are g iven to show how the EXEC com mand can be used . 
Th is  chapter provides several d iverse exam ples; th is  may g ive you 
some ideas for us ing it i n  new and d ifferent ways . 

Throughout th is  chapter, a text f i le  that is to be used with the EXEC 
command is  cal led an EXEC f i le ,  and the contents of an EXEC f i le  
are cal led an EXEC prog ram . 

Because EXEC f i les are externa l ly ident ical to a l l  other text f i les, 
you ' l l  f ind i t  usefu l  to p lace the end ing  . EXEC on al l  EXEC 
f i lenames. This convent ion is used th roughout th is  chapter. 

You can use an EXEC f i le  

• to g ive automat ical ly a freq uent ly used set of commands 

• to use instead of repeated ly typ ing  the same i n puts in to a 
program 

• to com b ine BASIC programs or subrout i nes 

• to put a mach i ne- language rout i ne  in a BAS IC prog ram . 

About This Chapter 



This chapter f i rst g ives you a demonstrat ion  of the EXEC 
command ,  then a few d ifferent ways to create EXEC f i les, and 
f ina l ly some sam ple appl icat ions of the EXEC com man d .  The 
sect ion that descri bes the EXEC command i n  detai l is  at the end of 
the chapter. 

EXEC Demonstration 

There are two steps to the EXEC demonstrat ion .  I n  the fi rst step 
you run a BAS IC program that creates an EXEC f i le ,  and in the 
second step you use the EXEC command to tel l you r  Apple I I  to 
take its commands from the EXEC f i le .  

With your  /EXA M P LES d isk i n  dr ive 1 ,  set  the prefix by typ ing  

and then  type 

F� � tJ !··-! t::. ,=·=, t:: . •  ____ . , ___ ; ; ____ r··! tJ 

to see th is  page of i nstruct ions 

·-r- ' ' T :::-· ; : ; ,;, · ... : 

1::· : :  ;-··· .:. L .. : ... 

·. ·.. ;:::: : . . : �:::: ;:::: �::·· i:::: ;- ·; .:::. : l �:::; ; � < �--·! � : i : :-. : _.- .-· 

.···- : _ _j (" 
r·-i 

····· :._.: ;  . . : .. .' '• •' 
· .• .= : : =  •.. • :-·-: =  .. .= :  : : : .•.. : : : ...• • .•. · : .•. ' ; 

i j···i t::. 

: : ; · ; .. ,; :  

; '···' '···' 

L. : : L. · ... · .:::, !···1 1:::i !.=.j ! ... � � =··· i-·· · . . •..•. 

. ···- :··, ;-.-; ;  1 �---� :·. : :.... . . . : :·-.; � !···! E::: ::::- �- : : .. : ! . � : ... . 
·-·· ··· · . ..... .. . 
! j···j :-: . ::::. .•. .. : : : : -� � ... : : ...• 

: ,: ,···, ; . .  : .... . · ···· :···· :··· : r·· i = .. .: :  . ..: r·. '
···· '···' ' . .  -... · , ..... : · . . 

� ... : t.J r=1 r=·! i···l l""-l LJ .t .:::. t::: ; . .  ; ;:::: ;:::: : ... : r 1:::. ; 
-;-· !  
l r·1 1::. r· .. ;:::. ,  •... · ·  .. , , ,  .. .... · . 

t:< ; ...• -.... , , i···' i·=-= i i i ___ : �:; __ !:::; ; ... ; j·--; = =· = ; .: 1 ... ; ... ·r !···i F' ;:;:= ;--·; i . ..i ::::= 
. .  

:··· · �-··: !:::: ::::; ::::; : r··; r·· :··, r· r··; ; . r·· r··, 1:::; ;:;:' : : ; 

: 1:::_ ;:-:; !:::. l ... : 
1:::_ ;·-·; i, ... i···= 

:···, ;-··, :··, :··. ;-··, :··, ; ... ; r-· : ·. ·--· · .. := : ·. : . .  ;··· 
.,. , ;:::· • .• .: ; ' = •• .: ' ; .:::, ;···· :···· • :·· �: :� F .. �-··: . 
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Press (SPACE ) .  The screen goes b lan k ,  the message 

appears on the screen , and the d isk d r ive 's  I 1 ··1 : . ..: ::=.; t::: l i ght  g lows as 
the program wri tes the SHOWO FF f i le  onto the d isk .  When the 
program f in ishes, you see th is  message 

.:. : 
; :::·

. 
: .. .' : . . . .  . ... : � � 

::::: 1:::: 1:::: : :···· : .... i. .•. . :. -.. • 

: .. : ·, ;,_,_ , .  

! ; · .. i.... -:::· -:::: : ;---� !:::. ;··:: t::. 1 i.. j·::� (.j 

; i ! : :···· ;·--i T 'T 

: ! ; i : ... : : .... �- : .. .J : . ..: : 

···· ···· . .  ··· . .  ···. :···. •· : . .  : .--. .  ···. : ... : .... :" -, ; ; ; ; ; L.. !:::. :::: .·· ;···· ;·=:: ! ... · · ... · : -. : : :  ; ··-' ... ·-·' ;  ; '···' ;-·-l ; ___ , ; ! 

Before you actual ly run the EXEC program , take a look at 
SHOWOFF. EXEC us ing the GET.TEXT program from Chapter 6 .  
Type 

: ·: :  ___ ; : ; : .... : ·- . 

then choose the f i le  SH OWOFF. EXEC . Not ice the wide var iety of 
commands,  that can al l be typed from the keyboard . Set th is  
command f i le  i nto act ion by typ ing  

·. · ·  . . 1:::. :· • •.... -... · 

.···. ; , ,. .. _ . . ... :···· :···· :···· : : :--· :-
-.::: ; ; : ... • :-'-: • ... • !  ... , 

.
. : !:::. :"·, ;:::. • ... -

As SHOWOFF. EXEC is runn i ng ,  it descr i bes everyth ing  it is do ing .  
Su rpr ised ? Don ' t  be ,  showoffs are  hard ly ever modest.  

EXEC Demonstration 



Create an EXEC File Using BASIC 

A BASIC program that creates an EXEC f i le  m ust 

1 .  Use the OPEN com mand to open the text f i le .  

2 .  Use the WRITE or APPEND command to prepare the f i le  to be 
written to. 

3 .  Use the PR I NT or  L IST command to p lace com mands in the text 
f i le .  

4 .  Then use the CLOSE command to c lose the text f i le .  

Printing the Commands to the File 

Here is  a step by step example that i l l ust rates how to create an 
EXEC f i le  named DOIT. EXEC that contai ns these commands 

i_: H l 
; .:. , .. 

L_ I '3 T 

e x A M P L E S / P R O G R A M S /  

Fi rst enter and use the SAVE command t o  save a n  Applesoft 
program cal led /EXAMPLES/PROGRAMS/ AWAY to be run by the 
EXEC program . 

Next write and save the fo l l owi ng  program , cal led MAKE.DOIT , 
wh ich ,  when run ,  creates a text f i le  cal led 
/EXA M PLES/PROGRAMS/DOIT. EXEC . The PR INT  statements 
that beg i n  with D$ are ProDOS com mands;  they are executed 
when the program is  run .  The other PR INT  statements are written 
to the EXEC fi le, to be used later. N ot ice that ProDOS commands 
i n  an EXEC f i le ,  such as F:� U r·� H·H \' , should not be preceded by a 
(CONTROL)-@). 
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0$ is (CONTROL ) -@].  
Set the pref ix .  
P repare the f i le  to be written to.  

Put  t hese four commands into the 
EXEC f i le  D O l T. 

Close the f i le .  

: .. . · ... l : : : : :  ; 

. . . . . : : .···: i:::: = 
'···' ' ; : ·· : •. .: = .• .: .:. ; : : ...• : ·: :.. .. : . 

: .. .: l< .L l ; ;  

. . .  
: ·. : : ·: . 

;::: !? :! : : .  

. .. . 
i:::: : l j._ l ::::: : 

;;::, ;. ·; :.. . . . .. : · ... . 

. . .  : . · : .::: ;.- : ; ; ·.; ;  : ... · L .. l.) . · r·· 

..... . . ..... ···. ; :  

.... .  :··· ···. · :··· .... : .... : : : : : : :  : .... : .... · ... · .· : ·. · ... · · ... · : . : : :  : · ... · .· 

. .. : . .: :·::· :·· . . .  
l .. .' '.-' .i. : 

After you have MAKE.  DOlT and AWAY both saved i n  the 
/EXAMPLES/PROGRAMS d i rectory, type the command 

. .,.. 
: : : ; ; ·  .. :.. .. : : ... · ·  ... · .: 

to create the seq uent ial text f i le  named DOIT. EXEC . To see the 
contents of DOIT. EXEC , you can once agai n use the program 
GET. TEXT. 

Now type the command 

t::: �:. : �  F=· :··. ; . .: ; .. .: .L i 
..•. 

to cause the commands i n  the f i le DOIT. EXEC to be executed one 
by one,  just as i f  you were typ ing them-very qu ick ly-from the 
keyboard . Th is  EXEC program d isplays the f i les in the 
/EXA M P LES/PROGRAMS d i rectory, which shou ld i nclude the f i les 
MAKE.DOIT , DOIT. EXEC , and AWAY ; i t  d isplays the sentences 
pr in ted out by AWAY; and f ina l ly i t  d isplays a l ist i ng  of the program 
AWAY. 

An All-Purpose EXEC Maker Program 

Just as you can use GET. TEXT to look at an EXEC program , you 
can use the program MAKE.  TEXT to create one .  The on ly problem 
with th is  program is  i f  you enter an erroneous l i ne ,  there is  no way 
to change i t .  Just make sure each l i ne  is correct before you press 
(RETURN ) .  

C reate an EXEC F i l e  U s i n g  BASIC 



D$ is (CONTROL) -@]. 
P repare to write to the f i le  
L ISTING. EXEC.  

List the l i nes to the f i le .  
C lose the f i le .  
End the prog ram.  

Listing a BA SIC Program to a File 

A far more usefu l  appl icat ion  of the EXEC command is to captu re 
the l i st i ng  of a BASIC program as a text f i le .  Such a program can 
be used 

• to ed i t  a program us ing a word processor 

• to place part of a program anywhere in another program 

• to i nsert subrout i nes from a su brout i ne  fi le i n to a program 

• to con nect two programs. 

The fol lowi ng vers ion of the CAPTU RE program captu res 
l i nes 2270 through 5 1 30 of the program that is current ly i n  
memory i n  a text f i le  named L ISTI NG .EXEC. Replace t h e  l i n e  
num bers i n  l i ne 5 o f  t h e  prog ram with t h e  l i nes that you want to 
save , and replace the f i lename L ISTI NG.  EXEC with the name of the 
f i le  in which you want the l ist i ng  saved . 

l:::. l ·-; ; : 

�::: j ::j:: : : : : ; L.: : 

· · · ··:· :· ·: : · . . :. : : .... 

: : .···· i :::: �:::. 

To use th is  program , you must al ready have a program i n  memory. 
Add these l i nes to those of the program i n  memory. I f  you r  
prog ram beg ins  with l i ne 1 0 , you can a d d  these l i nes with t h e  same 
l i ne num bers; a lternately, you can change the l i ne num bers so that 
they are a l l  g reater than the h ig hest num bered l i ne  i n  you r  
program . 

If you placed CAPTU RE at the beg i n n i n g  of your  prog ram ,  run  it by 
typ ing  

· ... · ; · .. : . 

If CAPTU RE is elsewhere i n  your  program , type 

where l i nenum is the number of CAPTU RE's  f i rst l i ne .  
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D$ is (CONTROL ) -@). 
Set t h e  prefix. 

Open, close, and delete 

deletes POKER. EXEC 

even if  i t  d i d n ' t  exist .  

Open PO K E R . EXEC. 

Prepare to write to i t .  

Fi rst l i ne  n u m ber of program . 

For each memory locat ion ,  

i ncrement counter. 

Put 10 POKES on each l i ne .  

For  fi rst POKE on  a l i ne,  

pr int  the l ine n u m ber, 

then increment l i ne  n u m ber. 

Poke a byte.  

Do next locat ion .  

New l i ne  for  ProDOS command .  

Then close POKER.EXEC. 

Al l  done.  

Use EXEC to Combine Programs 

Execut ing  (EXEC) a f i le  does not delete the program that is al ready 
in memory. Therefore, i f  you have a program in memory, and you 
EXEC a f i le  that was created us ing CAPTU RE,  the l i nes from the 
text f i le  program are added to the l i nes that are al ready i n  memory. 
Th is  is a good way to com b ine  programs or subrout i nes. 

Machine Language to BASIC 

Here's a prog ram that reads (PEEKs) consecut ive bytes of a 
mach ine- language program , and for each byte places a POKE 
statement in to an EXEC program (POKER. EXEC). When the EXEC 
program is  run ,  a BASIC program contai n i ng  these POKE 
statements is entered i n to memory. You can use EXEC to p lace 
these l i nes i n to an exist i ng  BASIC prog ram , or you can use EXEC 
to put them into memory when no other prog ram is  present and 
save i t  as a separate BAS IC program . 

.:::: 1::'1 

; =: •• : 

.!. :::·. ::: :  

l. ..:� ... 

. ... 
-· .. � : 

1·-' 1·:·' 

. ,__, - . : :  ... : :  ,_ 

: : .·�· : : :  ;___: ! ... : �-- 1-- 1 · ... · 

: : .. .: ; · .. ;.,,, ; ·. 

··· ··-· : : : :_; . ;, : : . 
.·· : .... : ·, ; : : :  ! . .. ! .... · .. .' .•' ; ; · .. 

]·"· : ... : �--.. �:::. �-: . . . ,·., 1::: 

L) ::�- � .
•... · :.. ... :... =: �

·- 1:: r·.- ;:::; r< E �·
··
: . : .... :· ·: ::. ' __ 

· · ·  

, .... .  : .. . ; ;  ,.-, ::::= �: i·-� F' Ct j·= ;:::: F� , '··- : ·, :  .... = . 

, , -�. · ' ' L=J !·=:' i i 1··· '-· '·-· : : : : ·. : : ·  . .  L .. :' ': L .. ' ... · 
·:· :. • 1:: l-. 1 1  1 1·:1 D L�· 1::·= : .... : : ·  ... · :  : :.. .. · :  . . 

�-· l 1 1···' :··· : �··: :  :·- ..... 

' · :  : : : : .. : : : '···· '···' '···' ; ·; ; [::. t�: 
. . . . . .  � . ; ... ;.,.· -··· . :.· · 'T L..1 C:' L ' 

'···· '···' ,_, ; ·: . ; : ; :.. ... ; ·: : : : :  : : ·.: : ,. .. ,., . ..... 

. . .  : 
r·· : : r· .. c. 

L. . .L l··l C:. l·-l i i l ' '···· ···· '···· ' 

'' : �·-' i  H i  " i··· : ' '  ' '  : 

]. { !···; : ... · ;.,.· : .. 

.!. =:::= •:: =  

; · ... ; ; .. ·: . . . . 
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To use th is  prog ram , put the proper memory locat ions i n  l i ne 90 ,  
change the l ine n u m ber i n  l i ne 80 if you wish , and then run i t .  I t  
creates the EXEC program POKER. EXEC ( i n  the prefix d i rectory) .  
Next type 

and the l i nes contai n i ng  the pokes are added to whatever BAS IC 
l i nes are  al ready i n  memory. 

The EXEC Command 

Use the EXEC com mand to take commands or data (al l non-f i le  
i n put) f rom a seq uent ia l  text f i le  i nstead of the keyboard . I t  has the 
form 

EXEC pn [ , F#]  [ ,S#] [ , D#] 

The F# opt ion a l lows you to sk ip  the f i rst # l i nes of the text f i le .  

The EXEC program current ly i n  memory is  not affected by the 
N EW command or the CLOSE command .  An EXEC program 
can not be stopped by (coNTROL ) -©.  I f  an EXEC prog ram uses the 
EXEC com mand to cal l another EXEC prog ram , the second 
prog ram replaces the f i rst . 

If an EXEC prog ram runs a BAS IC  program , and the BASIC  
program contai ns a (non-f i le) I N PUT statement ,  that i n put req uest 
is sat isf ied by data from the EXEC f i le .  If you i n terrupt a runn ing  
BAS IC progam w i th  (CONTROL ) -©,  the remai nder  o f  the EXEC 
program usual ly is not executed . 

Mon itor commands cannot be executed from with i n  EXEC 
programs. 

The Options 

pn pn i nd i cates the f i le  contai n i ng  the EXEC prog ram . 

[ , F#] # is the n u m ber of f ie lds to sk ip  at the beg i n n i n g  of the 
EXEC f i le .  

[ ,S#] The slot opt ion has its usual mean i ng .  

[ , 0#]  The d r ive opt ion has its usua l  mean i ng .  

Chapter 8 :  EXEC: Control From a Text F i le 
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The BRUN command :  see also the 
DASH comman d ,  Chapter 4 .  

Binary Files 

About This Chapter 

This  chapter descri bes the ProDOS commands that let you use 
b i nary programs and b inary t i les on your  d isks.  I t  you want on ly to 
run b i nary prog rams that are al ready on your  d isks,  refer to the 
DASH (-) command in Chapter 4. This command moves any type 
of prog ram from a d isk ti le i n to memory and then starts i t  ru n n i n g .  

T h e  commands i n  t h i s  chapter can b e  used 

• to load , ru n ,  and save b inary programs 

• to use b i nary programs to read and write characters. 

This chapter also expla ins about system t i les and programs that 
are written i n  mach ine  language. The end of th is  chapter has a 
sect ion on ProDOS and the Mon i tor, and another sect ion that 
exp la ins how you can connect ProDOS to a c lock/calendar ch ip  so 
that t i les can be dated . 

This Chapter's Commands 

This chapter 's  com mands are summarized below. 

BRUN Run a b inary program from a t i le  

Use th is  command to transfer b i nary data f rom a b i nary d isk t i le  
(type B I N )  to a specif ied port ion  of  memory; the program then 
executes automatical ly. 

BLOAD Read b inary data from a t i le  

Use th is  command to transfer b inary data from any d isk t i le  to a 
specif ied port ion of memory. B i n8;rY data is typ ical ly a mach i ne
language program or a p icture tor one of the graph ics screens.  

This Chapter's Commands II 



Figure 9- 1 .  B R U N ,  BLOAD,  and BSAVE 

II 

BSAVE Save b inary data i n  a f i le  

Use th is  command to transfer b inary data from a specif ied port ion 
of memory to any type of f i le .  Data anywhere i n  the Apple l l ' s 
memory can be transferred to a f i le .  

//""- - -................... 
/ "' 

I /'':-... I / \ \ f </ B i n ary \\ 

I 0\ f i le
t \ t----, 1 \ 0 / B i nary // \ � '

,
fi le /

; \ 'v/ 
"" / .......... .- /  -- - -

B LOAD 

B R U N : B LOADs 
a f i le ,  then runs 
the loaded program 

1 -..... B SAVE 

PR# Use a b i nary program to pr int  characters 

Memory 

You use th is  command most often to send output to a device i n  a 
s lot .  You can also use it so a b i nary program is used i n  p lace of the 
normal character output rout ine .  

I N #  Use a b inary prog ram to read characters 

You use th is  command most often to read characters from a 
device i n  a s lot .  You can also use it so a b inary program is used i n  
p lace o f  t h e  normal character i n put rout ine .  
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Figure 9-2. PR# and I N #  

Normal Normal 
Output Input 
Routine Routine 

t N p u l  

BASIC 

PR#: Send data us ing 

you r  output rout ine .  

Your 
Input [ Pro Jram Routine 

/N pUI 

IN# :  Get data us ing  

your  i n put rout i ne .  

* 

Your 
Output 
Routine 

* Memory arrangement is arb i t rary. 

Binary Files 

ProDOS al lows you to store on d isk ,  and retr ieve from d isk ,  the 
i nformat ion  i n  your  Apple l l ' s  memory. You have al ready seen the 
ProDOS commands RUN,  LOAD, and SAVE:  these commands deal 
with the contents of the BASIC program memory, i nterpreted as 
BAS IC programs. The ProDOS commands d iscussed in the next 
th ree sect ions-BRU N ,  BLOAD,  and BSAVE-perform s im i lar  
funct ions ,  but  they deal  with the i nformat ion  in  any part  of the 
Apple l l ' s  memory, i n  i ts u n i nterpreted form .  

Bi nary F i les 



The DASH com mand:  see Chapter 4 .  

The B before the commands BRUN ,  BLOAD, and BSAVE ,  stands 
for b i nary. Each command transfers b i nary i nformat ion ,  zero-for
zero , and one-for-one ,  between memory and a f i le .  From now on 
these commands are cal led the b inary com mands.  The 
i nformat ion  that the b inary commands transfer is  often a machi ne
language program or a h igh- reso lut ion p icture from one of the 
Apple l l ' s  graphics screens,  but  i t  can be any i nformat ion  that is  in 
memory or on a d isk .  

The two most common uses of the b inary commands are :  run n i n g  
b inary programs, a n d  br ing ing  b i nary images i nto memory for 
d isplay. You can run a b i nary prog ram usi ng the DASH (-) 
comman d .  I f  you have a f i le  that contai ns a b inary p icture ,  you can 
move i t  to the g raph ics page from which i t  was transferred by the 
BSAVE command without havi ng to understand  the memory 
add resses i nvolved . If you want to do  th is ,  use the example i n  the 
sect ion on the B LOAD comman d .  

Binary Addresses 

If you are go ing to be usi ng the b inary commands on ly to run 
mach i ne- language prog rams that al ready exist ,  you don ' t  have to 
understand the organizat ion  of the Apple l l ' s memory. I f ,  however, 
you want to save a g raph ics screen to a f i le ,  or i f  you want to work 
d i rectly with the b inary i nformat ion  i n  memory or i n  a f i le ,  you need 
to know a l i t t le about memory add resses. 

Your  Apple l l ' s memory is  a cont i n uous seq uence of memory 
locat ions ,  or bytes , each havi ng an add ress . The add ress of the 
f i rst memory locat ion is 0 (wr i t ten as $0000 i n  hexadec imal) ,  the 
add ress of the second memory locat ion is  1 ($000 1 ) , and so on .  I f  
you r  App le I I  has 64K of memory, the add ress of the last memory 
locat ion is 65535 ($FFFF) .  

The Memory Address Options-[,A#J l,E#J l,L#J 

When you use a b inary command to save b i nary i nformat ion ,  you 
must g ive the add ress of the f i rst memory locat ion that contai ns 
i nformat ion  to be saved . The start i ng  memory add ress is 
determi ned by the add ress opt ion ,  A#. 

You must a lso g ive the number of memory locat ions to be saved . 
You can do th is  usi ng  the length opt ion ,  L# ,  which is the n u m ber of 
memory locat ions ,  or bytes , to be saved ; or you can do  it usi ng the 
end add ress opt ion ,  E# ,  the add ress of the last memory locat ion 
to be saved . 
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Figure 9-3. Memory Add ress Opt ions 
A#,  E#,  and L# 

For example ,  i f  you want to save h igh- reso lut ion  graphics screen 1 · 

i n  a f i le ,  you must save the i nformat ion  that is i n  memory locat ions 
8 1 92 th rough 1 6383 ($2000 th rough $3FFF) .  Thus ,  to specify the 
start add ress , you can g ive the add ress opt ion  i n  decimal or 
hexadecimal 

or 

and you can g ive the add ress of the last byte to be t ransferred 
usi ng the end add ress opt ion ,  as i n  

Alternate ly, i f  you l i ke subtract ion ,  you can use t h e  length opt ion  t o  
g ive t h e  number o f  bytes to be transferred , a s  i n  

o r  _, L .. :::: . .  ·· , ... , ,  ... , ,  ... , 

You can calcu late the value for the length opt ion  by su btract i ng  the 
start  add ress from the end add ress and add i ng one.  

The relat ionsh ip  between these th ree opt ions for h igh- reso lut ion  
graphics screen 1 is shown i n  F igure 9-3 .  

Memory Address Memory 

E#: 1 6383 ($3FFF) End Add ress 

H i-Res Graphics Screen # 1  t 
L# :  8 1 92 ($2000) Length 

L# ( length) = E# - A# + 1 � 
A#:  8 1 92 ($2000) Start Add ress 

0 ($0000) 

Bi nary Add resses 



The File Position Option-[,8#] 

I f  you don ' t  want to start the transfer of i nformat ion  with the f i rst 
byte in a f i le ,  you can use the byte opt ion ,  B# ,  to i nd i cate the 
n u m ber of the f i rst byte to be transferred . 

For example ,  if you have two h igh-reso lut ion pictu res i n  a b inary 
f i le ,  the f i rst p icture starts at byte 0 ($0000) i n  the f i le ,  and the 
second picture starts at byte 8 1 92 ($2000) in the f i le .  To add ress 
the second picture in the f i le ,  use the byte opt ion 

I f  you use the byte opt ion ,  you must a lso use the length opt ion ,  L#,  
or end opt ion ,  E# ,  to specify the n u m ber of bytes to be 
transferred . I f  you don ' t ,  the ent i re f i le is  transferred . 

The BRUN Command 

To run a b inary prog ram that is stored i n  a b inary d isk f i le  
(type B I N) ,  use the command 

BRUN pn [ ,A#] [ , B #] [ , L# I , E#]  [ ,S#] [ , D #] 

When ProDOS sees th is  command ,  it transfers the f i le  i nd i cated by 
pn i n to memory, as determ i ned by the opt ions ,  and then runs the 
program . I f  the A# opt ion is not used , the program is  placed in 
memory start i ng  at the add ress from which i t  was transferred 
us ing BSAVE.  

War n i n g  
ProDOS cannot tel l t h e  d ifference between a b inary prog ram a n d  b inary 
data such as a picture f i le .  I f  you g ive names to b i nary f i les that i nd icate 
their  contents, such as add i ng . P I C  to the end of all p icture f i les, i t  is less 
l i kely that you w i l l  accidental ly run a non-prog ram f i le .  If you ever run a 
non-prog ram f i le ,  parts of ProDOS might  change; if th is  happens, it is a 
good idea to restart ProDOS. 

See Chapter 4 for the DASH command .  You can also run a b inary program usi ng the DAS H comman d .  
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The Options 

pn pn m ust i nd icate a b inary f i le  (type B I N) .  I f  you use 
on ly th is  opt ion ,  the ent i re contents of the b inary f i le  
i nd icated by pn are p laced into memory start i ng  at 
the add ress from which they were transferred us ing 
BSAVE.  

You can see the add ress f rom which a f i le  was 
transferred by BSAVE if you use the CATALOG 
command .  Th is  add ress is  g iven , i n  hexadec imal ,  in  
the column labeled ::::: : . .  F::: T" ' ; T<::: ,  and it  has an A in 
front of i t .  

[ ,A#] # is the memory add ress in to which the f i rst byte of 
the program is to be transferred . I t  is  not usefu l  to 
use an add ress that is greater than the maxi mum 
memory add ress o f  your  App le  I I .  

[ , B#] # is  the n u m ber of the fi rst byte i n  the f i le  to be 
transferred . I f  you don ' t  use this opt ion ,  the fi rst byte 
transferred is  the fi rst byte in the f i le ,  byte 0 ($0000). 

[ , L# I , E#] To load and run a port ion of a f i le ,  use one of these 
opt ions .  L# is the number of bytes to be transferred ; 
E# is the last memory add ress in to which the 
program is  to be transferred . I f  you inc lude both of 
these opt ions ,  the last i n  the l i st is used . 

[ ,S#]  The s lo t  opt ion  has i ts  usua l  mean i ng .  

[ , D#] The dr ive option has its usual mean i ng .  

For Example 

With ProDOS started up ,  and the /EXA M P LES d isk i n  d r ive 1 ,  run 
the b inary program /EXAMP LES/PROGRAMS/SU RPR ISE us ing 
the command 

. .... . .... ··· . .  · :·· i·::' ! i i ·: r:: ;  : ; · ; . : 
.
.. .. , ; ; ;·::· ;···· :···, ·;· , .. _ ,

. ... 

Now try ru nn i ng  it us ing the add ress opt ion 

!:::: =-··, : . . 
: ···· : : : : : :  : .... : .... · ... · .· r=:. :.,.; : .. : ···· ····· · · ·  ··· · ·· 

The BRUN Command 

: .: .: . ... .... . ;-··; .:;:- . ··, ;.· ; ;.· : 



Movi ng a b inary i mage of any type of 
f i le into memory is d i scussed in the 
sect ion "Using BLOAD With Non
B inary F i les . "  

The BL OAD Command 

To transfer b i nary i nformat ion from a d isk f i le  to your  Apple l l ' s 
memory, use the command 

B LOAD pn [ ,A#) [ , B #) [ , L# I , E#) [ ,Ttype] [ ,S#) [ , D#] 

You can transfer i nformat ion  from any f i le  type (the Ttype opt ion) ,  
start i ng  at any posi t ion  i n  the f i le  (the B# opt ion) ,  to any part of the 
Apple l l ' s  memory (the 6..# ,  L#,  and E# opt ions).  

You can use the B LOAD command 

• to transfer a mach ine- language program from a f i le  to memory 

• to move a p icture from a f i le  to a g raph ics screen 

• to move the b i nary image of any type of f i le  in to memory. 

I f  you plan to write programs that use mach ine- language rout i nes 
or h igh-reso lut ion  p ictures, you need to take specia l  precaut ions .  
The sect ions " H igh-Reso lut ion  Graph ics With ProDOS" and 
" I nstal l i n g  Mach ine-Language Rout i nes" add ress these i ssues. 

The Options 

I f  you g ive th is  com mand usi ng  on ly the f i lename opt ion ,  the f i le  
i nd i cated by pn must be a b inary f i le  (type B I N) .  The ent i re 
contents of th is  f i le  are placed into memory start i ng  at the add ress 
from which it was transferred by BSAVE.  

pn Un less you use the Ttype opt ion ,  pn must i nd icate a 
b inary f i le .  If you use Ttype, pn can i nd icate any type 
of f i le .  I f  you use the B LOAD command to transfer a 
non-b i nary f i le  in to memory, you must use the 
A# opt ion .  

[ ,A#) # is the memory add ress into which the f i rst byte of 
the b inary data is to be transferred . You m ust use th is  
opt ion i f  you use BLOAD to load a non-b inary f i le .  I f  
you use the B LOAD command to load a b inary f i le  
wi thout  th is  opt ion ,  the f i le  is  placed i n  memory 
start i ng  at the add ress from which it was transferred 
by BSAVE. 

[ , B #) # is the n u m ber of the f i rst byte i n  the f i le  to be 
transferred . I f  you don ' t  use this opt ion ,  the f i rst byte 
transferred is the f i rst byte in the f i le ,  byte 0 ($0000).  
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D$ is (CONTROL) -@]. 
Display Page 1 .  

Load picture. 

Restore text.  

To clear the graphics page: see the 
sect ion " H igh-Resolut ion Graphics 
With ProDOS. "  

Token: an encoded element that 
represents a BASIC keyword . 

[ ,Ttype] type is the th ree-letter abbreviat ion that i nd i cates the 
type of f i le to be transferred . I f  no type is specif ied , 
the f i le  m ust be of type B I N .  

[ , L# I , E#] To transfer a port ion of a f i le  i nto memory, use one of 
these opt ions .  L# is the n u m ber of bytes to be 
transferred . E# is  the last memory add ress into which 
the data are to be transferred . You can not use both 
these opt ions i n  the same comman d .  

[ , S#]  The s lot  opt ion has i ts usua l  mean ing .  

[ ,D#] The dr ive opt ion has its usual mean i ng .  

For Example 

With ProDOS started up ,  and the)EXA M P LES d isk i n  d r ive 1 ,  set 
the prefix to /EXAMP LES/DATA us ing the command 

Now d isplay h igh-reso lut ion Page 1 and load i n  a p icture by typ ing 
and run n i ng th is  program : 

:.j. ) 

·::= r·· LJ ; : ... · ..:: ; .. 
;,,, ·; :: .. . :: ;  ... : .: : · 

To d isplay text agai n (and to clear the g raph ics page), s im ply press 
(RETURN ) .  

Using BLOAD With Non-Binary Files 

When ProDOS places i nformat ion  i n  a f i le ,  the command that you 
use to save the i nformat ion determ i nes the format of the 
i nformat ion  i n  the f i le .  For example ,  a BAS IC program is  saved as 
a set of BASIC tokens. 

To see how a f i le is stored , and to work with the f i le  in its 
un i n terpreted form ,  use the B LOAD command with the Ttype 
opt ion .  For example ,  i nstead of manual ly chang ing  every i nstance 
of a var iab le in a BASIC program , write a program that does it  for 
you .  Let the prog ram use the B LOAD command to br ing  a BAS IC 
program i n to memory, change a l l  references to the var iab le ,  then 
save the program back to its BASIC f i le  us ing BSAVE (wi th  Ttype). 

The BLOAD Command 



Refer to the Applesoft BASIC 

Programmer's Reference Manual to see 
how to use H I M E M  and LOMEM to 
protect the g raphics page. 

High-Resolution Graphics With ProDOS 

ProDOS does not ever prevent BASIC programs from overlappi ng 
the h igh-reso lut ion g raph ics pages. To use h igh-reso lut ion  
g raph ics Page 1 for  g raph ics ,  use the HGR com man d ;  to use h igh
resolut ion Page 2 for  g raph ics,  use the HGR2 . command .  

War n i n g  
On a n  Apple l ie ,  you can not B LOAD data i n t o  h igh-resolut ion graphics 
page 2 whi le  80-column text is bei ng d isplayed .  

When you f in ish  us ing t h e  g raphics pages, use t h e  TEXT 
comman d :  the BAS IC program moves back down into p lace. When 
you use the TEXT com mand ,  the contents of the g raph ics pages 
are lost .  

By the Way: I f  you want to go from h igh- resolut ion mode to text mode 
and back again without affect ing the contents of the g raph ics pages, 
use the PO KEs descr ibed in an append ix  of the Applesoft BASIC 
Programmer's Reference Manual . 

... War n i ng 

Refer to the ProDOS Technical 
Reference Manual for more detai ls on 
mach ine language.  

I f  your  program halts-due to a STOP statement,  an error, or  a (CONTROL )-@) typed from the keyboard-whi le  you are us ing HGR or 
HGR2,  do not attempt to cont i n ue the program using the CONT 
comman d .  Type the CLOSE comman d ,  and run the program agai n .  

Installing Machine-Language Routines 

Because of the way ProDOS uses memory, i t  is  d ifficu l t  to pred ict 
which parts of memory are free to hold mach ine- language 
rout i nes. 

When ProDOS opens a f i le,  i t  moves H I M  EM down 1 K and p laces a 
1 K f i le  buffer where H I M  EM used to be. I t  then marks that 
1 024-byte port ion  of memory as used i n  the system b i t  map.  

To place a rout ine  i n  memory, you m ust do the same th i ng :  move 
H I MEM down by a mu l t i p le of 256 bytes, transfer the rout ine  by 
us ing B LOAD, and then mark the used port ions i n  the system b i t  
map . 

... War n i n g  
You must do t h i s  before a n y  fi les are opened . T h i s  ensures that ProDOS 
places a l l  f i le buffers below your  rout ine ,  so your  rout ine won ' t  be closed 
instead of a f i le .  
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The BSA VE Command 

To transfer b inary i nformat ion  from your  Apple l l ' s  memory to a 
d isk f i le ,  use the command 

BSAVE pn ,A# , L# I , E# [ , B #] [ ,Ttype] [ ,S#] [ ,D#] 

You can transfer i nformat ion  from any part of memory (the 
A#,  L#, and E# opt ions) to any type of f i le  (the Ttype opt ion) ,  
start i ng  at any posi t ion i n  the f i le  (the B# opt ion) .  

You can use the BSAVE command 

• to transfel' a mach ine- language program from memory to a f i le  

• to move a p icture f rom a g raph ics screen to a f i le  

• to move any port ion of memory i nto any type of f i le .  

The Options 

When you use th is  command , you must use the pn ,  A#,  and either 
the L# or the E# opt ions .  

pn Un less you use the Ttype opt ion ,  pn m ust i nd icate a 
b i nary f i le .  If you use Ttype, pn can i nd icate any type of 
f i le .  

,A# You must use th is  opt ion  every t ime you use the BSAVE 
command .  A# is  the memory add ress from which the 
f i rst byte of data is  to be transferred . 

, L# I . E# You m ust use  one o f  these two opt ions every t ime you 
use the BSAVE command .  L# is the n u m ber of bytes of 
memory to be transferred . E# is the last memory 
add ress from which data are to be transferred . 

[ , B #] B# i nd icates the f i rst byte i n  the f i le  to which data is to 
be transferred . I f  you don ' t  use this opt ion ,  the f i rst 
byte is  transferred to the fi rst byte in the f i le ,  
byte 0 ($0000). 

[ ,Ttype] type is  the th ree- letter abbreviat ion that i nd icates the 
type of f i le to be transferred . I f  no  type is specif ied , the 
f i le  must be of type B I N .  

[ ,S#]  The s lot  opt ion has i ts  usua l  mean ing .  

[ , D#] The d rive opt ion has its usual mean ing .  

T h e  BSAVE Command 



Turn  on Page 1 .  

Load P ICTURE.  

Save P ICTURE.  

B LOAD the system program start i ng  
at 8 1 92 .  

Create a n e w  system f i le .  

BSAVE the data from 8 1 92 to the 
ENDFILE shown by CATALOG. 

BLOAD the BASIC .SYSTEM f i le .  

Create a new system f i le .  

BSAVE the data.  

For Example 

This exam ple loads a p icture in to g raph ics Page 1 and then saves 
it back i nto the same f i le .  With ProDOS started up and the 
/EXA M P LES d isk i n  dr ive 1 ,  set  the prefix usi ng  the command 

: . ;,,, : ... .L ;:-:: :···· :. : .···. : . .  : :···. · 

Now, load the p icture i n to h igh-reso lut ion Page 1 and then save i t  
us ing these commands 

t::; L. · ... · : : :  ... · 
··· ····· · . .... .... . 

.:. '···· ; :, : : · 

: f···� .i. '···' · .. :· ::::� 4 . �--·· ·:::· :L �:) ;:::� 

As a s l ight ly more sophist icated example ,  here is how to move the 
fi les PRODOS and BAS IC .SYSTEM from one d isk to another us ing 
B LOAD and BSAVE.  Assume that you are t ransferr ing the f i les 
from the volume /EXA M P LES to the vol ume /N EW. BOOT . 

F i rst type c:: :: rr· : . ..... ... ... . ·<::: :: :: ::::: ! · ! F' ! .... E:: ::::: to see how long the two fi les 
are. This is  just part of the fi rst two l i nes of a sam ple catalog : 

,/;: ·: :..: : : : :..· : :.. ·-

23  . .  
!.. "7·-··-·'-' 

Here is how to perform the t ransfer: 

.... · : · : ... . . . . . . . .... · : .... · .· ;,,,, ,· ·, ;  ; ;  : · : ... ·... · · . .  · :_: • : .· ; ; · •. = .. .= : .. = =  •• .= · .. .' : ; · .. .' ; · ... ' : ;  ; =  ••• = .: . .  ::= ,::-

C. , · .. ;:: .. � � � L. . , 1 1:::. ].=.] , 1:::� �.J 1. l 1 · •••• ; • '·· 1...1 ! . ..l ::::= .' 

;. · · . . . . .- !-. i - 1:::· 1 , 1  . , ' '···· =· ·· , '···· · ... · · ... · ' .· ' r==. = .. L) '. ; :·· . 

i...: j··:� 1:: �---� ; ;, =:::_ · ; · .. .' 
__ : ·::- :··, ;  : :···· 

. ... ··;· -.:': .. :�: 1:::: 

-·- . -·: .·· : · ... ' :  · ... ' : ; ; : ... 

The start add ress, A8 1 92 ,  was chosen arb i t rari ly. 

War n i n g  
Beware, however-this process destroys anyth ing  that was i n  t h e  reg ion 
of memory i nto which the B LOAD command placed the data.  
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Refer to the Apple II or Apple lie 
Reference Manual tor more detai ls 
about accessory-card ROM space. 

Output rout ine  at locat ion $300. 

Restore output to console.  

Assign slot 2 to slot 1 .  

The PR# and IN# Commands 

I n  add i t ion  to sett i ng  up  the Apple I I  to do i n put or output with a 
s lot ,  the PR# and I N #  commands are also used to send characters 
to a mach ine- language program . The ent i re syntax of these 
commands is 

PR# snum [ ,A#] or PR# A# 
I N #  snum or I N #  A# 

in wh ich the opt ion can e i ther be the slot n u m ber (sn um) ,  the slot 
n u m ber fo l lowed by the add ress of the rout ine  to be associated 
with that slot (A#),  or just the add ress of a rout ine  to be used (A#).  

For example ,  i f  a character output rout ine  is stored start i ng  at 
memory locat ion $300, you can use th is command to act ivate the 
rout i ne  for su bseq uent output :  

The f i rst byte of the rout ine start i ng  at locat ion $300 must be a 
6502 CLD i nstruct ion (2 1 6 , $08) .  When you want to stop usi ng th is  
rout ine ,  you can use th is  command to restore output  to the  
console:  

r::= r··, , , ..  

I n  add i t ion ,  th is  same output rout ine  can be assoc iated with slot 2 
us ing th is  command :  

Su bseq uent references to s lot  2 are actual ly d i rected to the 
rout ine  at $300. To restore slot 2 to normal  operat ion ,  use the 
command 

Use th is form of the PR# command to remap physical slots from 
one slot number to another. For example ,  i f  you have pr inters i n  
slots 1 and 2 ,  a n d  a program that expects t h e  pr inter t o  b e  i n  
slot 1 ,  you can use t h e  pr i nter i n  slot 2 with your  program b y  usi ng 
the command 

before ru n n i ng the prog ram . 

The PR# and I N #  Commands 



0300: CLD 

030 1 :  JMP $FDFO 

Cont inue BASIC,  

Output  rout ine  at $300. 

War n i n g  
PR# a n d  I N #  are both ProDOS commands.  W h e n  used from with i n  a 
program , they must be preceded by a (CONTROL ) -@). Fai l u re to do so 
causes the commands to be ignored . 

The Options 

snum snum can have any value from 0 to 7 .  I f  snum is 0 ,  normal  
i n put or output to the console (keyboard and screen)  is 
restored . I f  snum is  from 1 to 7 ,  the Apple I I  does 
su bseq uent i n put or output operat ions with the device i n  
that s lot .  

A# # is  the add ress of the rout ine that you want to use as the 
character i n put or output rout ine .  The f i rst byte of the i n put 
or  output rout ine must be a 6502 CLD i nstruct ion .  

For Example 

The fi rst i nstruct ion  of the i n put  or output rout ine  to be used m ust 
be a 6502 CLD instruct ion .  As an example ,  put a two- l i ne  output 
rout ine start i ng  at memory locat ion $300. I t  consists of a jump to 
the normal  Mon itor output rout ine ,  located at memory 
add ress $FDFO.  

With ProDOS started up ,  enter  the Mon itor with the command 

and type 

Now re-enter BASIC by press ing 

(CONTROL ) -@J 

and then press ing ( RETURN ) .  Enter t h e  ProDOS command 
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and a l l  su bseq uent output wi l l  be sent by the rout i ne  at 
locat ion  $300. Th is  rout ine  jumps i n to the normal  character output 
rout ine ,  so characters are pr in ted i n  thei r normal  fash ion .  Type a 
few l i nes of BAS IC ,  such as 

. . 
L= .L r·· l'"" �:::. r=:. �:::. = ··= • 

and you see that characters are indeed pr inted on the screen .  

What PR# and IN# Really Do 

Th is  sect ion expla ins the way the Apple I I  normal ly sends and 
receives characters; thus you wi l l  see how PR# and I N #  work .  The 
Apple I I  has two memory locat ions ,  named CSWH and CSWL,  i n  
which i t  stores t h e  memory add ress o f  t h e  rout i ne  that outputs 
characters. Together, these locat ions are cal led the monitor 
output l in k -they l i n k  the mon i tor to an output rout i ne .  I t  also has 
two memory locat ions ,  named KSWH and KSWL,  i n  which i t  stores 
the memory add ress of the rout ine  that i n puts characters. These 
are cal led the monitor input  l i n k .  

The mon i tor output l i n k  normal ly contai ns the add ress o f  the  
App le  l l ' s  standard output rout ine ,  COUT 1 ;  t he  mon i tor i n put l i n k  
normal ly contai ns t h e  add ress o f  t h e  Apple l l ' s  standard i n put 
rout ine ,  KEYI N .  These two rout i nes send characters to the screen 
and read them from the keyboard , respect ively. When you use 
PR# or I N #  from BASIC ,  without ProDOS, the mon i tor l i n ks are 
set to i nd icate the ROM on the card in the i nd i cated s lot ($Cn00 
for slot n ) .  Thus ,  when the Apple I I  i n puts or outputs a character, i t  
cal ls the i n put or output  rout ine  i n  the card ' s  ROM to perform the 
transfer. 

Wh i le ProDOS is ru n n i n g ,  the mon itor 1 /0  l i n ks ,  i nstead of 
contai n i ng  the add resses of the standard i n put and output 
rout i nes, conta in  the add resses of the ProDOS i n put and output 
rout i nes. ProDOS keeps the add resses of the standard input and 
output rout i nes i n  the ProDOS i n put and output l i n ks .  As you m ight 
expect ,  the ProDOS i n put and output l i n ks normal ly contai n the 
add resses of the Apple l l ' s standard i n put and output rout i nes, 
KEY IN  and COUT 1 .  
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When you use PR# or I N #  with a slot num ber, ProDOS replaces 
the contents of the proper ProDOS l i n k  with the add ress of the 
ROM on the card i n  the i nd i cated slot ($Cn00 for slot n ) .  When you 
use PR# or I N #  with an add ress , ProDOS s im ply p laces that 
add ress i n  the proper ProDOS l i n k .  When the Apple I I  t r ies to 
output or i n put a character, the mon i tor output or i n put l i n ks 
i nd icate the proper ProDOS rout ine ,  then the ProDOS rout i ne  
does a two-stage t ransfer: 

1 .  I t  moves the add resses of the cu rrent 1/0 rout i nes from the 
ProDOS 1/0 l i n ks to the mon itor 1/0 l i n ks .  Then ProDOS cal ls  
the Apple l l ' s  normal  1 /0 rout i nes which use the cu rrent 
rout i nes to perform the transfer. 

2. ProDOS reconnects itself by p lac ing  the add resses of i ts 
1 /0 rout i nes i n to the mon itor 1 /0 l i n ks .  

Not on ly does ProDOS have i n put and output l i n ks for normal  1 /0 ,  
i t  also has them for  each o f  the slots.  When  you use  the PR# or 
I N #  command with snum and A#,  the specif ied add ress is  placed 
in the l i n ks for that add ress . 

ProDOS and the Monitor 

I f  you l i ke to p lay around with the Apple l l ' s  i n ternals ,  you 
occas ional ly f ind yourself ( i ntent iona l ly or otherwise) i n  the 
Mon i tor. The Mon itor is  the prog ram with i n  the Apple l l ' s  Read 
On ly Memory that controls many of the Apple l l ' s vital  funct ions .  

F i rst , to enter  the Mon itor f rom BASIC ,  type 

and you see the mon itor prompt 

A l l  ProDOS com mands st i l l  work from with i n  the Mon itor. For 
example ,  type 

and you see a normal  catalog d isp layed on the screen .  L i kewise, 
the PR# command st i l l  starts up  a d isk from the Mon itor. An error 
in a ProDOS command issued from the Mon itor returns control to 
BAS IC .  
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Figure 9-4. ProDOS Date and T ime 
Locat ions 

Re-enter BAS IC by press ing 

(CONTROL) -@] 

and then press ing (RETURN ) .  

Using a Clock/Calendar Card 

Each t ime you update a f i le ,  P roDOS performs a JSR (j ump 
su brout i ne) to memory locat ion  48902 ($B F06).  Th is  is the entry 
i n to the DATET I M E  rout ine .  If there is no DATET I M E  rout i ne  
i nstal led , there is an RTS i n  th is  locat ion .  

I f ,  however, ProDOS sees a Thunderclock i n  one  o f  t he  slots,  i t  sets 
up a rout ine  and p laces a jump i n to the rout i ne  for you .  I f  you want 
to use another type of c lock/calendar card with ProDOS,  you have 
to write your  own rout ine ,  and place it i n  memory each t ime you 
start up  ProDOS.  

The rout ine  must read the date and t i me from the card and place 
th is  data in bytes 49040 th rough 49043 ($B F90 t h rough $BF93) 
usi ng the fol lowi ng format: 

Date 

T ime 

4904 1 ($BF9 1 )  49040 ($BF90) 

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

I : : H : : i �oot� : : I : : H : I 
7 6 5 4 3 2 1 0  7 6 5 4 3 2 1 0  

I : : : H : : i i : :  �+·: : : I 
49043 ($BF93) 49042 ($BF92) 

A jump to the start i ng  add ress of the rout i ne  must be stored in the 
entry to the DATETI M E  rout i ne  (48902) $BF06.  

By t h e  Way: The T IME program descr ibed i n  Appen d ix D does not  
change the t i me i n d icated by a clock/calendar card . I t  merely changes 
the system date and t ime locat ions descr i bed above. 

Using a C lock/Calendar Card 



System Programs 

By now you have undou bted ly wondered why ProDOS is d ivided 
i n to two fi les-PRODOS and BAS IC .SYSTEM-and what the 
relat ionsh ip  is between these two fi les. 

The f i le PRO DOS contai ns the most essent ial parts of ProDOS:  
rout i nes that perform com mun icat ion with d isk d r ives i n  a 
compact and versat i le  way. The BAS IC . SYSTEM f i le  conta ins 
rout i nes that let  you comm u n icate with d isk d r ives th rough BAS IC 
programs. When you use ProDOS BASIC ,  both  these f i les are  i n  
memory a n d  i n  use. 

I t  is possi b le for other assemb ly- language programs to make use 
of the versat i le  rout i nes in the PRODOS fi le wi thout the overhead 
of havi ng  the BAS IC . SYSTEM f i le  in memory. Such programs are 
known as system programs. P roDOS BAS IC ,  the ProDOS F i ler, 
and the DOS-ProDOS Conversion P rog ram are a l l  system 
programs. 

You can recogn ize a system program by its f i le  type , SYS, 
d isp layed by the CAT or CATALOG com man d .  Every system 
program provides some way to switch from itself to another 
system program . From ProDOS BAS IC ,  you run  another system 
program using the DASH (-) comman d .  From other system 
programs, you usual ly swi tch to another system prog ram by us ing 
the Qu i t  comman d .  

Starting Up a System Program 

When a d isk starts up ,  the PRODOS f i le  is f i rst loaded i n to 
memory. Next a system program is  loaded into memory. Then 
P roDOS scans the d isk for the fi rst f i le  havi ng the name 
XXX.SYSTEM (XXX can be com b inat ions  of letters and n u m bers 
that form a val id  ProDOS f i lename). I f  i t  f i nds such a f i le ,  i t  loads it  
i n to memory and runs i t .  Otherwise i t  loads the fi rst f i le  of type SYS 
on the d isk and runs i t .  

I f  there is  no program of type SYS on the d isk ,  an error message is 
d isplayed .  
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Summary of ProDOS 

Features of ProDOS 

Here is a l i st of some of the features of the ProDOS mach i ne
language i n terface . These featu res are fu l ly d iscussed in the 
ProDOS Technical Reference Manual. They are the basis upon 
which ProDOS is bu i l t .  

• A d i rectory-based f i l i ng  system 

• Up to 5 1  f i les in a volume d i rectory; the num ber of f i les in other 
d i rector ies is l i m ited on ly by space on the d isk_ 

• Up to 32 megabytes per volume 

• Up to 16  megabytes per  f i le  

• 20 d ifferent f i le  types ( ten of them user-def ined)  

• Up to e ight  f i les can be open at  a t ime 

• A def i ned , usable machi ne-language i n terface 

• A def ined i n terru pt protocol 

• File structu res compat i b le with Apple I l l  SOS 

• Fast transfer rate-reads about 8K per second from Disk I I  

• Supports a l l  Apple I I  d isk devices 

An understan d i ng of these featu res is not essent ia l  to the 
summary of ProDOS that fol lows. 
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Filenames 

A ProDOS f i lename is up  to 1 5  characters long .  I t  can contai n 
uppercase and lowercase letters (A-Z), d i g i ts (0-9) ,  and per iods ( . ) ,  
and i t  must beg i n  w i th  a letter. Lowercase letters are automat ical ly 
converted to uppercase . 

A f i lename must be un ique with i n  i ts d i rectory. Some examples are 

ANGLOFILE 
BALLOON 
LETTER .  TEXT 

Path names 

A ProDOS pathname is a series of f i lenames, each preceded by a 
slash (/) .  The f i rst f i lename i n  a pathname is the name of a volume 
d irectory. Successive f i lenames i nd icate the path ,  f rom vol u me 
d i rectory to the f i le ,  that ProDOS must fo l low to f ind that part icu lar  
f i le .  The maxi mum length for  a pathname used i n  a command is  
64 characters, i nc lud ing  s lashes. 

Exam ples: 

/EMP LOYEES/MARKETI NG/D IV IS I O N . 1 
/SPORTS/FOOTBALL/TH E .49ERS/QUARTERBACKS/MONT ANA 
/B IGD ISK/RECORDS/MAY I JELLY. BEANS 

Any command that req u i res you to name a f i le  w i l l  accept a 
path name or a part ia l  path name. A part ial  pathname is a port ion 
of a pathname that doesn ' t  beg i n  with a s lash .  The maxi mum 
length o f  a part ia l  pathname is  64  characters, i ncl ud i ng  slashes. 

These part ia l  path names are al l  der ived from the sam ple 
pathnames above : 

MARKETING/D IV IS ION . 1  
D IV IS ION . 1  
THE .49ERS/QUARTERBACKS/MONT ANA 

When you use a part ia l  path name, ProDOS does one of  two th i ngs .  
I t  usual ly adds the prefix,  a pathname that i nd i cates a d i rectory, to 
the front of  the part ia l  pathname to form a complete pathname. 
But  i f  the prefix is em pty, or i f  you use either the slot opt ion or the 
dr ive opt ion (descri bed i n  the sect ion "Syntax")  i n  the com mand ,  
t he  name o f  t he  vol ume specif ied by  the slot and  dr ive opt ions i s  
used i nstead o f  t he  pref ix. 
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Table A-1. ProDOS Command Opt ions 

For the part ia l  pathnames l i sted above to i nd icate val id  f i les, the 
prefix shou ld be set to /EMP LOYEES/, 
/ E M P LOYEES/MARKETI NG/,  and /SPORTS/FOOTBALL/ ,  
respect ively. The maximum length for a prefix is 64 characters. 
You set the prefix us ing the PREF IX comman d .  

Syntax 

The syntax, or structure ,  of each ProDOS command is  a command 
word fol lowed by a l ist of opt ions ,  as in 

SAVE pn [ ,S#] [ , D#]  

The command word (SAVE i n  th is  example) is  fol lowed by a l i st of  
opt ions .  Unbracketed opt ions must be inc l uded each t ime the 
command is  used . Opt ions i n  square brackets, [ and ] , are 
opt iona l ,  and can be used in any order. Opt ions separated by a 
vert ical bar are alternates: use one or the other, not both ( i f  both 
are entered , ProDOS uses the second i n  the l ist) .  

Uppercase letters and commas ind icate characters that m ust be 
typed as shown ; lowercase letters and the n u m ber sym bol ,  # ,  
stand for i tems that you supply. 

Tab le A- 1 is  a summary of the com mand opt ions .  The next sect ion 
contai ns a descr ipt ion of each of  the opt ions .  

Name Syntax M i n i m u m  M a x i m u m  Exam ples 

Path name pn /D ISK/RECORDS/JAN 
Slot N u m ber ,S# 7 , S 1  ,S3 
Drive N u m ber , D #  2 , D 1  ,D2  
N u m ber of  F ie lds ,F# 0 *  65535 , F2 , F 1 0  
Record N u m ber , R #  0 , R59 , R3982 
N u m ber of Bytes , B #  0 ,B2  , B 7  
Add ress i n  RAM ,A# 0 65535 ,A5 1 2  ,A4096 
Length i n  Bytes , L #  1 65535 ,L 1 0  , L  1 6384 
End Add ress i n  RAM ,E# 1 65535 , E776 , E32768 
At Line N u m ber ,@# 0 65535 , @ 1 0  ,@322 
Slot N u m ber snum 0 7 1 3 
F i le Type ,Ttype ,TD IR  , TTXT 

* See the descr ipt ion below 
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Summary of the Options 

# Deci mal or Hexadecimal  I nteger. # can be replaced by a 
decimal i n teger, or it can be replaced by a hexadecimal  
n u m ber by preced ing  the hexadecimal d ig i ts with a 
do l lar  s ig n .  The perm i tted val ues of # depend on the 
opt ion .  

pn Pathname or Part ia l  Path name. See the sect ion 
" Pathnames . "  

, S #  S lot Num ber. # specif ies an Apple I I  s lot that contai ns a 
d isk control ler card . # i n i t ia l ly defau l ts to the slot from 
which ProDOS was started up. I t  su bseq uent ly defau l ts 
to the last val ue specif ied for th is  parameter. # must be 
i n  the range 1 th rough 7.  

I f  # refers to a slot which does not contai n a d isk 
contro l ler card , you wi l l  get the !··-! Ci ;. ; ; :  . . . .  

! .. >. "·· "·· ' '  . i  ... : !  !:::. L.i error message.  

, D #  Drive N u m ber (e ither 1 or 2) .  # i n i t ia l ly defau lts t o  one.  
I t  su bseq uent ly defau l ts to the latest value specif ied for 
th is  parameter. 

I f  ,S# is  used without th is  opt ion ,  , D #  defau l ts to one.  

I f  # refers to a d r ive that doesn ' t  exist on the contro l ler 
card in the i nd icated s lot ,  you get the !··-! Ci , . , . ... . : ::::: E:: 

· ( : !·._; ;-.. ; ;  ... 
'···· · ... . i t::. LJ error. 

, F# N u m ber of F ie lds .  Used with seq uent ia l  and random
access text f i les. # specif ies a f ie ld whose pos i t ion in 
the f i le  is # f ie lds ahead of the current f i le  posi t ion .  
# defau lts to 0 ,  wh ich  does not change the f i le  posit ion .  
Note: EXEC always sets the pointer to the start o f  the  
named f i l e ,  so  # is always relat ive to 0 when used with 
EXEC. Although # has a maxi mum value of 65535,  if  
# specif ies a posit ion  past the end of the record or the 
end of the f i le ,  the posi t ion  pointer stops at the end of 
the record or f i le ,  and the Ci! .i " i  ' , .. .. . i i !· ! error message 
is  returned . 

For DOS compat i b i l i ty, both the opt ions , F# and , R #  
i nd icate a n u m ber o f  f ie lds when used with t h e  EXEC o r  
POS IT ION commands.  
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. R#  Record Num ber. Used w i t h  t he  READ and  WRITE 
commands for  random-access text f i les. # defaults to 0 
after OPEN .  Thereafter, it defau l ts to the last record 
specif ied . # points to an absolute record wi th i n  a 
random-access f i le .  The maximum record n u m ber is  
16  megabytes d iv ided by the f i le 's  record length , 
or 65535,  whichever is smal ler. 

, B #  N u m ber o f  Bytes. # defau l ts t o  0 .  # i nd icates a posi t ion  
i n  a f i le  whose por.i t ion  is  # bytes ahead of the current 
posi t ion .  For READ and WRITE i t  i s  eva luated after the 
,F# opt ion ,  and the maxi mum byte n u m ber is  record 
length m i n us one. I f  i t  i nd icates a posit ion  past the end 
of record or  f i le ,  the posit ion  is  left at  the end of the 
record or f i le ,  and the E::f- F::: C:• F

. 
U ::::: T" H error message is  

returned .  

For B R U N ,  BLOAD,  a n d  BSAVE,  i t  is  always used 
relat ive to the beg i n n i n g  of the f i le .  I f  i t  i n d icates a 
posit ion  past the end of the f i le ,  the F' ::::: !· i c: t::: t::: !? F: C:: F:: 

error message is returned .  

,A# Add ress i n  RAM .  For BRU N ,  B LOAD, and BSAVE,  
# i nd icates a start i ng  memory add ress for the transfer 
of b i nary i nformat ion .  I f  B LOAD does not specify th is  
parameter, the value of  A# defau l ts to that used when 
the b inary f i le was t ransferred us i ng the BSAVE 
command .  For PR# and I N # , # specif ies the memory 
add ress of a mach ine- language dr iver rout ine .  # must 
be in the range 0 th rough 65535.  

, L #  Length i n  Bytes. # defau l ts t o  1 .  I n  t h e  OPEN and 
APPEND commands with random-access f i les, , L# is  
req u i red and specif ies the record length i n  bytes. When 
used with the BRU N ,  B LOAD, and BSAVE commands, 
# specif ies the num ber of bytes to be transferred 
between the Apple l l ' s memory and a f i le .  # m ust be i n  
t h e  range 0 th rough 65535.  With t h e  b inary commands 
,E# can be used i nstead of , L # .  

,E# End Add ress i n  RAM .  Th i s  is an a lternat ive to the  
, L #  opt ion fo r  BRU N ,  B LOAD, and BSAVE.  # i nd icates 
the last memory add ress for the transfer of b i nary data. 
Either , L# or  ,E# is  requ i red for BSAVE.  I f  neither is  
used with BRUN or BSAVE,  bytes are transferred un t i l  
the end o f  t he  f i l e .  # must be i n  the range 
0 through 65535.  
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Table A-2. The Fi le Type Abbreviat ions 

,@# 

snum 

,Ttype 

At L ine  Num ber. # i nd icates the n u m ber of the f i rst 
program l i ne to be executed by the RUN or CHAI N 
command.  The defau l t  is the f i rst l i ne i n  the prog ram . I f  
there is  no l i ne with the n u m ber # ,  an error  is returned .  

S lot  Num ber. snum is used wi th  the IN# and PR# 
commands.  I t  can  have any val ue f rom 0 th rough 7 .  
s n u m  is  t h e  slot n u m ber o f  t h e  device with which 
su bseq uent data (e i ther i n put or  output)  is  to be 
transferred . An snum of 0 specif ies the Apple l l ' s  
normal  rout i nes for 1 /0 .  

F i le  Type. type is  a th ree- letter abbreviat ion that 
i nd icates the type of f i le  specif ied by the com man d .  The 
poss ib le  val ues for type are g iven in Table A-2. 

Abbreviation 

D I R  

F i le Type 

Di rectory 
Text TXT 

BAS 
VAR 
B I N  
REL 

* $F# 
SYS 
SYS 

Applesoft P rogram 
Applesoft Var iab les 
B inary 
Relocatab le Code 
User Defi ned 
ProDOS System F i le  
ProDOS System Program 

* # is  an i n teger from 1 to 8 .  

As  an example,  t he  ProDOS command that has the  syntax 

READ pn [ , R#] [ , F#] [ , B#] 

can be i n terpreted as 

/ t::; .L l .. := LJ , :· , ; .. . · ,  , ,  . ;-:: ; ;/! !." :  : ;  

by the fol lowi ng  process. The command word REA D i s  i n  
uppercase, a n d  must b e  typed exactly a s  shown . The sym bol for 
the path name pn is in lowercase; i t  is  replaced by the pathname 

,__, , , , , ; ;  • ; ; : . . . · . :::: ::::; . The opt ion ,R# becomes _, F :  ! .  :•:': C: i nd icat i ng  
that data is to be read from record n u m ber 1 00 o f  the random
access text f i le .·< :: ! !>:::: I ':: ; !- • . i ' i i:::: i ' ! C) ' : ; ,  which m ust al ready be open .  
The opt ion  , F# is replaced by _, F O::::: i nd icat i ng  that the f i rst two 
f ie lds in record 1 00 are to be read and d i scarded before any data 
is  taken from the record . The , B #  opt ion is  not used . 
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0$ is set to (CONTROL ) -@) . 
Pr int  the command preceded by 
(CONTROL ) -@) . 

N u l l  ProOOS command .  

0$ is (CONTROL ) -@) . 

List f i les i n  named d i rectory. 

List f i les i n  prefix d i rectory. 

List f i les in volume d i rectory of slot 6 ,  
d rive 1 .  

ProDOS Commands in Programs 

You can g ive al l ProDOS commands from with i n  programs, and 
you can issue al l except OPEN ,  WRITE,  READ, APPEND ,  and 
POSIT ION from the keyboard . I f  any ProDOS command i n  a 
program is to be pr i n ted , it m ust be preceded by a pr in ted 
(CONTROL )-@) , and the (CONTROL )-@)m ust be the f i rst character on 
the pr in ted l i ne .  Here is the most common way of pr i n t i ng  a 
ProDOS com mand preceded by a (CONTROL ) -@) . 

The WRITE,  READ, and APPEND commands are term inated by the 
next ProDOS command g iven .  I f  you want to term inate one of  
these commands without us ing a ProDOS command , you can use 
the nu l l  ProDOS com mand 

Filing Commands 

Th is  sect ion contai ns a br ief descri pt ion of each ProDOS f i l i ng  
com mand .  

CATALOG and CAT [pn} [,5#} LD#J 

Use the CATALOG and CAT commands i n  e i ther i mmed iate or 
deferred mode. 

Exam�les: 

The CAT and CATALOG com mands d isplay a l ist of the f i les in the 
d i rectory i nd icated by pn ,  S# ,  and D# .  I f  pn is  not used , a catalog 
of the prefix d i rectory is  d isp layed un less the prefix is  empty or 
S# or D# is  used . In these cases the volume name i nd icated by 
S# and D# is  used instead of the prefix. 

CAT d isplays a 40-column  l ist contai n i ng  the f i rst f ive i tems 
expla ined below, whi le  CATALOG d isplays an 80-co lumn l ist with 
a l l  e ight  i tems. 
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Set prefix to /PROFI LE/WORKFI LES/. 

Set prefix to name of volume i n  slot 6,  
drive 1 .  

Make prefix empty. 

Display the prefix. 

For each f i le  in the d i rectory these commands d isplay from left to 
r ight on the screen 

• an aster isk i f  the f i le  is  locked (see the LOCK command) 

• the f i le 's  name 

• a th ree-letter abbreviat ion of the f i le 's type (see Table A-2) 

• the n u m ber of 5 1 2-byte b locks that the f i le  occupies 

• the date the f i le  was last mod if ied (Mo/Da/Yr H r : M n : Sc) (on ly 
Mo/Da/Yr is d isplayed by CAT) 

• the date the fi le was created (Mo/Da/Yr H r : M n : Sc) 

• the logical end of f i le [see sect ion " E N DF ILE  (Maximum Fi le 
Sizes)" i n  Chapter 3 and sect ion "The End of F i le" i n  Chapter 7] 

• the f i le 's  load add ress ( i n  hexadecimal )  if it is a b i nary f i le ,  or i ts 
record length ( in decimal)  if  i t  is  a random-access text f i le .  

When you catalog a vol ume d i rectory, the n u m ber of free b locks,  
used b locks,  and total  avai lab le b locks on that vol ume are 
d isplayed . 

Possible E rrors: 

NO D E V I C E C O N N E C T E D  

N O  B U F F E R S  A V A I L A B L E  

F I L E T Y P E  M I S M A T C H  

PREFIX [pn] [,S#] [,D#] 

Use the PREF IX command i n  e i ther i mmed iate or deferred mode. 

Examples: 

woo ow• ••-• ••••• ••• , • I ; ; ; ; ; ; •, ,• r· r::. i::. r· .i. ,· .. 

Append ix A: S ummary of ProDOS 



Create a new d i rectory. 

Create a b i nary f i le  i n  volume 
d i rectory, S6,  02.  

This command normal ly sets the value of the prefix, but  i f  no 
opt ions are used , the value of the pref ix is  d isp layed . I f  the 
command is used without opt ions i n  a program , the next I N PUT 
statement reads the value of the pref ix .  I f  a slash is  used i n  place 
of pn ,  the prefix is set to em pty; the vol ume specif ied by the 
defau l t  slot and dr ive is  then used as pref ix.  Otherwise the 
standard ru les for pn and the slot and dr ive opt ions ho ld . The 
maximum length for the prefix is  64 characters, i nc lud ing  slashes. 

Possible E rrors: 

!·· -1 .J !:::� !::.. ·.· .l. : ... · t::. 
:···· -···- ··:·· :···· :···. ; ___ . i_..i r·-; r·-! t::. i 

' ... . ; : ;:::. r· . : ··. ' : r=: 

!··· ... ..... .... . 

CREATE pn [, Ttype] [,5#] [,D#l 

Use the CREATE command i n  e i ther i mmed iate or deferred mode. 

Exa m ples: 

···. :···. :···· .···. ··:·· :·-· 
! __ . j·=:: t::. !···i ; i··· -r· r··. ·:· :···. 

' 

Creates a f i le of the i nd icated type and name. Table A-2 shows the 
d i fferent f i le types. Th is  command is  pr imar i ly used for d i rectory 
f i les.  You must create a d i rectory before savi ng a f i le  i n  i t .  

Possible E rrors: 

:···. ·:· ::::· !/ : ... : . 
· ... · : .... :. 

: ;___; ·._.· · ... · : : : : :  : : . 
:···. : : ;-··. : 
; .. : ... : ; ; . .L l ... ;···; !  t::. :· . . · · : · : ... . :. : .... : .... : 
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Delete EXPLETIVE f i le .  

RENAME pn 1,pn2 [,S#] [,0#] 

Use the RENAME command i n  e i ther im med iate or deferred mode. 

Example: 

!? �--- r-.: i···i 1 ' 1  :--- · · ,. · ;-·· , ._ ; ; ; , . . ;:::: ::::· = ... : : ; · .. ; ; ; ; ···-, ::.;. 

Changes the name of the f i le  i nd i cated by pn 1 ,  S# ,  and D# to the 
name i nd icated by pn2,  S# ,  and D# .  Th is  command can not move 
a f i le  from one d i rectory to another ;  it can on ly change the name of 
a f i le  wi th i n  its d i rectory. You can not rename a f i le  that is  locked . 

Possible Errors: 

!< ;---; :· : � ... : : .... 

:;: .· �J ;:::. 1 

r· -� . . , , ..... ... . ... · i . .J F··' , _,_ ... ' ;· · .; 

DELETE pn [,S#l [,D#l 

; :_..: : ... · : .... ·.· .l. = ... - 1:::. 

; ... .L L.. �:::. �--·· ; __ _i 1 __ _. �< !:::. LJ 

··- ;:::: :  : .·· 
.:. : .... : .... 

Use the DELETE command i n  e ither i m med iate or deferred mode. 

Example: 

Removes the fi le i nd icated by pn, S#, and D# from its d i rectory. 
The f i le must not be open or locked . If the f i le  is a d i rectory f i le ,  i t  
m ust be em pty. You cannot delete a vol ume d i rectory. 

If a program tr ies to delete a nonexistent f i le ,  ProDOS returns  the 
F ' i· ·! . . . F C: i .. .i i T:: error message.  To prevent  th is ,  open the f i le  
(wh ich creates i t  i f  i t  doesn ' t  yet exist) ,  c lose i t ,  then delete i t .  

Possible Errors: 

i·=:: ;···i r·-i -- =··· , ... ,.,. ,.,. = 

: .. · · 

F 
. .  , . . 

. .  : 
l L .. :. · l : .... L.' 
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LOCK pn [,5#} [,D#} 

Use the LOCK command i n  e i ther immed iate or deferred mode. 

Example: 

1··· � ... : . . . : j j·:: � L. . 
..,. 

. 

This command protects the f i le  i nd icated by pn ,  S# ,  and D# from 
being  accidental ly deleted , renamed , or  changed . A locked f i le is 
i nd icated i n  the catalog by an aster isk ( * ) . 

Possible Errors: 

!::> : ... : :-. : :  · : ... : !-:-' i ... ' i i i  .. ' 

UNLOCK pn [,5#} [,D#l 

' ._, , = r··= ;:··· ' ' ' : . !-·· !... ..J l ! ! -� E:: �-- . : '··· ' ' 
:·· · ... : :  ___ : ;···! L.: 

··· r··. ; l : :.: ; 'i L. . .  :. : ... : i ! !-··' ; ; ; : r-.: 

Use the U N LOCK command i n  e ither i mmed iate or deferred mode. 

Example: 

I f  the f i le i nd i cated by pn, S#, and D# is  locked , you m ust un lock i t  
before you can al ter, rename, or remove it .  

Possible E rrors: 

i i i : ; ; ... :, ,
: ; ;  . ;··· 

: : :·-. ·:· ··:·· :···· ···· :··· . .  ···. ··:·· :··· ;.=.; ;·=:: J i j··· ;---· ;-: • • • 

j, / : ___ : t::. ;-:� ;-::� : ___ : ; -� 
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Run program in f i le /ANY/PROGRA M ,  
regard less o f  program type. 

Load BASIC program from file AMOK i n  
prefix d i rectory and  run  i t .  

Load BASIC program from f i le 
TWO . I N . O N E  i n  pref ix d i rectory, and 
run it start ing at l ine 1 000. 

BASIC Program Commands 

This sect ion contai ns a br ief descr ipt ion of the BAS IC program 
commands.  

- (DASH) pn [,S#] [,D#l 

Use the DASH command i n  e i ther immed iate or deferred mode. 

Example:  

This command,  cal led the DAS H command ,  can be used i n  p lace 
of RUN ,  B RU N ,  and EXEC; it is  the on ly command that runs a 
system program . Thus,  it can be used to run programs of types 
BAS, B I N ,  TXT, and SYS (XXX.SYSTEM f i les). Note that everyth ing  
currently i n  memory is  lost when a system program is  i nvoked . 
(See the RUN ,  BRUN ,  and EXEC commands for more detai ls . )  

Possible E rrors: 

: l l l l  l ··-' '···· 

N u  D E V I C E C O N N E : T E C  

····· ···· ·-· ... ... . �:::. !··:� !< i..J 1< 

RUN pn [,@#] [,S#] [,D#l 

;:::- ;:::; --� �---i : : . ···. ··:·· :···· ; 
···' : ... : !·· -! i:::; 

�-- J: L.. ;:::: ·-:-· '·:' �:::: �::: ; · ; .L :::- , , r··; ; -... : �--; 
. : :  ... · .. 
'···' ' : .... ! '·! 

Use the RUN command i n  e ither immed iate or deferred mode. 

Examples: 

·r ! . ..! c:; . I ; - .; . . ___ . , ., , ____ _ , 

Loads the Applesoft program i n  the f i le  i nd i cated by pn ,  S# ,  
and D# (see the d iscussion of  LOAD,  below), and then  runs i t .  
I f @# is  used , then the program starts runn ing  at  the specif ied l i ne ;  
i f  that l i ne is  not found ,  the next h ighest l i ne is  run .  Without @#,  
execut ion starts a t  the program's f i rst l i ne .  
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Br ing BASIC program in f i le  
DOW. J O N ES i n  prefix d i rectory into 
memory. 

The RUN command ,  without any parameters, causes the BASIC 
program current ly i n  memory to be ru n .  

Possible E rrors: 

' =-·-= , , =···� �--·· T t_ :  . . . -�- i ... : ; ·.: 

; ; · •• = • ..: = .. := : · : : · . 

BASIC Error: 

. , , , , , '··· �-··! E r·-� � 

LOAD pn [,S#J [,D#l 

··. ; ·; : . : ... '·' .:. '·· · '· · ... · ·  ... · :  : :  : :  ... · .. · : ; ... . 

, , .•. ..... , , ,  , r = .... r··i 

:.- :  ... · : ... · ·  
. .. · : ·. 

Use the LOAD command i n  e i ther immed iate or deferred mode.  

Example:  

r ,···· ::::· =
···. 

This command tel ls ProDOS to search for the Applesoft program 
fi le (type BAS) with the name i nd icated by pn, S#, and D#. I f  there 
is such a f i le ,  i ts program is loaded i n to the Apple l l ' s  memory. The 
program can then be changed , l i sted , run, or saved . LOAD closes 
any open fi les (except EXEC fi les), and erases any BASIC program 
in memory before p lac ing  the new program in the Apple l l ' s  
memory. 

The i nstruct ion  LOAD, without any parameters, attem pts to load a 
prog ram from cassette tape. 

Possible Errors: 
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. .  : ·· 
. . : ;, : . 
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Save current BASIC program in f i le  
BABY. SEALS. 

SAVE pn [,S#J [,0#] 

Use the SAVE command i n  e i ther immed iate or  deferred mode.  

Exam ple: 

-· .... ' '··· 

If the i nd icated f i le  does not exist ,  a f i le  with the pathname 
i nd icated by pn,  S# ,  and D# is  created , and the current Applesoft 
program is  stored in that f i le .  I f  the f i le is  locked , the ::::· I L .. ::::: 

L.. C:":::: �---: i:::: !> error is returned .  

War n i n g  
I f  a f i l e  with t h e  i n d icated pathname al ready exists, i t s  contents are 
replaced without warn ing  by the current BASIC program . Always lock all 
valuable files. 

The i nstruct ion  SAVE,  without any parameters, attempts to save a 
program onto cassette tape. 

Possible Errors: 

!:::: ;:::; !- ' ····. :···· , .... , ... _ ,  ... _ , ... _ ,  ... 
; ·._ ; ; ; ·; :,.:= : .... : .. . 

; _ ; ;-··, .,. 'T" i:::· 
1-'-: ; ·-. . :. ; : 

. L .. ·· : . ..: 

:··· . .  -··, ··; , ... r=:. : . ..: 

F" I L.. E� L. ; : : · L- _ !:::. L..l 

.··· . .  ···. : : :  : :···· .···- ··:·· :··- :··· :-. : ;  1 ' ! !--- · . .' i ' 1:::. ' ' ' i '·l i '·: r·· ' 1 i:::. L.l 

i ! ; ·--. :-: !··· . 

Programming Commands 

This  sect ion provides a br ief descr ipt ion of each of the BASIC 
programming  commands.  

CHAIN pn [,@#] [,S#] [,0#] 

Use the CHA IN  command i n  e i ther i m med iate or deferred mode. 

Example:  

···- ;...; :··· . . , . .  
i .. 
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Store a l l  BASIC variables. 

Used from with i n  a BAS IC program , i t  loads and runs the BASIC 
program specif ied by  pn ,  S# ,  and D#,  leav ing the names and  
val ues o f  al l the current var iables i n  memory. Th is  means that a 
program can operate on the resu l ts of the previous program , and i t  
can  leave data for  any su bsequent ly chained program . 

If the @# opt ion is used , execut ion of the i nd icated f i le  beg ins  at 
the specif ied l i ne ;  if that l i ne  does not exist ,  the next h ighest l i ne  i s  
run .  

Possible E rrors: 

NO D E V I C E C O N N E C T E D  

F I L E T Y P E  M I S M A T C H  

P R O G R A M  T O O  L A R G E  

BASIC E rror: 

U N D E F  � S T A T E M E N T  E R R n P 

STORE pn [,S#J [,D#J 

Use the STORE command i n  e ither i m med iate or  deferred mode. 

Example:  

C 'T :""": !:::= c:· 
· ... · : · ... • : ·. ;._, / G A M E S / B I N G O . V A R S  

This command packs a l l  the current ly def i ned BASIC  var iables, 
and wri tes them to the f i le (type VAR) i nd icated by pn, S#, and D# : 
These var iables may be retu rned to memory us ing the RESTORE 
command .  

Before stor ing Applesoft variab les, ProDOS compacts the 
Applesoft str i ng  space. Th is  may resu l t  i n  a delay of two to four 
seconds before the d isk is  actual ly accessed . 

Possible Errors: 

NO D E V I C E C O N N E C T E D  

F i � E T Y P E  M I S M A T C H  
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Load BAS IC variables. 

Send output to slot 1 .  

Send output us ing rout ine  at $300. 

Designate the ROM i n  slot 2 as the 
output rout ine  for slot 1 .  Does not 
red i rect output .  

RESTORE pn [,S#ll,D#l 

Use the RESTO RE command i n  e ither immed iate or deferred 
mode.  

Exam ple: 

... ... . · ····· .··· . . :-·· , .,. ;, ; ,···. ··· 
. . .  : ... · .:. , : · ... · · ... · . ·, ,· r··; r=: :··, 

Th is  com mand clears the cu rrent BASIC var iab les from memory, 
u n packs the var iab les stored i n  the var iab le f i le  (type VAR) 
i nd icated by pn, S#, and 0#, and puts the var iab les in the BASIC 
var iab le storage space i n  memory. 

Possible Errors: 

. .. ,;, ; ·; .· : : :  .... . :. : ... · '
···

' '  : .:. · ... · : . 

PR# snum l A# I snum ,A# 

. . ,_,: .L � ... : !::: . 

· . .  · :. : 
:··, :  . ..... . 

... ; ; ;-:: 

;:::. :·=·. r=: ; , ,.,. 

Use the PR# command i n  e ither immed iate or deferred mode.  

Examples: 

. . 
. . . . 

!:::· =···. : : . 
r==. ·!t .L ,  r··j .:;:- : .... ,:::. :::! !:::l 

This command is used to send output to a s lot ;  to send ouput to an 
add ress in memory; or  to reass ign the output add ress associated 
with a s lot .  It operates by chang ing  the add ress of the current 
output rout ine (stored in memory locat ions $36 and $37) .  A l l  
su bsequent non-f i le output is  sent ,  a character a t  a t ime ,  by  the  
rout ine  a t  the specif ied add ress. I f  snum (a slot num ber) is  used , 
the add ress of the current output rout ine is set to i nd i cate the fi rst 
byte of ROM on the card in that slot ($Csnum00) .  I f  A# is  used , the 
add ress is  changed to # ,  and the byte at th is  add ress must be a 
6502 CLD (clear decimal)  i nstruct ion .  
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See the descr ipt ion of PR# i n  
Chapters 5 and 9 f o r  more detai ls ;  also 
see the Apple II Reference Manual. 

Get input from slot 2 .  

Get i n put us ing  rout ine  at $300. 

See the descr ipt ion of I N #  in 
Chapters 5 and 9 for more detai ls ;  also 
see the Apple II Reference Manual. 

Once the add ress of the output rout ine  is changed , ProDOS 
performs a jump to th is  new add ress. The f i rst port ion of the code 
at that add ress normal ly performs i n i t ial izat ion (such as start i ng  
up  the d isk i n  that slot) .  The code then  resets the output  rout ine  
add ress to i nd icate the t rue  add ress of  i ts  output  rout i ne .  

I f  both snum and A# are used , the specif ied add ress is  ass igned 
as the output add ress for that slot. I t  does not red i rect output :  a 
su bseq uent PR# snum m ust be used for th is  purpose. 

Possible Errors: 

···· :·:· :·: . : ·. · ... · : ·. r· -! .J ' , ,... . .· .:. · ... �:::: '::: · 1::1 !· · : 1· · , ::::. = ... - 1 ••••• __ _ 

; i i···' ' T i , ;. l !:: .. !·=·· ;.,.· ; ; ;.,.· 

IN# snum i A# 

Use the I N #  command i n  e i ther immed iate or deferred mode. 

Exam ples: 

This command tel ls the Apple I I  to take its i n put from a slot or  from 
an add ress in memory. I t  operates by chang ing  the add ress of the 
current i n put rout ine (stored in memory locat ions $38 and $39) .  A l l  
su bseq uent non-f i le  i n put is  taken ,  a character at  a t ime,  by the  
rout i ne  at  the specif ied add ress. I f  snum (a s lo t  num ber) is used , 
the add ress of the current i n put rout ine  is set to i nd icate the f i rst 
byte of ROM on the card in that slot ($Csnum00). I f  A# is  used , the 
add ress is changed to # ,  and the byte at  th is  add ress m ust be a 
6502 CLD (clear decimal)  i nstruct ion .  

Once the  add ress o f  the  i n put  rout i ne  is  changed , ProDOS 
performs a jump to th is  new add ress. The f i rst port ion of the code 
at that add ress normal ly performs i n i t ial izat ion (such as start i ng  
up the d isk i n  that slot) .  The  code then  resets the i n put  rout i ne  
add ress to  i nd icate the t rue  add ress o f  i t s  i n put rout ine .  

Possible Errors: 

1:;:. , ... ; ;-.. ; : ' . ; ·; :  __ _: ;___: ;,,, 
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Open seq uent ia l  f i le  on d r ive 2 i n  
defaul t  s lot .  

Open random-access f i le with record 
length of 1 00 .  

O p e n  a d i rectory f i le .  

FRE 

Use the FRE command i n  e ither immed iate or deferred mode.  

Exa m ple: 

c:= =-··. ·=· = , .... 
... . . . . . 

This command removes any data remai n i ng  from former programs 
from the memory area used to store your  prog ram 's  str i ng 
var iab les; that is ,  i t  c leans house. 

Possible Error: 

Text File Commands 

This sect ion contai ns a br ief descr ipt ion of each text f i le  
command . 

OPEN pn [,L#l [, Ttype] [,5#] [,D#l 

Use the OPEN command on ly i n  deferred mode. 

Exa m ples: 

! ! � - - . . ; . : ;,,, : .. : ; : 

:. · 
. : : .· : ·. :  .... .. · = ... : ; ·  .. : ... · ... ' : : .... .  :. =: .. : :: .. : 

This command a l locates a memory buffer to the f i le  i nd icated by 
pn ,  S# ,  and D# ,  and prepares the system to write or read from the 
beg i nn i ng  of the f i le .  I f  the f i le  d id not previously exist ,  a text f i le is  
created . L# specif ies the f i le 's  record length ;  i f  omit ted , the record 
length defau l ts to the record length with which the f i le  was opened , 
or to 1 for a new f i le .  

Usi ng Ttype you can open non-text f i les for  read ing  and wri t i ng .  
Non-text f i les must be  created before they can  be opened . You 
must be carefu l  when us ing th is  feature:  the contents of non-text 
f i les can be d iff icu l t  to deal with when us ing BASIC str ings .  
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Close al l  open f i les. 

Close /P/NOSE.  

The effect of CLOSE on  an EXEC f i le :  
see the sect ion "The EXEC Comman d . "  
For comparison ,  see t h e  FLUSH 
command.  

Up to eight f i les can be open at a t ime.  The commands OPEN ,  CAT, 
CATALOG, and EXEC-and - (DASH)  when you use it to execute 
(EXEC command) a f i le-al l open a f i le. On ly OPEN leaves the f i le  
open . 

The memory buffer for an open f i le is 1 024 bytes long .  If there is 
not enough free memory for a f i le 's  buffer to be a l located , the f i le 
cannot be opened . 

War n i n g  
A program must c lose a l l  t h e  f i les i t  opens. I f  i t  doesn ' t ,  data written to the 
f i le  may be lost .  

Possible Errors: 

-:::· Y r·-i 1 ; •.. ; ·:-. • .•.. , . __ '·=:: C! !��: 

CLOSE[pn] 
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Use the CLOSE command i n  e i ther immed i ate or deferred mode. 

Exa m ples: 

1 ..• : .... 1 .• ! >-·, t:: . 
... .  . ··· . .  ···. :···· , __ . L._ u ::::: t:. · ···· .. ·· r·-i ' ... ... = :  •••• 

The CLOSE com mand without opt ions closes a l l  open f i les (with  
the except ion  of EXEC f i les: see EXEC). I f  pn is used , on ly the 
specif ied f i le  is  c losed . When a f i le  is  c losed , any characters i n  the 
output part of the f i le  buffer are wr i t ten to that f i le ,  and i ts f i le  
buffer memory is  released for other uses. 

War n i ng 
A program must close a l l  f i les it opens. Fai l u re to c lose an open f i le  can 
resu l t  in loss of data. I f  a program terminates because of an error, 
because a (CONTROL 1-@)was pressed , or  for any other reason ,  enter the 
CLOSE command from the keyboard before you do anyth ing  else.  

Possible E rrors: 

·::- :. · ;_ , ! !···! :-: ·-.' ; ; ·; . .  ;:::: :  
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Prepare to read record 1 0  from 
/EXA M P LES/HELPERS.  

Sk ip 1 00 f ie lds of the f i le BOOK and 
prepare to read . 

For more detai ls on READ,  see the 
sect ion " Read ing From ProDOS 
D i rectories , "  Append ix  D .  

Prepare to write to start of record 29 .  

Prepare to wr i te  to current posi t ion  i n  
f i le .  

READ pn [,R#] [,F#] [,8#] 

Use the READ command i n  deferred mode on ly. 

Exa m ples: 

�;:= ' . . ···. r··, 
, .. ..... r· . .... · 

; ·._ ;_ : : : : .:. =: . ... 

This command al ters the current pos i t ion and prepares i n put to be 
taken from the i nd icated fi le. I f  R# is  used , the current f i le posit ion  
is  moved to the beg i nn i ng  of  the specif ied record . I f F# or B# is  
used , the cu rrent posi t ion  is  moved forward the specif ied n u m ber 
of f ie lds and bytes. 

Once th is  command is  g iven , all characters asked for by I N PUT or 
GET statements in the program are taken from the specif ied f i le  
start i ng  at  the f i le 's  current posi t ion . Each I N PUT statement is  
ended by a carr iage return  character (ASC I I  code 1 3) or  224 bytes, 
whichever comes fi rst . The READ command is term inated by the 
next ProDOS command ,  or by the nu l l  ProDOS comman d ,  that is ,  
pr int ing (CONTROL ) -@]. 

War n i n g  
D u e  to t h e  l i m itat ions o f  BASIC str i ngs, t h e  read ing  o f  non-text f i les may 
not work as you expect it to.  

I f  you open and read a d i rectory f i le ,  you get back str ings that are 
ident ical in format to the l i nes returned by CATALOG. 

Possible Errors: 

. :  ; ; ·l l  . .  :: t::. 

WRITE pn [,R#] [,F#] [,8#] 

Use the WRITE com mand on ly i n  deferred mode.  

Examples: 
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Prepare to write to end of f i le  
MORE. I N FO.  

This  command al ters the current pos i t ion ,  and prepares output to 
be sent  to the i nd icated f i le .  I f  R# is  used , the cu rrent fi le posi t ion  
is  moved to the beg i nn i ng  of  the specif ied record . I f  F# or B #  is  
used , the current posi t ion  is moved forward the specif ied n u m ber 
of f ields and bytes . 

Once th is  command is g iven ,  a l l  characters output by the program 
or  by BAS IC are placed in the specif ied f i le  start i ng  at the f i le 's  
current posi t ion .  The WRITE command is  term inated by the next 
ProDOS com mand .  

A l though you can  open d i rectory f i les (type CAT), and  read from 
them , you cannot write to them . 

Possible Errors: 

J . . ·· · ... · j:::
·
j:;:: .,.· ; ; ;.,.· 
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APPEND pn [, Ttype] [,L#l [,S#] [,D#l 

Use the APPEND command on ly i n  deferred mode. 

Example:  

..... . . .... . : · ... · : ·. : .... : _;_ ;·· : !·· ... 

This com mand opens the f i le  specif ied by pn ,  S# ,  and D# ,  moves 
the current posi t ion  to the end of the f i le ,  and issues a WRITE to 
that f i le .  If L# is used (and is the same as the f i le 's  or ig i nal  record 
length) ,  the current pos i t ion is  set to the beg i nn i ng  of the record 
i mmed iately fol lowi ng  the last record in the f i le .  

Once th is  command is g iven , a l l  characters output by the program 
or by BASIC are p laced i n  the specif ied f i le start i ng  at the f i le 's  
cu rrent posit ion .  The WRITE part  of the APPEND command is  
term inated by the next ProDOS command .  

War n i n g  
Be sure that your  program closes a l l  appended f i les.  Fai l u re t o  do s o  may 
resu l t  in loss of data. 

Text F i le Commands 



Read and d iscard 227 f ields.  

Possible Errors: 

,.. .. , .... 
r=:. r··; r·-; = .. := c:. r·-; ; 1 , ___ . , ____ ___ _ , _ ___ . , ___ _ 

;:::· .:. : .... : .... 
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FLUSH[pn] 

Use the FLUSH command i n  e ither immed iate or deferred mode. 

Example:  

F !  .... -... · ·--· · :  -· F·l .L ; ; ; .· . . . . 

The FLUSH command without opt ions causes a l l  open fi les (with  
the except ion of  EXEC f i les :  see EXEC) to be f l ushed . I f  pn is  used , 
on ly the specif ied f i le  is f lushed . When a f i le  is f l ushed , any 
characters in the output part of the f i le butter are written to that 
f i le ,  and updated i ndex and a l locat ion  buffers are copied to the 
f i le 's  d i rectory . 

... War n i ng 
The FLUSH command is useful for preservi ng the i ntegrity of the data on a 
d isk .  A program that may stop unexpected ly-whether due to power 
surges or l i tt le k ids-should f lush its buffers frequent ly. Th is  way you can 
prevent much data from being lost. 

Possible E rrors: 

POSITION pn ,F# I ,R# 

Use the POS IT ION command on ly i n  deferred mode. 

Example:  

;:: : .... : 

POSIT I ON causes # f ie lds to be read and d iscarded . For 
compat i b i l ity with DOS 3 .3 ,  the F# and R# opt ions are 
funct iona l ly equ ivalent .  
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Execute commands start ing  with the 
fourth f ie ld of the f i le PR IV I LEGE. 

Other uses of EXEC are explained in 
Chapter 8. 

POSIT ION scans forward from the current posi t ion ,  character by 
character, un t i l  i t  encounters the #-th (RETURN)character fo l l owi ng  
the current posi t ion . I t  then  p laces the current posit ion  at  the f i rst 
byte fo l l owing  th is  ( RETURN)character. I f ,  i n  th is  search ,  it f inds any 
byte in wh ich no  character has ever been stored (normal ly an end 
of record or end of f i le) ,  the message E>E::: U ! · U !· : :  r--: i s  g iven . 

Possible Errors: 

N O T  D I R E C T  C O M M A N D  

The EXEC Command 

··-· · . .... .-· ··-· ·- ·- ·-·· .·-�=- r··! � ... : -·' , •.. !··! ! i·-i 

The format and a descr ipt ion of the EXEC command are g iven i n  
t h e  sect ion below. 

EXEC pn [,F# I ,R#] [,S#] [,D#J 

Use the EXEC command i n  e i ther i mmed iate or deferred mode. 

Example: 

Th is  command causes the Apple I I  to take al l (non-f i le) i n put from a 
sequent ial text f i le  i nstead of from the keyboard . Th is  a l lows you to 
use a text f i le  contain i ng BAS IC or ProDOS commands,  or i nput to 
a run n i n g  program to control the operat ion of your  Apple I I .  

The f i le i nd i cated b y  p n ,  S#,  and D# must b e  a sequent ial text f i le  
(hereafter referred to as an EXEC fi le) .  ProDOS opens the EXEC 
f i le ,  reads and d iscards the n u m ber of f ie lds specified by F# 
or R#,  and then starts read ing  commands at tha� posi t ion . When 
the end of f i le  is  reached , the EXEC f i le  is  c losed . 

There can on ly be one EXEC command i n  effect at a t i me.  If the 
EXEC f i le  contai ns an EXEC command ,  the or ig i na l  EXEC f i le is  
c losed and the new EXEC f i le  i s  opened and executed . The CLOSE 
command ,  when issued from with i n  an EXEC f i le ,  does not cause 
the EXEC fi le to close. I f  an EXEC fi le contai ns a RUN command ,  
EXEC waits un t i l  the program ends;  then the next command i n  the 
EXEC f i le  is  executed . 

The EXEC Command 



• War n i ng 
If a program is runn ing  whi le an EXEC f i le  is open,  an I N PUT statement i n  
the program reads i t s  i n put from the EXEC f i l e .  Worse yet ,  i f  that response 
is  an i m med iate-execut ion ProDOS comman d ,  the command is  executed 
before the program cont inues. 

By the Way: I f  you type (CONTROL )-@Jto stop an Applesoft program 
that is  runn i n g  whi le an EXEC f i le is  st i l l  open, the remain i n g  
commands i n  t h e  EXEC f i l e  a r e  usual ly n o t  executed . 

For compat i b i l i ty with DOS 3 .3 ,  the F# and R# opt ions are 
funct iona l ly eq u ivalent .  

Possible Errors: 

Binary Commands 

:. : :"': :·�- :  : :···· :-··· , .... :•--. .  ···. .·-. :  : .···- ·:· : .··· . .. -. : ,. ... j '•j = . ..: !---: ! ; =··· ;.-- t::. i·=:: :--· ''''i \:' j···j .L L.. i'''l t::; L.. t:. 

The b inary commands are br iefly descr i bed i n  the next sect ions .  

BRUN pn [,A#] [,8#] [,L# I ,E#] [,S#] [,D#] 

Use the BRUN command i n  e i ther im med iate or deferred mode.  

Example: 

The BRUN command loads the b inary f i le  (type B I N )  i nd icated by 
pn ,  S# ,  and D# i nto the Apple l l ' s  memory as specif ied by A#, 8# ,  
and L# or E#.  B# is  the num ber of  the f i rst byte i n  the f i le  to be  
loaded . A# is  the fi rst memory add ress in to wh ich  data is  to be  
loaded ; L# is  the number of  bytes to be loaded , and E# is  the last 
memory add ress i nto which data is  to be loaded (either L# or E# 
shou ld be used , not both) .  I f  A# is omi tted , the f i le  is  loaded 
start i ng  at the add ress from which i t  was saved . Once loaded , the 
fi le (wh ich must be a mach i ne- language program) is  started by a 
mach ine- language jump (J M P) to add ress A#.  
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BASIC and ProDOS cont i nue  funct ion ing  if the mach ine- language 
program ends with a 6502 RTS i nstruct ion .  

Possible Errors: 

-·- .-·. : : :  : :···· .··· --
; = i r·-i i  ! t::. i ... · , ;:::. L.i 
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BSAVE pn ,A# ,L# I ,E# [,8#} [, Ttype} [,S#J [,D#J 

Use the BSAVE command i n  e ither immed iate or deferred mode. 

Examples: 

1:::: T r· ····· ! 1 !-,-' 1-� : .:. · ... · ; · ... · : ·. :--- .= ;··-; .L =:::= :::�: ::::: ,::j. 
·
' L :::' ::. �::·' ..... 

The BSAVE command stores the contents of a segment of the 
Apple l l ' s  memory i n to a f i le  with the name i nd icated by pn,  S#, 
and D#, and the type i nd icated by Ttype . The defau l t  f i le  type is 
b inary (B I N) .  I f  the f i le  does not yet exist ,  i t  is created . The segment 
is specif ied by the star t ing add ress A#,  and either the n u m ber of 
bytes to be stored L# or the end add ress E# .  B# specif ies the 
start i ng  f i le  posi t ion .  

The exam ples shown above both  store a h igh-reso lut ion  p icture 
from the second h igh-reso lut ion p icture area of memory. They 
have the same effect, but  the second example u�es hexadecimal 
notat ion  and the E# opt ion  i nstead of the L# opt ion .  

Possible E rrors: 

Binary Commands 

: : :  · .. . . ;_.: .:. · ... : ; ·. 
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See the sect ions " H i gh-Resolut ion 
Graphics With ProDOS" and " I nstal l i ng  
Mach ine-Language Rout ines" i n  
Chapter 9 f o r  s o m e  important 
restr ict ions on memory usage. 

BLOAD pn [,A#] [,8#] [,L# I ,E#J [, Ttype] [,S#] [,D#J 

Use the B LOAD commmand i n  e i ther immed iate or deferred 
mode. 

Exa m ples: 

The B LOAD command f i l l s  a segment of memory with data taken 
from the f i le with the name i nd icated by pn, S#, and D#, and with 
the type i nd icated by Ttype. The data is  taken start i ng  at f i le 
posit ion  8#,  and is  p laced i n  memory start i ng  at add ress A#. 
L# is  the n u m ber of bytes transferred , and E# is  the end add ress; 
one or the other, but not both ,  can be used . I f  A# is  omi tted , the 
f i rst byte is  placed at the add ress from which the f i le  was or ig ina l ly 
saved (us ing BSAVE).  If L# and E# are om itted , the last byte 
transferred is the last byte in the f i le .  

For the examples, assume the f i le  P ICTURE has at least two h igh
reso lut ion pictu res i n  i t ,  each 8 1 92 bytes long .  The f i rst example 
shown above places the fi rst 8 1 92 bytes of P ICTURE into the f i rst 
h igh-reso lut ion p icture area, which starts at memory locat ion 8 1 92 
(dec i mal) .  The second example moves the second p icture,  start i ng  
a t  byte posit ion  $2000 (8 1 92) i n  t he  f i l e ,  i nto the  second h igh 
resolut ion p icture area, wh ich  starts a t  memory locat ion $4000 
( 1 6384), and ends at memory locat ion $5FFF (24575) .  

Possible Errors: 

· · : ... · T :-··: 1- ' ; .:. =  ... : ; ·: 
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The ProDOS Technical Reference 
Manual explains the many s imi lar i t ies 
between ProDOS and Apple I l l  SOS 
(Sophist icated O perat ing System). 

DOS, ProDOS, and 
Applesoft 

About This Appendix 

This append ix summarizes the d ifferences between DOS and 
ProDOS. I n  so doing ,  i t  responds to th ree part icu lar  q uer ies :  

• How do I tel l what types of d isks each of my programs can use? 

• How do  I tel l which f i les can be converted from DOS to ProDOS 
and which can be converted from ProDOS to DOS? 

• I a l ready know about DOS.  What 's  so d ifferent about ProDOS? 

The f inal part  of th is  append ix l ists the effects of ProDOS upon 
some of the Applesoft commands.  

DOS Disks and ProDOS Disks 

The f i rst q uest ion ,  " How do I tel l what types of d isks each of my 
programs can use?" is  a good one.  I t  i s  not the program , but  the 
way the program is  stored on a d isk ,  that determ ines the types of 
d isk d rives the program can use. 

I f  a d isk is  formatted using the DOS command I N I T, the programs 
on that d isk use DOS, and DOS can use on ly Disk I I  Dr ives. 

I f  a d isk is  formatted us ing the ProDOS Fi ler, the programs on that 
d isk use ProDOS, and ProDOS can use al l d isk d rives made by 
Apple Computer, I nc .  for the Apple I I .  

The q uest ion becomes: " H ow do I tel l i f  a d isk i s  DOS-formatted , 
ProDOS-formatted , or other?" 

DOS Disks and ProDOS Disks 



This problem on ly exists for D isk I I  d isks:  a D isk I I  d isk could be 
formatted for ProDOS, DOS 3 .3 ,  DOS 3 . 2 . 1 (or an earl ier version) ,  
Apple I I  Pascal , or i t  cou ld  be unformatted . ( I f  you have an 
Apple I l l ,  the d isk could be SOS-formatted . In this case i t  is  
i nterchangeable with ProDOS d isks. )  

• I f  i t  is  a Disk I I  d isk ,  and the name on the label beg ins  with a 
s lash,  it is ProDOS-formatted . 

• If it is a D isk I I  d isk ,  and the name on the label doesn ' t  beg i n  
with a s lash , fol low the  proced ure g iven below. 

Run the ProDOS F i ler  and t ry the opt ion L.. I ::::; T !: :' !? U L>:::<::; 

[:! J:i? E:: c:: ·r c:! F: \' . If that works, it is a ProDOS-formatted d isk .  
I f  i t  doesn ' t  work ,  t ry us ing the DOS-ProDOS Convers ion P rogram . 
Set the d i rect ion to DOS -> ProDOS and then t ry to t ransfer f i les .  I f  
the program reads i n  a l ist of f i les, i t  is a DOS d isk .  I f  that doesn ' t  
work ,  the d isk could be b lank ,  copy-protected , or  i t  cou ld be an  
o ld vers ion o f  DOS that used yet another method o f  storage. 

I f  you can ' t  l i st or catalog the f i les ,  t ry start i ng  up  the d isk .  I f  i t  
doesn ' t  start up ,  the program was probably stored on the d isk 
us ing an o ld version of  DOS.  To use th is  d isk ,  you need to use the 
DOS 3 .3  d isk labeled BASICS (wh ich you get when you buy DOS) 
and fo l l ow the i nstruct ions i n  The DOS Manual. I f  the d isk st i l l  
doesn ' t  start u p ,  e ither t h e  d isk isn ' t  formatted , or t h e  i nformat ion  
on the d isk is  damaged and is  not readable .  

I f  you aren ' t  able to l i st a d isk 's  f i les,  but  the d isk starts up ,  the 
d isk cou ld be an Apple I I  Pascal d isk ,  some other language, or i t  
could be copy-protected . You probably have an i nstruct ion manual  
that tel ls about the f i lenames the program can use.  I f  i t  ment ions 
pathnames or prefixes, i t  is  wr i t ten usi ng  ProDOS;  i f  i t  uses s ing le 
f i lenames, i t  could be a DOS d isk .  

By the Way: O n c e  you deter m i n e  a d isk's type, label t h e  d isk w i t h  its 
type for future reference. Always use a soft-t i pped pen when wri t i n g  on 
a d isk's  label . 

Converting Files 

ProDOS programs and data can use a l l  types of d isks made by 
Apple Computer, I nc .  for Apple I I computers, whereas DOS 
programs can use on ly Disk I I  d isks. In  add it ion ,  programs written 
using ProDOS read i nformat ion  from d isks and write i nformat ion  
to d isks considerably faster than the i r  DOS equ ivalents.  
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Table B- 1 .  Fi le Conversion 

Using the DOS-ProDOS Convers ion P rogram , descr i bed in the 
ProDOS User's Manual, you can convert f i les from DOS format to 
ProDOS format, and back agai n .  Tab le B- 1 shows the 
correspondence between DOS and ProDOS f i les .  

Contents of F i le  DOS Type ProDOS Type 

Text T .... TXT 
B inary B .... B I N  
Applesoft Program A .... BAS 
I n teger BASIC Program .... I NT 
Relocatable Code F i le  R .... REL 
Other  (ProDOS on ly) B <-- XXX 

When converted , text and b i nary fi les are i m med iately usable by 
programs of the other type. Applesoft f i les usual ly have to be 
mod if ied before they can be used . The fo l l owi ng  sect ions expla in  
the changes you must make when mod ifyi ng  a DOS program . 

The Differences Between DOS and ProDOS 

There are th ree main  areas of d ifference between DOS and 
ProDOS. F i rst , ProDOS is  an ent i rely d ifferent program from DOS:  
i t  uses d ifferent code and d ifferent parts of  the Apple l l ' s  memory. 
Any DOS program that makes use of specif ic locat ions or  rout i nes 
in DOS wi l l  not work i f  converted . L i kewise, programs that p lace 
assembly-language rout i nes in memory may have to be changed 
so they don ' t  overwrite parts of memory used by ProDOS. Detai ls  
on the parts of memory used by ProDOS, and on the use of a l l  the 
ProDOS rout i nes ,  are g iven i n  the ProDOS Technical Reference 

Manual. 

The second major d ifference is the confl ict i ng  f i lename 
convent ions and f i le  organ izat ions used by DOS and ProDOS. I t  is  
l i kely that you wi l l  have to mod ify both when convert i ng  a program . 
I n  add it ion ,  ProDOS does not support volume n u m bers. If you r  
program uses them , you wi l l  have to mod ify i t  to use volume names 
i nstead . 

The th i rd d ifference is the command structure. S ix DOS 
commands no  longer exist ,  fourteen DOS commands have been 
improved , and e ight  ProDOS commands are new. Of these 
changes, on ly the commands that have been el im i nated wi l l  affect 
the programs that you are convert i ng .  
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The PREFIX command is expla ined i n  
Chapter 3 .  

File Organization and Names 

This sect ion assumes that you are fam i l iar with the organ izat ion  
and names of  ProDOS f i les .  I f  you are  not ,  read Chapter 2 of  th is  
man ual . 

If a program refers to other f i les - for example ,  if it creates and 
uses a random-access text f i le ,  or if i t  cha ins to another program 
- then i t  is  l i kely that you wi l l  need to change the way that the 
program names these fi les. 

F i rst, the f i lenames i n  a converted program m ust al l be changed to 
ProDOS f i lenames: they can be no more than 1 5  characters long ,  
consist on ly of  letters, d ig i ts ,  and per iods, and m ust beg i n  w i th  a 
letter. 

Second ,  when the prefix is em pty, ProDOS and DOS can use 
f i lenames in exactly the same way: each fi le has a f i lename, and the 
d isk contai n i ng  that f i le  can be specif ied us ing the slot and d rive 
opt ions .  Thus ,  i f  a converted program uses ProDOS f i lenames, i t  
can  work without further mod if icat ion to the f i lenames, but  on ly i f  
the prefix is  empty. The prefix is  em pty immed iately after you start 
up  ProDOS,  and i t  also is empty after you use the command 

However, i t  is  preferable not to wr i te or  use programs that use fi les 
in th is  manner. Such programs place al l f i les into a d isk 's  volume 
d i rectory. Because a d isk 's  vol ume d i rectory can  hold no  more 
than 5 1  fi les, it soon f i l l s  up  if programs don ' t  use d i rector ies of 
the i r  own . You should revise each program so that i t ,  and a l l  i ts 
f i les ,  are stored in a separate d i rectory. 

DOS lets you ass ign a volume num ber to a d isk when you i n i t ia l ize 
it . ProDOS does not support volume num bers. To mod ify a 
program that uses volume num bers, ident ify each d isk by its 
vol ume name, not num ber. 
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See the ProDOS Technical Reference 
Manual for more detai ls on open f i les.  

DOS Commands That Went Away 

Six DOS commands are not supported by ProDOS.  They are 

FP 
I N T  

FP and /NT 

I N IT  
MAXFI LES 

M O N  
N O M O N  

Because ProDOS supports on ly Applesoft BAS IC ,  i t  has no  need 
for commands that switch from one vers ion of BAS IC to another. If 
you use these commands,  you get a ·:::: \ '  ! · ! 

/NIT 

Because of the d i fferent types of d isks that m ust be i n i t ial ized , i t  
wou ld  take up too much memory space for ProDOS to have a bu i l t
i n  formatt i ng  command l i ke I N IT. Thus ,  I N IT is replaced by a 
command i n  the ProDOS F i ler. Because you can no  longer format 
a d isk from with i n  a program , it is now essent ia l  that you always 
have an adeq uate supply of b lank formatted d isks.  

Us ing I N IT you could ass ign any name to the g reet i ng  program on a 
d isk ;  with ProDOS, a greet i ng  program must be named STARTU P. 
However, ProDOS lets you use a BASIC ,  mach ine- language, or  
EXEC program as the STARTUP program ; with DOS,  on ly BASIC 
g reet ings were possi b le .  

I f  ProDOS encounters the I N IT com mand i n  a program , i t  g ives you 
:···· :···. :··· . .  ···. :··· a :::. Y r··l l  j···j ,:·:, t: 

MAXFILES 

With DOS,  the maximum n u m ber of f i les that could be open at 
once was th ree by defau l t ;  th is  could be raised as h i gh  as 1 6  by 
usi ng  the MAXFI LES comman d .  With ProDOS,  any program can 
have up to e ight  f i les open s imu l taneously. A 1 024-byte f i le  buffer 
is  a l located to each fi le (or 5 1 2  bytes to a d i rectory f i le) when i t  is 
opened . 

The MAXFI LES com mand is not supported by ProDOS,  but  it wi l l  
not cause a n  error. 

The maxi mum BAS IC program size for a 64K Apple I I  is  

$AOOO - $400 * Maxi mum n u m ber of open f i les 
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Refer to the specific command 
summary i n  Append ix A for the new 
syntax. 

MON and NOMON 

With DOS,  the commands M O N  and N O M O N  a l lowed you to 
d isplay al l d isk commands,  d isk i n put ,  and d isk output without 
pr i n t ing  them . These commands are not supported by ProDOS.  
MON has been completely removed . I f  you r  program uses M O N ,  
you wi l l  get a �:: ·/ r ru:r.,: ::::T: !;:: c r::: . N O M O N  is ignored b y  ProDOS,  
but  wi l l  not cause an error. 

Improved DOS Commands 

Fou rteen DOS commands received face l i fts.  A l l  can be used i n  the 
same manner as with DOS,  so you don't  have to change them 
when convert i ng  a program , but  each has added featu res. The 
fol l owi ng sect ions descr i be the new capab i l i t ies of these 
commands.  

The improved commands are 

APPEND 
CATALOG 
PR# 
RUN 

APPEND 

B LOAD 
CHAI N 
OPEN 
WRITE 

BRUN 
CLOSE 
POSIT ION 

BSAVE 
I N #  
READ 

The APPEND command has two new uses.  You can now use i t  to 
append new data to any type of f i le. You can use i t  also to append 
data start i ng  at the beg i nn i ng  of the record i m med iately fol lowing  
the last log ical record i n  a random-access text f i le .  

BLOAD 

The B LOAD command has th ree enhancements. You can now use 
i t  to load the b i nary i mage of any type of fi le, not j ust b inary f i les. 
With DOS you had to load an ent i re b inary fi le i nto memory. With 
ProDOS you can load any port ion  of a f i le .  I n  add it ion ,  you have 
the opt ion  of specify ing the n u m ber of bytes to be transferred as a 
start add ress and an end add ress i n  memory, or as a start add ress 
and the number of bytes to be transferred . 

BRUN 

As with B LOAD, you can load any port ion of a b inary f i le  i nto 
memory and run i t .  The number of bytes can be specif ied using a 
start and an end address, or as a start add ress and the n u m ber of 
bytes to be transferred . 
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BSAVE 

You can now transfer (us ing BSAVE) i nformat ion  stored i n  memory 
i nto any type of f i le .  The n u m ber of bytes to be saved can be 
specif ied us ing a start add ress and an end add ress, or  as a start 
add ress and the num ber of bytes to be transferred . 

CATALOG 

You can now abbreviate the CATALOG com mand as CAT. 
CATALOG shows you an 80-co lumn d isplay of f i le  i nformat ion ,  and 
CAT shows you a 40-co lumn d isplay of i nformat ion .  Both show you 
the contents of a s ing le  d i rectory; thus you m ust specify the name 
of the d i rectory whose contents i nterest you .  I f  you omit a 
f i lename, you see the contents of the prefix d i rectory. 

I n  add i t ion ,  CATALOG now d isplays i nformat ion  about the f i le 's  
log ical end of f i le ,  the f i le 's  record length (random-access text 
f i les); the f i le 's  last load add ress (b i nary f i les); and the dates when 
the f i le was created and last mod if ied . 

CHAIN 

The CHAI N command now works for Applesoft programs (wi th  
DOS i t  d i d  not) .  I n  add it ion ,  one program can chai n to any l i ne of  
another program , not just to the beg i nn i ng  of a program as before. 

CLOSE 

Now you must close a f i le  from with i n  a program . Fai l u re to do so 
can resu l t  i n  loss of data. 

IN# and PR# 

You can now use these commands to des ignate mach ine- language 
rout i nes stored in memory as the character i n put  and output 
rout i nes. You can also use them to set the add ress of a s lot 's 
1 /0 rout i nes. 

OPEN 

You can now use the OPEN command to open any type of f i le  for 
access. Fi le buffers are now a l located when the f i le is opened , 
i nstead of i n  response to the MAXFI LES com mand ,  as with DOS.  
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Append ix A contains summaries of 
these commands.  

POSITION 

The POSIT I O N  command now uses either the F# opt ion or the 
R# opt ion to read and d iscard the specif ied number (#) of f ie lds 
from a f i le .  The F# opt ion is  consistent with the ProDOS def i n i t ion  
of  f ields ;  the R# opt ion  is  for  DOS compat i b i l ity. 

The ProDOS vers ions of READ and WRITE al low you to specify the 
n u m ber of f ie lds and bytes to be read and d iscarded .  Thus ,  the 
POSIT I O N  command is  not requ i red by ProDOS;  i t  is  reta ined for 
compat i b i l i ty with DOS.  

READ 

With DOS,  the READ command a l lowed you to use the B# opt ion 
to posi t ion forward a num ber of bytes before performing  a read . 
The ProDOS vers ion of READ al lows you to use the F# and 
B# opt ions to posi t ion forward a number of f ie lds and bytes. This 
makes the POSIT ION command unnecessary for READ (and also 
for WRITE). 

RUN 

The ProDOS vers ion of the RUN command a l lows you to specify 
the l i ne number at which the program is to start runn i ng .  

WRITE 

The ProDOS vers ion of the WRITE command al lows you to use the 
F# and B# opt ions to posi t ion forward a n u m ber of f ie lds and 
bytes. 

New ProDOS Commands 

I n  add it ion  to the usual DOS commands,  ProDOS su pports e ight  
new commands.  They are 

CAT 
STORE 

CREATE 
RESTORE 

FLUSH 
- (DAS H)  

PREF IX 
FRE 

The fol lowing sect ions g ive br ief summaries of  each of  these new 
commands.  
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CAT 

CAT d isplays 40 columns of d i rectory f i le  i nformat ion ,  wh i le  
CATALOG d isplays 80 columns .  Both commands d isplay 
f i lenames, the i r  types, lengths ,  and last mod if ied dates. CATALOG 
add it iona l ly d isplays the date the f i le  was created , each f i le 's 
logical end of f i le ,  and add i t ional  storage i nformat ion  ( record 
length for random-access text f i les, and last load add ress for 
b inary f i les). 

CREATE 

The CREATE command a l lows you to create a f i le  of any type, but  
i t  is  pr imar i ly used to create d i rectory f i les. BASIC (type BAS) ,  text 
(type TXT), and b inary (type B I N )  f i les are automat ical ly created by 
the SAVE,  OPEN ,  and BSAVE commands,  respect ively. Text f i les 
can also be created by the APPEND comman d .  Var iab le f i les 
(type VAR) are created by the STO RE command .  

You do not have t o  specify t h e  size of a created fi le.  Additional blocks 
are added to a tile as they are needed . 

FLUSH 

The FLUSH com mand causes al l data that may be tem porari ly 
stored i n  a f i le 's  buffer to be written to the f i le .  Usi ng  the FLUSH 
command after every statement that pr in ts data to a f i le  ensures 
that no data wi l l  be lost i f  the program is  acc idental ly stopped . I t  
also s lows down a prog ram s ign i f icant ly. 

PREFIX 

The PREF IX command al lows you to set the name of the d i rectory 
that contai ns the f i les with which you are work i ng .  With the prefix 
set , all f i les you name are assumed to be in that d i rectory. 

I f  the prefix is  empty, f i les are assumed to be i n  the main  d i rectory 
of the d isk i n  the last referenced s lot and d rive. I n  th is  case, 
ProDOS f i lenames work exact ly l i ke DOS f i lenames. 

STORE and RESTORE 

The STO RE command places the names and val ues of a l l  the 
var iables currently defi ned by a BASIC program i n to a var iab le f i le  
(type VAR). The RESTO RE command adds the contents of  a 
var iab le f i le  to the var iab les that are cu rrently i n  memory. 
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FRE command :  see the sect ion 
"Changes to Applesoft . "  

U s i n g  H I MEM to place machine
language rout ines safely i n  memory: 
see the ProDOS Technical Reference 

Manual. 

Refer to the sect ion " H ig h-Resolut ion 
Graphics With ProDOS" i n  Chapter 9 .  

- (DASH) 

This command ,  consist i ng  of a s ing le  character, is  cal led the DAS H 
command .  I t  is a gener ic RUN command ,  a l lowing you to run a 
BASIC ,  b i nary, EXEC, or system program . It does not let you use 
any of the specif ic opt ions afforded by the RUN ,  BRU N ,  or EXEC 
commands.  

FRE 

The FRE command lets you use the fast housekeep ing rout i nes 
that ProDOS has. 

Changes to Applesoft 

I n  order to keep a congenia l  work ing relat ionsh i p  between 
ProDOS and Applesoft , i t  is necessary for ProDOS to i ntercept 
and perform some of the com mands usual ly performed by 
Applesoft . The fol lowi ng sect ions expla in  the new en hancements 
or  restr ict ions upon these ten com mands:  

H I M  EM 
I N PUT 
N OTRACE 

HIMEM 

HGR 
I N #  
FRE 

HGR2 
PR# 

TEXT 
TRACE 

Each t ime a f i le is opened , ProDOS uses the H I MEM set t i ng  to 
determ ine  where i t  should p lace the f i le 's  1/0 buffer. Because 
ProDOS manages memory in 256-byte chunks,  you must always 
make sure that H I MEM ind icates a 256-byte ($ 1 00) boundary i n  
memory. 

HGR, HGR2, and TEXT 

Because the Apple l l ' s two h igh-resol ut ion pages take up  a 
considerable port ion of the Apple l l ' s  memory, ProDOS normal ly 
uses them as Applesoft program memory. I f ,  however, you use the 
HGR or HGR2 command (or both) ,  the Applesoft program ( i f  any) is  
cleared out of  the correspond ing  g raph ics page.  The g raph ics 
pages remain  reserved for g raph ics un t i l  the TEXT command is  
issued . 
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INPUT 

The Applesoft I N PUT command has been made more usefu l .  Th is 
command always reads an ent i re l ine of text , f rom either the 
keyboard or a f i le .  As before, mu l t i ple var iab les i n  an I N PUT 
statement are ass igned st r ings of characters that are separated by 
commas i n  the i n put str i ng .  When you use ProDOS, the last 
var iable in the I N PUT l ist is ass igned a l l  the remai n i ng  characters 
in the l i ne ,  i nc lud ing  commas and colons.  Th is  means that you can 
now use a s ing le  I N PUT statement ,  such as 

to read in any arb i t rary str ing  of characters. 

IN# and PR# 

If you use one of these commands from immed iate mode, it is a 
ProDOS comman d .  L i kewise, if you use one from wi th i n  a 
program , preceded by (coNTROL ) -@), i t  is  a lso a ProDOS 
comman d .  I f  you use IN# or PR# f rom with i n  a program wi thout  a 
lead ing  (CONTROL ) -@), i t  is  an Applesoft comman d ,  and wou ld  
cause ProDOS to become d isconnected if  i t  were executed . Thus ,  
ProDOS i ntercepts these Applesoft commands and ignores them . 

If you f ind that a PR# or I N #  command from wit h i n  a program is not 
havi ng the proper effect, you probably forgot the (CONTROL ) -@) . 

TRA CE and NOTRA CE 

These Applesoft commands d i d  not work with DOS.  They now 
have the i r  normal effect ,  descr i bed i n  the Applesoft BASIC 

Programmer's Reference Manual, on ProDOS commands as wel l  
a s  Applesoft commands.  

FRE 

I f  you use the FRE command with i n  a program preceded by a 
(coNTROL ) -@), i t  is a ProDOS comman d .  I t  is  an Applesoft 
command if  you use i t  in a program without the lead ing  
(CONTROL)-@) . I n  th is  case , housekeep ing takes p lace us ing the 
s low Applesoft rout i nes. 
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Error Messages 

21 1 Hand l i ng Errors From Applesoft 
214 Discussion of ProDOS Errors 
214 RANGE ERROR (Code 2) 
214 NO DEVICE C O N N ECTED (Code 3) 
215 WRITE PROTECTED (Code 4) 
215 END OF DATA (Code 5) 
217 PATH NOT FOU N D  (Code 6 or Code 7) 
217 1 /0 ERROR (Code 8) 
218 D ISK FULL (Code 9) 
218 F ILE  LOCKED (Code 1 0) 
218 I N VAL ID  OPTI O N  (Code 1 1 ) 
218 N O  BUFFERS AVA I LABLE (Code 1 2) 
219 F ILE  TYPE M ISMATCH (Code 1 3) 
220 PROGRAM TOO LARGE (Code 1 4) 
220 N OT D I RECT CO M MA N D  (Code 1 5) 
220 SYNTAX ERROR (Code 1 6) 
220 D I RECTORY FULL (Code 1 7) 
221 F ILE  NOT OPEN (Code 1 8) 
221 DUPL ICATE FI LENAME (Code 1 9) 
221 F ILE BUSY (Code 20) 
221 F ILE(S) STI LL  OPEN (Code 2 1 )  
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Table C - 1 .  Error Message Formats 

Refer to Chapter 5 of this manual and 
to the Applesoft BASIC Programmer's 
Reference Manual tor more detai ls 
about ONERR GOTO. 

Error Messages 

When ProDOS detects an error caused by one of its commands,  i t  
normal ly stops the program that is runn ing and d isplays a 
message descri b ing  the error. These messages are i n  add it ion  to 
the usual messages generated by Applesoft . The source of an 
error messages is  i nd icated by the character that precedes the 
message.  Tab le C- 1 i l l ustrates these characters. 

Applesoft Message ProDOS Message 

I f  a ProDOS message occurs when you are us ing the Mon i tor, the 
system is  reset to BASIC before the message is  d isp layed . 

Handling Errors From Applesoft 

Using Applesoft 's  ON ERR GOTO command ,  you can write 
Applesoft error-hand l i ng  rout i nes to correct ProDOS and 
Applesoft errors that wou ld  normal ly i nterrupt your  program . 

When a ProDOS or Applesoft error occurs fo l l owing  an O N ERR 
GOTO command i n  an Applesoft program , a code number for  the  
type of  error is  stored i n  decimal memory locat ion 222 .  The 
statement 

.· .···, .···, .·-, · .. 

sets the value of t::. to the code of the offend i n g  error. The n u m ber 
of the Applesoft program l i ne being executed at the t ime of the 
error can be found  i n  decimal locat ions 2 1 8  and 2 1 9 . The 
statement 

sets the value of L . .  to that l i ne num ber. 
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Table C-2. ProDOS Error Codes 

The ProDOS error messages, the i r  codes, and the most common 
cause for each are descr i bed i n  Table C-2.  Table C-3 shows which 
error messages are caused by each of the ProDOS commands.  
The P roDOS error messages are d i scussed i n  g reater detai l  later 
i n  this append ix .  The Applesoft error codes and the i r  
correspond ing  messages are shown i n  Table C-4. 

Code 

2 
3 
4 
5 
6 
7 
8 
9 

1 0  
1 1  
1 2  
1 3  
1 4  

1 5  
1 6  
1 7  
1 8  
1 9  

20 
2 1  
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Most Common C�use 

Command opt ion too smal l or large. 
No  device found i n  specif ied slot .  
Write-protect tab on d isk .  
Read beyond end of  f i le  or  record . 
No f i le  with i nd icated pathname.  
No  f i le  with i nd icated pathname. 
Door open , or  d isk not formatted . 
Too many f i les on  a d isk .  
Attempt to wr i te to a locked f i le .  
Opt ion inappropriate for command . 
Memory fu l l ,  f i le  can ' t  be opened . 
D isk f i le  wrong type for command .  
Apple l l ' s memory too  smal l 
(CHAIN) .  
Command m ust be i n  a program . 
Bad f i lename, opt ion ,  or comma. 
Volume d i rectory has 51 f i les .  
Attempt to access a closed f i le .  
RENAME,  CREATE name al ready 
used . 
F i le  al ready open .  
Last program d idn ' t  c lose f i le(s). 
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Table C-3. Errors by ProDOS Command 

02 03 04 05 06 07 08 09 1 0  1 1  1 2  1 3  1 4  1 5  1 6  1 7  1 8  1 9  20 2 1  

APPEND X X X X X X X X X X X X 

BLOAD X X X X X X X X X 

BRUN X X X X X X X X 

BSAVE X X X X X X X X X X X X 

CAT X X X X X X X X X X 

CATALOG X X X X X X X X X X 

C H A I N  X X X X X X X X X X X 

CLOSE X X X 

C REATE X X X X X X X X X X X 

DELETE X X X X X X X X X X 

EXEC X X X X X X X X X 

FLUSH X X X X 

FP X X 

FRE X 

I N T  X X 

I N #  X X X X 

LOAD X X x X X X X X X 

LOCK X X X X X X X X 

OPEN X X X X X X X X X X X X X 

POSITIO N  X X X X X X X 

PREFIX X X X X X X X X 

PR# X X X X 

READ X X X X X X X 

RENAME X X X X X X X X X X X 

RESTORE X X X X X X X X X 

R U N  X X X X X X X X X X X 

SAVE X X X X X X X X X X X X 

STORE X X X X X X X X X X X X 

U N LOCK X X X X X X X X 

WRITE X X X X X X X X X 

- X X X X X X X X X X X X X 
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Table C-4. Applesoft Error Codes 

Refer to the Applesoft BASIC 

Programmer's Reference Manual for 
more i nformat ion about the Applesoft 
error codes. 

Code Error Message or Descript ion 

0 , ., , .:· . i 
.. 

! ·.! T ·:· !· : ::: , ! ; · : ···· , , , ,  

1 6  ·:::· '· ' '
. ! .. ::::: :· ·' :::. : · . '···: : ... ' '··' 

22 ::::: i:::: ·r :  . .  .: i? i···i i ·.: .t � � i ' ' '·..i , ,-·:: ; <:: : ; ;:::· 

42 ; l i  . ..i j ::::: ;···· ::: .. , : : : :  

53 I !  ···· , ., ,. .. , ' - " , ,  ... , ,. .. ! ; · · 

69 ' "· ;:::· ::;:· ::::· : . . , . 
77  
90  

1 07 

... . . ..... ... .... . 
i_) : __ _; i :_..: ;-·· i ' i i:::. i · ; :_..: ;-:· 

... ! ;-··; ; :··· 

i::.: : : : :  · ... ' '  ... ; ;  .... .... ' '··· ; ·  .. ,;, ; 

1 20 i? E C  '· , ,  ' r:; : :·, ,  .. ,. 
1 33 
1 63 
1 76 
1 9 1  
224 

: : ; ... :·. ·  

i:::· :. : 

254 Bad response to an I N PUT statement .  
255 (coNTROL ) -@) i n terrupt attem pted . 

Discussion of ProDOS Errors 

The fo l l owi ng  sect ions l ist the ProDOS errors, the i r  probable 
causes, and possi b le cu res. 

RANGE ERROR (Code 2) 

Occurs when the value of an ProDOS command opt ion is  too large 
or  too smal l .  Table A- 1 shows the maximum and m in imum values 
for each opt ion .  

Note: T h e  u s e  o f  val ues outside t h e  i n d i cated ranges d oes n o t  always 
cause the F: H i ··i C F  f::: G:Y: C; G:: message. Any ProDOS command opt ion 
that is  less than 0 or greater than 65535 causes the ·:: ';' !· i T A >: f::: i? i? C F  
message,  not the :;:: t=H· ; c; r.::: ::::: ::::op c F: message. 

NO DEVICE CONNECTED (Code 3) 

Occu rs when you specify a slot that doesn ' t  contai n a card ; a slot 
that contai ns a card not con nected to its device; or i f  there is no 
d isk in the d r ive (some d rives on ly). 
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If you get th is  error when us ing a device for the f i rst t ime,  go 
through the device's i nstal lat ion i nstruct ions agai n .  I f  you have 
used the device before and you get th is  error :  

1 .  You might have specif ied the wrong slot ;  try the command 
agai n .  

2 .  Turn off you r  Apple I I ,  open i t ,  a n d  gent ly rock t h e  device' s  card 
back and forth unt i l  i t  is  f i rm ly seated . Close the Apple I I ,  start 
up ProDOS, and try again .  

3 .  I f  the problem persists, consu l t  you r  dealer. 

WRITE PROTECTED (Code 4) 

Occurs when ProDOS attempts to store i nformat ion on a d isk ,  and 
the d isk d rive does not detect a write-enable notch or cutout on 
the d isk 's  outer case. These are the most l i kely causes: 

• There is  an ad hesive label p laced over the d isk 's  write-enable 
notch to prevent the writ i ng  or delet ion of i nformat ion on the 
d isk .  Remove th is  label ,  and the d isk is  no longer protected . 

• There is no write-enable notch on the d isk .  Th is  i s  true of the 
or ig i nal  copy of the /EXA M P LES d isk ,  for example.  I f  you are 
sure you no longer need the or ig i nal  d isk ,  you can cut a notch i n  
t h e  d isk 's  case you rself. Use another d isk 's  notch a s  a template. 

END OF DATA (Code 5) 

Occurs when you try to retr ieve i nformat ion from a port ion of a 
text f i le  where no i nformat ion has ever been stored . Any byte 
beyond the last f ie ld in a sequent ia l  text f i le ,  or  beyond the last 
f ie ld of any record of a random-access text f i le  contai ns the 
value 0 .  Zero is  the ASC I I  code for a nu l l  character, a nothing; any 
command that causes the retr ieval of  th is  character resu lts i n  the 
E i·-; u C+ u :=rr H message.  The message usual ly occurs after an 
I N PUT or a GET command;  i t  can ar ise i n  several d ifferent ways: 

• Too many successive I N PUTs or an I N PUT with too many 
var iab les. Each I N PUT statement causes at least one add it iona l  
adjacent f ie ld to be read i nto the Apple I I .  Each I N PUT variab le 
causes one add it ional  adjacent e lement to be read into the 
Apple I I .  

• Too many successive GETs . Each GET reads one add it iona l  
adjacent byte or character i n to the Apple I I .  
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II 

• The B# (Byte) opt ion i n  a READ or POSIT ION command is too 
large. In sequent ia l  f i les ,  this opt ion must not specify a byte 
beyond the last (RETURN )character in the f i le .  In random-access 
f i les, the B# opt ion must not specify a byte beyond the last 
(RETURN)  character i n  the current ly selected record . Remem ber, 
the f i rst byte i n  a f i le  or a record is byte 0 .  

• The F# (F ie ld )  opt ion  i n  a READ or POSIT ION command is  too 
large. In seq uent ia l  f i les ,  this option m ust not specify a f ield 
beyond the last exist i ng  f ie ld in the f i le. In random-access f i les, 
POSIT I ON 's  F# opt ion m ust not specify a f ie ld beyond the last 
exist i ng  f ie ld in the currently selected record . 

READ and POSIT ION scan forward th rough the contents of the 
f i le ,  byte by byte, look ing  for the F#-th (RETURN)character. I f  
e i ther  encounters a 0 byte (the nu l l  character) before f i nd i ng  the 
requ i red (RETURN )character, the E r -! L) :::>:: f.:i H T !4 message is g iven 
i m med iately: i t  is  not necessary actual ly to I N PUT or  GET the 
nu l l  character. 

• The F# (F ie ld)  opt ion i n  an EXEC command is too large. Th is  
opt ion can specify the f i rst f ie ld  beyond the last exist i ng  f ie ld  in  
a f i le ,  but  attem pt i ng  to specify the second f ie ld  beyond the 
f i le 's  end causes the E:: r·-! Ci Ci F-- [) i:::! "T. H message. Remem ber, 
RO specif ies the f i rst f ie ld i n  a f i le .  

• The R# (Record) opt ion in  a READ command specif ied a 
random-access f i le  record i n  which noth i ng  is yet stored . Before 
you can READ from a part icu lar record in a random-access f i le ,  
you m ust f i rst WRITE some i nformat ion  in to  that record . RO is  
the f i le 's  f i rst record , and so on .  

ProDOS uses the OPEN command 's  L# opt ion for calcu lat i ng  
where t he  R#-th record beg ins ,  so  t he  OPEN preced i ng  READ 
m ust use the same L# opt ion  value as  the OPEN that preceded 
WRITE for that f i le .  I f  no L# opt ion is  specif ied , the L# with which 
the f i le  was or ig ina l ly opened is  used . 
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PATH NOT FOUND (Code 6 or 7) 

Occurs when a ProDOS com mand specif ies a val id  pathname that 
does not i nd icate an exist i ng  f i le ,  or when it specif ies an i nval id  
pathname. 

Th is  message may arise i n  var ious ways: 

• You acc idental ly m isspel led an element of the path name. 

• You used a part ia l  pathname that doesn ' t  apply to the current 
prefix. 

• You used a partial pathname, and the d isk i nd icated by the 
prefix is  no longer on l i ne .  

• The specif ied f i le does not yet exist .  

1/0 ERROR (Code 8) 

Occurs after an unsuccessfu l  attempt to store data or retr ieve data 
(ProDOS tr ies 96 t imes, then g ives up) .  This message can occur  i n  
t h e  fol lowing ways : 

• The selected or defau l t  d r ive 's  door is open . Close the door of 
the d isk dr ive. 

• There is no  d isk i n  the d isk dr ive i nd icated by S# and D#.  Put  a 
d isk i n to the d r ive and close the d rive door. 

• The d isk i n  the selected or defau l t  d isk dr ive is not formatted . 
Use the ProDOS Fi ler  to format the d isk .  

• The d isk is  i ncorrectly seated i n  the d isk dr ive. Open the dr ive 
door, pu l l  the d isk out ,  put it back i n ,  c lose the door, and t ry 
agai n .  

• T h e  ProDOS command 's  D# (Dr ive) opt ion specif ied a non
existent d isk d rive. The defau l t  d r ive is  now the non-existent 
d r ive. J ust specify the correct D# option with the next ProDOS 
command to reset the defau l t .  

• The system is t ryi ng to access a 1 3-sector d isk .  Use the 
DOS 3.3 program MUFF IN  to update your  d isk to 16 sectors. 

• A ProDOS command 's  S# (S lot) option specif ied a slot that 
does not contai n a d isk control ler card , or the snum opt ion of 
PR# or I N #  specif ied a slot that contai ns no  card . 
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Refer to Append ix  A to see what 
options go with which commands. 

The defau l t  value of S# now i nd icates a slot that doesn ' t  exist .  
F i rst , you m ust get a prompt back ,  then you m ust reset S#.  To 
reset the slot correctly: 

1 .  Press (coNTROL)- (RESET ) .  

2 .  I f  you see a Mon itor prompt ( * ) , press (coNTROL)-@)(RETURN ) .  

3 .  Type c: :=: T H_ U C  :::; :fi: .. D i* .  T h i s  t ime use a val id  slot n u m ber. 

DISK FULL (Code 9) 
Occurs when ProDOS attempts to store i nformat ion  on a d isk and 
f inds that no  more storage space is  avai lab le on that d isk .  The 
n u m ber of free b locks on a d isk is  i nd icated when you d isp lay the 
catalog of the d isk 's  volume d i rectory. I f  you receive the [l I :=.:y: 

F U L L. message,  rest assured that al l f i les are c losed , and 
that ProDOS saved for you al l i t  cou ld  ( leaving  you with some 
port ion of you r  f i le  not on the d isk) .  I f  you receive th is  message 
whi le  savi ng  a f i le  called STUFF,  the f i rst th i ng  you shou ld do is 

and then save your  program on another d isk that has u nused 
room.  

FILE LOCKED (Code 10) 
Occurs when you t ry to APPEND ,  BSAVE,  DELETE,  RENAME,  
SAVE,  STORE,  or WRITE a locked f i l e .  Check the CATALOG 
d isplay: the names of locked f i les are preceded by an aster isk ( * ) . 
F i les are locked to prevent the i r  being  acc idental ly overwritten .  
Use another d isk or un lock the desi red f i le .  

INVALID OPTION (Code 1 1) 

Occurs when you use an opt ion that is e ither non-existent or that 
i s  i nappropr iate for the g iven comman d .  

NO BUFFERS AVAILABLE (Code 12) 

When a f i le  is  opened by the APPEND ,  CAT, CATALOG, EXEC, 
OPEN ,  or - (DASH)  comman d ,  a 1 K buffer in memory is  ass igned 
for the temporary storage of data and f i le  i nformat ion .  There can 
be a maximum of eight f i les open at a t i me.  This error can occur  i f  
one of these commands is  used when e ight  f i les are al ready open ,  
or  i f  there is  not  enough  free memory for  a buffer to be ass igned .  
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The CATALOG, EXEC, and - commands a l locate buffers, use 
them , and then release them;  the OPEN command creates a buffer 
that exists un t i l  i t  is released by a CLOSE comman d .  F i les are not 
automatical ly c losed when a program comes to an end .  

I f  you get th is  error, you can not use any o f  these commands un t i l  
you close one o f  the  open f i les. 

This error also occurs i f  you t ry to B LOAD a f i le  into the port ion of 
memory used by the system (above H I M EM or below LOM EM) .  

FILE TYPE MISMATCH (Code 13) 

Occurs when a ProDOS command expects to use one type of f i le ,  
and the specified f i le  is of another type. Th is  message ar ises from 
several d i fferent i ncorrect com b inat ions of ProDOS commands 
with exist i ng  f i le types. Here are the correct com bi nat ions :  

Command 

CATALOG pn ,  PREFIX pn 

LOAD pn ,  RUN pn ,  SAVE pn,  
CHAIN pn 

RESTO RE pn ,  STO RE pn 

EXEC pn 

OPEN pn ,  APPEND pn 

BRUN pn 

B LOAD pn ,  BSAVE pn 

- pn 

Fi le Type 
pn must be a d i rectory f i le  (D I R). 

pn m ust be an Applesoft program 
fi le (BAS).  

pn m ust be an Applesoft var iable 
f i le (VAR) .  
pn m ust be a text f i le  (TXT). 

pn m ust be a text f i le  (TXT) un less 
Ttype is  used , then f i le  type must 
match Ttype. 
pn m ust be a b inary f i le  (B I N) .  

pn m ust be a b i nary f i le  (B IN )  
un less Ttype is  used , t hen  f i l e  type 
must match Ttype . 
pn m ust be type BAS, B I N ,  TXT, 
or SYS. 

The f i le named STARTU P i n  the vol ume d i rectory of a startup  d isk 
m ust be of type BAS, B I N ,  TXT. 
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PROGRAM TOO LARGE (Code 14) 

Occurs when a ProDOS command attempts to p lace a d isk f i le  in to  
the App le  l l ' s memory, and f inds the ava i lab le  memory i nsuff ic ient 
to conta in  the ent i re f i le .  Th is  error can be caused by the CHAI N ,  
LOAD, RESTORE,  RUN ,  or - commands.  You ( o r  a previous 
program) may have set H I M E M  too low for the new program to f i t .  

I f  you get th is  error, you can spl i t  the program i nto smal ler  port ions 
and use the CHAIN command to transfer between one port ion of  
the program al\d the other. 

Remem ber that a program requ i res an add it ional  1 K  of memory 
for each f i le  that i s  s imu l taneously open .  

NOT DIRECT COMMAND (Code 15) 

Occurs when you t ry to use one of the text f i le  commands 
APPEND ,  OPEN,  POSITI O N ,  READ, or  WRITE from i rr.med iate
execut ion mode.  These ProDOS commands can be used on ly from 
with i n  P R I NT statements in program l i nes. 

SYNTAX ERROR (Code 16) 

Occurs when ProDOS encounters a syntax error i n  a ProDOS 
comman d .  Check the manual  or  the he lp screens for the exact 
syntax requ i red for the command in q uest ion .  The problem may 
be a pathname with i l legal characters i n  i t ,  an i ncorrect opt ion 
sym bol , a m issing opt ion ,  or  a m issing or  i ncorrect separator 
(usual ly a comma). This message also ar ises if an opt ion value  or 
command q uant ity is  a negat ive n u m ber or  i s  g reater than 65535.  

I f  a l l  ProDOS com mands i nexpl icably cause the ·::: ··! ' i· ·! T !=i ::< !:: !? f::· u f::· 

message,  ProDOS is not started u p  or is "d i scon nected " from 
i n put and output.  To restore, type C:: f=! U.... J. (}:;) ;:� from BASIC (from 
the Mon itor, press (coNTROL)-@)to enter BASIC ,  then type 
C fiL  . .  L.. :!. !::! (:! ;:� ) . I f  th is  doesn ' t  work ,  start up the d isk again .  

DIRECTORY FULL (Code 17) 

A ProDOS vol u me d i rectory f i le  can hold u p  to 5 1  f i les.  If a BSAVE,  
CREATE,  OPEN,  SAVE,  or  STORE command i nd icates a f i le  i n  a 
vol u me d i rectory that al ready conta ins 5 1  fi les, you get th is  error. 
To correct the error, save the fi le i nto another d i rectory or  onto 
another d isk ,  then use the Copy F i le  u t i l i ty to move some f i les from 
the vol u me d i rectory in to another d i rectory. 

Appendix C: E rror Messages 



FILE NOT OPEN (Code 18) 
Occurs when a command is issued that can on ly act upon an open 
f i le .  This error can be caused by the POSIT I O N ,  READ, and WRITE 
commands .  You must open a f i le  before us ing any of  these 
commands.  

DUPLICATE FILENAME (Code 19) 
Occurs when you CREATE or  RENAME a f i le  us ing a pathname 
that al ready exists.  

FILE BUSY (Code 20) 

Occurs when you CAT, CATALOG, DELETE, or RENAME a f i le  that 
is a l ready open . You m ust close a f i le before us ing one of these 
commands on that f i le .  

FILE(S) STILL OPEN (Code 21) 

Occu rs when program execut ion is i nterrupted whi le  one or more 
f i les are st i l l  open (for example ,  by another error or !coNTROL)-@)).  
You m ust close a l l  open f i les before you issue another  LOAD or 
RUN statement .  
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Extras 

About This Appendix 

This  append ix descr i bes the usefu l  programs that are stored i n  the 
d i rectory /EXA M P LES/EXTRAS. They perform the fo l l owi ng 
funct ions :  

• TIME a l lows you to read and set the system date and t ime so 
that you r  f i les are marked with the proper date.  

• READ. D I RECTORY is  an example of how to read from a 
d i rectory f i le .  

Using the System Date and Time 

ProDOS has two memory locat ions that contain the current date 
and t ime .  I f  you have a clock/calendar card , i nstruct ions for 
mak ing i t  work with ProDOS are in the sect ion "Us ing a 
Clock/Calendar Card " i n  Chapter 9 .  

I f  you don ' t  have a clock/calendar card , ProDOS takes whatever 
d ate and t i me are stored in the system date and t ime locat ions ,  
and marks a l l  created and mod if ied f i les with that t i me.  The 
program T I M E  is  an Applesoft program that a l lows you to read and 
set  the system date and t ime locat ions so that you r  f i les are 
marked with the current date and t ime .  

Using t h e  System Date and Time 



To set the t ime on a clock/calendar 
card , refer to the manual for the card . 

D$ is (CONTROL ) -@]. 
O p e n  d i rectory. 

Prepare to read 

d i rectory name, 

t i t le  l i ne ,  

b lank  l i ne ,  

l i nes of d i rectory, 

unt i l  a b lank is read . 

Pr int  block use and close d i rectory. 

Using TIME 

With the /EXA M P LES d isk i n  any d rive, type the command 

and the values of the d ate and t ime locat ions i n  memory are 
d isplayed . I f  there is  no t i me current ly set, the messages 
< 1··-! C) L>:rrT: > and < r -! C:i 

·
r I :·•: ::::: : are d isp layed . The program asks 

you if  you want to update the system date and t i me.  I f  you say yes, 
you m ust enter the date i n  the form 

(where D O = 01 to 3 1 ,  M M M  = JAN to DEC, YY = 00 to 99) 

and the t i me i n  the form 

(where HH = 01 to 1 2 , MM = 00 to 59 ,  A M  = A M  or  P M )  

When enter ing  days, hours ,  or  m i n utes less t h a n  1 0 , you m ust type 
in the lead ing  0 .  

I f  you have a c lock/calendar card , th is  program d oes not  set the  
t i me on the card . 

Reading From ProDOS Directories 

L ike a l l  other ProDOS f i les, d i rectory f i les can be opened and read . 
When you read from a d i rectory f i le ,  ProDOS automat ical ly 
i nterprets the i nformat ion  in that f i le ,  and passes i t  to you in an 
u nderstandable and fam i l iar  form-it  g ives you the same l i nes of 
text d isplayed by the CATALOG command .  For example ,  to l ist the 
/EXA M P LES d i rectory, you can use 

.
:: :. 

i :;_: 

-· · .
.

... . 
· -··· 

..;. : ; 

T ;. ; :-··, ;  l "T" 
.;. ; : ; · : ... : 

.!. 1-· L_ '··;· •. ;.· 

L. J. :f : 

L. . . ::j. :�:: ; 

8 0  I N P U T  � � � : P R I N T L 5 $  
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• 

Table D- 1 .  Di rectory L ine  Composit ion 

The f i rst l i n e  returned is  the name of the d i rectory being read . I f  i t  
is  a volume d i rectory, i t  is  preceded by a s lash .  The next l ine read 
is  the t i t le  l i ne ,  shown below. The th i rd l i ne is always em pty. 
Su bsequent l i nes, un t i l  the next b lank l i ne ,  are the f i les i n  the 
d i rectory. The b lock cou nt is  the last l ine read . Th is  program is 
stored i n  the f i le  /EXA M P LES/EXTRAS/READ . D I RECTO RY. 

If you want to do i nterest i ng th i ngs with the st r ing  you have just 
read (such as write a program that lets you look th rough a d isk 's  
d i rector ies) ,  you need to know the exact format of  the returned 
str i ng .  A sam ple l i n e  from a d i rectory looks l i ke th is  

The specif ic contents of  each character of  a l i ne read f rom a 
d i rectory are l i sted i n  Tab le D- 1 .  

Col u m n  Use 

2- 1 6  
1 8-20 
23-28 
3 1 -39 
4 1 -45 
48-56 
58-62 
64-7 1 
73 

75-79 
76-79 

Locked or u n locked 
F i lename 
F i le  type 
B locks used by f i le  
Date f i le  was last mod if ied 
T ime of last mod if icat ion  (24 hour  clock) 
Date f i le  was created 
T ime f i le  was created (24 hour  c lock) 
Logical end of f i le 
Su btype ident i f ier :  A = load Add ress 

R = Record length 
Load add ress (hexadeci mal )  
Record length (dec imal )  

The Applesoft Programmer's Assistant (APA) 

The Applesoft Prog rammer's Assistant is  a b i nary program named 
APA.  I t  is i n  the EXTRAS su b d i rectory on the ProDOS BASIC 

Programming Examples d isk .  

APA can save a lot of  t ime when you wr i te  or change Applesoft 
programs. The table below l i sts APA's  funct ions and the 
commands you use to perform them.  Each command is  d i scussed 
on the pages that fol low. 
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Function 

Automat ic  L ine N u m ber ing 
Tu rn i ng  Off  Automat ic  L ine  N u m beri ng  
Ren um beri ng a Program 
Putt i n g  a Program On Hold 
Merg i ng  Two Programs I nto One 
Delet i ng  Remarks From a Program 
D isp layi ng Control Characters 
Suppress ing  Control  Characters 
Calcu lat i n g  a Program 's  Length 
Prod uc ing a Cross-Reference L ist i ng  
Convert i n g  Dec imal  to Hex and Hex to Dec imal 
Clear ing  the APA Program From Memory 

Starting APA 

Here is how to start u p  the APA prog ram : 

Command 

AUTO 
MANUAL 
R E N U M BER 
H O L D  
M E RGE 
C O M P R ESS 
S H OW 
NOSH OW 
LENGTH 
XREF 
CONVERT 
EXIT  

1 .  I n sert the ProDOS BA SIC Programming Examples d isk i n  
d r ive 1 ,  a n d  close t h e  d rive door. 

2 .  I f  the computer 's power is not yet o n ,  tu rn  it on and go to Step 3 .  

O R  

I f  t h e  computer 's power is al ready o n ,  press 
@) (CONTROL ) - (RESET ) .  

3 .  When t h e  d isk d rive 's l igh t  goes o u t  and t h e  ProDOS BASIC 
Programming  Exam ples startup d i sp lay appears, type 

and press (RETURN ) .  

T h e  d r ive wh i rs for a moment ,  whi le  ProDOS relocates, loads, and 
i n i t ia l izes APA.  

By the Way: APA is  loaded just below H I M E M ,  and H I M E M  is  reset to  
just below APA.  A l though they are  both  i n  memory at  the same t i me ,  
APA and any Applesoft program you load are  kept  separate and can ' t  
i nterfere with each other. I f  you r  program is  extremely large, you may 
need some of the memory taken up by the APA, but  th is  wi l l  rarely be a 
problem.  
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The space after A U T O  is opt ional .  The 
start i ng  l ine n u m ber and i ncrement 
must be n u meric i ntegers i n  the range 
from 1 to 63999. 

After APA is  loaded , the APA startu p  d i sp lay appears: 

A P P L E S O F T  P R O G R A M M E R ' S  A S S I S T A N T  

C O P Y R I G H T  A P P L E  C O M P U T E R , 1 9 7 9 - 8 3  

]_ 

With the Applesoft ::! prompt on the screen , you can use any of 
APA's commands.  APA's commands can be used on ly i n  
immed iate mode-they can not b e  part o f  another program . 

Automatic Line Numbering 

The AUTO command makes i t  easier and faster to enter programs. 
I t  lets you specify 

• what l i ne n u m ber to beg i n  with 

• the i ncrement between l ine n u m bers. 

To specify a start i ng  l i n e  n u m ber of 1 00 and an i ncrement of 1 0 , 
type 

and press (RETURN ) .  When you then press (sPACE ) ,  t h e  l i ne 
n u m ber 1 �:'! !::: appears automat ical ly. 

After you type the rest of the Applesoft program l i n e  and press 
(RETURN ) and (SPACE ) ,  t h e  next l i n e  n u m ber, J. j ::;:: , appears. 

To specify a start i ng  l i ne n u m ber of 1 00 ,  without specifyi ng  an 
i ncrement,  s im ply type 

i._: : : : : : . . . . . .  . 
i : • ... : i · ... · .:. • ... · ·  ... · 

and press (RETURN ) .  T h e  APA sets t h e  i ncrement t o  1 0 . 

If you wish to leave a l i n e  n u m ber u n used , press (RETURN ) and 
then (SPACE) without typ ing  an Applesoft program l i n e-the next 
l i ne n u m ber appears, and no statement is  entered u nder the 
previous one.  

I f  you want to use a l ine n u m ber that the AUTO funct ion doesn ' t  
provide (for example ,  to use t h e  l i ne n u m ber 1 5  when t h e  start i n g  
l i ne n u m ber is  1 0  a n d  the i ncrement is  1 0) ,  just type :!. 1::': i nstead of 
press ing  (sPACE ) .  
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If you change you r  m ind  about a statement wh i le  you are typ ing  i t ,  
press (coNTROL)-(8] .  When you then press (SPACE ) ,  t h e  same 
n u m ber reappears without the statement .  

A l i ne n u m ber appears on ly if  you press (SPACE) after the :J 

prompt,  so you can type a run-t ime command any t ime you see the 
prompt ,  as long as you don ' t  beg i n  i t  with a space. Th is  means you 
can RUN or L IST you r  prog ram , or SAVE it and LOAD another, 
clear the screen with H O M E ,  or see the CATalog-j ust as if APA 
weren ' t  there.  

£. War n i n g  
I t  is  poss ib le  to overwrite APA w i t h  run-t ime commands.  When APA is  
loaded , don ' t  run a program that changes H I M E M  or the 1 /0 hooks .  And 
don't  press (RESET ) .  

Turning Off Automatic Line Numbering 

To turn  off automat ic  l i ne n u m beri ng ,  type 

!·.· . ..... : . ; ;  . ..... . 

and press (RETURN ) .  MANUAL is  t h e  defau l t  when you load APA.  To 
get automat ic  l i ne n u m beri ng ,  you m ust use the AUTO comman d .  

Renumbering a Program 

The R E N U M B E R  command renum bers the l i nes i n  a l l  or  part of a 
program i n  memory. You specify the start i n g  l i ne n u m ber and 
i ncrement.  

Even better, th is command also changes l i ne references in GOTO, 
GOSU B,  and O N E R R  statements!  So i f  the program runs correctly 
before ren u m beri ng ,  i t  runs correctly after renu m beri ng-un less 
you change the order of the l i nes. REN U M BER does not ,  however, 
change l i ne references in REM statements, so check these 
you rself .  

By the Way: If a RENU MBER command would cause interleaving of 
lines or dupl ication of l i ne numbers, APA does not execute it. This 
would happen if a range of l ines were renumbered so that its new 
num bers overlapped the num bers of another range of l ines. The 
result ing error message is I r·H E P U:: :=i i) f [) O P  D U P L  I C i=i T E  L I [ j E  
f·� U !··1 B F P .  
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Let ' s  start with an example .  F i rst , type 1 -i!:}r to clear memory ( th is  
won ' t  affect the APA program).  Then enter  th i s  s im ple program at 
the keyboard : 

;::;; !:::� r::= F;:� I N T  ' '  L ! <  

!:::; i;�1 P P I 1··-� ·r ;; t::: = = 

SAVE the program by typ ing  ::::; : :i ;y :· 

To ren um ber you r  SAM P LE prog ram , type 

;-··, ;···· :. : :  i i·.·i 

... :: and press [RETURN ) .  

and press (RETURN ) .  You r  whole program is  ren u m bered , start i ng  
w i th  l i ne n u m ber 1 00 and i ncrement i ng  by 1 0 . Try L I STi ng  i t :  

I f  you don ' t  want  to start with l i ne n u m ber 1 00 and i ncrement 
by 1 0 , type, say: 

Th is  resu l ts  i n  
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Load the SAM PLE program you saved ear l ier. To ren u m ber on ly 
part of th i s  prog ram , you can specify the f i rst and last o ld l i ne 
n u m bers to be changed . For example ,  if you type 

(where the start i ng  l i n e  n u m ber i s  1 00 ,  the i ncrement is  1 0 , and the 
f i rst and last o ld l i ne n u m bers are 30 and 40) ,  the resu l t  is  

�::� i:::i F' 1:�� I l··-1 ·r · · !···J l '  

::::; 0 F P I r·-! l '1 L. = =  

On ly the l i nes previously n u m bered 30 and 40 have been 
ren u m bered . Not ice that the l i nes are i n  a new seq uence,  i n  
keep ing with the i r  new l i n e  n u m bers. You can use R E N U M B E R  t o  
move su brout i nes around i n  a prog ram . 

You can specify the f i rst one ,  the f i rst two , the f i rst t h ree, or al l four 
R E N U M B E R  parameters. R E N U M BER uses a defau l t  value  for 
omit ted parameters. The defau l t  val ues are:  

< start i ng  l i ne n u m ber> 1 00 
< i ncrement> 1 0  
<fi rst l i ne> 0 
< l ast l i n e >  63999 

Thus, these two l i nes are equ ivalent :  

.. . : : : . · · 
. :  •••• : ·; :,,,: ; : :  •.• = :  •••• : ·-

The RENUMBER command d oes not let you g ive two l i nes the 
same n u m ber or  i n ter leave two sets of l i nes.  I nstead , you see the 
message I !

··-! ·T ::::. ;·=:: L. E: 1:::! !) �:::: r··1 1 = ••••• • • • • ••••· = • = - - .. 1 F� E::: j? . For 
example ,  if you load SAM P LE and type 

you see the error message:  th i s  com mand wou ld  not on ly put  
l ine 50 between l i nes 10 and 20 ,  but  i t  wou ld  also put l i nes 40 
and 60 on top of l i nes 10 and 20 .  
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Putting a Program On Hold 

Use the H O L D  com mand to shelter a prog ram above H I M E M ,  
where i t  can ' t  b e  erased b y  the load ing  o f  another program . Th is  
lets  you load a second program i n to memory, then use the M E RGE 
command (descr i bed i n  the next sect ion)  to com b ine  the two 
programs. 

With a program i n  memory, type 

: : r··; ;  ; :  

Merging Two Programs Into One 

After putt i ng  one program on ho ld ,  you can use the M ERGE 
command to com b ine  i t  with another. 

Let ' s  work with the SAM PLE program you created ear l ier. Fi rst , 
load SAM P LE and l ist it on the screen : 

�=� t�� P !:�: I J··-! T 
3 C3 P P I !··1 T 

�) �) F P  I H T  
i::; 0 P P I !;·1 T 

" . 
.. ::: 

i !  fi ii 

i; r•! j j  
l! F:: n 

i! l ;; ! .... 

Now delete l i nes 1 0 , 30 ,  and 50 by typ ing  

.L ,.. , 

and press ing  (RETURN)  after each l i ne n u m ber. 

When you l i st the program , you have 
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Save th is  shorter program under  the name APE .  N ow type 

L.i :''', ' 
l l ' . 

to put APE on ho ld . 

Now reload SAM PLE ,  and delete l i nes 20 ,  40 ,  and 60 from i t .  Th is  
l ists as 

Save th i s  program under  the name S M L .  Now type 

and press ( RETURN ) ;  then type 

T c· ····· 

and press (RETURN ) .  T h e  resu l t :  

P resto !  The prog ram you carved up  so d i l igent ly is  now whole 
agai n ,  and sorted by l ine num ber. 

If you had ren um bered S M L  before merg i n g ,  for example ,  by 
typ ing  

�-::; �-·· ; . . . . . . . . . . 

so that S M L  looked l i ke th is  

Appendix D: Extras 



• 

• 

• 

• 

you wou ld  have gotten a d ifferent resu l t .  If you typed 

r=: : .... : ·· =-··. ····· 

you ' d  get 

�� o P P  :r. r-.; T 
4 12! F l�� I f·-1 T 

6 0  F �� I f·-1 T 

:l Q i!  l l  
!i i:) H ' 

The M ERGE comman d ,  u n l i ke the R E N U M B E R  command , can 
create dup l i cate l i n e  num bers. For example ,  put  APE on HOLD ,  
t hen  LOAD S M L .  Ren um ber i t  by  typ ing  

and the l i st i n g  is :  

��� 0 P P I !···! T ;; �::; ; ; 
�� 0 P P i f·-! T ' ' !.,1 ; :  
40 PP I f·-! T ' ' L . l !  

Both APE and S M L  now contain l i nes n u m bered 20 and 40 .  Now 
type 

i ' i l""' i·::' j
.; j-·· 

and you see the message 

D U P L I C A T E  L I N E NU M B E R  
�� 0 
4 ,;;� 

I f  you press CYJ to cont i n ue i n  spite of the dup l icate l i n e  n u m bers, 
the l i n e  from the HOLD area has pr ior i ty, and the other l i ne wi th  the 
same num ber is  deleted . The l i st i ng  is then :  

c.. :::.1 P F:� I !··� T '' f:i 
3 r::: F i? I i···i T ' ' :··1 " 

H L� il 1-•• 
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Control characters are characters 
produced when you press (CONTROL )  
together with some other key. 

If you t ry to use M ERGE when there is no program on ho ld , you get 
the message ! ' '  ' ..... ' 

The M ERGE command can perform wonders, and save you a lot of 
t i me .  But  it can also wreak havoc .  Before typ ing  the M ERGE 
comman d ,  SAVE each of the prog rams to be merged . 

Deleting Remarks From a Program 

The C O M P RESS command removes documentat ion  remarks 
(program l i nes that beg i n  with REM)  from the prog ram in memory. 
C O M P RESS lets you mainta in  two vers ions of a program . The one 
that contai ns  REM l i nes is easier to maintai n ,  and the compressed 
vers ion runs faster and uses less memory. 

To use th is  featu re,  load a documented program , then type 

C: () �·=! F · · =··· · ··· 

and press (RETURN ) .  The program i n  memory i s  compressed , and 
you can then save i t  under  a d ifferent name.  A message tel ls  you 
how many bytes are saved . If you later revise the program , change 
the documented vers ion and make a new compressed vers ion 
f rom i t .  

Displaying Control Characters 

Use the S H OW command to make the control  characters i n  you r  
program vis i b le .  Type 

and press (RETURN ) .  I f  t h e  program contai ns  any control  
characters, they are d isp layed i n  inverse v ideo when you L I ST. 

Suppressing Control Characters 

After us i ng S H OW to make control  characters vis i b le ,  use the 
NOSHOW command to make them i nvis i b le  agai n .  Type 

and press (RETURN ) .  Control  characters are no  longer d isp layed . 
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Calculating a Program's Length 

Use APA's LENGTH command to determ ine  the length of the 
program i n  memory. Type 

and press (RETURN ) .  T h e  program 's  length i n  bytes is  d isp layed , i n  
both decimal  a n d  hexadecimal  form .  

Producing a Cross-Reference Listing 

The XREF command prod uces an a lphabetical cross-reference 
l ist i ng  of. the Applesoft program in n\emory. The l ist i ng  shows each 
variab le i n  the program , together with the n u m bers of a l l  l i nes i n  
which the var iab le appears. 

Load the program you wish to cross-reference; then type 

and press (RETURN ) .  After a pause that depends on t h e  length of 
the program , the var iab les and the i r  l i n e  n u m bers are l isted on the 
screen . Note that a l l  variab le names are shortened to two 
characters (Applesoft d ist i ngu ishes on ly the f i rst two characters of 
a variab le name) .  

F ive k inds of var iab les are ident if ied by a suffix: 

:�:: 

:: ... . ·· 

represents a str i ng  
represents an array 
represents a st r ing  array 
represents an i n teger variab le  
represents an i n teger array 

You can i n terrupt the cross-reference l ist i ng  by press ing  
(coNTROL ) -(]] . To resume an i n terrupted l ist i n g ,  press 
(CONTROL ) -(]] agai n .  

The Applesoft Progra m mer's Assistant (APA) II 



Converting Decimal to Hex and Hex to Decimal 

Use the CONVERT command to convert decimal  n u m bers to 
hexadecimal  and hexadeci mal n u m bers to dec ima l .  

For  example ,  to convert dec ima l  255 to hexadec ima l ,  type 

and press (RETURN ) .  T h e  program i mmed iately responds by 
d i sp layi ng 

:.: ... ·- ·' - . : :  ::t:: ;.-·; �--·; i··- :.. . 

where !? ! : :: : : is the hex equ ivalent of decimal  ,255 .  

To convert hexadeci mal 2 8  to dec ima l ,  type 

and press (RETURN ) .  T h e  program responds with 

where . :: 3 is  the decimal equ ivalent of hex 2 8 .  

Clearing the APA Program From Memory 

To u n l i n k  APA commands and return  to the system a l l  the memory 
that was bei ng used by APA,  type 

and press (RETURN ) .  Once you 've used t h e  EX IT  com man d ,  typ ing  
any more APA commands resu l ts i n  a '? �:::: =.,.· ;. : ···· ··· · · ··--- �··:- �·-:· : . .  ·: :··:: . 

To reload APA ,  type 

..... : ... ':.:' i ;.,.= ; . . .  ; ···, _.· ;-··; ;··· : 

and press (RETURN ) .  
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Glossary 

This  g lossary defi nes the terms used i n  th is  manual  as they apply 
to ProDOS.  Refer to other sources for more complete defi n i t ions .  

address A n u m ber that specif ies a s ing le  byte of  memory. 
Add resses can be g iven as dec imal  i n tegers or as hexadeci mal 
i ntegers. A 64K system has add resses rang ing  from 0 to 65535 ( i n  
dec imal )  or from $0000 to  $FFFF  ( i n  hexadecimal ) .  

APPE N D  Attach to the end of. The APPEND command is  used to 
write new data to the end of an exist i ng  f i le .  

ASCI I  An acronym for the Amer ican Standard Code for  
I nformat ion  I nterchange.  Th is  code assigns  a u n ique value from 
0 to 1 27 to each of 1 28 num bers, letters, specia l  characters, and 
control characters. I t  is  the code with which the Apple I I  represents 
the characters entered at the keyboard . 

back up To make a spare copy of. It is a good hab i t  to back u p  
i m portant f i les a n d  d isks freq uent ly. 

binary Encoded us ing the base-two n u m ber ing system 
consist i ng  of the two d ig i ts ,  0 and 1 .  A s ing le  b i nary d ig i t ,  a 0 or 
a 1 ,  is cal led a bit .  

b inary f i le A f i le  whose data are to be i n terpreted i n  b i nary form .  
Machi ne- language programs and pictu res a re  stored i n  b i nary 
f i les.  In comparison ,  the data in a text f i le  are i nterpreted as a set 
of characters. A ProDOS b inary f i le  is i nd icated i n  a catalog by the 
abbreviat ion BIN.  

BLOAD B i nary load . The BLOAD command causes the b i nary 
form of a f i le  to be p laced in memory. I f  the f i le  is  not a b i nary f i le ,  
i ts u n i nterpreted image is  p laced i n  memory. 

block 5 1 2  bytes of data. Th is  is  the u n it of storage used by 
ProDOS. ProDOS regards the i nformat ion  stored on d isk and i n  
memory a s  collect ions o f  b locks.  

BLOCKS When you use the CAT or CATALOG comman d ,  the 
colu m n  on the screen labeled E:: i .... C:H::>·::>:; l ists the n u m ber of b locks 
of d isk space occupied by each f i le  i n  that d i rectory. 
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B R U N  B inary run .  The BRUN command causes a b i n ary program 
to be brought i nto memory and ru n .  

BSAVE B inary save. The BSAVE com mand causes t h e  b i nary 
data i n  a port ion of memory to be saved i n  a d isk f i le .  If the f i le  is  
not a b i nary f i le ,  the data is  not automat ical ly encoded before 
bei ng  p laced in that f i le .  

buffer A tem porary storage area.  ProDOS uses a f i le  buffer as a 
temporary rest i ng  p lace for the characters be ing read from or 
wr i t ten to the f i le .  

byte A unit  of com puter memory. A byte is e ight  b i ts (B i nary 
d ig iTS) long ,  and is thus capab le of express ing  a range of n u m bers 
from 0 to 255 (2 to the 8th power is 256). Each character in the 
ASC I I  code is represented with i n  a s ing le  byte. 

CAT or CATALOG These commands cause a l ist of the names 
and characterist ics of al l the f i les i n  a d i rectory to be d isplayed . 
Both are ident ical . Th is  d isplay of i nformat ion is often referred to 
as a catalog .  CAT d isplays a 40-colu m n  l ist ;  CATALOG, 80. 

CHAIN The CHA IN  command runs a BAS IC program without f i rst 
eras ing  the var iab les current ly in memory. 

C H R$ Th is  Applesoft funct ion ,  when g iven an ASC I I  code, 
returns  the character represented by that code. CH R$(4) returns a 
(CONTROL ) -@) . 

CLOSE Th is  com mand m ust be issued when you f i n ish  us ing a 
f i le .  I t  wri tes a l l  u nwritten data to the f i le ,  and it releases the f i le  
buffers a l located to that f i le .  

CREATE Th is  command creates a new f i le .  When used , i t  p laces 
a new f i le  of a designated type i nto a designated d i rectory. 

(cONTROL )-@ This character must precede every ProDOS 
command used i n  a program . (coNTROL ) -@) has the ASC I I  code 4 ,  
thus i t  c a n  be generated u s i n g  the Applesoft funct ion cal l ,  
C H R$(4). 

(cONTROL ) -(RESET ) Th is  com b i nat ion of keystrokes usual ly causes 
an Applesoft program or command to stop i m med iately. If a 
program d i sab les the (coNTROL )- (RESET ) feature,  you need to turn  
the App le  I I  off to get  the program to stop .  

DASH (-) This  command runs a BAS IC ,  mach ine- language, 
EXEC, or  system program . 

DELETE Th is  command removes a f i le  from its d i rectory. A 
deleted f i le  can not be recovered . 
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d i rectory f i le ( type DIR)  A f i le  that contai ns  the names and 
locat ions on the d isk of other  f i les. Related f i les shou ld be g rouped 
together in to a s ing le  d i rectory f i le .  See also volume d i rectory. 

d isk A f lat c i rcu lar  p iece of p last ic  or  metal , d i pped i n to g l ue and 
coated with a f ine metal l i c  powder, onto which i nformat ion  is 
magnet ical ly recorded . 

d isk d r ive A device that can read i nformat ion from and record 
i nformat ion  on a d isk .  ProDOS lets the Apple I I comm u n icate with 
a l l  d isk d r ives man ufactu red by Apple Computer, Inc .  for the 
Apple I I .  

element As def i ned i n  th is  manua l ,  a st r i ng  of characters, 
term inated by a comma or a carr iage retu rn ,  that can be read 
usi ng the BASIC I N PUT statement .  For example ,  I N PUT A$, 8$ 
reads two elements.  

E N DFILE End of f i le .  When you d i sp lay a d isk 's  catalog , the 
column  of i nformat ion labeled 1::1 1 1:::: : : I L.. 1:: tel ls  the n u m ber of bytes 
that each f i le  wou ld  occupy i f  a l l the d isk space al located to that 
f i le  were f i l l ed .  Refer to Chapter 3 for more detai ls .  

/EXAM PLES The volume name of  the d isk that contai ns  the 
ProDOS program and the exam ples for th is  manual . Th is  d isk 
contai ns  the vers ion of the system f i le  that must be on every 
ProDOS startu p  d isk .  

EXEC This command causes i n put to be taken f rom a seq uent ia l  
text f i le  rather than from the keyboard . When you use EXEC, you 
control  the operat ion of the Apple I I  by usi ng  commands t hat are 
stored in a text f i le .  

f ie ld  I n  a f i le ,  a st r ing  of  characters preceded by a carr iage return  
character, and term inated by a carr iage retu rn  character. A f ie ld  is  
written to a f i le  by each P R I N T  statement not term inated by a 
sem ico lon .  The I N PUT com mand reads an ent i re f ie ld from a f i le .  

f i le A f i le  is a named , ordered col lect ion of i nformat ion on a d isk .  
When you use ProDOS to p lace i nformat ion  on a d isk ,  you g ive the 
f i le  a name and a type. The f i le 's  type determ ines how i nformat ion  
is encoded i n  that f i l e .  

f i lename The name that ident if ies a f i l e .  A ProDOS f i lename has 
a maxi mum of 1 5  characters. I t  can contai n letters, d i g i ts ,  and 
per iods ,  but  i t  must beg i n  with a letter. 

FLUSH Send u nwritten data to i ts f i le .  Use th is  command to 
ensure that the data in a f i le is  ident ical to the data written to the 
f i le .  FLUSH is l i ke CLOSE,  except the f i le remains open . 
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format To prepare the magnet ic  su rface of a d isk for the storage 
of i nformat ion .  The ProDOS F i ler lets you format al l types of d isks. 
This u t i l ity replaces the DOS command I N IT, which was used to 
format Disk I I  d isks.  

FRE This command is  used to access the ProDOS fast 
housekeep ing rout i nes .  

HELPSC REENS A f i le ,  stored on the /EXA M P LES d isk ,  that 
contai ns  a l l  the he lp screens.  Each screen is stored i n  a s ing le  
5 1 2-byte record of a random-access text f i le .  For the HELP 
command to be usab le ,  th is  f i le  must be on the d isk f rom wh ich 
ProDOS was started up ,  and the command ····· ! · ! E:: Ly:· m ust have 
been previously issued . 

hexadecimal  Encoded us ing the base- 1 6  n u m ber ing system . 
Hexadecimal  num bers are formed usi ng  the ten d i g i ts 0 th rough 9 
and the six capital letters A th rough F. A l l  hexadecima l  n u m bers 
used with ProDOS must be preceded by the sym bol $ . 

I N #  Th is  command des ignates the source of su bseq uent i n put 
characters. I t  can be used to des ignate a device i n  a slot or a 
mach ine- language rout ine  as the source of i n put .  

input  rout ine A mach i ne- language rout ine  that performs the 
read i n g  of  characters. The standard i n put rout ine  reads 
characters from the keyboard . A d i fferent i n put rout i ne  m ight ,  for 
exam ple,  read them from an externa l  term ina l .  

language card An Apple I I  i nterface card that ,  when  p laced i n  
s lot 0 o f  a 4 8 K  Apple I I ,  g ives t h e  Apple I I  access t o  a total of 
64K of memory. I f  you have an Apple II or Apple I I  P lus ,  you need a 
language card , or the eq u ivalent ,  to use ProDOS.  

LOAD Th is  command br ings a BAS IC prog ram i nto memory from 
a f i le. I t  clears the current BAS IC program and var iab les from 
memory and br ings in the new prog ram . 

load address The f i rst add ress i n  memory from which data was 
BSAVEd i n to a f i le .  When that f i le  is B LOADed or B R U N ,  it i s  
placed i n  memory start i ng  at  the load add ress u n less you specify 
otherwise. The load add ress of a b i na.ry f i le  is l i sted i n  the column  
labeled ·::;; i T<T" \' F<:: when you d isplay a catalog o f  f i les .  

LOCK Th is  command protects a f i le  from being acc idental ly 
renamed , deleted , or al tered . 

machi ne-language i nterface ( M L I )  The set of machi ne
language rout i nes ,  stored in the f i le named PRODOS,  with wh ich 
ProDOS talks to d isk d r ives. The ProDOS Technical Reference 

Manual contains a fu l l  explanat ion of the ProDOS mach ine
language i n terface. 
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NAME When a catalog of f i les is d isplayed on the screen ,  the 
r i : =: r·E colu m n  contai ns  the names of the f i les i n  the l isted 
d i rectory. 

OPEN This  command a l locates space i n  memory for a f i le 's  
buffers, and i t  sets the f i le pos i t ion  po inter to the beg i n n i n g  of the 
f i le .  The next f i le-related command to be issued m ust be a READ 
or a WRITE.  A l l  f i les opened m ust be closed . 

option An item i n  the syntax of a ProDOS command that 
determines a s ing le  aspect of the command 's  act ion ,  such as a 
pathname or a f i le  type. U n bracketed opt ions  m ust be i nc luded 
each t i me the command is used , bracketed opt ions can be 
specif ied as needed , and two options separated by a vert ical  l i n e  
are alternates. 

output rout ine A mach i ne- language rout ine  that performs the 
sen d i n g  of characters. The standard output rout i ne  wri tes 
characters to the screen . A d ifferent output rout i ne  might ,  for 
example ,  send them to a pr inter. 

partial  pathname A port ion of a pathname. A part ia l  pathname 
does not beg i n  with a slash , and i t  does not have to (but may) 
beg i n  with the name of a vol u me d i rectory. When you use a part ia l  
pathname i n  a command ,  the pref ix is  usual ly attached to the front 
to form a ful l  pathname. A part ia l  pathname can be n o  more than 
64 characters long .  

path name A series of  f i lenames,  preceded and separated by 
s lashes, that i nd icates the ent i re path ,  f rom volume d i rectory to  
f i le ,  that ProDOS m ust fol l ow to fi nd  that f i le  .. A pathname used i n  a 
command can contai n no more than 64 characters, s lashes 
inc luded .  (The pathname formed by the prefix and a part ia l  
pathname can be u p  to 1 28 characters long . )  

POSITION This  command causes a specif ied n u m ber of f ie lds to 
be read and d i scarded from an open f i le .  I t  is  used to move the 
posit ion  of the f i le  poi nter forward in the f i le .  

PR# Th is  command sends output to a s lot or  to a mach ine
language program . I t  specif ies an output rout i ne  i n  the ROM on a 
peri pheral card or i n  a mach ine- language rout i ne  i n  RAM by 
chang ing  the add ress of the standard output rout i ne  used by the 
Apple I I .  

prefix A pathname set t o  i nd icate a specif ic d i rectory f i le .  When 
you use a part ia l  pathname, the pref ix is  added to the front of i t .  
You set the value of the pref ix using the PREFIX comman d .  A 
prefix can be no more than 64 characters long ,  i nc lud ing  s lashes. 
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ProDOS com mand Any one of the 28 commands recog n ized by 
ProDOS. Each has its own syntax, al l can be used with i n  
programs, a n d  a l l  b u t  f ive (text f i le  com mands) can b e  used from 
i mmed i ate mode. ProDOS commands used from wi th i n  programs 
m ust be issued as part of a P R I N Ted str i ng ,  and m ust be preceded 
by (CONTROL ) -@]. 

/ R A M  The volume name of  a smal l volume automat ical ly p laced 
by ProDOS in the a l ternate 64K of an Apple l i e  with an Extended 
80-Co lumn Text Card . I t  can be used just l i ke a d isk volume ;  
however, the i nformat ion stored on i t  d isappears when the 
com puter is  tu rned off. 

Random Access Memory (RAM) Th is  is  the readab le  and 
writable memory of the App le  I I .  I ts contents are usual ly f i l led with 
programs from a d isk ,  and they are lost when the Apple I I  is  tu rned 
off. An Apple I I m ust have 64K of RAM to use ProDOS.  

random-access text f i le A text f i le  that is  part i t ioned into an 
u n l i m ited n u m ber of u n iform- length com partments cal led records.  
When you open a random-access text f i le  for the f i rst t ime you 
m ust specify its record length .  No record is p laced i n  the f i le  un t i l  
written to .  Each record can  be i n d ividua l ly read from or  written to ,  
hence the name, random-access. 

READ This  comman d ,  when used after the O P E N  com man d ,  
prepares a f i l e  to be read . I t  c a n  also select t h e  posi t ion  i n  t h e  f i le  
( record , f ie ld ,  and byte) of the next p iece of i nformat ion  to be read . 
Unt i l  the next ProDOS command is issued , su bseq uent I N PUT 
statements are sat isf ied by data from the f i le .  

Read O n ly Memory ( R O M )  I n  the context of th is  manua l ,  ROM 
refers to sem icond uctor ch ips i n  the App le  I I  or  on peri pheral 
cards that conta in  programs essent ia l  to the system 's  operat ion .  
The  contents o f  ROM are  permanent and u nalterable.  The  Apple I I  
comes w i th  ROM ch ips that conta in  the system Mon itor and a 
vers ion of BASIC ,  and the ROM on a d isk control ler card conta ins  
programs that  le t  the App le  I I  comm u n icate with one or two d isk 
d rives. 

record A un i t  of storage in a random-access text f i le .  Every 
random-access text f i le  can contai n a very large n u m ber of 
records;  each record ho lds the exact same n u m ber of characters . 
A program specif ies a f i le 's  record length ( i n  bytes) when the f i le  is  
f i rst opened ; i t  m ust su bseq uent ly read and wr i te d ata i nto specif ic 
records with i n  the f i le .  

record length The length of a random-access text f i le 's  records 
in bytes. The maxi mum record length is 65535 bytes; the m i n i m u m  
is  1 .  
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RENAME Th is  command a l lows you to change the name of a f i le .  
You can not use th is  com mand to move the f i le  f rom one d i rectory 
to another, on ly to change its name within a d i rectory. A f i le  must 
be u n locked to be renamed . 

RESTORE This  command c lears the BAS IC var iab les currently i n  
memory, a n d  i t  reads i n  a new set o f  var iab les from a var iab le f i le  
(type VAR) .  See a lso STORE.  

R U N  This  command clears the cu rrent BASIC program and 
var iab les f rom memory, br ings a BAS IC program into memory 
from a f i le ,  and runs i t .  An opt ion lets you specify the f i rst program 
l i ne to be run .  

SAVE This  command lets you save the BAS IC prog ram current ly 
i n  memory as a BASIC program f i le  (type BAS). 

sequentia l-access text f i le A text f i le made up of a seq uence of 
f ie lds. A f ie ld is a str ing of characters term i n ated by a carr iage 
return  character. Seq uent ia l  text f i les are best used for types of 
data that wi l l  be stored and retr ieved seq uent ia l ly. 

start up To get the system ru n n i n g .  I n  the context of ProDOS,  
start i ng  u p  is  the process of  read ing  the ProDOS program ( i n  the 
f i les PRODOS and BAS IC .SYSTEM)  from the d isk ,  and ru n n i n g  i t .  

startup d isk A d isk that conta ins a l l  the i nformat ion  needed to 
get the computer runn i ng .  A ProDOS startu p  d isk must be 
formatted us ing the ProDOS Fi ler, and i t  must contai n the f i les 
PRODOS and BASIC. SYST E M .  

STORE T h i s  command causes t h e  BAS I C  var iab les current ly i n  
memory t o  b e  arranged i n  a compact form a n d  then placed i n  a 
BAS IC var iab le f i le  (type VAR). The var iab les so stored can be 
returned to memory using the RESTO RE com man d .  

S U BTYPE I n  a catalog ,  t h e  colu m n  labeled ·::: : : E::: ·r · ;T<::: contains 
two types of i nformat ion :  for a random-access text f i le ,  the f i le 's  
record length (R)  i n  deci ma l ;  and for  a b i nary f i le ,  the f i le 's  load 
add ress (L) in hexadec imal .  

syntax A representat ion  of a command that specif ies al l  the 
poss ib le  forms the com mand can take. The syntax of each 
ProDOS command is  g iven as a com mand word fo l lowed by a l ist 
of opt ions .  

SYSTE M A f i le with a name of the form XXX.SYSTEM m ust be in  
the volume d i rectory of  every startu p  d isk ;  i t  conta ins  the system 
program that is  run when the d isk is  started up. On the 
/EXA M PLES d isk ,  BAS IC .SYSTEM contai ns  the ProDOS BASIC 
prog ram ; on the d isk named /USERS .D ISK ,  F ILER .SYSTEM 
contai ns  the ProDOS Fi ler. 
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text f i le (type TXT) A f i le  whose contents are i n terpreted as 
characters encoded usi ng  the ASC I I  format.  ProDOS defi nes two 
types of text f i les: seq uent ial , a grou p ing  of seq uent ia l ly access ib le 
f ie lds of text ; and random-access , a col lect ion of equal-s ized , and 
i ndependently accessi b le ,  groups of characters. 

TYPE In a catalog , the colu m n  with th is  head ing  names the type 
of each fi le l isted . Types are g iven as th ree- letter abbreviat ions .  
There is a l i st of  f i le  type abbreviat ions i n  Tab le A-2 .  

U NLOCK Th is  command reverses the effect of the LOCK 
command . A f i le  must be un locked if i t  is  to be renamed , deleted , 
or al tered . 

/USERS.DISK The /USERS . D I S K  d isk conta ins  u t i l i t ies 
programs with which you can format d isks, perform al l  f i le  
ma intenance (create, rename, delete, copy), and convert f i les 
between DOS 3 .3  format and ProDOS format .  These programs are 
exp la ined in the ProDOS User's Manual. 

volume A source or dest i n at ion  of i nformat ion .  As used i n  th is  
manua l ,  volume always refers to a d isk .  I t  cou ld  a lso ,  for  example ,  
refer to a mag net ic  tape or a locat ion i n  a network .  

volume d irectory The main  d i rectory of a vol u me. On a d isk ,  the 
volume d i rectory is a f i le  that contai ns  the names and locat ions on 
that d isk of up  to 51 other f i les,  any of which may themselves be 
d i rectory f i les.  

WRITE This comman d ,  when used after the OPEN command ,  
prepares a f i le  to be written to .  Un t i l  the next ProDOS command is 
issued , a l l  su bseq uent P R I N T  statements send characters to th is 
f i le .  

write-protected A d isk d r ive that uses f lex ib le  d isks can on ly 
write on a d isk that has a smal l notch i n  the proper locat ion .  If th is  
notch is covered , or i f  the notch does not exist ,  the d isk is  wri te
protected . The notch i tself is  referred to as a wri te-enable notch .  
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